diff options
Diffstat (limited to 'src/libs/sqlite3/sqlite3.c')
-rw-r--r-- | src/libs/sqlite3/sqlite3.c | 86994 |
1 files changed, 86994 insertions, 0 deletions
diff --git a/src/libs/sqlite3/sqlite3.c b/src/libs/sqlite3/sqlite3.c new file mode 100644 index 00000000..45077b4b --- /dev/null +++ b/src/libs/sqlite3/sqlite3.c @@ -0,0 +1,86994 @@ +/****************************************************************************** +** This file is an amalgamation of many separate C source files from SQLite +** version 3.5.9. By combining all the individual C code files into this +** single large file, the entire code can be compiled as a one translation +** unit. This allows many compilers to do optimizations that would not be +** possible if the files were compiled separately. Performance improvements +** of 5% are more are commonly seen when SQLite is compiled as a single +** translation unit. +** +** This file is all you need to compile SQLite. To use SQLite in other +** programs, you need this file and the "sqlite3.h" header file that defines +** the programming interface to the SQLite library. (If you do not have +** the "sqlite3.h" header file at hand, you will find a copy in the first +** 5638 lines past this header comment.) Additional code files may be +** needed if you want a wrapper to interface SQLite with your choice of +** programming language. The code for the "sqlite3" command-line shell +** is also in a separate file. This file contains only code for the core +** SQLite library. +** +** This amalgamation was generated on 2008-05-14 16:30:52 UTC. +*/ +#define SQLITE_CORE 1 +#define SQLITE_AMALGAMATION 1 +#ifndef SQLITE_PRIVATE +# define SQLITE_PRIVATE static +#endif +#ifndef SQLITE_API +# define SQLITE_API +#endif +/************** Begin file sqliteInt.h ***************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Internal interface definitions for SQLite. +** +** @(#) $Id: sqliteInt.h,v 1.704 2008/05/13 13:27:34 drh Exp $ +*/ +#ifndef _SQLITEINT_H_ +#define _SQLITEINT_H_ + +/* +** Include the configuration header output by 'configure' if we're using the +** autoconf-based build +*/ +#ifdef _HAVE_SQLITE_CONFIG_H +#include "config.h" +#endif + +/************** Include sqliteLimit.h in the middle of sqliteInt.h ***********/ +/************** Begin file sqliteLimit.h *************************************/ +/* +** 2007 May 7 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file defines various limits of what SQLite can process. +** +** @(#) $Id: sqliteLimit.h,v 1.8 2008/03/26 15:56:22 drh Exp $ +*/ + +/* +** The maximum length of a TEXT or BLOB in bytes. This also +** limits the size of a row in a table or index. +** +** The hard limit is the ability of a 32-bit signed integer +** to count the size: 2^31-1 or 2147483647. +*/ +#ifndef SQLITE_MAX_LENGTH +# define SQLITE_MAX_LENGTH 1000000000 +#endif + +/* +** This is the maximum number of +** +** * Columns in a table +** * Columns in an index +** * Columns in a view +** * Terms in the SET clause of an UPDATE statement +** * Terms in the result set of a SELECT statement +** * Terms in the GROUP BY or ORDER BY clauses of a SELECT statement. +** * Terms in the VALUES clause of an INSERT statement +** +** The hard upper limit here is 32676. Most database people will +** tell you that in a well-normalized database, you usually should +** not have more than a dozen or so columns in any table. And if +** that is the case, there is no point in having more than a few +** dozen values in any of the other situations described above. +*/ +#ifndef SQLITE_MAX_COLUMN +# define SQLITE_MAX_COLUMN 2000 +#endif + +/* +** The maximum length of a single SQL statement in bytes. +** +** It used to be the case that setting this value to zero would +** turn the limit off. That is no longer true. It is not possible +** to turn this limit off. +*/ +#ifndef SQLITE_MAX_SQL_LENGTH +# define SQLITE_MAX_SQL_LENGTH 1000000000 +#endif + +/* +** The maximum depth of an expression tree. This is limited to +** some extent by SQLITE_MAX_SQL_LENGTH. But sometime you might +** want to place more severe limits on the complexity of an +** expression. +** +** A value of 0 used to mean that the limit was not enforced. +** But that is no longer true. The limit is now strictly enforced +** at all times. +*/ +#ifndef SQLITE_MAX_EXPR_DEPTH +# define SQLITE_MAX_EXPR_DEPTH 1000 +#endif + +/* +** The maximum number of terms in a compound SELECT statement. +** The code generator for compound SELECT statements does one +** level of recursion for each term. A stack overflow can result +** if the number of terms is too large. In practice, most SQL +** never has more than 3 or 4 terms. Use a value of 0 to disable +** any limit on the number of terms in a compount SELECT. +*/ +#ifndef SQLITE_MAX_COMPOUND_SELECT +# define SQLITE_MAX_COMPOUND_SELECT 500 +#endif + +/* +** The maximum number of opcodes in a VDBE program. +** Not currently enforced. +*/ +#ifndef SQLITE_MAX_VDBE_OP +# define SQLITE_MAX_VDBE_OP 25000 +#endif + +/* +** The maximum number of arguments to an SQL function. +*/ +#ifndef SQLITE_MAX_FUNCTION_ARG +# define SQLITE_MAX_FUNCTION_ARG 100 +#endif + +/* +** The maximum number of in-memory pages to use for the main database +** table and for temporary tables. The SQLITE_DEFAULT_CACHE_SIZE +*/ +#ifndef SQLITE_DEFAULT_CACHE_SIZE +# define SQLITE_DEFAULT_CACHE_SIZE 2000 +#endif +#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE +# define SQLITE_DEFAULT_TEMP_CACHE_SIZE 500 +#endif + +/* +** The maximum number of attached databases. This must be between 0 +** and 30. The upper bound on 30 is because a 32-bit integer bitmap +** is used internally to track attached databases. +*/ +#ifndef SQLITE_MAX_ATTACHED +# define SQLITE_MAX_ATTACHED 10 +#endif + + +/* +** The maximum value of a ?nnn wildcard that the parser will accept. +*/ +#ifndef SQLITE_MAX_VARIABLE_NUMBER +# define SQLITE_MAX_VARIABLE_NUMBER 999 +#endif + +/* Maximum page size. The upper bound on this value is 32768. This a limit +** imposed by the necessity of storing the value in a 2-byte unsigned integer +** and the fact that the page size must be a power of 2. +*/ +#ifndef SQLITE_MAX_PAGE_SIZE +# define SQLITE_MAX_PAGE_SIZE 32768 +#endif + + +/* +** The default size of a database page. +*/ +#ifndef SQLITE_DEFAULT_PAGE_SIZE +# define SQLITE_DEFAULT_PAGE_SIZE 1024 +#endif +#if SQLITE_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE +# undef SQLITE_DEFAULT_PAGE_SIZE +# define SQLITE_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE +#endif + +/* +** Ordinarily, if no value is explicitly provided, SQLite creates databases +** with page size SQLITE_DEFAULT_PAGE_SIZE. However, based on certain +** device characteristics (sector-size and atomic write() support), +** SQLite may choose a larger value. This constant is the maximum value +** SQLite will choose on its own. +*/ +#ifndef SQLITE_MAX_DEFAULT_PAGE_SIZE +# define SQLITE_MAX_DEFAULT_PAGE_SIZE 8192 +#endif +#if SQLITE_MAX_DEFAULT_PAGE_SIZE>SQLITE_MAX_PAGE_SIZE +# undef SQLITE_MAX_DEFAULT_PAGE_SIZE +# define SQLITE_MAX_DEFAULT_PAGE_SIZE SQLITE_MAX_PAGE_SIZE +#endif + + +/* +** Maximum number of pages in one database file. +** +** This is really just the default value for the max_page_count pragma. +** This value can be lowered (or raised) at run-time using that the +** max_page_count macro. +*/ +#ifndef SQLITE_MAX_PAGE_COUNT +# define SQLITE_MAX_PAGE_COUNT 1073741823 +#endif + +/* +** Maximum length (in bytes) of the pattern in a LIKE or GLOB +** operator. +*/ +#ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH +# define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 +#endif + +/************** End of sqliteLimit.h *****************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ + +/* Needed for various definitions... */ +#define _GNU_SOURCE + +/* +** Include standard header files as necessary +*/ +#ifdef HAVE_STDINT_H +#include <stdint.h> +#endif +#ifdef HAVE_INTTYPES_H +#include <inttypes.h> +#endif + +/* +** A macro used to aid in coverage testing. When doing coverage +** testing, the condition inside the argument must be evaluated +** both true and false in order to get full branch coverage. +** This macro can be inserted to ensure adequate test coverage +** in places where simple condition/decision coverage is inadequate. +*/ +#ifdef SQLITE_COVERAGE_TEST +SQLITE_PRIVATE void sqlite3Coverage(int); +# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } +#else +# define testcase(X) +#endif + + +/* +** The macro unlikely() is a hint that surrounds a boolean +** expression that is usually false. Macro likely() surrounds +** a boolean expression that is usually true. GCC is able to +** use these hints to generate better code, sometimes. +*/ +#if defined(__GNUC__) && 0 +# define likely(X) __builtin_expect((X),1) +# define unlikely(X) __builtin_expect((X),0) +#else +# define likely(X) !!(X) +# define unlikely(X) !!(X) +#endif + + +/* +** These #defines should enable >2GB file support on Posix if the +** underlying operating system supports it. If the OS lacks +** large file support, or if the OS is windows, these should be no-ops. +** +** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any +** system #includes. Hence, this block of code must be the very first +** code in all source files. +** +** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch +** on the compiler command line. This is necessary if you are compiling +** on a recent machine (ex: RedHat 7.2) but you want your code to work +** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 +** without this option, LFS is enable. But LFS does not exist in the kernel +** in RedHat 6.0, so the code won't work. Hence, for maximum binary +** portability you should omit LFS. +** +** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. +*/ +#ifndef SQLITE_DISABLE_LFS +# define _LARGE_FILE 1 +# ifndef _FILE_OFFSET_BITS +# define _FILE_OFFSET_BITS 64 +# endif +# define _LARGEFILE_SOURCE 1 +#endif + + +/* +** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. +** Older versions of SQLite used an optional THREADSAFE macro. +** We support that for legacy +*/ +#if !defined(SQLITE_THREADSAFE) +#if defined(THREADSAFE) +# define SQLITE_THREADSAFE THREADSAFE +#else +# define SQLITE_THREADSAFE 1 +#endif +#endif + +/* +** Exactly one of the following macros must be defined in order to +** specify which memory allocation subsystem to use. +** +** SQLITE_SYSTEM_MALLOC // Use normal system malloc() +** SQLITE_MEMDEBUG // Debugging version of system malloc() +** SQLITE_MEMORY_SIZE // internal allocator #1 +** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator +** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator +** +** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as +** the default. +*/ +#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ + defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ + defined(SQLITE_POW2_MEMORY_SIZE)>1 +# error "At most one of the following compile-time configuration options\ + is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\ + SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE" +#endif +#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ + defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ + defined(SQLITE_POW2_MEMORY_SIZE)==0 +# define SQLITE_SYSTEM_MALLOC 1 +#endif + +/* +** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the +** sizes of memory allocations below this value where possible. +*/ +#if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT) +# define SQLITE_MALLOC_SOFT_LIMIT 1024 +#endif + +/* +** We need to define _XOPEN_SOURCE as follows in order to enable +** recursive mutexes on most unix systems. But Mac OS X is different. +** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, +** so it is omitted there. See ticket #2673. +** +** Later we learn that _XOPEN_SOURCE is poorly or incorrectly +** implemented on some systems. So we avoid defining it at all +** if it is already defined or if it is unneeded because we are +** not doing a threadsafe build. Ticket #2681. +** +** See also ticket #2741. +*/ +#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE +# define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ +#endif + +#if defined(SQLITE_TCL) || defined(TCLSH) +# include <tcl.h> +#endif + +/* +** Many people are failing to set -DNDEBUG=1 when compiling SQLite. +** Setting NDEBUG makes the code smaller and run faster. So the following +** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 +** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out +** feature. +*/ +#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) +# define NDEBUG 1 +#endif + +/************** Include sqlite3.h in the middle of sqliteInt.h ***************/ +/************** Begin file sqlite3.h *****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the SQLite library +** presents to client programs. If a C-function, structure, datatype, +** or constant definition does not appear in this file, then it is +** not a published API of SQLite, is subject to change without +** notice, and should not be referenced by programs that use SQLite. +** +** Some of the definitions that are in this file are marked as +** "experimental". Experimental interfaces are normally new +** features recently added to SQLite. We do not anticipate changes +** to experimental interfaces but reserve to make minor changes if +** experience from use "in the wild" suggest such changes are prudent. +** +** The official C-language API documentation for SQLite is derived +** from comments in this file. This file is the authoritative source +** on how SQLite interfaces are suppose to operate. +** +** The name of this file under configuration management is "sqlite.h.in". +** The makefile makes some minor changes to this file (such as inserting +** the version number) and changes its name to "sqlite3.h" as +** part of the build process. +** +** @(#) $Id: sqlite.h.in,v 1.312 2008/05/12 12:39:56 drh Exp $ +*/ +#ifndef _SQLITE3_H_ +#define _SQLITE3_H_ +#include <stdarg.h> /* Needed for the definition of va_list */ + +/* +** Make sure we can call this stuff from C++. +*/ +#if 0 +extern "C" { +#endif + + +/* +** Add the ability to override 'extern' +*/ +#ifndef SQLITE_EXTERN +# define SQLITE_EXTERN extern +#endif + +/* +** Make sure these symbols where not defined by some previous header +** file. +*/ +#ifdef SQLITE_VERSION +# undef SQLITE_VERSION +#endif +#ifdef SQLITE_VERSION_NUMBER +# undef SQLITE_VERSION_NUMBER +#endif + +/* +** CAPI3REF: Compile-Time Library Version Numbers {F10010} +** +** The SQLITE_VERSION and SQLITE_VERSION_NUMBER #defines in +** the sqlite3.h file specify the version of SQLite with which +** that header file is associated. +** +** The "version" of SQLite is a string of the form "X.Y.Z". +** The phrase "alpha" or "beta" might be appended after the Z. +** The X value is major version number always 3 in SQLite3. +** The X value only changes when backwards compatibility is +** broken and we intend to never break +** backwards compatibility. The Y value is the minor version +** number and only changes when +** there are major feature enhancements that are forwards compatible +** but not backwards compatible. The Z value is release number +** and is incremented with +** each release but resets back to 0 when Y is incremented. +** +** See also: [sqlite3_libversion()] and [sqlite3_libversion_number()]. +** +** INVARIANTS: +** +** {F10011} The SQLITE_VERSION #define in the sqlite3.h header file +** evaluates to a string literal that is the SQLite version +** with which the header file is associated. +** +** {F10014} The SQLITE_VERSION_NUMBER #define resolves to an integer +** with the value (X*1000000 + Y*1000 + Z) where X, Y, and +** Z are the major version, minor version, and release number. +*/ +#define SQLITE_VERSION "3.5.9" +#define SQLITE_VERSION_NUMBER 3005009 + +/* +** CAPI3REF: Run-Time Library Version Numbers {F10020} +** KEYWORDS: sqlite3_version +** +** These features provide the same information as the [SQLITE_VERSION] +** and [SQLITE_VERSION_NUMBER] #defines in the header, but are associated +** with the library instead of the header file. Cautious programmers might +** include a check in their application to verify that +** sqlite3_libversion_number() always returns the value +** [SQLITE_VERSION_NUMBER]. +** +** The sqlite3_libversion() function returns the same information as is +** in the sqlite3_version[] string constant. The function is provided +** for use in DLLs since DLL users usually do not have direct access to string +** constants within the DLL. +** +** INVARIANTS: +** +** {F10021} The [sqlite3_libversion_number()] interface returns an integer +** equal to [SQLITE_VERSION_NUMBER]. +** +** {F10022} The [sqlite3_version] string constant contains the text of the +** [SQLITE_VERSION] string. +** +** {F10023} The [sqlite3_libversion()] function returns +** a pointer to the [sqlite3_version] string constant. +*/ +SQLITE_API const char sqlite3_version[]; +SQLITE_API const char *sqlite3_libversion(void); +SQLITE_API int sqlite3_libversion_number(void); + +/* +** CAPI3REF: Test To See If The Library Is Threadsafe {F10100} +** +** SQLite can be compiled with or without mutexes. When +** the SQLITE_THREADSAFE C preprocessor macro is true, mutexes +** are enabled and SQLite is threadsafe. When that macro is false, +** the mutexes are omitted. Without the mutexes, it is not safe +** to use SQLite from more than one thread. +** +** There is a measurable performance penalty for enabling mutexes. +** So if speed is of utmost importance, it makes sense to disable +** the mutexes. But for maximum safety, mutexes should be enabled. +** The default behavior is for mutexes to be enabled. +** +** This interface can be used by a program to make sure that the +** version of SQLite that it is linking against was compiled with +** the desired setting of the SQLITE_THREADSAFE macro. +** +** INVARIANTS: +** +** {F10101} The [sqlite3_threadsafe()] function returns nonzero if +** SQLite was compiled with its mutexes enabled or zero +** if SQLite was compiled with mutexes disabled. +*/ +SQLITE_API int sqlite3_threadsafe(void); + +/* +** CAPI3REF: Database Connection Handle {F12000} +** KEYWORDS: {database connection} {database connections} +** +** Each open SQLite database is represented by pointer to an instance of the +** opaque structure named "sqlite3". It is useful to think of an sqlite3 +** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces are its constructors +** and [sqlite3_close()] is its destructor. There are many other interfaces +** (such as [sqlite3_prepare_v2()], [sqlite3_create_function()], and +** [sqlite3_busy_timeout()] to name but three) that are methods on this +** object. +*/ +typedef struct sqlite3 sqlite3; + + +/* +** CAPI3REF: 64-Bit Integer Types {F10200} +** KEYWORDS: sqlite_int64 sqlite_uint64 +** +** Because there is no cross-platform way to specify 64-bit integer types +** SQLite includes typedefs for 64-bit signed and unsigned integers. +** +** The sqlite3_int64 and sqlite3_uint64 are the preferred type +** definitions. The sqlite_int64 and sqlite_uint64 types are +** supported for backwards compatibility only. +** +** INVARIANTS: +** +** {F10201} The [sqlite_int64] and [sqlite3_int64] types specify a +** 64-bit signed integer. +** +** {F10202} The [sqlite_uint64] and [sqlite3_uint64] types specify +** a 64-bit unsigned integer. +*/ +#ifdef SQLITE_INT64_TYPE + typedef SQLITE_INT64_TYPE sqlite_int64; + typedef unsigned SQLITE_INT64_TYPE sqlite_uint64; +#elif defined(_MSC_VER) + typedef __int64 sqlite_int64; + typedef unsigned __int64 sqlite_uint64; +#else + typedef long long int sqlite_int64; + typedef unsigned long long int sqlite_uint64; +#endif +typedef sqlite_int64 sqlite3_int64; +typedef sqlite_uint64 sqlite3_uint64; + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite3_int64 +#endif + +/* +** CAPI3REF: Closing A Database Connection {F12010} +** +** This routine is the destructor for the [sqlite3] object. +** +** Applications should [sqlite3_finalize | finalize] all +** [prepared statements] and +** [sqlite3_blob_close | close] all [sqlite3_blob | BLOBs] +** associated with the [sqlite3] object prior +** to attempting to close the [sqlite3] object. +** +** <todo>What happens to pending transactions? Are they +** rolled back, or abandoned?</todo> +** +** INVARIANTS: +** +** {F12011} The [sqlite3_close()] interface destroys an [sqlite3] object +** allocated by a prior call to [sqlite3_open()], +** [sqlite3_open16()], or [sqlite3_open_v2()]. +** +** {F12012} The [sqlite3_close()] function releases all memory used by the +** connection and closes all open files. +** +** {F12013} If the database connection contains +** [prepared statements] that have not been +** finalized by [sqlite3_finalize()], then [sqlite3_close()] +** returns [SQLITE_BUSY] and leaves the connection open. +** +** {F12014} Giving sqlite3_close() a NULL pointer is a harmless no-op. +** +** LIMITATIONS: +** +** {U12015} The parameter to [sqlite3_close()] must be an [sqlite3] object +** pointer previously obtained from [sqlite3_open()] or the +** equivalent, or NULL. +** +** {U12016} The parameter to [sqlite3_close()] must not have been previously +** closed. +*/ +SQLITE_API int sqlite3_close(sqlite3 *); + +/* +** The type for a callback function. +** This is legacy and deprecated. It is included for historical +** compatibility and is not documented. +*/ +typedef int (*sqlite3_callback)(void*,int,char**, char**); + +/* +** CAPI3REF: One-Step Query Execution Interface {F12100} +** +** The sqlite3_exec() interface is a convenient way of running +** one or more SQL statements without a lot of C code. The +** SQL statements are passed in as the second parameter to +** sqlite3_exec(). The statements are evaluated one by one +** until either an error or an interrupt is encountered or +** until they are all done. The 3rd parameter is an optional +** callback that is invoked once for each row of any query results +** produced by the SQL statements. The 5th parameter tells where +** to write any error messages. +** +** The sqlite3_exec() interface is implemented in terms of +** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()]. +** The sqlite3_exec() routine does nothing that cannot be done +** by [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()]. +** The sqlite3_exec() is just a convenient wrapper. +** +** INVARIANTS: +** +** {F12101} The [sqlite3_exec()] interface evaluates zero or more UTF-8 +** encoded, semicolon-separated, SQL statements in the +** zero-terminated string of its 2nd parameter within the +** context of the [sqlite3] object given in the 1st parameter. +** +** {F12104} The return value of [sqlite3_exec()] is SQLITE_OK if all +** SQL statements run successfully. +** +** {F12105} The return value of [sqlite3_exec()] is an appropriate +** non-zero error code if any SQL statement fails. +** +** {F12107} If one or more of the SQL statements handed to [sqlite3_exec()] +** return results and the 3rd parameter is not NULL, then +** the callback function specified by the 3rd parameter is +** invoked once for each row of result. +** +** {F12110} If the callback returns a non-zero value then [sqlite3_exec()] +** will aborted the SQL statement it is currently evaluating, +** skip all subsequent SQL statements, and return [SQLITE_ABORT]. +** <todo>What happens to *errmsg here? Does the result code for +** sqlite3_errcode() get set?