1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
/* GSL - Generic Sound Layer
* Copyright (C) 2001 Stefan Westerfeld and Tim Janik
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* Public License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef __GSL_MATH_H__
#define __GSL_MATH_H__
#include <gsl/gslieee754.h>
#include <gsl/gsldefs.h>
#include <math.h>
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/* --- constants --- */
#define GSL_PI (3.1415926535897932384626433832795029 /* pi */)
#define GSL_PI_DIV_2 (1.5707963267948966192313216916397514 /* pi/2 */)
#define GSL_PI_DIV_4 (0.7853981633974483096156608458198757 /* pi/4 */)
#define GSL_1_DIV_PI (0.3183098861837906715377675267450287 /* 1/pi */)
#define GSL_2_DIV_PI (0.6366197723675813430755350534900574 /* 2/pi */)
#define GSL_2_DIV_SQRT_PI (1.1283791670955125738961589031215452 /* 2/sqrt(pi) */)
#define GSL_SQRT2 (1.4142135623730950488016887242096981 /* sqrt(2) */)
#define GSL_1_DIV_SQRT2 (0.7071067811865475244008443621048490 /* 1/sqrt(2) */)
#define GSL_E (2.7182818284590452353602874713526625 /* e */)
#define GSL_LOG2E (1.4426950408889634073599246810018922 /* log_2(e) */)
#define GSL_LOG10E (0.4342944819032518276511289189166051 /* log_10(e) */)
#define GSL_LN2 (0.6931471805599453094172321214581766 /* ln(2) */)
#define GSL_LN10 (2.3025850929940456840179914546843642 /* ln(10) */)
#define GSL_2_POW_1_DIV_12 (1.0594630943592952645618252949463417 /* 2^(1/12) */)
#define GSL_2_POW_1_DIV_72 (1.0096735332285108621925214011186051 /* 2^(1/72) */)
#define GSL_LN_2_POW_1_DIV_12 (0.0577622650466621091181026767881814 /* ln(2^(1/12)) */)
#define GSL_LN_2_POW_1_DIV_72 (0.0096270441744436848530171127980302 /* ln(2^(1/72)) */)
#define GSL_LOG2_10 (3.3219280948873623478703194294893902 /* log_2(10) */)
#define GSL_LOG2POW20_10 (0.1660964047443681173935159714744695 /* log_2(10)/20 */)
/* --- structures --- */
struct _GslComplex
{
double re;
double im;
};
/* --- float/double signbit extraction --- */
#ifdef signbit
# define gsl_float_sign(dblflt) (signbit (dblflt))
#else
# define gsl_float_sign(dblflt) ((dblflt) < -0.0) /* good enough for us */
#endif
/* --- complex numbers --- */
static inline GslComplex gsl_complex (double re,
double im);
static inline GslComplex gsl_complex_polar (double abs,
double arg);
static inline GslComplex gsl_complex_add (GslComplex c1,
GslComplex c2);
static inline GslComplex gsl_complex_add3 (GslComplex c1,
GslComplex c2,
GslComplex c3);
static inline GslComplex gsl_complex_sub (GslComplex c1,
GslComplex c2);
static inline GslComplex gsl_complex_sub3 (GslComplex c1,
GslComplex c2,
GslComplex c3);
static inline GslComplex gsl_complex_scale (GslComplex c1,
double scale);
static inline GslComplex gsl_complex_mul (GslComplex c1,
GslComplex c2);
static inline GslComplex gsl_complex_mul3 (GslComplex c1,
GslComplex c2,
GslComplex c3);
static inline GslComplex gsl_complex_div (GslComplex a,
GslComplex b);
static inline GslComplex gsl_complex_reciprocal (GslComplex c);
static inline GslComplex gsl_complex_sqrt (GslComplex z);
static inline GslComplex gsl_complex_conj (GslComplex c); /* {re, -im} */