</todo> +** +** {F12113} The [sqlite3_exec()] routine will pass its 4th parameter through +** as the 1st parameter of the callback. +** +** {F12116} The [sqlite3_exec()] routine sets the 2nd parameter of its +** callback to be the number of columns in the current row of +** result. +** +** {F12119} The [sqlite3_exec()] routine sets the 3rd parameter of its +** callback to be an array of pointers to strings holding the +** values for each column in the current result set row as +** obtained from [sqlite3_column_text()]. +** +** {F12122} The [sqlite3_exec()] routine sets the 4th parameter of its +** callback to be an array of pointers to strings holding the +** names of result columns as obtained from [sqlite3_column_name()]. +** +** {F12125} If the 3rd parameter to [sqlite3_exec()] is NULL then +** [sqlite3_exec()] never invokes a callback. All query +** results are silently discarded. +** +** {F12128} If an error occurs while parsing or evaluating any of the SQL +** statements handed to [sqlite3_exec()] then [sqlite3_exec()] will +** return an [error code] other than [SQLITE_OK]. +** +** {F12131} If an error occurs while parsing or evaluating any of the SQL +** handed to [sqlite3_exec()] and if the 5th parameter (errmsg) +** to [sqlite3_exec()] is not NULL, then an error message is +** allocated using the equivalent of [sqlite3_mprintf()] and +** *errmsg is made to point to that message. +** +** {F12134} The [sqlite3_exec()] routine does not change the value of +** *errmsg if errmsg is NULL or if there are no errors. +** +** {F12137} The [sqlite3_exec()] function sets the error code and message +** accessible via [sqlite3_errcode()], [sqlite3_errmsg()], and +** [sqlite3_errmsg16()]. +** +** LIMITATIONS: +** +** {U12141} The first parameter to [sqlite3_exec()] must be an valid and open +** [database connection]. +** +** {U12142} The database connection must not be closed while +** [sqlite3_exec()] is running. +** +** {U12143} The calling function is should use [sqlite3_free()] to free +** the memory that *errmsg is left pointing at once the error +** message is no longer needed. +** +** {U12145} The SQL statement text in the 2nd parameter to [sqlite3_exec()] +** must remain unchanged while [sqlite3_exec()] is running. +*/ +SQLITE_API int sqlite3_exec( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluted */ + int (*callback)(void*,int,char**,char**), /* Callback function */ + void *, /* 1st argument to callback */ + char **errmsg /* Error msg written here */ +); + +/* +** CAPI3REF: Result Codes {F10210} +** KEYWORDS: SQLITE_OK {error code} {error codes} +** +** Many SQLite functions return an integer result code from the set shown +** here in order to indicates success or failure. +** +** See also: [SQLITE_IOERR_READ | extended result codes] +*/ +#define SQLITE_OK 0 /* Successful result */ +/* beginning-of-error-codes */ +#define SQLITE_ERROR 1 /* SQL error or missing database */ +#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */ +#define SQLITE_PERM 3 /* Access permission denied */ +#define SQLITE_ABORT 4 /* Callback routine requested an abort */ +#define SQLITE_BUSY 5 /* The database file is locked */ +#define SQLITE_LOCKED 6 /* A table in the database is locked */ +#define SQLITE_NOMEM 7 /* A malloc() failed */ +#define SQLITE_READONLY 8 /* Attempt to write a readonly database */ +#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/ +#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */ +#define SQLITE_CORRUPT 11 /* The database disk image is malformed */ +#define SQLITE_NOTFOUND 12 /* NOT USED. Table or record not found */ +#define SQLITE_FULL 13 /* Insertion failed because database is full */ +#define SQLITE_CANTOPEN 14 /* Unable to open the database file */ +#define SQLITE_PROTOCOL 15 /* NOT USED. Database lock protocol error */ +#define SQLITE_EMPTY 16 /* Database is empty */ +#define SQLITE_SCHEMA 17 /* The database schema changed */ +#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */ +#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */ +#define SQLITE_MISMATCH 20 /* Data type mismatch */ +#define SQLITE_MISUSE 21 /* Library used incorrectly */ +#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */ +#define SQLITE_AUTH 23 /* Authorization denied */ +#define SQLITE_FORMAT 24 /* Auxiliary database format error */ +#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */ +#define SQLITE_NOTADB 26 /* File opened that is not a database file */ +#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */ +#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */ +/* end-of-error-codes */ + +/* +** CAPI3REF: Extended Result Codes {F10220} +** KEYWORDS: {extended error code} {extended error codes} +** KEYWORDS: {extended result codes} +** +** In its default configuration, SQLite API routines return one of 26 integer +** [SQLITE_OK | result codes]. However, experience has shown that +** many of these result codes are too course-grained. They do not provide as +** much information about problems as programmers might like. In an effort to +** address this, newer versions of SQLite (version 3.3.8 and later) include +** support for additional result codes that provide more detailed information +** about errors. The extended result codes are enabled or disabled +** for each database connection using the [sqlite3_extended_result_codes()] +** API. +** +** Some of the available extended result codes are listed here. +** One may expect the number of extended result codes will be expand +** over time. Software that uses extended result codes should expect +** to see new result codes in future releases of SQLite. +** +** The SQLITE_OK result code will never be extended. It will always +** be exactly zero. +** +** INVARIANTS: +** +** {F10223} The symbolic name for an extended result code always contains +** a related primary result code as a prefix. +** +** {F10224} Primary result code names contain a single "_" character. +** +** {F10225} Extended result code names contain two or more "_" characters. +** +** {F10226} The numeric value of an extended result code contains the +** numeric value of its corresponding primary result code in +** its least significant 8 bits. +*/ +#define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8)) +#define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8)) +#define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8)) +#define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8)) +#define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8)) +#define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8)) +#define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8)) +#define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8)) +#define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8)) +#define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8)) +#define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8)) +#define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8)) + +/* +** CAPI3REF: Flags For File Open Operations {F10230} +** +** These bit values are intended for use in the +** 3rd parameter to the [sqlite3_open_v2()] interface and +** in the 4th parameter to the xOpen method of the +** [sqlite3_vfs] object. +*/ +#define SQLITE_OPEN_READONLY 0x00000001 +#define SQLITE_OPEN_READWRITE 0x00000002 +#define SQLITE_OPEN_CREATE 0x00000004 +#define SQLITE_OPEN_DELETEONCLOSE 0x00000008 +#define SQLITE_OPEN_EXCLUSIVE 0x00000010 +#define SQLITE_OPEN_MAIN_DB 0x00000100 +#define SQLITE_OPEN_TEMP_DB 0x00000200 +#define SQLITE_OPEN_TRANSIENT_DB 0x00000400 +#define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 +#define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 +#define SQLITE_OPEN_SUBJOURNAL 0x00002000 +#define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 + +/* +** CAPI3REF: Device Characteristics {F10240} +** +** The xDeviceCapabilities method of the [sqlite3_io_methods] +** object returns an integer which is a vector of the these +** bit values expressing I/O characteristics of the mass storage +** device that holds the file that the [sqlite3_io_methods] +** refers to. +** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +#define SQLITE_IOCAP_ATOMIC 0x00000001 +#define SQLITE_IOCAP_ATOMIC512 0x00000002 +#define SQLITE_IOCAP_ATOMIC1K 0x00000004 +#define SQLITE_IOCAP_ATOMIC2K 0x00000008 +#define SQLITE_IOCAP_ATOMIC4K 0x00000010 +#define SQLITE_IOCAP_ATOMIC8K 0x00000020 +#define SQLITE_IOCAP_ATOMIC16K 0x00000040 +#define SQLITE_IOCAP_ATOMIC32K 0x00000080 +#define SQLITE_IOCAP_ATOMIC64K 0x00000100 +#define SQLITE_IOCAP_SAFE_APPEND 0x00000200 +#define SQLITE_IOCAP_SEQUENTIAL 0x00000400 + +/* +** CAPI3REF: File Locking Levels {F10250} +** +** SQLite uses one of these integer values as the second +** argument to calls it makes to the xLock() and xUnlock() methods +** of an [sqlite3_io_methods] object. +*/ +#define SQLITE_LOCK_NONE 0 +#define SQLITE_LOCK_SHARED 1 +#define SQLITE_LOCK_RESERVED 2 +#define SQLITE_LOCK_PENDING 3 +#define SQLITE_LOCK_EXCLUSIVE 4 + +/* +** CAPI3REF: Synchronization Type Flags {F10260} +** +** When SQLite invokes the xSync() method of an +** [sqlite3_io_methods] object it uses a combination of +** these integer values as the second argument. +** +** When the SQLITE_SYNC_DATAONLY flag is used, it means that the +** sync operation only needs to flush data to mass storage. Inode +** information need not be flushed. The SQLITE_SYNC_NORMAL flag means +** to use normal fsync() semantics. The SQLITE_SYNC_FULL flag means +** to use Mac OS-X style fullsync instead of fsync(). +*/ +#define SQLITE_SYNC_NORMAL 0x00002 +#define SQLITE_SYNC_FULL 0x00003 +#define SQLITE_SYNC_DATAONLY 0x00010 + + +/* +** CAPI3REF: OS Interface Open File Handle {F11110} +** +** An [sqlite3_file] object represents an open file in the OS +** interface layer. Individual OS interface implementations will +** want to subclass this object by appending additional fields +** for their own use. The pMethods entry is a pointer to an +** [sqlite3_io_methods] object that defines methods for performing +** I/O operations on the open file. +*/ +typedef struct sqlite3_file sqlite3_file; +struct sqlite3_file { + const struct sqlite3_io_methods *pMethods; /* Methods for an open file */ +}; + +/* +** CAPI3REF: OS Interface File Virtual Methods Object {F11120} +** +** Every file opened by the [sqlite3_vfs] xOpen method contains a pointer to +** an instance of this object. This object defines the +** methods used to perform various operations against the open file. +** +** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or +** [SQLITE_SYNC_FULL]. The first choice is the normal fsync(). +* The second choice is an +** OS-X style fullsync. The SQLITE_SYNC_DATA flag may be ORed in to +** indicate that only the data of the file and not its inode needs to be +** synced. +** +** The integer values to xLock() and xUnlock() are one of +** <ul> +** <li> [SQLITE_LOCK_NONE], +** <li> [SQLITE_LOCK_SHARED], +** <li> [SQLITE_LOCK_RESERVED], +** <li> [SQLITE_LOCK_PENDING], or +** <li> [SQLITE_LOCK_EXCLUSIVE]. +** </ul> +** xLock() increases the lock. xUnlock() decreases the lock. +** The xCheckReservedLock() method looks +** to see if any database connection, either in this +** process or in some other process, is holding an RESERVED, +** PENDING, or EXCLUSIVE lock on the file. It returns true +** if such a lock exists and false if not. +** +** The xFileControl() method is a generic interface that allows custom +** VFS implementations to directly control an open file using the +** [sqlite3_file_control()] interface. The second "op" argument +** is an integer opcode. The third +** argument is a generic pointer which is intended to be a pointer +** to a structure that may contain arguments or space in which to +** write return values. Potential uses for xFileControl() might be +** functions to enable blocking locks with timeouts, to change the +** locking strategy (for example to use dot-file locks), to inquire +** about the status of a lock, or to break stale locks. The SQLite +** core reserves opcodes less than 100 for its own use. +** A [SQLITE_FCNTL_LOCKSTATE | list of opcodes] less than 100 is available. +** Applications that define a custom xFileControl method should use opcodes +** greater than 100 to avoid conflicts. +** +** The xSectorSize() method returns the sector size of the +** device that underlies the file. The sector size is the +** minimum write that can be performed without disturbing +** other bytes in the file. The xDeviceCharacteristics() +** method returns a bit vector describing behaviors of the +** underlying device: +** +** <ul> +** <li> [SQLITE_IOCAP_ATOMIC] +** <li> [SQLITE_IOCAP_ATOMIC512] +** <li> [SQLITE_IOCAP_ATOMIC1K] +** <li> [SQLITE_IOCAP_ATOMIC2K] +** <li> [SQLITE_IOCAP_ATOMIC4K] +** <li> [SQLITE_IOCAP_ATOMIC8K] +** <li> [SQLITE_IOCAP_ATOMIC16K] +** <li> [SQLITE_IOCAP_ATOMIC32K] +** <li> [SQLITE_IOCAP_ATOMIC64K] +** <li> [SQLITE_IOCAP_SAFE_APPEND] +** <li> [SQLITE_IOCAP_SEQUENTIAL] +** </ul> +** +** The SQLITE_IOCAP_ATOMIC property means that all writes of +** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values +** mean that writes of blocks that are nnn bytes in size and +** are aligned to an address which is an integer multiple of +** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means +** that when data is appended to a file, the data is appended +** first then the size of the file is extended, never the other +** way around. The SQLITE_IOCAP_SEQUENTIAL property means that +** information is written to disk in the same order as calls +** to xWrite(). +*/ +typedef struct sqlite3_io_methods sqlite3_io_methods; +struct sqlite3_io_methods { + int iVersion; + int (*xClose)(sqlite3_file*); + int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst); + int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst); + int (*xTruncate)(sqlite3_file*, sqlite3_int64 size); + int (*xSync)(sqlite3_file*, int flags); + int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize); + int (*xLock)(sqlite3_file*, int); + int (*xUnlock)(sqlite3_file*, int); + int (*xCheckReservedLock)(sqlite3_file*); + int (*xFileControl)(sqlite3_file*, int op, void *pArg); + int (*xSectorSize)(sqlite3_file*); + int (*xDeviceCharacteristics)(sqlite3_file*); + /* Additional methods may be added in future releases */ +}; + +/* +** CAPI3REF: Standard File Control Opcodes {F11310} +** +** These integer constants are opcodes for the xFileControl method +** of the [sqlite3_io_methods] object and to the [sqlite3_file_control()] +** interface. +** +** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This +** opcode causes the xFileControl method to write the current state of +** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED], +** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE]) +** into an integer that the pArg argument points to. This capability +** is used during testing and only needs to be supported when SQLITE_TEST +** is defined. +*/ +#define SQLITE_FCNTL_LOCKSTATE 1 + +/* +** CAPI3REF: Mutex Handle {F17110} +** +** The mutex module within SQLite defines [sqlite3_mutex] to be an +** abstract type for a mutex object. The SQLite core never looks +** at the internal representation of an [sqlite3_mutex]. It only +** deals with pointers to the [sqlite3_mutex] object. +** +** Mutexes are created using [sqlite3_mutex_alloc()]. +*/ +typedef struct sqlite3_mutex sqlite3_mutex; + +/* +** CAPI3REF: OS Interface Object {F11140} +** +** An instance of this object defines the interface between the +** SQLite core and the underlying operating system. The "vfs" +** in the name of the object stands for "virtual file system". +** +** The iVersion field is initially 1 but may be larger for future +** versions of SQLite. Additional fields may be appended to this +** object when the iVersion value is increased. +** +** The szOsFile field is the size of the subclassed [sqlite3_file] +** structure used by this VFS. mxPathname is the maximum length of +** a pathname in this VFS. +** +** Registered sqlite3_vfs objects are kept on a linked list formed by +** the pNext pointer. The [sqlite3_vfs_register()] +** and [sqlite3_vfs_unregister()] interfaces manage this list +** in a thread-safe way. The [sqlite3_vfs_find()] interface +** searches the list. +** +** The pNext field is the only field in the sqlite3_vfs +** structure that SQLite will ever modify. SQLite will only access +** or modify this field while holding a particular static mutex. +** The application should never modify anything within the sqlite3_vfs +** object once the object has been registered. +** +** The zName field holds the name of the VFS module. The name must +** be unique across all VFS modules. +** +** {F11141} SQLite will guarantee that the zFilename string passed to +** xOpen() is a full pathname as generated by xFullPathname() and +** that the string will be valid and unchanged until xClose() is +** called. {END} So the [sqlite3_file] can store a pointer to the +** filename if it needs to remember the filename for some reason. +** +** {F11142} The flags argument to xOpen() includes all bits set in +** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()] +** or [sqlite3_open16()] is used, then flags includes at least +** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. {END} +** If xOpen() opens a file read-only then it sets *pOutFlags to +** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be +** set. +** +** {F11143} SQLite will also add one of the following flags to the xOpen() +** call, depending on the object being opened: +** +** <ul> +** <li> [SQLITE_OPEN_MAIN_DB] +** <li> [SQLITE_OPEN_MAIN_JOURNAL] +** <li> [SQLITE_OPEN_TEMP_DB] +** <li> [SQLITE_OPEN_TEMP_JOURNAL] +** <li> [SQLITE_OPEN_TRANSIENT_DB] +** <li> [SQLITE_OPEN_SUBJOURNAL] +** <li> [SQLITE_OPEN_MASTER_JOURNAL] +** </ul> {END} +** +** The file I/O implementation can use the object type flags to +** changes the way it deals with files. For example, an application +** that does not care about crash recovery or rollback might make +** the open of a journal file a no-op. Writes to this journal would +** also be no-ops, and any attempt to read the journal would return +** SQLITE_IOERR. Or the implementation might recognize that a database +** file will be doing page-aligned sector reads and writes in a random +** order and set up its I/O subsystem accordingly. +** +** SQLite might also add one of the following flags to the xOpen +** method: +** +** <ul> +** <li> [SQLITE_OPEN_DELETEONCLOSE] +** <li> [SQLITE_OPEN_EXCLUSIVE] +** </ul> +** +** {F11145} The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be +** deleted when it is closed. {F11146} The [SQLITE_OPEN_DELETEONCLOSE] +** will be set for TEMP databases, journals and for subjournals. +** {F11147} The [SQLITE_OPEN_EXCLUSIVE] flag means the file should be opened +** for exclusive access. This flag is set for all files except +** for the main database file. {END} +** +** {F11148} At least szOsFile bytes of memory are allocated by SQLite +** to hold the [sqlite3_file] structure passed as the third +** argument to xOpen. {END} The xOpen method does not have to +** allocate the structure; it should just fill it in. +** +** {F11149} The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS] +** to test for the existance of a file, +** or [SQLITE_ACCESS_READWRITE] to test to see +** if a file is readable and writable, or [SQLITE_ACCESS_READ] +** to test to see if a file is at least readable. {END} The file can be a +** directory. +** +** {F11150} SQLite will always allocate at least mxPathname+1 bytes for +** the output buffers for xGetTempname and xFullPathname. {F11151} The exact +** size of the output buffer is also passed as a parameter to both +** methods. {END} If the output buffer is not large enough, SQLITE_CANTOPEN +** should be returned. As this is handled as a fatal error by SQLite, +** vfs implementations should endeavor to prevent this by setting +** mxPathname to a sufficiently large value. +** +** The xRandomness(), xSleep(), and xCurrentTime() interfaces +** are not strictly a part of the filesystem, but they are +** included in the VFS structure for completeness. +** The xRandomness() function attempts to return nBytes bytes +** of good-quality randomness into zOut. The return value is +** the actual number of bytes of randomness obtained. The +** xSleep() method causes the calling thread to sleep for at +** least the number of microseconds given. The xCurrentTime() +** method returns a Julian Day Number for the current date and +** time. +*/ +typedef struct sqlite3_vfs sqlite3_vfs; +struct sqlite3_vfs { + int iVersion; /* Structure version number */ + int szOsFile; /* Size of subclassed sqlite3_file */ + int mxPathname; /* Maximum file pathname length */ + sqlite3_vfs *pNext; /* Next registered VFS */ + const char *zName; /* Name of this virtual file system */ + void *pAppData; /* Pointer to application-specific data */ + int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*, + int flags, int *pOutFlags); + int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir); + int (*xAccess)(sqlite3_vfs*, const char *zName, int flags); + int (*xGetTempname)(sqlite3_vfs*, int nOut, char *zOut); + int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut); + void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename); + void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg); + void *(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol); + void (*xDlClose)(sqlite3_vfs*, void*); + int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut); + int (*xSleep)(sqlite3_vfs*, int microseconds); + int (*xCurrentTime)(sqlite3_vfs*, double*); + /* New fields may be appended in figure versions. The iVersion + ** value will increment whenever this happens. */ +}; + +/* +** CAPI3REF: Flags for the xAccess VFS method {F11190} +** +** {F11191} These integer constants can be used as the third parameter to +** the xAccess method of an [sqlite3_vfs] object. {END} They determine +** what kind of permissions the xAccess method is +** looking for. {F11192} With SQLITE_ACCESS_EXISTS, the xAccess method +** simply checks to see if the file exists. {F11193} With +** SQLITE_ACCESS_READWRITE, the xAccess method checks to see +** if the file is both readable and writable. {F11194} With +** SQLITE_ACCESS_READ the xAccess method +** checks to see if the file is readable. +*/ +#define SQLITE_ACCESS_EXISTS 0 +#define SQLITE_ACCESS_READWRITE 1 +#define SQLITE_ACCESS_READ 2 + +/* +** CAPI3REF: Enable Or Disable Extended Result Codes {F12200} +** +** The sqlite3_extended_result_codes() routine enables or disables the +** [SQLITE_IOERR_READ | extended result codes] feature of SQLite. +** The extended result codes are disabled by default for historical +** compatibility. +** +** INVARIANTS: +** +** {F12201} Each new [database connection] has the +** [extended result codes] feature +** disabled by default. +** +** {F12202} The [sqlite3_extended_result_codes(D,F)] interface will enable +** [extended result codes] for the +** [database connection] D if the F parameter +** is true, or disable them if F is false. +*/ +SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff); + +/* +** CAPI3REF: Last Insert Rowid {F12220} +** +** Each entry in an SQLite table has a unique 64-bit signed +** integer key called the "rowid". The rowid is always available +** as an undeclared column named ROWID, OID, or _ROWID_ as long as those +** names are not also used by explicitly declared columns. If +** the table has a column of type INTEGER PRIMARY KEY then that column +** is another alias for the rowid. +** +** This routine returns the rowid of the most recent +** successful INSERT into the database from the database connection +** shown in the first argument. If no successful inserts +** have ever occurred on this database connection, zero is returned. +** +** If an INSERT occurs within a trigger, then the rowid of the +** inserted row is returned by this routine as long as the trigger +** is running. But once the trigger terminates, the value returned +** by this routine reverts to the last value inserted before the +** trigger fired. +** +** An INSERT that fails due to a constraint violation is not a +** successful insert and does not change the value returned by this +** routine. Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK, +** and INSERT OR ABORT make no changes to the return value of this +** routine when their insertion fails. When INSERT OR REPLACE +** encounters a constraint violation, it does not fail. The +** INSERT continues to completion after deleting rows that caused +** the constraint problem so INSERT OR REPLACE will always change +** the return value of this interface. +** +** For the purposes of this routine, an insert is considered to +** be successful even if it is subsequently rolled back. +** +** INVARIANTS: +** +** {F12221} The [sqlite3_last_insert_rowid()] function returns the +** rowid of the most recent successful insert done +** on the same database connection and within the same +** trigger context, or zero if there have +** been no qualifying inserts on that connection. +** +** {F12223} The [sqlite3_last_insert_rowid()] function returns +** same value when called from the same trigger context +** immediately before and after a ROLLBACK. +** +** LIMITATIONS: +** +** {U12232} If a separate thread does a new insert on the same +** database connection while the [sqlite3_last_insert_rowid()] +** function is running and thus changes the last insert rowid, +** then the value returned by [sqlite3_last_insert_rowid()] is +** unpredictable and might not equal either the old or the new +** last insert rowid. +*/ +SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*); + +/* +** CAPI3REF: Count The Number Of Rows Modified {F12240} +** +** This function returns the number of database rows that were changed +** or inserted or deleted by the most recently completed SQL statement +** on the connection specified by the first parameter. Only +** changes that are directly specified by the INSERT, UPDATE, or +** DELETE statement are counted. Auxiliary changes caused by +** triggers are not counted. Use the [sqlite3_total_changes()] function +** to find the total number of changes including changes caused by triggers. +** +** A "row change" is a change to a single row of a single table +** caused by an INSERT, DELETE, or UPDATE statement. Rows that +** are changed as side effects of REPLACE constraint resolution, +** rollback, ABORT processing, DROP TABLE, or by any other +** mechanisms do not count as direct row changes. +** +** A "trigger context" is a scope of execution that begins and +** ends with the script of a trigger. Most SQL statements are +** evaluated outside of any trigger. This is the "top level" +** trigger context. If a trigger fires from the top level, a +** new trigger context is entered for the duration of that one +** trigger. Subtriggers create subcontexts for their duration. +** +** Calling [sqlite3_exec()] or [sqlite3_step()] recursively does +** not create a new trigger context. +** +** This function returns the number of direct row changes in the +** most recent INSERT, UPDATE, or DELETE statement within the same +** trigger context. +** +** So when called from the top level, this function returns the +** number of changes in the most recent INSERT, UPDATE, or DELETE +** that also occurred at the top level. +** Within the body of a trigger, the sqlite3_changes() interface +** can be called to find the number of +** changes in the most recently completed INSERT, UPDATE, or DELETE +** statement within the body of the same trigger. +** However, the number returned does not include in changes +** caused by subtriggers since they have their own context. +** +** SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going through and deleting individual elements from the +** table.) Because of this optimization, the deletions in +** "DELETE FROM table" are not row changes and will not be counted +** by the sqlite3_changes() or [sqlite3_total_changes()] functions. +** To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** INVARIANTS: +** +** {F12241} The [sqlite3_changes()] function returns the number of +** row changes caused by the most recent INSERT, UPDATE, +** or DELETE statement on the same database connection and +** within the same trigger context, or zero if there have +** not been any qualifying row changes. +** +** LIMITATIONS: +** +** {U12252} If a separate thread makes changes on the same database connection +** while [sqlite3_changes()] is running then the value returned +** is unpredictable and unmeaningful. +*/ +SQLITE_API int sqlite3_changes(sqlite3*); + +/* +** CAPI3REF: Total Number Of Rows Modified {F12260} +*** +** This function returns the number of row changes caused +** by INSERT, UPDATE or DELETE statements since the database handle +** was opened. The count includes all changes from all trigger +** contexts. But the count does not include changes used to +** implement REPLACE constraints, do rollbacks or ABORT processing, +** or DROP table processing. +** The changes +** are counted as soon as the statement that makes them is completed +** (when the statement handle is passed to [sqlite3_reset()] or +** [sqlite3_finalize()]). +** +** SQLite implements the command "DELETE FROM table" without +** a WHERE clause by dropping and recreating the table. (This is much +** faster than going +** through and deleting individual elements from the table.) Because of +** this optimization, the change count for "DELETE FROM table" will be +** zero regardless of the number of elements that were originally in the +** table. To get an accurate count of the number of rows deleted, use +** "DELETE FROM table WHERE 1" instead. +** +** See also the [sqlite3_changes()] interface. +** +** INVARIANTS: +** +** {F12261} The [sqlite3_total_changes()] returns the total number +** of row changes caused by INSERT, UPDATE, and/or DELETE +** statements on the same [database connection], in any +** trigger context, since the database connection was +** created. +** +** LIMITATIONS: +** +** {U12264} If a separate thread makes changes on the same database connection +** while [sqlite3_total_changes()] is running then the value +** returned is unpredictable and unmeaningful. +*/ +SQLITE_API int sqlite3_total_changes(sqlite3*); + +/* +** CAPI3REF: Interrupt A Long-Running Query {F12270} +** +** This function causes any pending database operation to abort and +** return at its earliest opportunity. This routine is typically +** called in response to a user action such as pressing "Cancel" +** or Ctrl-C where the user wants a long query operation to halt +** immediately. +** +** It is safe to call this routine from a thread different from the +** thread that is currently running the database operation. But it +** is not safe to call this routine with a database connection that +** is closed or might close before sqlite3_interrupt() returns. +** +** If an SQL is very nearly finished at the time when sqlite3_interrupt() +** is called, then it might not have an opportunity to be interrupted. +** It might continue to completion. +** An SQL operation that is interrupted will return +** [SQLITE_INTERRUPT]. If the interrupted SQL operation is an +** INSERT, UPDATE, or DELETE that is inside an explicit transaction, +** then the entire transaction will be rolled back automatically. +** A call to sqlite3_interrupt() has no effect on SQL statements +** that are started after sqlite3_interrupt() returns. +** +** INVARIANTS: +** +** {F12271} The [sqlite3_interrupt()] interface will force all running +** SQL statements associated with the same database connection +** to halt after processing at most one additional row of +** data. +** +** {F12272} Any SQL statement that is interrupted by [sqlite3_interrupt()] +** will return [SQLITE_INTERRUPT]. +** +** LIMITATIONS: +** +** {U12279} If the database connection closes while [sqlite3_interrupt()] +** is running then bad things will likely happen. +*/ +SQLITE_API void sqlite3_interrupt(sqlite3*); + +/* +** CAPI3REF: Determine If An SQL Statement Is Complete {F10510} +** +** These routines are useful for command-line input to determine if the +** currently entered text seems to form complete a SQL statement or +** if additional input is needed before sending the text into +** SQLite for parsing. These routines return true if the input string +** appears to be a complete SQL statement. A statement is judged to be +** complete if it ends with a semicolon token and is not a fragment of a +** CREATE TRIGGER statement. Semicolons that are embedded within +** string literals or quoted identifier names or comments are not +** independent tokens (they are part of the token in which they are +** embedded) and thus do not count as a statement terminator. +** +** These routines do not parse the SQL and +** so will not detect syntactically incorrect SQL. +** +** INVARIANTS: +** +** {F10511} The sqlite3_complete() and sqlite3_complete16() functions +** return true (non-zero) if and only if the last +** non-whitespace token in their input is a semicolon that +** is not in between the BEGIN and END of a CREATE TRIGGER +** statement. +** +** LIMITATIONS: +** +** {U10512} The input to sqlite3_complete() must be a zero-terminated +** UTF-8 string. +** +** {U10513} The input to sqlite3_complete16() must be a zero-terminated +** UTF-16 string in native byte order. +*/ +SQLITE_API int sqlite3_complete(const char *sql); +SQLITE_API int sqlite3_complete16(const void *sql); + +/* +** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors {F12310} +** +** This routine identifies a callback function that might be +** invoked whenever an attempt is made to open a database table +** that another thread or process has locked. +** If the busy callback is NULL, then [SQLITE_BUSY] +** or [SQLITE_IOERR_BLOCKED] +** is returned immediately upon encountering the lock. +** If the busy callback is not NULL, then the +** callback will be invoked with two arguments. The +** first argument to the handler is a copy of the void* pointer which +** is the third argument to this routine. The second argument to +** the handler is the number of times that the busy handler has +** been invoked for this locking event. If the +** busy callback returns 0, then no additional attempts are made to +** access the database and [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED] is returned. +** If the callback returns non-zero, then another attempt +** is made to open the database for reading and the cycle repeats. +** +** The presence of a busy handler does not guarantee that +** it will be invoked when there is lock contention. +** If SQLite determines that invoking the busy handler could result in +** a deadlock, it will go ahead and return [SQLITE_BUSY] or +** [SQLITE_IOERR_BLOCKED] instead of invoking the +** busy handler. +** Consider a scenario where one process is holding a read lock that +** it is trying to promote to a reserved lock and +** a second process is holding a reserved lock that it is trying +** to promote to an exclusive lock. The first process cannot proceed +** because it is blocked by the second and the second process cannot +** proceed because it is blocked by the first. If both processes +** invoke the busy handlers, neither will make any progress. Therefore, +** SQLite returns [SQLITE_BUSY] for the first process, hoping that this +** will induce the first process to release its read lock and allow +** the second process to proceed. +** +** The default busy callback is NULL. +** +** The [SQLITE_BUSY] error is converted to [SQLITE_IOERR_BLOCKED] +** when SQLite is in the middle of a large transaction where all the +** changes will not fit into the in-memory cache. SQLite will +** already hold a RESERVED lock on the database file, but it needs +** to promote this lock to EXCLUSIVE so that it can spill cache +** pages into the database file without harm to concurrent +** readers. If it is unable to promote the lock, then the in-memory +** cache will be left in an inconsistent state and so the error +** code is promoted from the relatively benign [SQLITE_BUSY] to +** the more severe [SQLITE_IOERR_BLOCKED]. This error code promotion +** forces an automatic rollback of the changes. See the +** <a href="http://www.sqlite.org/cvstrac/wiki?p=CorruptionFollowingBusyError"> +** CorruptionFollowingBusyError</a> wiki page for a discussion of why +** this is important. +** +** There can only be a single busy handler defined for each database +** connection. Setting a new busy handler clears any previous one. +** Note that calling [sqlite3_busy_timeout()] will also set or clear +** the busy handler. +** +** INVARIANTS: +** +** {F12311} The [sqlite3_busy_handler()] function replaces the busy handler +** callback in the database connection identified by the 1st +** parameter with a new busy handler identified by the 2nd and 3rd +** parameters. +** +** {F12312} The default busy handler for new database connections is NULL. +** +** {F12314} When two or more database connection share a common cache, +** the busy handler for the database connection currently using +** the cache is invoked when the cache encounters a lock. +** +** {F12316} If a busy handler callback returns zero, then the SQLite +** interface that provoked the locking event will return +** [SQLITE_BUSY]. +** +** {F12318} SQLite will invokes the busy handler with two argument which +** are a copy of the pointer supplied by the 3rd parameter to +** [sqlite3_busy_handler()] and a count of the number of prior +** invocations of the busy handler for the same locking event. +** +** LIMITATIONS: +** +** {U12319} A busy handler should not call close the database connection +** or prepared statement that invoked the busy handler. +*/ +SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*); + +/* +** CAPI3REF: Set A Busy Timeout {F12340} +** +** This routine sets a [sqlite3_busy_handler | busy handler] +** that sleeps for a while when a +** table is locked. The handler will sleep multiple times until +** at least "ms" milliseconds of sleeping have been done. {F12343} After +** "ms" milliseconds of sleeping, the handler returns 0 which +** causes [sqlite3_step()] to return [SQLITE_BUSY] or [SQLITE_IOERR_BLOCKED]. +** +** Calling this routine with an argument less than or equal to zero +** turns off all busy handlers. +** +** There can only be a single busy handler for a particular database +** connection. If another busy handler was defined +** (using [sqlite3_busy_handler()]) prior to calling +** this routine, that other busy handler is cleared. +** +** INVARIANTS: +** +** {F12341} The [sqlite3_busy_timeout()] function overrides any prior +** [sqlite3_busy_timeout()] or [sqlite3_busy_handler()] setting +** on the same database connection. +** +** {F12343} If the 2nd parameter to [sqlite3_busy_timeout()] is less than +** or equal to zero, then the busy handler is cleared so that +** all subsequent locking events immediately return [SQLITE_BUSY]. +** +** {F12344} If the 2nd parameter to [sqlite3_busy_timeout()] is a positive +** number N, then a busy handler is set that repeatedly calls +** the xSleep() method in the VFS interface until either the +** lock clears or until the cumulative sleep time reported back +** by xSleep() exceeds N milliseconds. +*/ +SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms); + +/* +** CAPI3REF: Convenience Routines For Running Queries {F12370} +** +** Definition: A <b>result table</b> is memory data structure created by the +** [sqlite3_get_table()] interface. A result table records the +** complete query results from one or more queries. +** +** The table conceptually has a number of rows and columns. But +** these numbers are not part of the result table itself. These +** numbers are obtained separately. Let N be the number of rows +** and M be the number of columns. +** +** A result table is an array of pointers to zero-terminated +** UTF-8 strings. There are (N+1)*M elements in the array. +** The first M pointers point to zero-terminated strings that +** contain the names of the columns. +** The remaining entries all point to query results. NULL +** values are give a NULL pointer. All other values are in +** their UTF-8 zero-terminated string representation as returned by +** [sqlite3_column_text()]. +** +** A result table might consists of one or more memory allocations. +** It is not safe to pass a result table directly to [sqlite3_free()]. +** A result table should be deallocated using [sqlite3_free_table()]. +** +** As an example of the result table format, suppose a query result +** is as follows: +** +** <blockquote><pre> +** Name | Age +** ----------------------- +** Alice | 43 +** Bob | 28 +** Cindy | 21 +** </pre></blockquote> +** +** There are two column (M==2) and three rows (N==3). Thus the +** result table has 8 entries. Suppose the result table is stored +** in an array names azResult. Then azResult holds this content: +** +** <blockquote><pre> +** azResult[0] = "Name"; +** azResult[1] = "Age"; +** azResult[2] = "Alice"; +** azResult[3] = "43"; +** azResult[4] = "Bob"; +** azResult[5] = "28"; +** azResult[6] = "Cindy"; +** azResult[7] = "21"; +** </pre></blockquote> +** +** The sqlite3_get_table() function evaluates one or more +** semicolon-separated SQL statements in the zero-terminated UTF-8 +** string of its 2nd parameter. It returns a result table to the +** pointer given in its 3rd parameter. +** +** After the calling function has finished using the result, it should +** pass the pointer to the result table to sqlite3_free_table() in order to +** release the memory that was malloc-ed. Because of the way the +** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling +** function must not try to call [sqlite3_free()] directly. Only +** [sqlite3_free_table()] is able to release the memory properly and safely. +** +** The sqlite3_get_table() interface is implemented as a wrapper around +** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access +** to any internal data structures of SQLite. It uses only the public +** interface defined here. As a consequence, errors that occur in the +** wrapper layer outside of the internal [sqlite3_exec()] call are not +** reflected in subsequent calls to [sqlite3_errcode()] or +** [sqlite3_errmsg()]. +** +** INVARIANTS: +** +** {F12371} If a [sqlite3_get_table()] fails a memory allocation, then +** it frees the result table under construction, aborts the +** query in process, skips any subsequent queries, sets the +** *resultp output pointer to NULL and returns [SQLITE_NOMEM]. +** +** {F12373} If the ncolumn parameter to [sqlite3_get_table()] is not NULL +** then [sqlite3_get_table()] write the number of columns in the +** result set of the query into *ncolumn if the query is +** successful (if the function returns SQLITE_OK). +** +** {F12374} If the nrow parameter to [sqlite3_get_table()] is not NULL +** then [sqlite3_get_table()] write the number of rows in the +** result set of the query into *nrow if the query is +** successful (if the function returns SQLITE_OK). +** +** {F12376} The [sqlite3_get_table()] function sets its *ncolumn value +** to the number of columns in the result set of the query in the +** sql parameter, or to zero if the query in sql has an empty +** result set. +*/ +SQLITE_API int sqlite3_get_table( + sqlite3*, /* An open database */ + const char *sql, /* SQL to be evaluated */ + char ***pResult, /* Results of the query */ + int *nrow, /* Number of result rows written here */ + int *ncolumn, /* Number of result columns written here */ + char **errmsg /* Error msg written here */ +); +SQLITE_API void sqlite3_free_table(char **result); + +/* +** CAPI3REF: Formatted String Printing Functions {F17400} +** +** These routines are workalikes of the "printf()" family of functions +** from the standard C library. +** +** The sqlite3_mprintf() and sqlite3_vmprintf() routines write their +** results into memory obtained from [sqlite3_malloc()]. +** The strings returned by these two routines should be +** released by [sqlite3_free()]. Both routines return a +** NULL pointer if [sqlite3_malloc()] is unable to allocate enough +** memory to hold the resulting string. +** +** In sqlite3_snprintf() routine is similar to "snprintf()" from +** the standard C library. The result is written into the +** buffer supplied as the second parameter whose size is given by +** the first parameter. Note that the order of the +** first two parameters is reversed from snprintf(). This is an +** historical accident that cannot be fixed without breaking +** backwards compatibility. Note also that sqlite3_snprintf() +** returns a pointer to its buffer instead of the number of +** characters actually written into the buffer. We admit that +** the number of characters written would be a more useful return +** value but we cannot change the implementation of sqlite3_snprintf() +** now without breaking compatibility. +** +** As long as the buffer size is greater than zero, sqlite3_snprintf() +** guarantees that the buffer is always zero-terminated. The first +** parameter "n" is the total size of the buffer, including space for +** the zero terminator. So the longest string that can be completely +** written will be n-1 characters. +** +** These routines all implement some additional formatting +** options that are useful for constructing SQL statements. +** All of the usual printf formatting options apply. In addition, there +** is are "%q", "%Q", and "%z" options. +** +** The %q option works like %s in that it substitutes a null-terminated +** string from the argument list. But %q also doubles every '\'' character. +** %q is designed for use inside a string literal. By doubling each '\'' +** character it escapes that character and allows it to be inserted into +** the string. +** +** For example, so some string variable contains text as follows: +** +** <blockquote><pre> +** char *zText = "It's a happy day!"; +** </pre></blockquote> +** +** One can use this text in an SQL statement as follows: +** +** <blockquote><pre> +** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText); +** sqlite3_exec(db, zSQL, 0, 0, 0); +** sqlite3_free(zSQL); +** </pre></blockquote> +** +** Because the %q format string is used, the '\'' character in zText +** is escaped and the SQL generated is as follows: +** +** <blockquote><pre> +** INSERT INTO table1 VALUES('It''s a happy day!') +** </pre></blockquote> +** +** This is correct. Had we used %s instead of %q, the generated SQL +** would have looked like this: +** +** <blockquote><pre> +** INSERT INTO table1 VALUES('It's a happy day!'); +** </pre></blockquote> +** +** This second example is an SQL syntax error. As a general rule you +** should always use %q instead of %s when inserting text into a string +** literal. +** +** The %Q option works like %q except it also adds single quotes around +** the outside of the total string. Or if the parameter in the argument +** list is a NULL pointer, %Q substitutes the text "NULL" (without single +** quotes) in place of the %Q option. {END} So, for example, one could say: +** +** <blockquote><pre> +** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText); +** sqlite3_exec(db, zSQL, 0, 0, 0); +** sqlite3_free(zSQL); +** </pre></blockquote> +** +** The code above will render a correct SQL statement in the zSQL +** variable even if the zText variable is a NULL pointer. +** +** The "%z" formatting option works exactly like "%s" with the +** addition that after the string has been read and copied into +** the result, [sqlite3_free()] is called on the input string. {END} +** +** INVARIANTS: +** +** {F17403} The [sqlite3_mprintf()] and [sqlite3_vmprintf()] interfaces +** return either pointers to zero-terminated UTF-8 strings held in +** memory obtained from [sqlite3_malloc()] or NULL pointers if +** a call to [sqlite3_malloc()] fails. +** +** {F17406} The [sqlite3_snprintf()] interface writes a zero-terminated +** UTF-8 string into the buffer pointed to by the second parameter +** provided that the first parameter is greater than zero. +** +** {F17407} The [sqlite3_snprintf()] interface does not writes slots of +** its output buffer (the second parameter) outside the range +** of 0 through N-1 (where N is the first parameter) +** regardless of the length of the string +** requested by the format specification. +** +*/ +SQLITE_API char *sqlite3_mprintf(const char*,...); +SQLITE_API char *sqlite3_vmprintf(const char*, va_list); +SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...); + +/* +** CAPI3REF: Memory Allocation Subsystem {F17300} +** +** The SQLite core uses these three routines for all of its own +** internal memory allocation needs. "Core" in the previous sentence +** does not include operating-system specific VFS implementation. The +** windows VFS uses native malloc and free for some operations. +** +** The sqlite3_malloc() routine returns a pointer to a block +** of memory at least N bytes in length, where N is the parameter. +** If sqlite3_malloc() is unable to obtain sufficient free +** memory, it returns a NULL pointer. If the parameter N to +** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns +** a NULL pointer. +** +** Calling sqlite3_free() with a pointer previously returned +** by sqlite3_malloc() or sqlite3_realloc() releases that memory so +** that it might be reused. The sqlite3_free() routine is +** a no-op if is called with a NULL pointer. Passing a NULL pointer +** to sqlite3_free() is harmless. After being freed, memory +** should neither be read nor written. Even reading previously freed +** memory might result in a segmentation fault or other severe error. +** Memory corruption, a segmentation fault, or other severe error +** might result if sqlite3_free() is called with a non-NULL pointer that +** was not obtained from sqlite3_malloc() or sqlite3_free(). +** +** The sqlite3_realloc() interface attempts to resize a +** prior memory allocation to be at least N bytes, where N is the +** second parameter. The memory allocation to be resized is the first +** parameter. If the first parameter to sqlite3_realloc() +** is a NULL pointer then its behavior is identical to calling +** sqlite3_malloc(N) where N is the second parameter to sqlite3_realloc(). +** If the second parameter to sqlite3_realloc() is zero or +** negative then the behavior is exactly the same as calling +** sqlite3_free(P) where P is the first parameter to sqlite3_realloc(). +** Sqlite3_realloc() returns a pointer to a memory allocation +** of at least N bytes in size or NULL if sufficient memory is unavailable. +** If M is the size of the prior allocation, then min(N,M) bytes +** of the prior allocation are copied into the beginning of buffer returned +** by sqlite3_realloc() and the prior allocation is freed. +** If sqlite3_realloc() returns NULL, then the prior allocation +** is not freed. +** +** The memory returned by sqlite3_malloc() and sqlite3_realloc() +** is always aligned to at least an 8 byte boundary. {END} +** +** The default implementation +** of the memory allocation subsystem uses the malloc(), realloc() +** and free() provided by the standard C library. {F17382} However, if +** SQLite is compiled with the following C preprocessor macro +** +** <blockquote> SQLITE_MEMORY_SIZE=<i>NNN</i> </blockquote> +** +** where <i>NNN</i> is an integer, then SQLite create a static +** array of at least <i>NNN</i> bytes in size and use that array +** for all of its dynamic memory allocation needs. {END} Additional +** memory allocator options may be added in future releases. +** +** In SQLite version 3.5.0 and 3.5.1, it was possible to define +** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in +** implementation of these routines to be omitted. That capability +** is no longer provided. Only built-in memory allocators can be +** used. +** +** The windows OS interface layer calls +** the system malloc() and free() directly when converting +** filenames between the UTF-8 encoding used by SQLite +** and whatever filename encoding is used by the particular windows +** installation. Memory allocation errors are detected, but +** they are reported back as [SQLITE_CANTOPEN] or +** [SQLITE_IOERR] rather than [SQLITE_NOMEM]. +** +** INVARIANTS: +** +** {F17303} The [sqlite3_malloc(N)] interface returns either a pointer to +** newly checked-out block of at least N bytes of memory +** that is 8-byte aligned, +** or it returns NULL if it is unable to fulfill the request. +** +** {F17304} The [sqlite3_malloc(N)] interface returns a NULL pointer if +** N is less than or equal to zero. +** +** {F17305} The [sqlite3_free(P)] interface releases memory previously +** returned from [sqlite3_malloc()] or [sqlite3_realloc()], +** making it available for reuse. +** +** {F17306} A call to [sqlite3_free(NULL)] is a harmless no-op. +** +** {F17310} A call to [sqlite3_realloc(0,N)] is equivalent to a call +** to [sqlite3_malloc(N)]. +** +** {F17312} A call to [sqlite3_realloc(P,0)] is equivalent to a call +** to [sqlite3_free(P)]. +** +** {F17315} The SQLite core uses [sqlite3_malloc()], [sqlite3_realloc()], +** and [sqlite3_free()] for all of its memory allocation and +** deallocation needs. +** +** {F17318} The [sqlite3_realloc(P,N)] interface returns either a pointer +** to a block of checked-out memory of at least N bytes in size +** that is 8-byte aligned, or a NULL pointer. +** +** {F17321} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first +** copies the first K bytes of content from P into the newly allocated +** where K is the lessor of N and the size of the buffer P. +** +** {F17322} When [sqlite3_realloc(P,N)] returns a non-NULL pointer, it first +** releases the buffer P. +** +** {F17323} When [sqlite3_realloc(P,N)] returns NULL, the buffer P is +** not modified or released. +** +** LIMITATIONS: +** +** {U17350} The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()] +** must be either NULL or else a pointer obtained from a prior +** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that has +** not been released. +** +** {U17351} The application must not read or write any part of +** a block of memory after it has been released using +** [sqlite3_free()] or [sqlite3_realloc()]. +** +*/ +SQLITE_API void *sqlite3_malloc(int); +SQLITE_API void *sqlite3_realloc(void*, int); +SQLITE_API void sqlite3_free(void*); + +/* +** CAPI3REF: Memory Allocator Statistics {F17370} +** +** SQLite provides these two interfaces for reporting on the status +** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()] +** the memory allocation subsystem included within the SQLite. +** +** INVARIANTS: +** +** {F17371} The [sqlite3_memory_used()] routine returns the +** number of bytes of memory currently outstanding +** (malloced but not freed). +** +** {F17373} The [sqlite3_memory_highwater()] routine returns the maximum +** value of [sqlite3_memory_used()] +** since the highwater mark was last reset. +** +** {F17374} The values returned by [sqlite3_memory_used()] and +** [sqlite3_memory_highwater()] include any overhead +** added by SQLite in its implementation of [sqlite3_malloc()], +** but not overhead added by the any underlying system library +** routines that [sqlite3_malloc()] may call. +** +** {F17375} The memory highwater mark is reset to the current value of +** [sqlite3_memory_used()] if and only if the parameter to +** [sqlite3_memory_highwater()] is true. The value returned +** by [sqlite3_memory_highwater(1)] is the highwater mark +** prior to the reset. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_used(void); +SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag); + +/* +** CAPI3REF: Pseudo-Random Number Generator {F17390} +** +** SQLite contains a high-quality pseudo-random number generator (PRNG) used to +** select random ROWIDs when inserting new records into a table that +** already uses the largest possible ROWID. The PRNG is also used for +** the build-in random() and randomblob() SQL functions. This interface allows +** appliations to access the same PRNG for other purposes. +** +** A call to this routine stores N bytes of randomness into buffer P. +** +** The first time this routine is invoked (either internally or by +** the application) the PRNG is seeded using randomness obtained +** from the xRandomness method of the default [sqlite3_vfs] object. +** On all subsequent invocations, the pseudo-randomness is generated +** internally and without recourse to the [sqlite3_vfs] xRandomness +** method. +** +** INVARIANTS: +** +** {F17392} The [sqlite3_randomness(N,P)] interface writes N bytes of +** high-quality pseudo-randomness into buffer P. +*/ +SQLITE_API void sqlite3_randomness(int N, void *P); + +/* +** CAPI3REF: Compile-Time Authorization Callbacks {F12500} +** +** This routine registers a authorizer callback with a particular +** [database connection], supplied in the first argument. +** The authorizer callback is invoked as SQL statements are being compiled +** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()], +** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. At various +** points during the compilation process, as logic is being created +** to perform various actions, the authorizer callback is invoked to +** see if those actions are allowed. The authorizer callback should +** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the +** specific action but allow the SQL statement to continue to be +** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be +** rejected with an error. If the authorizer callback returns +** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] +** then [sqlite3_prepare_v2()] or equivalent call that triggered +** the authorizer will fail with an error message. +** +** When the callback returns [SQLITE_OK], that means the operation +** requested is ok. When the callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that triggered the +** authorizer will fail with an error message explaining that +** access is denied. If the authorizer code is [SQLITE_READ] +** and the callback returns [SQLITE_IGNORE] then the +** [prepared statement] statement is constructed to substitute +** a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE] +** return can be used to deny an untrusted user access to individual +** columns of a table. +** +** The first parameter to the authorizer callback is a copy of +** the third parameter to the sqlite3_set_authorizer() interface. +** The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. The third through sixth +** parameters to the callback are zero-terminated strings that contain +** additional details about the action to be authorized. +** +** An authorizer is used when [sqlite3_prepare | preparing] +** SQL statements from an untrusted +** source, to ensure that the SQL statements do not try to access data +** that they are not allowed to see, or that they do not try to +** execute malicious statements that damage the database. For +** example, an application may allow a user to enter arbitrary +** SQL queries for evaluation by a database. But the application does +** not want the user to be able to make arbitrary changes to the +** database. An authorizer could then be put in place while the +** user-entered SQL is being [sqlite3_prepare | prepared] that +** disallows everything except [SELECT] statements. +** +** Applications that need to process SQL from untrusted sources +** might also consider lowering resource limits using [sqlite3_limit()] +** and limiting database size using the [max_page_count] [PRAGMA] +** in addition to using an authorizer. +** +** Only a single authorizer can be in place on a database connection +** at a time. Each call to sqlite3_set_authorizer overrides the +** previous call. Disable the authorizer by installing a NULL callback. +** The authorizer is disabled by default. +** +** Note that the authorizer callback is invoked only during +** [sqlite3_prepare()] or its variants. Authorization is not +** performed during statement evaluation in [sqlite3_step()]. +** +** INVARIANTS: +** +** {F12501} The [sqlite3_set_authorizer(D,...)] interface registers a +** authorizer callback with database connection D. +** +** {F12502} The authorizer callback is invoked as SQL statements are +** being compiled +** +** {F12503} If the authorizer callback returns any value other than +** [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY] then +** the [sqlite3_prepare_v2()] or equivalent call that caused +** the authorizer callback to run shall fail with an +** [SQLITE_ERROR] error code and an appropriate error message. +** +** {F12504} When the authorizer callback returns [SQLITE_OK], the operation +** described is coded normally. +** +** {F12505} When the authorizer callback returns [SQLITE_DENY], the +** [sqlite3_prepare_v2()] or equivalent call that caused the +** authorizer callback to run shall fail +** with an [SQLITE_ERROR] error code and an error message +** explaining that access is denied. +** +** {F12506} If the authorizer code (the 2nd parameter to the authorizer +** callback) is [SQLITE_READ] and the authorizer callback returns +** [SQLITE_IGNORE] then the prepared statement is constructed to +** insert a NULL value in place of the table column that would have +** been read if [SQLITE_OK] had been returned. +** +** {F12507} If the authorizer code (the 2nd parameter to the authorizer +** callback) is anything other than [SQLITE_READ], then +** a return of [SQLITE_IGNORE] has the same effect as [SQLITE_DENY]. +** +** {F12510} The first parameter to the authorizer callback is a copy of +** the third parameter to the [sqlite3_set_authorizer()] interface. +** +** {F12511} The second parameter to the callback is an integer +** [SQLITE_COPY | action code] that specifies the particular action +** to be authorized. +** +** {F12512} The third through sixth parameters to the callback are +** zero-terminated strings that contain +** additional details about the action to be authorized. +** +** {F12520} Each call to [sqlite3_set_authorizer()] overrides the +** any previously installed authorizer. +** +** {F12521} A NULL authorizer means that no authorization +** callback is invoked. +** +** {F12522} The default authorizer is NULL. +*/ +SQLITE_API int sqlite3_set_authorizer( + sqlite3*, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pUserData +); + +/* +** CAPI3REF: Authorizer Return Codes {F12590} +** +** The [sqlite3_set_authorizer | authorizer callback function] must +** return either [SQLITE_OK] or one of these two constants in order +** to signal SQLite whether or not the action is permitted. See the +** [sqlite3_set_authorizer | authorizer documentation] for additional +** information. +*/ +#define SQLITE_DENY 1 /* Abort the SQL statement with an error */ +#define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */ + +/* +** CAPI3REF: Authorizer Action Codes {F12550} +** +** The [sqlite3_set_authorizer()] interface registers a callback function +** that is invoked to authorizer certain SQL statement actions. The +** second parameter to the callback is an integer code that specifies +** what action is being authorized. These are the integer action codes that +** the authorizer callback may be passed. +** +** These action code values signify what kind of operation is to be +** authorized. The 3rd and 4th parameters to the authorization +** callback function will be parameters or NULL depending on which of these +** codes is used as the second parameter. The 5th parameter to the +** authorizer callback is the name of the database ("main", "temp", +** etc.) if applicable. The 6th parameter to the authorizer callback +** is the name of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +** +** INVARIANTS: +** +** {F12551} The second parameter to an +** [sqlite3_set_authorizer | authorizer callback is always an integer +** [SQLITE_COPY | authorizer code] that specifies what action +** is being authorized. +** +** {F12552} The 3rd and 4th parameters to the +** [sqlite3_set_authorizer | authorization callback function] +** will be parameters or NULL depending on which +** [SQLITE_COPY | authorizer code] is used as the second parameter. +** +** {F12553} The 5th parameter to the +** [sqlite3_set_authorizer | authorizer callback] is the name +** of the database (example: "main", "temp", etc.) if applicable. +** +** {F12554} The 6th parameter to the +** [sqlite3_set_authorizer | authorizer callback] is the name +** of the inner-most trigger or view that is responsible for +** the access attempt or NULL if this access attempt is directly from +** top-level SQL code. +*/ +/******************************************* 3rd ************ 4th ***********/ +#define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */ +#define SQLITE_CREATE_TABLE 2 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */ +#define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */ +#define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */ +#define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */ +#define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */ +#define SQLITE_CREATE_VIEW 8 /* View Name NULL */ +#define SQLITE_DELETE 9 /* Table Name NULL */ +#define SQLITE_DROP_INDEX 10 /* Index Name Table Name */ +#define SQLITE_DROP_TABLE 11 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */ +#define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */ +#define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */ +#define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */ +#define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */ +#define SQLITE_DROP_VIEW 17 /* View Name NULL */ +#define SQLITE_INSERT 18 /* Table Name NULL */ +#define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */ +#define SQLITE_READ 20 /* Table Name Column Name */ +#define SQLITE_SELECT 21 /* NULL NULL */ +#define SQLITE_TRANSACTION 22 /* NULL NULL */ +#define SQLITE_UPDATE 23 /* Table Name Column Name */ +#define SQLITE_ATTACH 24 /* Filename NULL */ +#define SQLITE_DETACH 25 /* Database Name NULL */ +#define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */ +#define SQLITE_REINDEX 27 /* Index Name NULL */ +#define SQLITE_ANALYZE 28 /* Table Name NULL */ +#define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */ +#define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */ +#define SQLITE_FUNCTION 31 /* Function Name NULL */ +#define SQLITE_COPY 0 /* No longer used */ + +/* +** CAPI3REF: Tracing And Profiling Functions {F12280} +** +** These routines register callback functions that can be used for +** tracing and profiling the execution of SQL statements. +** +** The callback function registered by sqlite3_trace() is invoked at +** various times when an SQL statement is being run by [sqlite3_step()]. +** The callback returns a UTF-8 rendering of the SQL statement text +** as the statement first begins executing. Additional callbacks occur +** as each triggersubprogram is entered. The callbacks for triggers +** contain a UTF-8 SQL comment that identifies the trigger. +** +** The callback function registered by sqlite3_profile() is invoked +** as each SQL statement finishes. The profile callback contains +** the original statement text and an estimate of wall-clock time +** of how long that statement took to run. +** +** The sqlite3_profile() API is currently considered experimental and +** is subject to change or removal in a future release. +** +** The trigger reporting feature of the trace callback is considered +** experimental and is subject to change or removal in future releases. +** Future versions of SQLite might also add new trace callback +** invocations. +** +** INVARIANTS: +** +** {F12281} The callback function registered by [sqlite3_trace()] is +** whenever an SQL statement first begins to execute and +** whenever a trigger subprogram first begins to run. +** +** {F12282} Each call to [sqlite3_trace()] overrides the previously +** registered trace callback. +** +** {F12283} A NULL trace callback disables tracing. +** +** {F12284} The first argument to the trace callback is a copy of +** the pointer which was the 3rd argument to [sqlite3_trace()]. +** +** {F12285} The second argument to the trace callback is a +** zero-terminated UTF8 string containing the original text +** of the SQL statement as it was passed into [sqlite3_prepare_v2()] +** or the equivalent, or an SQL comment indicating the beginning +** of a trigger subprogram. +** +** {F12287} The callback function registered by [sqlite3_profile()] is invoked +** as each SQL statement finishes. +** +** {F12288} The first parameter to the profile callback is a copy of +** the 3rd parameter to [sqlite3_profile()]. +** +** {F12289} The second parameter to the profile callback is a +** zero-terminated UTF-8 string that contains the complete text of +** the SQL statement as it was processed by [sqlite3_prepare_v2()] +** or the equivalent. +** +** {F12290} The third parameter to the profile callback is an estimate +** of the number of nanoseconds of wall-clock time required to +** run the SQL statement from start to finish. +*/ +SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*); +SQLITE_API void *sqlite3_profile(sqlite3*, + void(*xProfile)(void*,const char*,sqlite3_uint64), void*); + +/* +** CAPI3REF: Query Progress Callbacks {F12910} +** +** This routine configures a callback function - the +** progress callback - that is invoked periodically during long +** running calls to [sqlite3_exec()], [sqlite3_step()] and +** [sqlite3_get_table()]. An example use for this +** interface is to keep a GUI updated during a large query. +** +** If the progress callback returns non-zero, the opertion is +** interrupted. This feature can be used to implement a +** "Cancel" button on a GUI dialog box. +** +** INVARIANTS: +** +** {F12911} The callback function registered by [sqlite3_progress_handler()] +** is invoked periodically during long running calls to +** [sqlite3_step()]. +** +** {F12912} The progress callback is invoked once for every N virtual +** machine opcodes, where N is the second argument to +** the [sqlite3_progress_handler()] call that registered +** the callback. <todo>What if N is less than 1?</todo> +** +** {F12913} The progress callback itself is identified by the third +** argument to [sqlite3_progress_handler()]. +** +** {F12914} The fourth argument [sqlite3_progress_handler()] is a +*** void pointer passed to the progress callback +** function each time it is invoked. +** +** {F12915} If a call to [sqlite3_step()] results in fewer than +** N opcodes being executed, +** then the progress callback is never invoked. {END} +** +** {F12916} Every call to [sqlite3_progress_handler()] +** overwrites any previously registere progress handler. +** +** {F12917} If the progress handler callback is NULL then no progress +** handler is invoked. +** +** {F12918} If the progress callback returns a result other than 0, then +** the behavior is a if [sqlite3_interrupt()] had been called. +*/ +SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*); + +/* +** CAPI3REF: Opening A New Database Connection {F12700} +** +** These routines open an SQLite database file whose name +** is given by the filename argument. +** The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** An [sqlite3*] handle is usually returned in *ppDb, even +** if an error occurs. The only exception is if SQLite is unable +** to allocate memory to hold the [sqlite3] object, a NULL will +** be written into *ppDb instead of a pointer to the [sqlite3] object. +** If the database is opened (and/or created) +** successfully, then [SQLITE_OK] is returned. Otherwise an +** error code is returned. The +** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain +** an English language description of the error. +** +** The default encoding for the database will be UTF-8 if +** [sqlite3_open()] or [sqlite3_open_v2()] is called and +** UTF-16 in the native byte order if [sqlite3_open16()] is used. +** +** Whether or not an error occurs when it is opened, resources +** associated with the [sqlite3*] handle should be released by passing it +** to [sqlite3_close()] when it is no longer required. +** +** The [sqlite3_open_v2()] interface works like [sqlite3_open()] +** except that it acccepts two additional parameters for additional control +** over the new database connection. The flags parameter can be +** one of: +** +** <ol> +** <li> [SQLITE_OPEN_READONLY] +** <li> [SQLITE_OPEN_READWRITE] +** <li> [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE] +** </ol> +** +** The first value opens the database read-only. +** If the database does not previously exist, an error is returned. +** The second option opens +** the database for reading and writing if possible, or reading only if +** if the file is write protected. In either case the database +** must already exist or an error is returned. The third option +** opens the database for reading and writing and creates it if it does +** not already exist. +** The third options is behavior that is always used for [sqlite3_open()] +** and [sqlite3_open16()]. +** +** If the 3rd parameter to [sqlite3_open_v2()] is not one of the +** combinations shown above then the behavior is undefined. +** +** If the filename is ":memory:", then an private +** in-memory database is created for the connection. This in-memory +** database will vanish when the database connection is closed. Future +** version of SQLite might make use of additional special filenames +** that begin with the ":" character. It is recommended that +** when a database filename really does begin with +** ":" that you prefix the filename with a pathname like "./" to +** avoid ambiguity. +** +** If the filename is an empty string, then a private temporary +** on-disk database will be created. This private database will be +** automatically deleted as soon as the database connection is closed. +** +** The fourth parameter to sqlite3_open_v2() is the name of the +** [sqlite3_vfs] object that defines the operating system +** interface that the new database connection should use. If the +** fourth parameter is a NULL pointer then the default [sqlite3_vfs] +** object is used. +** +** <b>Note to windows users:</b> The encoding used for the filename argument +** of [sqlite3_open()] and [sqlite3_open_v2()] must be UTF-8, not whatever +** codepage is currently defined. Filenames containing international +** characters must be converted to UTF-8 prior to passing them into +** [sqlite3_open()] or [sqlite3_open_v2()]. +** +** INVARIANTS: +** +** {F12701} The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces create a new +** [database connection] associated with +** the database file given in their first parameter. +** +** {F12702} The filename argument is interpreted as UTF-8 +** for [sqlite3_open()] and [sqlite3_open_v2()] and as UTF-16 +** in the native byte order for [sqlite3_open16()]. +** +** {F12703} A successful invocation of [sqlite3_open()], [sqlite3_open16()], +** or [sqlite3_open_v2()] writes a pointer to a new +** [database connection] into *ppDb. +** +** {F12704} The [sqlite3_open()], [sqlite3_open16()], and +** [sqlite3_open_v2()] interfaces return [SQLITE_OK] upon success, +** or an appropriate [error code] on failure. +** +** {F12706} The default text encoding for a new database created using +** [sqlite3_open()] or [sqlite3_open_v2()] will be UTF-8. +** +** {F12707} The default text encoding for a new database created using +** [sqlite3_open16()] will be UTF-16. +** +** {F12709} The [sqlite3_open(F,D)] interface is equivalent to +** [sqlite3_open_v2(F,D,G,0)] where the G parameter is +** [SQLITE_OPEN_READWRITE]|[SQLITE_OPEN_CREATE]. +** +** {F12711} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the +** bit value [SQLITE_OPEN_READONLY] then the database is opened +** for reading only. +** +** {F12712} If the G parameter to [sqlite3_open_v2(F,D,G,V)] contains the +** bit value [SQLITE_OPEN_READWRITE] then the database is opened +** reading and writing if possible, or for reading only if the +** file is write protected by the operating system. +** +** {F12713} If the G parameter to [sqlite3_open(v2(F,D,G,V)] omits the +** bit value [SQLITE_OPEN_CREATE] and the database does not +** previously exist, an error is returned. +** +** {F12714} If the G parameter to [sqlite3_open(v2(F,D,G,V)] contains the +** bit value [SQLITE_OPEN_CREATE] and the database does not +** previously exist, then an attempt is made to create and +** initialize the database. +** +** {F12717} If the filename argument to [sqlite3_open()], [sqlite3_open16()], +** or [sqlite3_open_v2()] is ":memory:", then an private, +** ephemeral, in-memory database is created for the connection. +** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required +** in sqlite3_open_v2()?</todo> +** +** {F12719} If the filename is NULL or an empty string, then a private, +** ephermeral on-disk database will be created. +** <todo>Is SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE required +** in sqlite3_open_v2()?</todo> +** +** {F12721} The [database connection] created by +** [sqlite3_open_v2(F,D,G,V)] will use the +** [sqlite3_vfs] object identified by the V parameter, or +** the default [sqlite3_vfs] object is V is a NULL pointer. +*/ +SQLITE_API int sqlite3_open( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +SQLITE_API int sqlite3_open16( + const void *filename, /* Database filename (UTF-16) */ + sqlite3 **ppDb /* OUT: SQLite db handle */ +); +SQLITE_API int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +); + +/* +** CAPI3REF: Error Codes And Messages {F12800} +** +** The sqlite3_errcode() interface returns the numeric +** [SQLITE_OK | result code] or [SQLITE_IOERR_READ | extended result code] +** for the most recent failed sqlite3_* API call associated +** with [sqlite3] handle 'db'. If a prior API call failed but the +** most recent API call succeeded, the return value from sqlite3_errcode() +** is undefined. +** +** The sqlite3_errmsg() and sqlite3_errmsg16() return English-language +** text that describes the error, as either UTF8 or UTF16 respectively. +** Memory to hold the error message string is managed internally. +** The application does not need to worry with freeing the result. +** However, the error string might be overwritten or deallocated by +** subsequent calls to other SQLite interface functions. +** +** INVARIANTS: +** +** {F12801} The [sqlite3_errcode(D)] interface returns the numeric +** [SQLITE_OK | result code] or +** [SQLITE_IOERR_READ | extended result code] +** for the most recently failed interface call associated +** with [database connection] D. +** +** {F12803} The [sqlite3_errmsg(D)] and [sqlite3_errmsg16(D)] +** interfaces return English-language text that describes +** the error in the mostly recently failed interface call, +** encoded as either UTF8 or UTF16 respectively. +** +** {F12807} The strings returned by [sqlite3_errmsg()] and [sqlite3_errmsg16()] +** are valid until the next SQLite interface call. +** +** {F12808} Calls to API routines that do not return an error code +** (example: [sqlite3_data_count()]) do not +** change the error code or message returned by +** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()]. +** +** {F12809} Interfaces that are not associated with a specific +** [database connection] (examples: +** [sqlite3_mprintf()] or [sqlite3_enable_shared_cache()] +** do not change the values returned by +** [sqlite3_errcode()], [sqlite3_errmsg()], or [sqlite3_errmsg16()]. +*/ +SQLITE_API int sqlite3_errcode(sqlite3 *db); +SQLITE_API const char *sqlite3_errmsg(sqlite3*); +SQLITE_API const void *sqlite3_errmsg16(sqlite3*); + +/* +** CAPI3REF: SQL Statement Object {F13000} +** KEYWORDS: {prepared statement} {prepared statements} +** +** An instance of this object represent single SQL statements. This +** object is variously known as a "prepared statement" or a +** "compiled SQL statement" or simply as a "statement". +** +** The life of a statement object goes something like this: +** +** <ol> +** <li> Create the object using [sqlite3_prepare_v2()] or a related +** function. +** <li> Bind values to host parameters using +** [sqlite3_bind_blob | sqlite3_bind_* interfaces]. +** <li> Run the SQL by calling [sqlite3_step()] one or more times. +** <li> Reset the statement using [sqlite3_reset()] then go back +** to step 2. Do this zero or more times. +** <li> Destroy the object using [sqlite3_finalize()]. +** </ol> +** +** Refer to documentation on individual methods above for additional +** information. +*/ +typedef struct sqlite3_stmt sqlite3_stmt; + +/* +** CAPI3REF: Run-time Limits {F12760} +** +** This interface allows the size of various constructs to be limited +** on a connection by connection basis. The first parameter is the +** [database connection] whose limit is to be set or queried. The +** second parameter is one of the [limit categories] that define a +** class of constructs to be size limited. The third parameter is the +** new limit for that construct. The function returns the old limit. +** +** If the new limit is a negative number, the limit is unchanged. +** For the limit category of SQLITE_LIMIT_XYZ there is a hard upper +** bound set by a compile-time C-preprocess macro named SQLITE_MAX_XYZ. +** (The "_LIMIT_" in the name is changed to "_MAX_".) +** Attempts to increase a limit above its hard upper bound are +** silently truncated to the hard upper limit. +** +** Run time limits are intended for use in applications that manage +** both their own internal database and also databases that are controlled +** by untrusted external sources. An example application might be a +** webbrowser that has its own databases for storing history and +** separate databases controlled by javascript applications downloaded +** off the internet. The internal databases can be given the +** large, default limits. Databases managed by external sources can +** be given much smaller limits designed to prevent a denial of service +** attach. Developers might also want to use the [sqlite3_set_authorizer()] +** interface to further control untrusted SQL. The size of the database +** created by an untrusted script can be contained using the +** [max_page_count] [PRAGMA]. +** +** This interface is currently considered experimental and is subject +** to change or removal without prior notice. +** +** INVARIANTS: +** +** {F12762} A successful call to [sqlite3_limit(D,C,V)] where V is +** positive changes the +** limit on the size of construct C in [database connection] D +** to the lessor of V and the hard upper bound on the size +** of C that is set at compile-time. +** +** {F12766} A successful call to [sqlite3_limit(D,C,V)] where V is negative +** leaves the state of [database connection] D unchanged. +** +** {F12769} A successful call to [sqlite3_limit(D,C,V)] returns the +** value of the limit on the size of construct C in +** in [database connection] D as it was prior to the call. +*/ +SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal); + +/* +** CAPI3REF: Run-Time Limit Categories {F12790} +** KEYWORDS: {limit category} {limit categories} +** +** These constants define various aspects of a [database connection] +** that can be limited in size by calls to [sqlite3_limit()]. +** The meanings of the various limits are as follows: +** +** <dl> +** <dt>SQLITE_LIMIT_LENGTH</dt> +** <dd>The maximum size of any +** string or blob or table row.<dd> +** +** <dt>SQLITE_LIMIT_SQL_LENGTH</dt> +** <dd>The maximum length of an SQL statement.</dd> +** +** <dt>SQLITE_LIMIT_COLUMN</dt> +** <dd>The maximum number of columns in a table definition or in the +** result set of a SELECT or the maximum number of columns in an index +** or in an ORDER BY or GROUP BY clause.</dd> +** +** <dt>SQLITE_LIMIT_EXPR_DEPTH</dt> +** <dd>The maximum depth of the parse tree on any expression.</dd> +** +** <dt>SQLITE_LIMIT_COMPOUND_SELECT</dt> +** <dd>The maximum number of terms in a compound SELECT statement.</dd> +** +** <dt>SQLITE_LIMIT_VDBE_OP</dt> +** <dd>The maximum number of instructions in a virtual machine program +** used to implement an SQL statement.</dd> +** +** <dt>SQLITE_LIMIT_FUNCTION_ARG</dt> +** <dd>The maximum number of arguments on a function.