static inline GslComplex gsl_complex_id (GslComplex c);
static inline GslComplex gsl_complex_inv (GslComplex c); /* {-re, -im} */
static inline double gsl_complex_abs (GslComplex c);
static inline double gsl_complex_arg (GslComplex c);
static inline GslComplex gsl_complex_sin (GslComplex c);
static inline GslComplex gsl_complex_cos (GslComplex c);
static inline GslComplex gsl_complex_tan (GslComplex c);
static inline GslComplex gsl_complex_sinh (GslComplex c);
static inline GslComplex gsl_complex_cosh (GslComplex c);
static inline GslComplex gsl_complex_tanh (GslComplex c);
char* gsl_complex_str (GslComplex c);
char* gsl_complex_list (unsigned int n_points,
GslComplex *points,
const char *indent);
void gsl_complex_gnuplot (const char *file_name,
unsigned int n_points,
GslComplex *points);
/* --- polynomials --- */
/* example, degree=2: 5+2x+7x^2 => a[0..degree] = { 5, 2, 7 } */
static inline void gsl_poly_add (unsigned int degree,
double *a, /* a[0..degree] */
double *b);
static inline void gsl_poly_sub (unsigned int order,
double *a, /* [0..degree] */
double *b);
static inline void gsl_poly_mul (double *p, /* out:[0..aorder+border] */
unsigned int aorder,
const double *a, /* in:[0..aorder] */
unsigned int border,
const double *b); /* in:[0..border] */
static inline void gsl_poly_scale (unsigned int order,
double *a, /* [0..degree] */
double scale);
static inline void gsl_poly_xscale (unsigned int order,
double *a, /* [0..degree] */
double xscale);
static inline double gsl_poly_eval (unsigned int degree,
double *a, /* [0..degree] */
double x);
void gsl_poly_complex_roots (unsigned int poly_degree,
double *a, /* [0..degree] (degree+1 elements) */
GslComplex *roots); /* [degree] */
void gsl_poly_from_re_roots (unsigned int poly_degree,
double *a, /* [0..degree] */
GslComplex *roots);
void gsl_cpoly_from_roots (unsigned int poly_degree,
GslComplex *c, /* [0..degree] */
GslComplex *roots);
static inline void gsl_cpoly_mul_monomial (unsigned int degree, /* _new_ degree */
GslComplex *c, /* in:[0..degree-1] out:[0..degree] */
GslComplex root); /* c(x) *= (x^1 - root) */
static inline void gsl_cpoly_mul_reciprocal (unsigned int degree, /* _new_ degree */
GslComplex *c, /* in:[0..degree-1] out:[0..degree] */
GslComplex root); /* c(x) *= (1 - root * x^-1) */
static inline void gsl_cpoly_mul (GslComplex *p, /* out:[0..aorder+border] */
unsigned int aorder,
GslComplex *a, /* in:[0..aorder] */
unsigned int border,
GslComplex *b); /* in:[0..border] */
char* gsl_poly_str (unsigned int degree,
double *a,
const char *var);
char* gsl_poly_str1 (unsigned int degree,
double *a,
const char *var);
/* --- transformations --- */
double gsl_temp_freq (double kammer_freq,
int halftone_delta);
/* --- miscellaneous --- */
double gsl_bit_depth_epsilon (guint n_bits); /* 1..32 */
/* --- ellipses --- */
double gsl_ellip_rf (double x,
double y,
double z);
double gsl_ellip_F (double phi,
double ak);
double gsl_ellip_sn (double u,
double emmc);
double gsl_ellip_asn (double y,
double emmc);
GslComplex gsl_complex_ellip_asn (GslComplex y,
GslComplex emmc);
GslComplex gsl_complex_ellip_sn (GslComplex u,
GslComplex emmc);