</dd> +** +** <dt>SQLITE_LIMIT_ATTACHED</dt> +** <dd>The maximum number of attached databases.</dd> +** +** <dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt> +** <dd>The maximum length of the pattern argument to the LIKE or +** GLOB operators.</dd> +** +** <dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt> +** <dd>The maximum number of variables in an SQL statement that can +** be bound.</dd> +** </dl> +*/ +#define SQLITE_LIMIT_LENGTH 0 +#define SQLITE_LIMIT_SQL_LENGTH 1 +#define SQLITE_LIMIT_COLUMN 2 +#define SQLITE_LIMIT_EXPR_DEPTH 3 +#define SQLITE_LIMIT_COMPOUND_SELECT 4 +#define SQLITE_LIMIT_VDBE_OP 5 +#define SQLITE_LIMIT_FUNCTION_ARG 6 +#define SQLITE_LIMIT_ATTACHED 7 +#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8 +#define SQLITE_LIMIT_VARIABLE_NUMBER 9 + +/* +** CAPI3REF: Compiling An SQL Statement {F13010} +** +** To execute an SQL query, it must first be compiled into a byte-code +** program using one of these routines. +** +** The first argument "db" is an [database connection] +** obtained from a prior call to [sqlite3_open()], [sqlite3_open_v2()] +** or [sqlite3_open16()]. +** The second argument "zSql" is the statement to be compiled, encoded +** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2() +** interfaces uses UTF-8 and sqlite3_prepare16() and sqlite3_prepare16_v2() +** use UTF-16. {END} +** +** If the nByte argument is less +** than zero, then zSql is read up to the first zero terminator. +** If nByte is non-negative, then it is the maximum number of +** bytes read from zSql. When nByte is non-negative, the +** zSql string ends at either the first '\000' or '\u0000' character or +** the nByte-th byte, whichever comes first. If the caller knows +** that the supplied string is nul-terminated, then there is a small +** performance advantage to be had by passing an nByte parameter that +** is equal to the number of bytes in the input string <i>including</i> +** the nul-terminator bytes.{END} +** +** *pzTail is made to point to the first byte past the end of the +** first SQL statement in zSql. These routines only compiles the first +** statement in zSql, so *pzTail is left pointing to what remains +** uncompiled. +** +** *ppStmt is left pointing to a compiled [prepared statement] that can be +** executed using [sqlite3_step()]. Or if there is an error, *ppStmt is +** set to NULL. If the input text contains no SQL (if the input +** is and empty string or a comment) then *ppStmt is set to NULL. +** {U13018} The calling procedure is responsible for deleting the +** compiled SQL statement +** using [sqlite3_finalize()] after it has finished with it. +** +** On success, [SQLITE_OK] is returned. Otherwise an +** [error code] is returned. +** +** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are +** recommended for all new programs. The two older interfaces are retained +** for backwards compatibility, but their use is discouraged. +** In the "v2" interfaces, the prepared statement +** that is returned (the [sqlite3_stmt] object) contains a copy of the +** original SQL text. {END} This causes the [sqlite3_step()] interface to +** behave a differently in two ways: +** +** <ol> +** <li> +** If the database schema changes, instead of returning [SQLITE_SCHEMA] as it +** always used to do, [sqlite3_step()] will automatically recompile the SQL +** statement and try to run it again. If the schema has changed in +** a way that makes the statement no longer valid, [sqlite3_step()] will still +** return [SQLITE_SCHEMA]. But unlike the legacy behavior, +** [SQLITE_SCHEMA] is now a fatal error. Calling +** [sqlite3_prepare_v2()] again will not make the +** error go away. Note: use [sqlite3_errmsg()] to find the text +** of the parsing error that results in an [SQLITE_SCHEMA] return. {END} +** </li> +** +** <li> +** When an error occurs, +** [sqlite3_step()] will return one of the detailed +** [error codes] or [extended error codes]. +** The legacy behavior was that [sqlite3_step()] would only return a generic +** [SQLITE_ERROR] result code and you would have to make a second call to +** [sqlite3_reset()] in order to find the underlying cause of the problem. +** With the "v2" prepare interfaces, the underlying reason for the error is +** returned immediately. +** </li> +** </ol> +** +** INVARIANTS: +** +** {F13011} The [sqlite3_prepare(db,zSql,...)] and +** [sqlite3_prepare_v2(db,zSql,...)] interfaces interpret the +** text in their zSql parameter as UTF-8. +** +** {F13012} The [sqlite3_prepare16(db,zSql,...)] and +** [sqlite3_prepare16_v2(db,zSql,...)] interfaces interpret the +** text in their zSql parameter as UTF-16 in the native byte order. +** +** {F13013} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)] +** and its variants is less than zero, then SQL text is +** read from zSql is read up to the first zero terminator. +** +** {F13014} If the nByte argument to [sqlite3_prepare_v2(db,zSql,nByte,...)] +** and its variants is non-negative, then at most nBytes bytes +** SQL text is read from zSql. +** +** {F13015} In [sqlite3_prepare_v2(db,zSql,N,P,pzTail)] and its variants +** if the zSql input text contains more than one SQL statement +** and pzTail is not NULL, then *pzTail is made to point to the +** first byte past the end of the first SQL statement in zSql. +** <todo>What does *pzTail point to if there is one statement?</todo> +** +** {F13016} A successful call to [sqlite3_prepare_v2(db,zSql,N,ppStmt,...)] +** or one of its variants writes into *ppStmt a pointer to a new +** [prepared statement] or a pointer to NULL +** if zSql contains nothing other than whitespace or comments. +** +** {F13019} The [sqlite3_prepare_v2()] interface and its variants return +** [SQLITE_OK] or an appropriate [error code] upon failure. +** +** {F13021} Before [sqlite3_prepare(db,zSql,nByte,ppStmt,pzTail)] or its +** variants returns an error (any value other than [SQLITE_OK]) +** it first sets *ppStmt to NULL. +*/ +SQLITE_API int sqlite3_prepare( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +SQLITE_API int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle */ + const char *zSql, /* SQL statement, UTF-8 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const char **pzTail /* OUT: Pointer to unused portion of zSql */ +); +SQLITE_API int sqlite3_prepare16( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); +SQLITE_API int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle */ + const void *zSql, /* SQL statement, UTF-16 encoded */ + int nByte, /* Maximum length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: Statement handle */ + const void **pzTail /* OUT: Pointer to unused portion of zSql */ +); + +/* +** CAPIREF: Retrieving Statement SQL {F13100} +** +** This intereface can be used to retrieve a saved copy of the original +** SQL text used to create a [prepared statement]. +** +** INVARIANTS: +** +** {F13101} If the [prepared statement] passed as +** the an argument to [sqlite3_sql()] was compiled +** compiled using either [sqlite3_prepare_v2()] or +** [sqlite3_prepare16_v2()], +** then [sqlite3_sql()] function returns a pointer to a +** zero-terminated string containing a UTF-8 rendering +** of the original SQL statement. +** +** {F13102} If the [prepared statement] passed as +** the an argument to [sqlite3_sql()] was compiled +** compiled using either [sqlite3_prepare()] or +** [sqlite3_prepare16()], +** then [sqlite3_sql()] function returns a NULL pointer. +** +** {F13103} The string returned by [sqlite3_sql(S)] is valid until the +** [prepared statement] S is deleted using [sqlite3_finalize(S)]. +*/ +SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Dynamically Typed Value Object {F15000} +** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value} +** +** SQLite uses the sqlite3_value object to represent all values +** that can be stored in a database table. +** SQLite uses dynamic typing for the values it stores. +** Values stored in sqlite3_value objects can be +** be integers, floating point values, strings, BLOBs, or NULL. +** +** An sqlite3_value object may be either "protected" or "unprotected". +** Some interfaces require a protected sqlite3_value. Other interfaces +** will accept either a protected or an unprotected sqlite3_value. +** Every interface that accepts sqlite3_value arguments specifies +** whether or not it requires a protected sqlite3_value. +** +** The terms "protected" and "unprotected" refer to whether or not +** a mutex is held. A internal mutex is held for a protected +** sqlite3_value object but no mutex is held for an unprotected +** sqlite3_value object. If SQLite is compiled to be single-threaded +** (with SQLITE_THREADSAFE=0 and with [sqlite3_threadsafe()] returning 0) +** then there is no distinction between +** protected and unprotected sqlite3_value objects and they can be +** used interchangable. However, for maximum code portability it +** is recommended that applications make the distinction between +** between protected and unprotected sqlite3_value objects even if +** they are single threaded. +** +** The sqlite3_value objects that are passed as parameters into the +** implementation of application-defined SQL functions are protected. +** The sqlite3_value object returned by +** [sqlite3_column_value()] is unprotected. +** Unprotected sqlite3_value objects may only be used with +** [sqlite3_result_value()] and [sqlite3_bind_value()]. All other +** interfaces that use sqlite3_value require protected sqlite3_value objects. +*/ +typedef struct Mem sqlite3_value; + +/* +** CAPI3REF: SQL Function Context Object {F16001} +** +** The context in which an SQL function executes is stored in an +** sqlite3_context object. A pointer to an sqlite3_context +** object is always first parameter to application-defined SQL functions. +*/ +typedef struct sqlite3_context sqlite3_context; + +/* +** CAPI3REF: Binding Values To Prepared Statements {F13500} +** +** In the SQL strings input to [sqlite3_prepare_v2()] and its +** variants, literals may be replace by a parameter in one +** of these forms: +** +** <ul> +** <li> ? +** <li> ?NNN +** <li> :VVV +** <li> @VVV +** <li> $VVV +** </ul> +** +** In the parameter forms shown above NNN is an integer literal, +** VVV alpha-numeric parameter name. +** The values of these parameters (also called "host parameter names" +** or "SQL parameters") +** can be set using the sqlite3_bind_*() routines defined here. +** +** The first argument to the sqlite3_bind_*() routines always +** is a pointer to the [sqlite3_stmt] object returned from +** [sqlite3_prepare_v2()] or its variants. The second +** argument is the index of the parameter to be set. The +** first parameter has an index of 1. When the same named +** parameter is used more than once, second and subsequent +** occurrences have the same index as the first occurrence. +** The index for named parameters can be looked up using the +** [sqlite3_bind_parameter_name()] API if desired. The index +** for "?NNN" parameters is the value of NNN. +** The NNN value must be between 1 and the compile-time +** parameter SQLITE_MAX_VARIABLE_NUMBER (default value: 999). +** +** The third argument is the value to bind to the parameter. +** +** In those +** routines that have a fourth argument, its value is the number of bytes +** in the parameter. To be clear: the value is the number of <u>bytes</u> +** in the value, not the number of characters. +** If the fourth parameter is negative, the length of the string is +** number of bytes up to the first zero terminator. +** +** The fifth argument to sqlite3_bind_blob(), sqlite3_bind_text(), and +** sqlite3_bind_text16() is a destructor used to dispose of the BLOB or +** string after SQLite has finished with it. If the fifth argument is +** the special value [SQLITE_STATIC], then SQLite assumes that the +** information is in static, unmanaged space and does not need to be freed. +** If the fifth argument has the value [SQLITE_TRANSIENT], then +** SQLite makes its own private copy of the data immediately, before +** the sqlite3_bind_*() routine returns. +** +** The sqlite3_bind_zeroblob() routine binds a BLOB of length N that +** is filled with zeros. A zeroblob uses a fixed amount of memory +** (just an integer to hold it size) while it is being processed. +** Zeroblobs are intended to serve as place-holders for BLOBs whose +** content is later written using +** [sqlite3_blob_open | increment BLOB I/O] routines. A negative +** value for the zeroblob results in a zero-length BLOB. +** +** The sqlite3_bind_*() routines must be called after +** [sqlite3_prepare_v2()] (and its variants) or [sqlite3_reset()] and +** before [sqlite3_step()]. +** Bindings are not cleared by the [sqlite3_reset()] routine. +** Unbound parameters are interpreted as NULL. +** +** These routines return [SQLITE_OK] on success or an error code if +** anything goes wrong. [SQLITE_RANGE] is returned if the parameter +** index is out of range. [SQLITE_NOMEM] is returned if malloc fails. +** [SQLITE_MISUSE] might be returned if these routines are called on a +** virtual machine that is the wrong state or which has already been finalized. +** Detection of misuse is unreliable. Applications should not depend +** on SQLITE_MISUSE returns. SQLITE_MISUSE is intended to indicate a +** a logic error in the application. Future versions of SQLite might +** panic rather than return SQLITE_MISUSE. +** +** See also: [sqlite3_bind_parameter_count()], +** [sqlite3_bind_parameter_name()], and +** [sqlite3_bind_parameter_index()]. +** +** INVARIANTS: +** +** {F13506} The [sqlite3_prepare | SQL statement compiler] recognizes +** tokens of the forms "?", "?NNN", "$VVV", ":VVV", and "@VVV" +** as SQL parameters, where NNN is any sequence of one or more +** digits and where VVV is any sequence of one or more +** alphanumeric characters or "::" optionally followed by +** a string containing no spaces and contained within parentheses. +** +** {F13509} The initial value of an SQL parameter is NULL. +** +** {F13512} The index of an "?" SQL parameter is one larger than the +** largest index of SQL parameter to the left, or 1 if +** the "?" is the leftmost SQL parameter. +** +** {F13515} The index of an "?NNN" SQL parameter is the integer NNN. +** +** {F13518} The index of an ":VVV", "$VVV", or "@VVV" SQL parameter is +** the same as the index of leftmost occurances of the same +** parameter, or one more than the largest index over all +** parameters to the left if this is the first occurrance +** of this parameter, or 1 if this is the leftmost parameter. +** +** {F13521} The [sqlite3_prepare | SQL statement compiler] fail with +** an [SQLITE_RANGE] error if the index of an SQL parameter +** is less than 1 or greater than SQLITE_MAX_VARIABLE_NUMBER. +** +** {F13524} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,V,...)] +** associate the value V with all SQL parameters having an +** index of N in the [prepared statement] S. +** +** {F13527} Calls to [sqlite3_bind_text | sqlite3_bind(S,N,...)] +** override prior calls with the same values of S and N. +** +** {F13530} Bindings established by [sqlite3_bind_text | sqlite3_bind(S,...)] +** persist across calls to [sqlite3_reset(S)]. +** +** {F13533} In calls to [sqlite3_bind_blob(S,N,V,L,D)], +** [sqlite3_bind_text(S,N,V,L,D)], or +** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds the first L +** bytes of the blob or string pointed to by V, when L +** is non-negative. +** +** {F13536} In calls to [sqlite3_bind_text(S,N,V,L,D)] or +** [sqlite3_bind_text16(S,N,V,L,D)] SQLite binds characters +** from V through the first zero character when L is negative. +** +** {F13539} In calls to [sqlite3_bind_blob(S,N,V,L,D)], +** [sqlite3_bind_text(S,N,V,L,D)], or +** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special +** constant [SQLITE_STATIC], SQLite assumes that the value V +** is held in static unmanaged space that will not change +** during the lifetime of the binding. +** +** {F13542} In calls to [sqlite3_bind_blob(S,N,V,L,D)], +** [sqlite3_bind_text(S,N,V,L,D)], or +** [sqlite3_bind_text16(S,N,V,L,D)] when D is the special +** constant [SQLITE_TRANSIENT], the routine makes a +** private copy of V value before it returns. +** +** {F13545} In calls to [sqlite3_bind_blob(S,N,V,L,D)], +** [sqlite3_bind_text(S,N,V,L,D)], or +** [sqlite3_bind_text16(S,N,V,L,D)] when D is a pointer to +** a function, SQLite invokes that function to destroy the +** V value after it has finished using the V value. +** +** {F13548} In calls to [sqlite3_bind_zeroblob(S,N,V,L)] the value bound +** is a blob of L bytes, or a zero-length blob if L is negative. +** +** {F13551} In calls to [sqlite3_bind_value(S,N,V)] the V argument may +** be either a [protected sqlite3_value] object or an +** [unprotected sqlite3_value] object. +*/ +SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*)); +SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double); +SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int); +SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64); +SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int); +SQLITE_API int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, void(*)(void*)); +SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*)); +SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*); +SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n); + +/* +** CAPI3REF: Number Of SQL Parameters {F13600} +** +** This routine can be used to find the number of SQL parameters +** in a prepared statement. SQL parameters are tokens of the +** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as +** place-holders for values that are [sqlite3_bind_blob | bound] +** to the parameters at a later time. +** +** This routine actually returns the index of the largest parameter. +** For all forms except ?NNN, this will correspond to the number of +** unique parameters. If parameters of the ?NNN are used, there may +** be gaps in the list. +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_name()], and +** [sqlite3_bind_parameter_index()]. +** +** INVARIANTS: +** +** {F13601} The [sqlite3_bind_parameter_count(S)] interface returns +** the largest index of all SQL parameters in the +** [prepared statement] S, or 0 if S +** contains no SQL parameters. +*/ +SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*); + +/* +** CAPI3REF: Name Of A Host Parameter {F13620} +** +** This routine returns a pointer to the name of the n-th +** SQL parameter in a [prepared statement]. +** SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA" +** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA" +** respectively. +** In other words, the initial ":" or "$" or "@" or "?" +** is included as part of the name. +** Parameters of the form "?" without a following integer have no name. +** +** The first host parameter has an index of 1, not 0. +** +** If the value n is out of range or if the n-th parameter is +** nameless, then NULL is returned. The returned string is +** always in the UTF-8 encoding even if the named parameter was +** originally specified as UTF-16 in [sqlite3_prepare16()] or +** [sqlite3_prepare16_v2()]. +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_count()], and +** [sqlite3_bind_parameter_index()]. +** +** INVARIANTS: +** +** {F13621} The [sqlite3_bind_parameter_name(S,N)] interface returns +** a UTF-8 rendering of the name of the SQL parameter in +** [prepared statement] S having index N, or +** NULL if there is no SQL parameter with index N or if the +** parameter with index N is an anonymous parameter "?". +*/ +SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int); + +/* +** CAPI3REF: Index Of A Parameter With A Given Name {F13640} +** +** Return the index of an SQL parameter given its name. The +** index value returned is suitable for use as the second +** parameter to [sqlite3_bind_blob|sqlite3_bind()]. A zero +** is returned if no matching parameter is found. The parameter +** name must be given in UTF-8 even if the original statement +** was prepared from UTF-16 text using [sqlite3_prepare16_v2()]. +** +** See also: [sqlite3_bind_blob|sqlite3_bind()], +** [sqlite3_bind_parameter_count()], and +** [sqlite3_bind_parameter_index()]. +** +** INVARIANTS: +** +** {F13641} The [sqlite3_bind_parameter_index(S,N)] interface returns +** the index of SQL parameter in [prepared statement] +** S whose name matches the UTF-8 string N, or 0 if there is +** no match. +*/ +SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName); + +/* +** CAPI3REF: Reset All Bindings On A Prepared Statement {F13660} +** +** Contrary to the intuition of many, [sqlite3_reset()] does not +** reset the [sqlite3_bind_blob | bindings] on a +** [prepared statement]. Use this routine to +** reset all host parameters to NULL. +** +** INVARIANTS: +** +** {F13661} The [sqlite3_clear_bindings(S)] interface resets all +** SQL parameter bindings in [prepared statement] S +** back to NULL. +*/ +SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*); + +/* +** CAPI3REF: Number Of Columns In A Result Set {F13710} +** +** Return the number of columns in the result set returned by the +** [prepared statement]. This routine returns 0 +** if pStmt is an SQL statement that does not return data (for +** example an UPDATE). +** +** INVARIANTS: +** +** {F13711} The [sqlite3_column_count(S)] interface returns the number of +** columns in the result set generated by the +** [prepared statement] S, or 0 if S does not generate +** a result set. +*/ +SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Column Names In A Result Set {F13720} +** +** These routines return the name assigned to a particular column +** in the result set of a SELECT statement. The sqlite3_column_name() +** interface returns a pointer to a zero-terminated UTF8 string +** and sqlite3_column_name16() returns a pointer to a zero-terminated +** UTF16 string. The first parameter is the +** [prepared statement] that implements the SELECT statement. +** The second parameter is the column number. The left-most column is +** number 0. +** +** The returned string pointer is valid until either the +** [prepared statement] is destroyed by [sqlite3_finalize()] +** or until the next call sqlite3_column_name() or sqlite3_column_name16() +** on the same column. +** +** If sqlite3_malloc() fails during the processing of either routine +** (for example during a conversion from UTF-8 to UTF-16) then a +** NULL pointer is returned. +** +** The name of a result column is the value of the "AS" clause for +** that column, if there is an AS clause. If there is no AS clause +** then the name of the column is unspecified and may change from +** one release of SQLite to the next. +** +** INVARIANTS: +** +** {F13721} A successful invocation of the [sqlite3_column_name(S,N)] +** interface returns the name +** of the Nth column (where 0 is the left-most column) for the +** result set of [prepared statement] S as a +** zero-terminated UTF-8 string. +** +** {F13723} A successful invocation of the [sqlite3_column_name16(S,N)] +** interface returns the name +** of the Nth column (where 0 is the left-most column) for the +** result set of [prepared statement] S as a +** zero-terminated UTF-16 string in the native byte order. +** +** {F13724} The [sqlite3_column_name()] and [sqlite3_column_name16()] +** interfaces return a NULL pointer if they are unable to +** allocate memory memory to hold there normal return strings. +** +** {F13725} If the N parameter to [sqlite3_column_name(S,N)] or +** [sqlite3_column_name16(S,N)] is out of range, then the +** interfaces returns a NULL pointer. +** +** {F13726} The strings returned by [sqlite3_column_name(S,N)] and +** [sqlite3_column_name16(S,N)] are valid until the next +** call to either routine with the same S and N parameters +** or until [sqlite3_finalize(S)] is called. +** +** {F13727} When a result column of a [SELECT] statement contains +** an AS clause, the name of that column is the indentifier +** to the right of the AS keyword. +*/ +SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N); +SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N); + +/* +** CAPI3REF: Source Of Data In A Query Result {F13740} +** +** These routines provide a means to determine what column of what +** table in which database a result of a SELECT statement comes from. +** The name of the database or table or column can be returned as +** either a UTF8 or UTF16 string. The _database_ routines return +** the database name, the _table_ routines return the table name, and +** the origin_ routines return the column name. +** The returned string is valid until +** the [prepared statement] is destroyed using +** [sqlite3_finalize()] or until the same information is requested +** again in a different encoding. +** +** The names returned are the original un-aliased names of the +** database, table, and column. +** +** The first argument to the following calls is a [prepared statement]. +** These functions return information about the Nth column returned by +** the statement, where N is the second function argument. +** +** If the Nth column returned by the statement is an expression +** or subquery and is not a column value, then all of these functions +** return NULL. These routine might also return NULL if a memory +** allocation error occurs. Otherwise, they return the +** name of the attached database, table and column that query result +** column was extracted from. +** +** As with all other SQLite APIs, those postfixed with "16" return +** UTF-16 encoded strings, the other functions return UTF-8. {END} +** +** These APIs are only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +** +** {U13751} +** If two or more threads call one or more of these routines against the same +** prepared statement and column at the same time then the results are +** undefined. +** +** INVARIANTS: +** +** {F13741} The [sqlite3_column_database_name(S,N)] interface returns either +** the UTF-8 zero-terminated name of the database from which the +** Nth result column of [prepared statement] S +** is extracted, or NULL if the the Nth column of S is a +** general expression or if unable to allocate memory +** to store the name. +** +** {F13742} The [sqlite3_column_database_name16(S,N)] interface returns either +** the UTF-16 native byte order +** zero-terminated name of the database from which the +** Nth result column of [prepared statement] S +** is extracted, or NULL if the the Nth column of S is a +** general expression or if unable to allocate memory +** to store the name. +** +** {F13743} The [sqlite3_column_table_name(S,N)] interface returns either +** the UTF-8 zero-terminated name of the table from which the +** Nth result column of [prepared statement] S +** is extracted, or NULL if the the Nth column of S is a +** general expression or if unable to allocate memory +** to store the name. +** +** {F13744} The [sqlite3_column_table_name16(S,N)] interface returns either +** the UTF-16 native byte order +** zero-terminated name of the table from which the +** Nth result column of [prepared statement] S +** is extracted, or NULL if the the Nth column of S is a +** general expression or if unable to allocate memory +** to store the name. +** +** {F13745} The [sqlite3_column_origin_name(S,N)] interface returns either +** the UTF-8 zero-terminated name of the table column from which the +** Nth result column of [prepared statement] S +** is extracted, or NULL if the the Nth column of S is a +** general expression or if unable to allocate memory +** to store the name. +** +** {F13746} The [sqlite3_column_origin_name16(S,N)] interface returns either +** the UTF-16 native byte order +** zero-terminated name of the table column from which the +** Nth result column of [prepared statement] S +** is extracted, or NULL if the the Nth column of S is a +** general expression or if unable to allocate memory +** to store the name. +** +** {F13748} The return values from +** [sqlite3_column_database_name|column metadata interfaces] +** are valid +** for the lifetime of the [prepared statement] +** or until the encoding is changed by another metadata +** interface call for the same prepared statement and column. +** +** LIMITATIONS: +** +** {U13751} If two or more threads call one or more +** [sqlite3_column_database_name|column metadata interfaces] +** the same [prepared statement] and result column +** at the same time then the results are undefined. +*/ +SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int); +SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int); +SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int); +SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int); +SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int); +SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Declared Datatype Of A Query Result {F13760} +** +** The first parameter is a [prepared statement]. +** If this statement is a SELECT statement and the Nth column of the +** returned result set of that SELECT is a table column (not an +** expression or subquery) then the declared type of the table +** column is returned. If the Nth column of the result set is an +** expression or subquery, then a NULL pointer is returned. +** The returned string is always UTF-8 encoded. {END} +** For example, in the database schema: +** +** CREATE TABLE t1(c1 VARIANT); +** +** And the following statement compiled: +** +** SELECT c1 + 1, c1 FROM t1; +** +** Then this routine would return the string "VARIANT" for the second +** result column (i==1), and a NULL pointer for the first result column +** (i==0). +** +** SQLite uses dynamic run-time typing. So just because a column +** is declared to contain a particular type does not mean that the +** data stored in that column is of the declared type. SQLite is +** strongly typed, but the typing is dynamic not static. Type +** is associated with individual values, not with the containers +** used to hold those values. +** +** INVARIANTS: +** +** {F13761} A successful call to [sqlite3_column_decltype(S,N)] +** returns a zero-terminated UTF-8 string containing the +** the declared datatype of the table column that appears +** as the Nth column (numbered from 0) of the result set to the +** [prepared statement] S. +** +** {F13762} A successful call to [sqlite3_column_decltype16(S,N)] +** returns a zero-terminated UTF-16 native byte order string +** containing the declared datatype of the table column that appears +** as the Nth column (numbered from 0) of the result set to the +** [prepared statement] S. +** +** {F13763} If N is less than 0 or N is greater than or equal to +** the number of columns in [prepared statement] S +** or if the Nth column of S is an expression or subquery rather +** than a table column or if a memory allocation failure +** occurs during encoding conversions, then +** calls to [sqlite3_column_decltype(S,N)] or +** [sqlite3_column_decltype16(S,N)] return NULL. +*/ +SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int); +SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int); + +/* +** CAPI3REF: Evaluate An SQL Statement {F13200} +** +** After an [prepared statement] has been prepared with a call +** to either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or to one of +** the legacy interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], +** then this function must be called one or more times to evaluate the +** statement. +** +** The details of the behavior of this sqlite3_step() interface depend +** on whether the statement was prepared using the newer "v2" interface +** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy +** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the +** new "v2" interface is recommended for new applications but the legacy +** interface will continue to be supported. +** +** In the legacy interface, the return value will be either [SQLITE_BUSY], +** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE]. +** With the "v2" interface, any of the other [SQLITE_OK | result code] +** or [SQLITE_IOERR_READ | extended result code] might be returned as +** well. +** +** [SQLITE_BUSY] means that the database engine was unable to acquire the +** database locks it needs to do its job. If the statement is a COMMIT +** or occurs outside of an explicit transaction, then you can retry the +** statement. If the statement is not a COMMIT and occurs within a +** explicit transaction then you should rollback the transaction before +** continuing. +** +** [SQLITE_DONE] means that the statement has finished executing +** successfully. sqlite3_step() should not be called again on this virtual +** machine without first calling [sqlite3_reset()] to reset the virtual +** machine back to its initial state. +** +** If the SQL statement being executed returns any data, then +** [SQLITE_ROW] is returned each time a new row of data is ready +** for processing by the caller. The values may be accessed using +** the [sqlite3_column_int | column access functions]. +** sqlite3_step() is called again to retrieve the next row of data. +** +** [SQLITE_ERROR] means that a run-time error (such as a constraint +** violation) has occurred. sqlite3_step() should not be called again on +** the VM. More information may be found by calling [sqlite3_errmsg()]. +** With the legacy interface, a more specific error code (example: +** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth) +** can be obtained by calling [sqlite3_reset()] on the +** [prepared statement]. In the "v2" interface, +** the more specific error code is returned directly by sqlite3_step(). +** +** [SQLITE_MISUSE] means that the this routine was called inappropriately. +** Perhaps it was called on a [prepared statement] that has +** already been [sqlite3_finalize | finalized] or on one that had +** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could +** be the case that the same database connection is being used by two or +** more threads at the same moment in time. +** +** <b>Goofy Interface Alert:</b> +** In the legacy interface, +** the sqlite3_step() API always returns a generic error code, +** [SQLITE_ERROR], following any error other than [SQLITE_BUSY] +** and [SQLITE_MISUSE]. You must call [sqlite3_reset()] or +** [sqlite3_finalize()] in order to find one of the specific +** [error codes] that better describes the error. +** We admit that this is a goofy design. The problem has been fixed +** with the "v2" interface. If you prepare all of your SQL statements +** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead +** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()], then the +** more specific [error codes] are returned directly +** by sqlite3_step(). The use of the "v2" interface is recommended. +** +** INVARIANTS: +** +** {F13202} If [prepared statement] S is ready to be +** run, then [sqlite3_step(S)] advances that prepared statement +** until to completion or until it is ready to return another +** row of the result set or an interrupt or run-time error occurs. +** +** {F15304} When a call to [sqlite3_step(S)] causes the +** [prepared statement] S to run to completion, +** the function returns [SQLITE_DONE]. +** +** {F15306} When a call to [sqlite3_step(S)] stops because it is ready +** to return another row of the result set, it returns +** [SQLITE_ROW]. +** +** {F15308} If a call to [sqlite3_step(S)] encounters an +** [sqlite3_interrupt|interrupt] or a run-time error, +** it returns an appropraite error code that is not one of +** [SQLITE_OK], [SQLITE_ROW], or [SQLITE_DONE]. +** +** {F15310} If an [sqlite3_interrupt|interrupt] or run-time error +** occurs during a call to [sqlite3_step(S)] +** for a [prepared statement] S created using +** legacy interfaces [sqlite3_prepare()] or +** [sqlite3_prepare16()] then the function returns either +** [SQLITE_ERROR], [SQLITE_BUSY], or [SQLITE_MISUSE]. +*/ +SQLITE_API int sqlite3_step(sqlite3_stmt*); + +/* +** CAPI3REF: Number of columns in a result set {F13770} +** +** Return the number of values in the current row of the result set. +** +** INVARIANTS: +** +** {F13771} After a call to [sqlite3_step(S)] that returns +** [SQLITE_ROW], the [sqlite3_data_count(S)] routine +** will return the same value as the +** [sqlite3_column_count(S)] function. +** +** {F13772} After [sqlite3_step(S)] has returned any value other than +** [SQLITE_ROW] or before [sqlite3_step(S)] has been +** called on the [prepared statement] for +** the first time since it was [sqlite3_prepare|prepared] +** or [sqlite3_reset|reset], the [sqlite3_data_count(S)] +** routine returns zero. +*/ +SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Fundamental Datatypes {F10265} +** KEYWORDS: SQLITE_TEXT +** +** {F10266}Every value in SQLite has one of five fundamental datatypes: +** +** <ul> +** <li> 64-bit signed integer +** <li> 64-bit IEEE floating point number +** <li> string +** <li> BLOB +** <li> NULL +** </ul> {END} +** +** These constants are codes for each of those types. +** +** Note that the SQLITE_TEXT constant was also used in SQLite version 2 +** for a completely different meaning. Software that links against both +** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT not +** SQLITE_TEXT. +*/ +#define SQLITE_INTEGER 1 +#define SQLITE_FLOAT 2 +#define SQLITE_BLOB 4 +#define SQLITE_NULL 5 +#ifdef SQLITE_TEXT +# undef SQLITE_TEXT +#else +# define SQLITE_TEXT 3 +#endif +#define SQLITE3_TEXT 3 + +/* +** CAPI3REF: Results Values From A Query {F13800} +** +** These routines form the "result set query" interface. +** +** These routines return information about +** a single column of the current result row of a query. In every +** case the first argument is a pointer to the +** [prepared statement] that is being +** evaluated (the [sqlite3_stmt*] that was returned from +** [sqlite3_prepare_v2()] or one of its variants) and +** the second argument is the index of the column for which information +** should be returned. The left-most column of the result set +** has an index of 0. +** +** If the SQL statement is not currently point to a valid row, or if the +** the column index is out of range, the result is undefined. +** These routines may only be called when the most recent call to +** [sqlite3_step()] has returned [SQLITE_ROW] and neither +** [sqlite3_reset()] nor [sqlite3_finalize()] has been call subsequently. +** If any of these routines are called after [sqlite3_reset()] or +** [sqlite3_finalize()] or after [sqlite3_step()] has returned +** something other than [SQLITE_ROW], the results are undefined. +** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()] +** are called from a different thread while any of these routines +** are pending, then the results are undefined. +** +** The sqlite3_column_type() routine returns +** [SQLITE_INTEGER | datatype code] for the initial data type +** of the result column. The returned value is one of [SQLITE_INTEGER], +** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value +** returned by sqlite3_column_type() is only meaningful if no type +** conversions have occurred as described below. After a type conversion, +** the value returned by sqlite3_column_type() is undefined. Future +** versions of SQLite may change the behavior of sqlite3_column_type() +** following a type conversion. +** +** If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes() +** routine returns the number of bytes in that BLOB or string. +** If the result is a UTF-16 string, then sqlite3_column_bytes() converts +** the string to UTF-8 and then returns the number of bytes. +** If the result is a numeric value then sqlite3_column_bytes() uses +** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns +** the number of bytes in that string. +** The value returned does not include the zero terminator at the end +** of the string. For clarity: the value returned is the number of +** bytes in the string, not the number of characters. +** +** Strings returned by sqlite3_column_text() and sqlite3_column_text16(), +** even empty strings, are always zero terminated. The return +** value from sqlite3_column_blob() for a zero-length blob is an arbitrary +** pointer, possibly even a NULL pointer. +** +** The sqlite3_column_bytes16() routine is similar to sqlite3_column_bytes() +** but leaves the result in UTF-16 in native byte order instead of UTF-8. +** The zero terminator is not included in this count. +** +** The object returned by [sqlite3_column_value()] is an +** [unprotected sqlite3_value] object. An unprotected sqlite3_value object +** may only be used with [sqlite3_bind_value()] and [sqlite3_result_value()]. +** If the [unprotected sqlite3_value] object returned by +** [sqlite3_column_value()] is used in any other way, including calls +** to routines like +** [sqlite3_value_int()], [sqlite3_value_text()], or [sqlite3_value_bytes()], +** then the behavior is undefined. +** +** These routines attempt to convert the value where appropriate. For +** example, if the internal representation is FLOAT and a text result +** is requested, [sqlite3_snprintf()] is used internally to do the conversion +** automatically. The following table details the conversions that +** are applied: +** +** <blockquote> +** <table border="1"> +** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion +** +** <tr><td> NULL <td> INTEGER <td> Result is 0 +** <tr><td> NULL <td> FLOAT <td> Result is 0.0 +** <tr><td> NULL <td> TEXT <td> Result is NULL pointer +** <tr><td> NULL <td> BLOB <td> Result is NULL pointer +** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float +** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer +** <tr><td> INTEGER <td> BLOB <td> Same as for INTEGER->TEXT +** <tr><td> FLOAT <td> INTEGER <td> Convert from float to integer +** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float +** <tr><td> FLOAT <td> BLOB <td> Same as FLOAT->TEXT +** <tr><td> TEXT <td> INTEGER <td> Use atoi() +** <tr><td> TEXT <td> FLOAT <td> Use atof() +** <tr><td> TEXT <td> BLOB <td> No change +** <tr><td> BLOB <td> INTEGER <td> Convert to TEXT then use atoi() +** <tr><td> BLOB <td> FLOAT <td> Convert to TEXT then use atof() +** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed +** </table> +** </blockquote> +** +** The table above makes reference to standard C library functions atoi() +** and atof(). SQLite does not really use these functions. It has its +** on equavalent internal routines. The atoi() and atof() names are +** used in the table for brevity and because they are familiar to most +** C programmers. +** +** Note that when type conversions occur, pointers returned by prior +** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or +** sqlite3_column_text16() may be invalidated. +** Type conversions and pointer invalidations might occur +** in the following cases: +** +** <ul> +** <li><p> The initial content is a BLOB and sqlite3_column_text() +** or sqlite3_column_text16() is called. A zero-terminator might +** need to be added to the string.</p></li> +** +** <li><p> The initial content is UTF-8 text and sqlite3_column_bytes16() or +** sqlite3_column_text16() is called. The content must be converted +** to UTF-16.</p></li> +** +** <li><p> The initial content is UTF-16 text and sqlite3_column_bytes() or +** sqlite3_column_text() is called. The content must be converted +** to UTF-8.</p></li> +** </ul> +** +** Conversions between UTF-16be and UTF-16le are always done in place and do +** not invalidate a prior pointer, though of course the content of the buffer +** that the prior pointer points to will have been modified. Other kinds +** of conversion are done in place when it is possible, but sometime it is +** not possible and in those cases prior pointers are invalidated. +** +** The safest and easiest to remember policy is to invoke these routines +** in one of the following ways: +** +** <ul> +** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li> +** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li> +** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li> +** </ul> +** +** In other words, you should call sqlite3_column_text(), sqlite3_column_blob(), +** or sqlite3_column_text16() first to force the result into the desired +** format, then invoke sqlite3_column_bytes() or sqlite3_column_bytes16() to +** find the size of the result. Do not mix call to sqlite3_column_text() or +** sqlite3_column_blob() with calls to sqlite3_column_bytes16(). And do not +** mix calls to sqlite3_column_text16() with calls to sqlite3_column_bytes(). +** +** The pointers returned are valid until a type conversion occurs as +** described above, or until [sqlite3_step()] or [sqlite3_reset()] or +** [sqlite3_finalize()] is called. The memory space used to hold strings +** and blobs is freed automatically. Do <b>not</b> pass the pointers returned +** [sqlite3_column_blob()], [sqlite3_column_text()], etc. into +** [sqlite3_free()]. +** +** If a memory allocation error occurs during the evaluation of any +** of these routines, a default value is returned. The default value +** is either the integer 0, the floating point number 0.0, or a NULL +** pointer. Subsequent calls to [sqlite3_errcode()] will return +** [SQLITE_NOMEM]. +** +** INVARIANTS: +** +** {F13803} The [sqlite3_column_blob(S,N)] interface converts the +** Nth column in the current row of the result set for +** [prepared statement] S into a blob and then returns a +** pointer to the converted value. +** +** {F13806} The [sqlite3_column_bytes(S,N)] interface returns the +** number of bytes in the blob or string (exclusive of the +** zero terminator on the string) that was returned by the +** most recent call to [sqlite3_column_blob(S,N)] or +** [sqlite3_column_text(S,N)]. +** +** {F13809} The [sqlite3_column_bytes16(S,N)] interface returns the +** number of bytes in the string (exclusive of the +** zero terminator on the string) that was returned by the +** most recent call to [sqlite3_column_text16(S,N)]. +** +** {F13812} The [sqlite3_column_double(S,N)] interface converts the +** Nth column in the current row of the result set for +** [prepared statement] S into a floating point value and +** returns a copy of that value. +** +** {F13815} The [sqlite3_column_int(S,N)] interface converts the +** Nth column in the current row of the result set for +** [prepared statement] S into a 64-bit signed integer and +** returns the lower 32 bits of that integer. +** +** {F13818} The [sqlite3_column_int64(S,N)] interface converts the +** Nth column in the current row of the result set for +** [prepared statement] S into a 64-bit signed integer and +** returns a copy of that integer. +** +** {F13821} The [sqlite3_column_text(S,N)] interface converts the +** Nth column in the current row of the result set for +** [prepared statement] S into a zero-terminated UTF-8 +** string and returns a pointer to that string. +** +** {F13824} The [sqlite3_column_text16(S,N)] interface converts the +** Nth column in the current row of the result set for +** [prepared statement] S into a zero-terminated 2-byte +** aligned UTF-16 native byte order +** string and returns a pointer to that string. +** +** {F13827} The [sqlite3_column_type(S,N)] interface returns +** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT], +** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for +** the Nth column in the current row of the result set for +** [prepared statement] S. +** +** {F13830} The [sqlite3_column_value(S,N)] interface returns a +** pointer to an [unprotected sqlite3_value] object for the +** Nth column in the current row of the result set for +** [prepared statement] S. +*/ +SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol); +SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol); +SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol); +SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol); +SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol); +SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol); +SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol); +SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol); +SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol); +SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol); + +/* +** CAPI3REF: Destroy A Prepared Statement Object {F13300} +** +** The sqlite3_finalize() function is called to delete a +** [prepared statement]. If the statement was +** executed successfully, or not executed at all, then SQLITE_OK is returned. +** If execution of the statement failed then an +** [error code] or [extended error code] +** is returned. +** +** This routine can be called at any point during the execution of the +** [prepared statement]. If the virtual machine has not +** completed execution when this routine is called, that is like +** encountering an error or an interrupt. (See [sqlite3_interrupt()].) +** Incomplete updates may be rolled back and transactions cancelled, +** depending on the circumstances, and the +** [error code] returned will be [SQLITE_ABORT]. +** +** INVARIANTS: +** +** {F11302} The [sqlite3_finalize(S)] interface destroys the +** [prepared statement] S and releases all +** memory and file resources held by that object. +** +** {F11304} If the most recent call to [sqlite3_step(S)] for the +** [prepared statement] S returned an error, +** then [sqlite3_finalize(S)] returns that same error. +*/ +SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Reset A Prepared Statement Object {F13330} +** +** The sqlite3_reset() function is called to reset a +** [prepared statement] object. +** back to its initial state, ready to be re-executed. +** Any SQL statement variables that had values bound to them using +** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values. +** Use [sqlite3_clear_bindings()] to reset the bindings. +** +** {F11332} The [sqlite3_reset(S)] interface resets the [prepared statement] S +** back to the beginning of its program. +** +** {F11334} If the most recent call to [sqlite3_step(S)] for +** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE], +** or if [sqlite3_step(S)] has never before been called on S, +** then [sqlite3_reset(S)] returns [SQLITE_OK]. +** +** {F11336} If the most recent call to [sqlite3_step(S)] for +** [prepared statement] S indicated an error, then +** [sqlite3_reset(S)] returns an appropriate [error code]. +** +** {F11338} The [sqlite3_reset(S)] interface does not change the values +** of any [sqlite3_bind_blob|bindings] on [prepared statement] S. +*/ +SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt); + +/* +** CAPI3REF: Create Or Redefine SQL Functions {F16100} +** KEYWORDS: {function creation routines} +** +** These two functions (collectively known as +** "function creation routines") are used to add SQL functions or aggregates +** or to redefine the behavior of existing SQL functions or aggregates. The +** difference only between the two is that the second parameter, the +** name of the (scalar) function or aggregate, is encoded in UTF-8 for +** sqlite3_create_function() and UTF-16 for sqlite3_create_function16(). +** +** The first parameter is the [database connection] to which the SQL +** function is to be added. If a single +** program uses more than one [database connection] internally, then SQL +** functions must be added individually to each [database connection]. +** +** The second parameter is the name of the SQL function to be created +** or redefined. +** The length of the name is limited to 255 bytes, exclusive of the +** zero-terminator. Note that the name length limit is in bytes, not +** characters. Any attempt to create a function with a longer name +** will result in an SQLITE_ERROR error. +** +** The third parameter is the number of arguments that the SQL function or +** aggregate takes. If this parameter is negative, then the SQL function or +** aggregate may take any number of arguments. +** +** The fourth parameter, eTextRep, specifies what +** [SQLITE_UTF8 | text encoding] this SQL function prefers for +** its parameters. Any SQL function implementation should be able to work +** work with UTF-8, UTF-16le, or UTF-16be. But some implementations may be +** more efficient with one encoding than another. It is allowed to +** invoke sqlite3_create_function() or sqlite3_create_function16() multiple +** times with the same function but with different values of eTextRep. +** When multiple implementations of the same function are available, SQLite +** will pick the one that involves the least amount of data conversion. +** If there is only a single implementation which does not care what +** text encoding is used, then the fourth argument should be +** [SQLITE_ANY]. +** +** The fifth parameter is an arbitrary pointer. The implementation +** of the function can gain access to this pointer using +** [sqlite3_user_data()]. +** +** The seventh, eighth and ninth parameters, xFunc, xStep and xFinal, are +** pointers to C-language functions that implement the SQL +** function or aggregate. A scalar SQL function requires an implementation of +** the xFunc callback only, NULL pointers should be passed as the xStep +** and xFinal parameters. An aggregate SQL function requires an implementation +** of xStep and xFinal and NULL should be passed for xFunc. To delete an +** existing SQL function or aggregate, pass NULL for all three function +** callback. +** +** It is permitted to register multiple implementations of the same +** functions with the same name but with either differing numbers of +** arguments or differing perferred text encodings. SQLite will use +** the implementation most closely matches the way in which the +** SQL function is used. +** +** INVARIANTS: +** +** {F16103} The [sqlite3_create_function16()] interface behaves exactly +** like [sqlite3_create_function()] in every way except that it +** interprets the zFunctionName argument as +** zero-terminated UTF-16 native byte order instead of as a +** zero-terminated UTF-8. +** +** {F16106} A successful invocation of +** the [sqlite3_create_function(D,X,N,E,...)] interface registers +** or replaces callback functions in [database connection] D +** used to implement the SQL function named X with N parameters +** and having a perferred text encoding of E. +** +** {F16109} A successful call to [sqlite3_create_function(D,X,N,E,P,F,S,L)] +** replaces the P, F, S, and L values from any prior calls with +** the same D, X, N, and E values. +** +** {F16112} The [sqlite3_create_function(D,X,...)] interface fails with +** a return code of [SQLITE_ERROR] if the SQL function name X is +** longer than 255 bytes exclusive of the zero terminator. +** +** {F16118} Either F must be NULL and S and L are non-NULL or else F +** is non-NULL and S and L are NULL, otherwise +** [sqlite3_create_function(D,X,N,E,P,F,S,L)] returns [SQLITE_ERROR]. +** +** {F16121} The [sqlite3_create_function(D,...)] interface fails with an +** error code of [SQLITE_BUSY] if there exist [prepared statements] +** associated with the [database connection] D. +** +** {F16124} The [sqlite3_create_function(D,X,N,...)] interface fails with an +** error code of [SQLITE_ERROR] if parameter N (specifying the number +** of arguments to the SQL function being registered) is less +** than -1 or greater than 127. +** +** {F16127} When N is non-negative, the [sqlite3_create_function(D,X,N,...)] +** interface causes callbacks to be invoked for the SQL function +** named X when the number of arguments to the SQL function is +** exactly N. +** +** {F16130} When N is -1, the [sqlite3_create_function(D,X,N,...)] +** interface causes callbacks to be invoked for the SQL function +** named X with any number of arguments. +** +** {F16133} When calls to [sqlite3_create_function(D,X,N,...)] +** specify multiple implementations of the same function X +** and when one implementation has N>=0 and the other has N=(-1) +** the implementation with a non-zero N is preferred. +** +** {F16136} When calls to [sqlite3_create_function(D,X,N,E,...)] +** specify multiple implementations of the same function X with +** the same number of arguments N but with different +** encodings E, then the implementation where E matches the +** database encoding is preferred. +** +** {F16139} For an aggregate SQL function created using +** [sqlite3_create_function(D,X,N,E,P,0,S,L)] the finializer +** function L will always be invoked exactly once if the +** step function S is called one or more times. +** +** {F16142} When SQLite invokes either the xFunc or xStep function of +** an application-defined SQL function or aggregate created +** by [sqlite3_create_function()] or [sqlite3_create_function16()], +** then the array of [sqlite3_value] objects passed as the +** third parameter are always [protected sqlite3_value] objects. +*/ +SQLITE_API int sqlite3_create_function( + sqlite3 *db, + const char *zFunctionName, + int nArg, + int eTextRep, + void *pApp, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); +SQLITE_API int sqlite3_create_function16( + sqlite3 *db, + const void *zFunctionName, + int nArg, + int eTextRep, + void *pApp, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +); + +/* +** CAPI3REF: Text Encodings {F10267} +** +** These constant define integer codes that represent the various +** text encodings supported by SQLite. +*/ +#define SQLITE_UTF8 1 +#define SQLITE_UTF16LE 2 +#define SQLITE_UTF16BE 3 +#define SQLITE_UTF16 4 /* Use native byte order */ +#define SQLITE_ANY 5 /* sqlite3_create_function only */ +#define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */ + +/* +** CAPI3REF: Obsolete Functions +** +** These functions are all now obsolete. In order to maintain +** backwards compatibility with older code, we continue to support +** these functions. However, new development projects should avoid +** the use of these functions. To help encourage people to avoid +** using these functions, we are not going to tell you want they do. +*/ +SQLITE_API int sqlite3_aggregate_count(sqlite3_context*); +SQLITE_API int sqlite3_expired(sqlite3_stmt*); +SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*); +SQLITE_API int sqlite3_global_recover(void); +SQLITE_API void sqlite3_thread_cleanup(void); +SQLITE_API int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),void*,sqlite3_int64); + +/* +** CAPI3REF: Obtaining SQL Function Parameter Values {F15100} +** +** The C-language implementation of SQL functions and aggregates uses +** this set of interface routines to access the parameter values on +** the function or aggregate. +** +** The xFunc (for scalar functions) or xStep (for aggregates) parameters +** to [sqlite3_create_function()] and [sqlite3_create_function16()] +** define callbacks that implement the SQL functions and aggregates. +** The 4th parameter to these callbacks is an array of pointers to +** [protected sqlite3_value] objects. There is one [sqlite3_value] object for +** each parameter to the SQL function. These routines are used to +** extract values from the [sqlite3_value] objects. +** +** These routines work only with [protected sqlite3_value] objects. +** Any attempt to use these routines on an [unprotected sqlite3_value] +** object results in undefined behavior. +** +** These routines work just like the corresponding +** [sqlite3_column_blob | sqlite3_column_* routines] except that +** these routines take a single [protected sqlite3_value] object pointer +** instead of an [sqlite3_stmt*] pointer and an integer column number. +** +** The sqlite3_value_text16() interface extracts a UTF16 string +** in the native byte-order of the host machine. The +** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces +** extract UTF16 strings as big-endian and little-endian respectively. +** +** The sqlite3_value_numeric_type() interface attempts to apply +** numeric affinity to the value. This means that an attempt is +** made to convert the value to an integer or floating point. If +** such a conversion is possible without loss of information (in other +** words if the value is a string that looks like a number) +** then the conversion is done. Otherwise no conversion occurs. The +** [SQLITE_INTEGER | datatype] after conversion is returned. +** +** Please pay particular attention to the fact that the pointer that +** is returned from [sqlite3_value_blob()], [sqlite3_value_text()], or +** [sqlite3_value_text16()] can be invalidated by a subsequent call to +** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()], +** or [sqlite3_value_text16()]. +** +** These routines must be called from the same thread as +** the SQL function that supplied the [sqlite3_value*] parameters. +** +** +** INVARIANTS: +** +** {F15103} The [sqlite3_value_blob(V)] interface converts the +** [protected sqlite3_value] object V into a blob and then returns a +** pointer to the converted value. +** +** {F15106} The [sqlite3_value_bytes(V)] interface returns the +** number of bytes in the blob or string (exclusive of the +** zero terminator on the string) that was returned by the +** most recent call to [sqlite3_value_blob(V)] or +** [sqlite3_value_text(V)]. +** +** {F15109} The [sqlite3_value_bytes16(V)] interface returns the +** number of bytes in the string (exclusive of the +** zero terminator on the string) that was returned by the +** most recent call to [sqlite3_value_text16(V)], +** [sqlite3_value_text16be(V)], or [sqlite3_value_text16le(V)]. +** +** {F15112} The [sqlite3_value_double(V)] interface converts the +** [protected sqlite3_value] object V into a floating point value and +** returns a copy of that value. +** +** {F15115} The [sqlite3_value_int(V)] interface converts the +** [protected sqlite3_value] object V into a 64-bit signed integer and +** returns the lower 32 bits of that integer. +** +** {F15118} The [sqlite3_value_int64(V)] interface converts the +** [protected sqlite3_value] object V into a 64-bit signed integer and +** returns a copy of that integer. +** +** {F15121} The [sqlite3_value_text(V)] interface converts the +** [protected sqlite3_value] object V into a zero-terminated UTF-8 +** string and returns a pointer to that string. +** +** {F15124} The [sqlite3_value_text16(V)] interface converts the +** [protected sqlite3_value] object V into a zero-terminated 2-byte +** aligned UTF-16 native byte order +** string and returns a pointer to that string. +** +** {F15127} The [sqlite3_value_text16be(V)] interface converts the +** [protected sqlite3_value] object V into a zero-terminated 2-byte +** aligned UTF-16 big-endian +** string and returns a pointer to that string. +** +** {F15130} The [sqlite3_value_text16le(V)] interface converts the +** [protected sqlite3_value] object V into a zero-terminated 2-byte +** aligned UTF-16 little-endian +** string and returns a pointer to that string. +** +** {F15133} The [sqlite3_value_type(V)] interface returns +** one of [SQLITE_NULL], [SQLITE_INTEGER], [SQLITE_FLOAT], +** [SQLITE_TEXT], or [SQLITE_BLOB] as appropriate for +** the [sqlite3_value] object V. +** +** {F15136} The [sqlite3_value_numeric_type(V)] interface converts +** the [protected sqlite3_value] object V into either an integer or +** a floating point value if it can do so without loss of +** information, and returns one of [SQLITE_NULL], +** [SQLITE_INTEGER], [SQLITE_FLOAT], [SQLITE_TEXT], or +** [SQLITE_BLOB] as appropriate for +** the [protected sqlite3_value] object V after the conversion attempt. +*/ +SQLITE_API const void *sqlite3_value_blob(sqlite3_value*); +SQLITE_API int sqlite3_value_bytes(sqlite3_value*); +SQLITE_API int sqlite3_value_bytes16(sqlite3_value*); +SQLITE_API double sqlite3_value_double(sqlite3_value*); +SQLITE_API int sqlite3_value_int(sqlite3_value*); +SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*); +SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*); +SQLITE_API const void *sqlite3_value_text16(sqlite3_value*); +SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*); +SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*); +SQLITE_API int sqlite3_value_type(sqlite3_value*); +SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*); + +/* +** CAPI3REF: Obtain Aggregate Function Context {F16210} +** +** The implementation of aggregate SQL functions use this routine to allocate +** a structure for storing their state. +** The first time the sqlite3_aggregate_context() routine is +** is called for a particular aggregate, SQLite allocates nBytes of memory +** zeros that memory, and returns a pointer to it. +** On second and subsequent calls to sqlite3_aggregate_context() +** for the same aggregate function index, the same buffer is returned. +** The implementation +** of the aggregate can use the returned buffer to accumulate data. +** +** SQLite automatically frees the allocated buffer when the aggregate +** query concludes. +** +** The first parameter should be a copy of the +** [sqlite3_context | SQL function context] that is the first +** parameter to the callback routine that implements the aggregate +** function. +** +** This routine must be called from the same thread in which +** the aggregate SQL function is running. +** +** INVARIANTS: +** +** {F16211} The first invocation of [sqlite3_aggregate_context(C,N)] for +** a particular instance of an aggregate function (for a particular +** context C) causes SQLite to allocation N bytes of memory, +** zero that memory, and return a pointer to the allocationed +** memory. +** +** {F16213} If a memory allocation error occurs during +** [sqlite3_aggregate_context(C,N)] then the function returns 0. +** +** {F16215} Second and subsequent invocations of +** [sqlite3_aggregate_context(C,N)] for the same context pointer C +** ignore the N parameter and return a pointer to the same +** block of memory returned by the first invocation. +** +** {F16217} The memory allocated by [sqlite3_aggregate_context(C,N)] is +** automatically freed on the next call to [sqlite3_reset()] +** or [sqlite3_finalize()] for the [prepared statement] containing +** the aggregate function associated with context C. +*/ +SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes); + +/* +** CAPI3REF: User Data For Functions {F16240} +** +** The sqlite3_user_data() interface returns a copy of +** the pointer that was the pUserData parameter (the 5th parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. {END} +** +** This routine must be called from the same thread in which +** the application-defined function is running. +** +** INVARIANTS: +** +** {F16243} The [sqlite3_user_data(C)] interface returns a copy of the +** P pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)] +** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that +** registered the SQL function associated with +** [sqlite3_context] C. +*/ +SQLITE_API void *sqlite3_user_data(sqlite3_context*); + +/* +** CAPI3REF: Database Connection For Functions {F16250} +** +** The sqlite3_context_db_handle() interface returns a copy of +** the pointer to the [database connection] (the 1st parameter) +** of the the [sqlite3_create_function()] +** and [sqlite3_create_function16()] routines that originally +** registered the application defined function. +** +** INVARIANTS: +** +** {F16253} The [sqlite3_context_db_handle(C)] interface returns a copy of the +** D pointer from the [sqlite3_create_function(D,X,N,E,P,F,S,L)] +** or [sqlite3_create_function16(D,X,N,E,P,F,S,L)] call that +** registered the SQL function associated with +** [sqlite3_context] C. +*/ +SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); + +/* +** CAPI3REF: Function Auxiliary Data {F16270} +** +** The following two functions may be used by scalar SQL functions to +** associate meta-data with argument values. If the same value is passed to +** multiple invocations of the same SQL function during query execution, under +** some circumstances the associated meta-data may be preserved. This may +** be used, for example, to add a regular-expression matching scalar +** function. The compiled version of the regular expression is stored as +** meta-data associated with the SQL value passed as the regular expression +** pattern. The compiled regular expression can be reused on multiple +** invocations of the same function so that the original pattern string +** does not need to be recompiled on each invocation. +** +** The sqlite3_get_auxdata() interface returns a pointer to the meta-data +** associated by the sqlite3_set_auxdata() function with the Nth argument +** value to the application-defined function. +** If no meta-data has been ever been set for the Nth +** argument of the function, or if the cooresponding function parameter +** has changed since the meta-data was set, then sqlite3_get_auxdata() +** returns a NULL pointer. +** +** The sqlite3_set_auxdata() interface saves the meta-data +** pointed to by its 3rd parameter as the meta-data for the N-th +** argument of the application-defined function. Subsequent +** calls to sqlite3_get_auxdata() might return this data, if it has +** not been destroyed. +** If it is not NULL, SQLite will invoke the destructor +** function given by the 4th parameter to sqlite3_set_auxdata() on +** the meta-data when the corresponding function parameter changes +** or when the SQL statement completes, whichever comes first. +** +** SQLite is free to call the destructor and drop meta-data on +** any parameter of any function at any time. The only guarantee +** is that the destructor will be called before the metadata is +** dropped. +** +** In practice, meta-data is preserved between function calls for +** expressions that are constant at compile time. This includes literal +** values and SQL variables. +** +** These routines must be called from the same thread in which +** the SQL function is running. +** +** INVARIANTS: +** +** {F16272} The [sqlite3_get_auxdata(C,N)] interface returns a pointer +** to metadata associated with the Nth parameter of the SQL function +** whose context is C, or NULL if there is no metadata associated +** with that parameter. +** +** {F16274} The [sqlite3_set_auxdata(C,N,P,D)] interface assigns a metadata +** pointer P to the Nth parameter of the SQL function with context +** C. +** +** {F16276} SQLite will invoke the destructor D with a single argument +** which is the metadata pointer P following a call to +** [sqlite3_set_auxdata(C,N,P,D)] when SQLite ceases to hold +** the metadata. +** +** {F16277} SQLite ceases to hold metadata for an SQL function parameter +** when the value of that parameter changes. +** +** {F16278} When [sqlite3_set_auxdata(C,N,P,D)] is invoked, the destructor +** is called for any prior metadata associated with the same function +** context C and parameter N. +** +** {F16279} SQLite will call destructors for any metadata it is holding +** in a particular [prepared statement] S when either +** [sqlite3_reset(S)] or [sqlite3_finalize(S)] is called. +*/ +SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N); +SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); + + +/* +** CAPI3REF: Constants Defining Special Destructor Behavior {F10280} +** +** These are special value for the destructor that is passed in as the +** final argument to routines like [sqlite3_result_blob()]. If the destructor +** argument is SQLITE_STATIC, it means that the content pointer is constant +** and will never change. It does not need to be destroyed. The +** SQLITE_TRANSIENT value means that the content will likely change in +** the near future and that SQLite should make its own private copy of +** the content before returning. +** +** The typedef is necessary to work around problems in certain +** C++ compilers. See ticket #2191. +*/ +typedef void (*sqlite3_destructor_type)(void*); +#define SQLITE_STATIC ((sqlite3_destructor_type)0) +#define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1) + +/* +** CAPI3REF: Setting The Result Of An SQL Function {F16400} +** +** These routines are used by the xFunc or xFinal callbacks that +** implement SQL functions and aggregates. See +** [sqlite3_create_function()] and [sqlite3_create_function16()] +** for additional information. +** +** These functions work very much like the +** [sqlite3_bind_blob | sqlite3_bind_*] family of functions used +** to bind values to host parameters in prepared statements. +** Refer to the +** [sqlite3_bind_blob | sqlite3_bind_* documentation] for +** additional information. +** +** The sqlite3_result_blob() interface sets the result from +** an application defined function to be the BLOB whose content is pointed +** to by the second parameter and which is N bytes long where N is the +** third parameter. +** The sqlite3_result_zeroblob() inerfaces set the result of +** the application defined function to be a BLOB containing all zero +** bytes and N bytes in size, where N is the value of the 2nd parameter. +** +** The sqlite3_result_double() interface sets the result from +** an application defined function to be a floating point value specified +** by its 2nd argument. +** +** The sqlite3_result_error() and sqlite3_result_error16() functions +** cause the implemented SQL function to throw an exception. +** SQLite uses the string pointed to by the +** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16() +** as the text of an error message. SQLite interprets the error +** message string from sqlite3_result_error() as UTF8. SQLite +** interprets the string from sqlite3_result_error16() as UTF16 in native +** byte order. If the third parameter to sqlite3_result_error() +** or sqlite3_result_error16() is negative then SQLite takes as the error +** message all text up through the first zero character. +** If the third parameter to sqlite3_result_error() or +** sqlite3_result_error16() is non-negative then SQLite takes that many +** bytes (not characters) from the 2nd parameter as the error message. +** The sqlite3_result_error() and sqlite3_result_error16() +** routines make a copy private copy of the error message text before +** they return. Hence, the calling function can deallocate or +** modify the text after they return without harm. +** The sqlite3_result_error_code() function changes the error code +** returned by SQLite as a result of an error in a function. By default, +** the error code is SQLITE_ERROR. A subsequent call to sqlite3_result_error() +** or sqlite3_result_error16() resets the error code to SQLITE_ERROR. +** +** The sqlite3_result_toobig() interface causes SQLite +** to throw an error indicating that a string or BLOB is to long +** to represent. The sqlite3_result_nomem() interface +** causes SQLite to throw an exception indicating that the a +** memory allocation failed. +** +** The sqlite3_result_int() interface sets the return value +** of the application-defined function to be the 32-bit signed integer +** value given in the 2nd argument. +** The sqlite3_result_int64() interface sets the return value +** of the application-defined function to be the 64-bit signed integer +** value given in the 2nd argument. +** +** The sqlite3_result_null() interface sets the return value +** of the application-defined function to be NULL. +** +** The sqlite3_result_text(), sqlite3_result_text16(), +** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces +** set the return value of the application-defined function to be +** a text string which is represented as UTF-8, UTF-16 native byte order, +** UTF-16 little endian, or UTF-16 big endian, respectively. +** SQLite takes the text result from the application from +** the 2nd parameter of the sqlite3_result_text* interfaces. +** If the 3rd parameter to the sqlite3_result_text* interfaces +** is negative, then SQLite takes result text from the 2nd parameter +** through the first zero character. +** If the 3rd parameter to the sqlite3_result_text* interfaces +** is non-negative, then as many bytes (not characters) of the text +** pointed to by the 2nd parameter are taken as the application-defined +** function result. +** If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that +** function as the destructor on the text or blob result when it has +** finished using that result. +** If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_STATIC, then +** SQLite assumes that the text or blob result is constant space and +** does not copy the space or call a destructor when it has +** finished using that result. +** If the 4th parameter to the sqlite3_result_text* interfaces +** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT +** then SQLite makes a copy of the result into space obtained from +** from [sqlite3_malloc()] before it returns. +** +** The sqlite3_result_value() interface sets the result of +** the application-defined function to be a copy the +** [unprotected sqlite3_value] object specified by the 2nd parameter. The +** sqlite3_result_value() interface makes a copy of the [sqlite3_value] +** so that [sqlite3_value] specified in the parameter may change or +** be deallocated after sqlite3_result_value() returns without harm. +** A [protected sqlite3_value] object may always be used where an +** [unprotected sqlite3_value] object is required, so either +** kind of [sqlite3_value] object can be used with this interface. +** +** If these routines are called from within the different thread +** than the one containing the application-defined function that recieved +** the [sqlite3_context] pointer, the results are undefined. +** +** INVARIANTS: +** +** {F16403} The default return value from any SQL function is NULL. +** +** {F16406} The [sqlite3_result_blob(C,V,N,D)] interface changes the +** return value of function C to be a blob that is N bytes +** in length and with content pointed to by V. +** +** {F16409} The [sqlite3_result_double(C,V)] interface changes the +** return value of function C to be the floating point value V. +** +** {F16412} The [sqlite3_result_error(C,V,N)] interface changes the return +** value of function C to be an exception with error code +** [SQLITE_ERROR] and a UTF8 error message copied from V up to the +** first zero byte or until N bytes are read if N is positive. +** +** {F16415} The [sqlite3_result_error16(C,V,N)] interface changes the return +** value of function C to be an exception with error code +** [SQLITE_ERROR] and a UTF16 native byte order error message +** copied from V up to the first zero terminator or until N bytes +** are read if N is positive. +** +** {F16418} The [sqlite3_result_error_toobig(C)] interface changes the return +** value of the function C to be an exception with error code +** [SQLITE_TOOBIG] and an appropriate error message. +** +** {F16421} The [sqlite3_result_error_nomem(C)] interface changes the return +** value of the function C to be an exception with error code +** [SQLITE_NOMEM] and an appropriate error message. +** +** {F16424} The [sqlite3_result_error_code(C,E)] interface changes the return +** value of the function C to be an exception with error code E. +** The error message text is unchanged. +** +** {F16427} The [sqlite3_result_int(C,V)] interface changes the +** return value of function C to be the 32-bit integer value V. +** +** {F16430} The [sqlite3_result_int64(C,V)] interface changes the +** return value of function C to be the 64-bit integer value V. +** +** {F16433} The [sqlite3_result_null(C)] interface changes the +** return value of function C to be NULL. +** +** {F16436} The [sqlite3_result_text(C,V,N,D)] interface changes the +** return value of function C to be the UTF8 string +** V up to the first zero if N is negative +** or the first N bytes of V if N is non-negative. +** +** {F16439} The [sqlite3_result_text16(C,V,N,D)] interface changes the +** return value of function C to be the UTF16 native byte order +** string V up to the first zero if N is +** negative or the first N bytes of V if N is non-negative. +** +** {F16442} The [sqlite3_result_text16be(C,V,N,D)] interface changes the +** return value of function C to be the UTF16 big-endian +** string V up to the first zero if N is +** is negative or the first N bytes or V if N is non-negative. +** +** {F16445} The [sqlite3_result_text16le(C,V,N,D)] interface changes the +** return value of function C to be the UTF16 little-endian +** string V up to the first zero if N is +** negative or the first N bytes of V if N is non-negative. +** +** {F16448} The [sqlite3_result_value(C,V)] interface changes the +** return value of function C to be [unprotected sqlite3_value] +** object V. +** +** {F16451} The [sqlite3_result_zeroblob(C,N)] interface changes the +** return value of function C to be an N-byte blob of all zeros. +** +** {F16454} The [sqlite3_result_error()] and [sqlite3_result_error16()] +** interfaces make a copy of their error message strings before +** returning. +** +** {F16457} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)], +** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)], +** [sqlite3_result_text16be(C,V,N,D)], or +** [sqlite3_result_text16le(C,V,N,D)] is the constant [SQLITE_STATIC] +** then no destructor is ever called on the pointer V and