/* --- implementations --- */
static inline GslComplex
gsl_complex (double re,
double im)
{
GslComplex r;
r.re = re;
r.im = im;
return r;
}
static inline GslComplex
gsl_complex_polar (double abs,
double arg)
{
return gsl_complex (abs * cos (arg), abs * sin (arg));
}
static inline GslComplex
gsl_complex_add (GslComplex c1,
GslComplex c2)
{
return gsl_complex (c1.re + c2.re, c1.im + c2.im);
}
static inline GslComplex
gsl_complex_add3 (GslComplex c1,
GslComplex c2,
GslComplex c3)
{
return gsl_complex (c1.re + c2.re + c3.re, c1.im + c2.im + c3.im);
}
static inline GslComplex
gsl_complex_sub (GslComplex c1,
GslComplex c2)
{
return gsl_complex (c1.re - c2.re, c1.im - c2.im);
}
static inline GslComplex
gsl_complex_sub3 (GslComplex c1,
GslComplex c2,
GslComplex c3)
{
return gsl_complex (c1.re - c2.re - c3.re, c1.im - c2.im - c3.im);
}
static inline GslComplex
gsl_complex_scale (GslComplex c1,
double scale)
{
return gsl_complex (c1.re * scale, c1.im * scale);
}
static inline GslComplex
gsl_complex_mul (GslComplex c1,
GslComplex c2)
{
return gsl_complex (c1.re * c2.re - c1.im * c2.im, c1.re * c2.im + c1.im * c2.re);
}
static inline GslComplex
gsl_complex_mul3 (GslComplex c1,
GslComplex c2,
GslComplex c3)
{
double aec = c1.re * c2.re * c3.re;
double bde = c1.im * c2.im * c3.re;
double adf = c1.re * c2.im * c3.im;
double bcf = c1.im * c2.re * c3.im;
double ade = c1.re * c2.im * c3.re;
double bce = c1.im * c2.re * c3.re;
double acf = c1.re * c2.re * c3.im;
double bdf = c1.im * c2.im * c3.im;
return gsl_complex (aec - bde - adf - bcf, ade + bce + acf - bdf);
}
static inline GslComplex
gsl_complex_div (GslComplex a,
GslComplex b)
{
GslComplex c;
if (fabs (b.re) >= fabs (b.im))
{
double r = b.im / b.re, den = b.re + r * b.im;
c.re = (a.re + r * a.im) / den;
c.im = (a.im - r * a.re) / den;
}
else
{
double r = b.re / b.im, den = b.im + r * b.re;
c.re = (a.re * r + a.im) / den;
c.im = (a.im * r - a.re) / den;
}
return c;
}
static inline GslComplex
gsl_complex_reciprocal (GslComplex c)
{
if (fabs (c.re) >= fabs (c.im))
{
double r = c.im / c.re, den = c.re + r * c.im;
c.re = 1. / den;
c.im = - r / den;
}
else
{
double r = c.re / c.im, den = c.im + r * c.re;
c.re = r / den;
c.im = - 1. / den;
}
return c;
}
static inline GslComplex
gsl_complex_sqrt (GslComplex z)
{
if (z.re == 0.0 && z.im == 0.0)
return z;
else
{
GslComplex c;
double w, x = fabs (z.re), y = fabs (z.im);
if (x >= y)
{
double r = y / x;
w = sqrt (x) * sqrt (0.5 * (1.0 + sqrt (1.0 + r * r)));
}
else
{
double r = x / y;
w = sqrt (y) * sqrt (0.5 * (r + sqrt (1.0 + r * r)));
}
if (z.re >= 0.0)
{
c.re = w;
c.im = z.im / (2.0 * w);
}
else
{
c.im = z.im >= 0 ? w : -w;
c.re = z.im / (2.0 * c.im);
}
return c;
}
}
static inline GslComplex
gsl_complex_conj (GslComplex c)
{
return gsl_complex (c.re, -c.im);
}
static inline GslComplex
gsl_complex_inv (GslComplex c)
{
return gsl_complex (-c.re, -c.im);
}
static inline GslComplex
gsl_complex_id (GslComplex c)
{
return c;
}
static inline double
gsl_complex_abs (GslComplex c)
{
/* compute (a^2 + b^2)^(1/2) without destructive underflow or overflow */
double absa = fabs (c.re), absb = fabs (c.im);
return (absa > absb ?
absb == 0.0 ? absa :
absa * sqrt (1.0 + (absb / absa) * (absb / absa)) :
absb == 0.0 ? 0.0 :
absb * sqrt (1.0 + (absa / absb) * (absa / absb)));
}
static inline double
gsl_complex_arg (GslComplex c)
{
double a = atan2 (c.im, c.re);
return a;
}
static inline GslComplex
gsl_complex_sin (GslComplex c)
{
return gsl_complex (sin (c.re) * cosh (c.im), cos (c.re) * sinh (c.im));
}
static inline GslComplex
gsl_complex_cos (GslComplex c)
{
return gsl_complex (cos (c.re) * cosh (c.im), - sin (c.re) * sinh (c.im));
}
static inline GslComplex
gsl_complex_tan (GslComplex c)
{
return gsl_complex_div (gsl_complex (tan (c.re), tanh (c.im)),
gsl_complex (1.0, -tan (c.re) * tanh (c.im)));
}
static inline GslComplex
gsl_complex_sinh (GslComplex c)
{
return gsl_complex (sinh (c.re) * cos (c.im), cosh (c.re) * sin (c.im));
}
static inline GslComplex
gsl_complex_cosh (GslComplex c)
{
return gsl_complex (cosh (c.re) * cos (c.im), sinh (c.re) * sin (c.im));
}
static inline GslComplex
gsl_complex_tanh (GslComplex c)
{
return gsl_complex_div (gsl_complex_sinh (c),
gsl_complex_cosh (c));
}
static inline void
gsl_poly_add (unsigned int degree,
double *a,
double *b)
{
unsigned int i;
for (i = 0; i <= degree; i++)
a[i] += b[i];
}
static inline void
gsl_poly_sub (unsigned int degree,
double *a,
double *b)
{
unsigned int i;
for (i = 0; i <= degree; i++)
a[i] -= b[i];
}
static inline void
gsl_poly_mul (double *p, /* out:[0..aorder+border] */
unsigned int aorder,
const double *a, /* in:[0..aorder] */
unsigned int border,
const double *b) /* in:[0..border] */
{
unsigned int i;
for (i = aorder + border; i > 0; i--)
{
unsigned int j;
double t = 0;
for (j = i - MIN (border, i); j <= MIN (aorder, i); j++)
t += a[j] * b[i - j];
p[i] = t;
}
p[0] = a[0] * b[0];
}
static inline void
gsl_cpoly_mul_monomial (unsigned int degree,
GslComplex *c,
GslComplex root)
{
unsigned int j;
c[degree] = c[degree - 1];
for (j = degree - 1; j >= 1; j--)
c[j] = gsl_complex_sub (c[j - 1], gsl_complex_mul (c[j], root));
c[0] = gsl_complex_mul (c[0], gsl_complex_inv (root));
}
static inline void
gsl_cpoly_mul_reciprocal (unsigned int degree,
GslComplex *c,
GslComplex root)
{
unsigned int j;
c[degree] = gsl_complex_mul (c[degree - 1], gsl_complex_inv (root));
for (j = degree - 1; j >= 1; j--)
c[j] = gsl_complex_sub (c[j], gsl_complex_mul (c[j - 1], root));
/* c[0] = c[0]; */
}
static inline void
gsl_cpoly_mul (GslComplex *p, /* [0..aorder+border] */
unsigned int aorder,
GslComplex *a,
unsigned int border,
GslComplex *b)
{
unsigned int i;
for (i = aorder + border; i > 0; i--)
{
GslComplex t;
unsigned int j;
t = gsl_complex (0, 0);
for (j = i - MIN (i, border); j <= MIN (aorder, i); j++)
t = gsl_complex_add (t, gsl_complex_mul (a[j], b[i - j]));
p[i] = t;
}
p[0] = gsl_complex_mul (a[0], b[0]);
}
static inline void
gsl_poly_scale (unsigned int degree,
double *a,
double scale)
{
unsigned int i;
for (i = 0; i <= degree; i++)
a[i] *= scale;
}
static inline void
gsl_poly_xscale (unsigned int degree,
double *a,
double xscale)
{
double scale = xscale;
unsigned int i;
for (i = 1; i <= degree; i++)
{
a[i] *= scale;
scale *= xscale;
}
}
static inline double
gsl_poly_eval (unsigned int degree,
double *a,
double x)
{
double sum = a[degree];
while (degree--)
sum = sum * x + a[degree];
return sum;
}
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* __GSL_MATH_H__ */ /* vim: set ts=8 sw=2 sts=2: */
|