SQLite +** assumes that V is immutable. +** +** {F16460} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)], +** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)], +** [sqlite3_result_text16be(C,V,N,D)], or +** [sqlite3_result_text16le(C,V,N,D)] is the constant +** [SQLITE_TRANSIENT] then the interfaces makes a copy of the +** content of V and retains the copy. +** +** {F16463} If the D destructor parameter to [sqlite3_result_blob(C,V,N,D)], +** [sqlite3_result_text(C,V,N,D)], [sqlite3_result_text16(C,V,N,D)], +** [sqlite3_result_text16be(C,V,N,D)], or +** [sqlite3_result_text16le(C,V,N,D)] is some value other than +** the constants [SQLITE_STATIC] and [SQLITE_TRANSIENT] then +** SQLite will invoke the destructor D with V as its only argument +** when it has finished with the V value. +*/ +SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)); +SQLITE_API void sqlite3_result_double(sqlite3_context*, double); +SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int); +SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int); +SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*); +SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*); +SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int); +SQLITE_API void sqlite3_result_int(sqlite3_context*, int); +SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64); +SQLITE_API void sqlite3_result_null(sqlite3_context*); +SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*)); +SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*)); +SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*)); +SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*)); +SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*); +SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n); + +/* +** CAPI3REF: Define New Collating Sequences {F16600} +** +** These functions are used to add new collation sequences to the +** [sqlite3*] handle specified as the first argument. +** +** The name of the new collation sequence is specified as a UTF-8 string +** for sqlite3_create_collation() and sqlite3_create_collation_v2() +** and a UTF-16 string for sqlite3_create_collation16(). In all cases +** the name is passed as the second function argument. +** +** The third argument may be one of the constants [SQLITE_UTF8], +** [SQLITE_UTF16LE] or [SQLITE_UTF16BE], indicating that the user-supplied +** routine expects to be passed pointers to strings encoded using UTF-8, +** UTF-16 little-endian or UTF-16 big-endian respectively. The +** third argument might also be [SQLITE_UTF16_ALIGNED] to indicate that +** the routine expects pointers to 16-bit word aligned strings +** of UTF16 in the native byte order of the host computer. +** +** A pointer to the user supplied routine must be passed as the fifth +** argument. If it is NULL, this is the same as deleting the collation +** sequence (so that SQLite cannot call it anymore). +** Each time the application +** supplied function is invoked, it is passed a copy of the void* passed as +** the fourth argument to sqlite3_create_collation() or +** sqlite3_create_collation16() as its first parameter. +** +** The remaining arguments to the application-supplied routine are two strings, +** each represented by a (length, data) pair and encoded in the encoding +** that was passed as the third argument when the collation sequence was +** registered. {END} The application defined collation routine should +** return negative, zero or positive if +** the first string is less than, equal to, or greater than the second +** string. i.e. (STRING1 - STRING2). +** +** The sqlite3_create_collation_v2() works like sqlite3_create_collation() +** excapt that it takes an extra argument which is a destructor for +** the collation. The destructor is called when the collation is +** destroyed and is passed a copy of the fourth parameter void* pointer +** of the sqlite3_create_collation_v2(). +** Collations are destroyed when +** they are overridden by later calls to the collation creation functions +** or when the [sqlite3*] database handle is closed using [sqlite3_close()]. +** +** INVARIANTS: +** +** {F16603} A successful call to the +** [sqlite3_create_collation_v2(B,X,E,P,F,D)] interface +** registers function F as the comparison function used to +** implement collation X on [database connection] B for +** databases having encoding E. +** +** {F16604} SQLite understands the X parameter to +** [sqlite3_create_collation_v2(B,X,E,P,F,D)] as a zero-terminated +** UTF-8 string in which case is ignored for ASCII characters and +** is significant for non-ASCII characters. +** +** {F16606} Successive calls to [sqlite3_create_collation_v2(B,X,E,P,F,D)] +** with the same values for B, X, and E, override prior values +** of P, F, and D. +** +** {F16609} The destructor D in [sqlite3_create_collation_v2(B,X,E,P,F,D)] +** is not NULL then it is called with argument P when the +** collating function is dropped by SQLite. +** +** {F16612} A collating function is dropped when it is overloaded. +** +** {F16615} A collating function is dropped when the database connection +** is closed using [sqlite3_close()]. +** +** {F16618} The pointer P in [sqlite3_create_collation_v2(B,X,E,P,F,D)] +** is passed through as the first parameter to the comparison +** function F for all subsequent invocations of F. +** +** {F16621} A call to [sqlite3_create_collation(B,X,E,P,F)] is exactly +** the same as a call to [sqlite3_create_collation_v2()] with +** the same parameters and a NULL destructor. +** +** {F16624} Following a [sqlite3_create_collation_v2(B,X,E,P,F,D)], +** SQLite uses the comparison function F for all text comparison +** operations on [database connection] B on text values that +** use the collating sequence name X. +** +** {F16627} The [sqlite3_create_collation16(B,X,E,P,F)] works the same +** as [sqlite3_create_collation(B,X,E,P,F)] except that the +** collation name X is understood as UTF-16 in native byte order +** instead of UTF-8. +** +** {F16630} When multiple comparison functions are available for the same +** collating sequence, SQLite chooses the one whose text encoding +** requires the least amount of conversion from the default +** text encoding of the database. +*/ +SQLITE_API int sqlite3_create_collation( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); +SQLITE_API int sqlite3_create_collation_v2( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDestroy)(void*) +); +SQLITE_API int sqlite3_create_collation16( + sqlite3*, + const char *zName, + int eTextRep, + void*, + int(*xCompare)(void*,int,const void*,int,const void*) +); + +/* +** CAPI3REF: Collation Needed Callbacks {F16700} +** +** To avoid having to register all collation sequences before a database +** can be used, a single callback function may be registered with the +** database handle to be called whenever an undefined collation sequence is +** required. +** +** If the function is registered using the sqlite3_collation_needed() API, +** then it is passed the names of undefined collation sequences as strings +** encoded in UTF-8. {F16703} If sqlite3_collation_needed16() is used, the names +** are passed as UTF-16 in machine native byte order. A call to either +** function replaces any existing callback. +** +** When the callback is invoked, the first argument passed is a copy +** of the second argument to sqlite3_collation_needed() or +** sqlite3_collation_needed16(). The second argument is the database +** handle. The third argument is one of [SQLITE_UTF8], +** [SQLITE_UTF16BE], or [SQLITE_UTF16LE], indicating the most +** desirable form of the collation sequence function required. +** The fourth parameter is the name of the +** required collation sequence. +** +** The callback function should register the desired collation using +** [sqlite3_create_collation()], [sqlite3_create_collation16()], or +** [sqlite3_create_collation_v2()]. +** +** INVARIANTS: +** +** {F16702} A successful call to [sqlite3_collation_needed(D,P,F)] +** or [sqlite3_collation_needed16(D,P,F)] causes +** the [database connection] D to invoke callback F with first +** parameter P whenever it needs a comparison function for a +** collating sequence that it does not know about. +** +** {F16704} Each successful call to [sqlite3_collation_needed()] or +** [sqlite3_collation_needed16()] overrides the callback registered +** on the same [database connection] by prior calls to either +** interface. +** +** {F16706} The name of the requested collating function passed in the +** 4th parameter to the callback is in UTF-8 if the callback +** was registered using [sqlite3_collation_needed()] and +** is in UTF-16 native byte order if the callback was +** registered using [sqlite3_collation_needed16()]. +** +** +*/ +SQLITE_API int sqlite3_collation_needed( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const char*) +); +SQLITE_API int sqlite3_collation_needed16( + sqlite3*, + void*, + void(*)(void*,sqlite3*,int eTextRep,const void*) +); + +/* +** Specify the key for an encrypted database. This routine should be +** called right after sqlite3_open(). +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +SQLITE_API int sqlite3_key( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The key */ +); + +/* +** Change the key on an open database. If the current database is not +** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the +** database is decrypted. +** +** The code to implement this API is not available in the public release +** of SQLite. +*/ +SQLITE_API int sqlite3_rekey( + sqlite3 *db, /* Database to be rekeyed */ + const void *pKey, int nKey /* The new key */ +); + +/* +** CAPI3REF: Suspend Execution For A Short Time {F10530} +** +** The sqlite3_sleep() function +** causes the current thread to suspend execution +** for at least a number of milliseconds specified in its parameter. +** +** If the operating system does not support sleep requests with +** millisecond time resolution, then the time will be rounded up to +** the nearest second. The number of milliseconds of sleep actually +** requested from the operating system is returned. +** +** SQLite implements this interface by calling the xSleep() +** method of the default [sqlite3_vfs] object. +** +** INVARIANTS: +** +** {F10533} The [sqlite3_sleep(M)] interface invokes the xSleep +** method of the default [sqlite3_vfs|VFS] in order to +** suspend execution of the current thread for at least +** M milliseconds. +** +** {F10536} The [sqlite3_sleep(M)] interface returns the number of +** milliseconds of sleep actually requested of the operating +** system, which might be larger than the parameter M. +*/ +SQLITE_API int sqlite3_sleep(int); + +/* +** CAPI3REF: Name Of The Folder Holding Temporary Files {F10310} +** +** If this global variable is made to point to a string which is +** the name of a folder (a.ka. directory), then all temporary files +** created by SQLite will be placed in that directory. If this variable +** is NULL pointer, then SQLite does a search for an appropriate temporary +** file directory. +** +** It is not safe to modify this variable once a database connection +** has been opened. It is intended that this variable be set once +** as part of process initialization and before any SQLite interface +** routines have been call and remain unchanged thereafter. +*/ +SQLITE_API char *sqlite3_temp_directory; + +/* +** CAPI3REF: Test To See If The Database Is In Auto-Commit Mode {F12930} +** +** The sqlite3_get_autocommit() interfaces returns non-zero or +** zero if the given database connection is or is not in autocommit mode, +** respectively. Autocommit mode is on +** by default. Autocommit mode is disabled by a [BEGIN] statement. +** Autocommit mode is reenabled by a [COMMIT] or [ROLLBACK]. +** +** If certain kinds of errors occur on a statement within a multi-statement +** transactions (errors including [SQLITE_FULL], [SQLITE_IOERR], +** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the +** transaction might be rolled back automatically. The only way to +** find out if SQLite automatically rolled back the transaction after +** an error is to use this function. +** +** INVARIANTS: +** +** {F12931} The [sqlite3_get_autocommit(D)] interface returns non-zero or +** zero if the [database connection] D is or is not in autocommit +** mode, respectively. +** +** {F12932} Autocommit mode is on by default. +** +** {F12933} Autocommit mode is disabled by a successful [BEGIN] statement. +** +** {F12934} Autocommit mode is enabled by a successful [COMMIT] or [ROLLBACK] +** statement. +** +** +** LIMITATIONS: +*** +** {U12936} If another thread changes the autocommit status of the database +** connection while this routine is running, then the return value +** is undefined. +*/ +SQLITE_API int sqlite3_get_autocommit(sqlite3*); + +/* +** CAPI3REF: Find The Database Handle Of A Prepared Statement {F13120} +** +** The sqlite3_db_handle interface +** returns the [sqlite3*] database handle to which a +** [prepared statement] belongs. +** The database handle returned by sqlite3_db_handle +** is the same database handle that was +** the first argument to the [sqlite3_prepare_v2()] or its variants +** that was used to create the statement in the first place. +** +** INVARIANTS: +** +** {F13123} The [sqlite3_db_handle(S)] interface returns a pointer +** to the [database connection] associated with +** [prepared statement] S. +*/ +SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*); + + +/* +** CAPI3REF: Commit And Rollback Notification Callbacks {F12950} +** +** The sqlite3_commit_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** The sqlite3_rollback_hook() interface registers a callback +** function to be invoked whenever a transaction is committed. +** Any callback set by a previous call to sqlite3_commit_hook() +** for the same database connection is overridden. +** The pArg argument is passed through +** to the callback. If the callback on a commit hook function +** returns non-zero, then the commit is converted into a rollback. +** +** If another function was previously registered, its +** pArg value is returned. Otherwise NULL is returned. +** +** Registering a NULL function disables the callback. +** +** For the purposes of this API, a transaction is said to have been +** rolled back if an explicit "ROLLBACK" statement is executed, or +** an error or constraint causes an implicit rollback to occur. +** The rollback callback is not invoked if a transaction is +** automatically rolled back because the database connection is closed. +** The rollback callback is not invoked if a transaction is +** rolled back because a commit callback returned non-zero. +** <todo> Check on this </todo> +** +** These are experimental interfaces and are subject to change. +** +** INVARIANTS: +** +** {F12951} The [sqlite3_commit_hook(D,F,P)] interface registers the +** callback function F to be invoked with argument P whenever +** a transaction commits on [database connection] D. +** +** {F12952} The [sqlite3_commit_hook(D,F,P)] interface returns the P +** argument from the previous call with the same +** [database connection ] D , or NULL on the first call +** for a particular [database connection] D. +** +** {F12953} Each call to [sqlite3_commit_hook()] overwrites the callback +** registered by prior calls. +** +** {F12954} If the F argument to [sqlite3_commit_hook(D,F,P)] is NULL +** then the commit hook callback is cancelled and no callback +** is invoked when a transaction commits. +** +** {F12955} If the commit callback returns non-zero then the commit is +** converted into a rollback. +** +** {F12961} The [sqlite3_rollback_hook(D,F,P)] interface registers the +** callback function F to be invoked with argument P whenever +** a transaction rolls back on [database connection] D. +** +** {F12962} The [sqlite3_rollback_hook(D,F,P)] interface returns the P +** argument from the previous call with the same +** [database connection ] D , or NULL on the first call +** for a particular [database connection] D. +** +** {F12963} Each call to [sqlite3_rollback_hook()] overwrites the callback +** registered by prior calls. +** +** {F12964} If the F argument to [sqlite3_rollback_hook(D,F,P)] is NULL +** then the rollback hook callback is cancelled and no callback +** is invoked when a transaction rolls back. +*/ +SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*); +SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*); + +/* +** CAPI3REF: Data Change Notification Callbacks {F12970} +** +** The sqlite3_update_hook() interface +** registers a callback function with the database connection identified by the +** first argument to be invoked whenever a row is updated, inserted or deleted. +** Any callback set by a previous call to this function for the same +** database connection is overridden. +** +** The second argument is a pointer to the function to invoke when a +** row is updated, inserted or deleted. +** The first argument to the callback is +** a copy of the third argument to sqlite3_update_hook(). +** The second callback +** argument is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** The third and +** fourth arguments to the callback contain pointers to the database and +** table name containing the affected row. +** The final callback parameter is +** the rowid of the row. +** In the case of an update, this is the rowid after +** the update takes place. +** +** The update hook is not invoked when internal system tables are +** modified (i.e. sqlite_master and sqlite_sequence). +** +** If another function was previously registered, its pArg value +** is returned. Otherwise NULL is returned. +** +** INVARIANTS: +** +** {F12971} The [sqlite3_update_hook(D,F,P)] interface causes callback +** function F to be invoked with first parameter P whenever +** a table row is modified, inserted, or deleted on +** [database connection] D. +** +** {F12973} The [sqlite3_update_hook(D,F,P)] interface returns the value +** of P for the previous call on the same [database connection] D, +** or NULL for the first call. +** +** {F12975} If the update hook callback F in [sqlite3_update_hook(D,F,P)] +** is NULL then the no update callbacks are made. +** +** {F12977} Each call to [sqlite3_update_hook(D,F,P)] overrides prior calls +** to the same interface on the same [database connection] D. +** +** {F12979} The update hook callback is not invoked when internal system +** tables such as sqlite_master and sqlite_sequence are modified. +** +** {F12981} The second parameter to the update callback +** is one of [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], +** depending on the operation that caused the callback to be invoked. +** +** {F12983} The third and fourth arguments to the callback contain pointers +** to zero-terminated UTF-8 strings which are the names of the +** database and table that is being updated. + +** {F12985} The final callback parameter is the rowid of the row after +** the change occurs. +*/ +SQLITE_API void *sqlite3_update_hook( + sqlite3*, + void(*)(void *,int ,char const *,char const *,sqlite3_int64), + void* +); + +/* +** CAPI3REF: Enable Or Disable Shared Pager Cache {F10330} +** +** This routine enables or disables the sharing of the database cache +** and schema data structures between connections to the same database. +** Sharing is enabled if the argument is true and disabled if the argument +** is false. +** +** Cache sharing is enabled and disabled +** for an entire process. {END} This is a change as of SQLite version 3.5.0. +** In prior versions of SQLite, sharing was +** enabled or disabled for each thread separately. +** +** The cache sharing mode set by this interface effects all subsequent +** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()]. +** Existing database connections continue use the sharing mode +** that was in effect at the time they were opened. +** +** Virtual tables cannot be used with a shared cache. When shared +** cache is enabled, the [sqlite3_create_module()] API used to register +** virtual tables will always return an error. +** +** This routine returns [SQLITE_OK] if shared cache was +** enabled or disabled successfully. An [error code] +** is returned otherwise. +** +** Shared cache is disabled by default. But this might change in +** future releases of SQLite. Applications that care about shared +** cache setting should set it explicitly. +** +** INVARIANTS: +** +** {F10331} A successful invocation of [sqlite3_enable_shared_cache(B)] +** will enable or disable shared cache mode for any subsequently +** created [database connection] in the same process. +** +** {F10336} When shared cache is enabled, the [sqlite3_create_module()] +** interface will always return an error. +** +** {F10337} The [sqlite3_enable_shared_cache(B)] interface returns +** [SQLITE_OK] if shared cache was enabled or disabled successfully. +** +** {F10339} Shared cache is disabled by default. +*/ +SQLITE_API int sqlite3_enable_shared_cache(int); + +/* +** CAPI3REF: Attempt To Free Heap Memory {F17340} +** +** The sqlite3_release_memory() interface attempts to +** free N bytes of heap memory by deallocating non-essential memory +** allocations held by the database labrary. {END} Memory used +** to cache database pages to improve performance is an example of +** non-essential memory. Sqlite3_release_memory() returns +** the number of bytes actually freed, which might be more or less +** than the amount requested. +** +** INVARIANTS: +** +** {F17341} The [sqlite3_release_memory(N)] interface attempts to +** free N bytes of heap memory by deallocating non-essential +** memory allocations held by the database labrary. +** +** {F16342} The [sqlite3_release_memory(N)] returns the number +** of bytes actually freed, which might be more or less +** than the amount requested. +*/ +SQLITE_API int sqlite3_release_memory(int); + +/* +** CAPI3REF: Impose A Limit On Heap Size {F17350} +** +** The sqlite3_soft_heap_limit() interface +** places a "soft" limit on the amount of heap memory that may be allocated +** by SQLite. If an internal allocation is requested +** that would exceed the soft heap limit, [sqlite3_release_memory()] is +** invoked one or more times to free up some space before the allocation +** is made. +** +** The limit is called "soft", because if +** [sqlite3_release_memory()] cannot +** free sufficient memory to prevent the limit from being exceeded, +** the memory is allocated anyway and the current operation proceeds. +** +** A negative or zero value for N means that there is no soft heap limit and +** [sqlite3_release_memory()] will only be called when memory is exhausted. +** The default value for the soft heap limit is zero. +** +** SQLite makes a best effort to honor the soft heap limit. +** But if the soft heap limit cannot honored, execution will +** continue without error or notification. This is why the limit is +** called a "soft" limit. It is advisory only. +** +** Prior to SQLite version 3.5.0, this routine only constrained the memory +** allocated by a single thread - the same thread in which this routine +** runs. Beginning with SQLite version 3.5.0, the soft heap limit is +** applied to all threads. The value specified for the soft heap limit +** is an upper bound on the total memory allocation for all threads. In +** version 3.5.0 there is no mechanism for limiting the heap usage for +** individual threads. +** +** INVARIANTS: +** +** {F16351} The [sqlite3_soft_heap_limit(N)] interface places a soft limit +** of N bytes on the amount of heap memory that may be allocated +** using [sqlite3_malloc()] or [sqlite3_realloc()] at any point +** in time. +** +** {F16352} If a call to [sqlite3_malloc()] or [sqlite3_realloc()] would +** cause the total amount of allocated memory to exceed the +** soft heap limit, then [sqlite3_release_memory()] is invoked +** in an attempt to reduce the memory usage prior to proceeding +** with the memory allocation attempt. +** +** {F16353} Calls to [sqlite3_malloc()] or [sqlite3_realloc()] that trigger +** attempts to reduce memory usage through the soft heap limit +** mechanism continue even if the attempt to reduce memory +** usage is unsuccessful. +** +** {F16354} A negative or zero value for N in a call to +** [sqlite3_soft_heap_limit(N)] means that there is no soft +** heap limit and [sqlite3_release_memory()] will only be +** called when memory is completely exhausted. +** +** {F16355} The default value for the soft heap limit is zero. +** +** {F16358} Each call to [sqlite3_soft_heap_limit(N)] overrides the +** values set by all prior calls. +*/ +SQLITE_API void sqlite3_soft_heap_limit(int); + +/* +** CAPI3REF: Extract Metadata About A Column Of A Table {F12850} +** +** This routine +** returns meta-data about a specific column of a specific database +** table accessible using the connection handle passed as the first function +** argument. +** +** The column is identified by the second, third and fourth parameters to +** this function. The second parameter is either the name of the database +** (i.e. "main", "temp" or an attached database) containing the specified +** table or NULL. If it is NULL, then all attached databases are searched +** for the table using the same algorithm as the database engine uses to +** resolve unqualified table references. +** +** The third and fourth parameters to this function are the table and column +** name of the desired column, respectively. Neither of these parameters +** may be NULL. +** +** Meta information is returned by writing to the memory locations passed as +** the 5th and subsequent parameters to this function. Any of these +** arguments may be NULL, in which case the corresponding element of meta +** information is ommitted. +** +** <pre> +** Parameter Output Type Description +** ----------------------------------- +** +** 5th const char* Data type +** 6th const char* Name of the default collation sequence +** 7th int True if the column has a NOT NULL constraint +** 8th int True if the column is part of the PRIMARY KEY +** 9th int True if the column is AUTOINCREMENT +** </pre> +** +** +** The memory pointed to by the character pointers returned for the +** declaration type and collation sequence is valid only until the next +** call to any sqlite API function. +** +** If the specified table is actually a view, then an error is returned. +** +** If the specified column is "rowid", "oid" or "_rowid_" and an +** INTEGER PRIMARY KEY column has been explicitly declared, then the output +** parameters are set for the explicitly declared column. If there is no +** explicitly declared IPK column, then the output parameters are set as +** follows: +** +** <pre> +** data type: "INTEGER" +** collation sequence: "BINARY" +** not null: 0 +** primary key: 1 +** auto increment: 0 +** </pre> +** +** This function may load one or more schemas from database files. If an +** error occurs during this process, or if the requested table or column +** cannot be found, an SQLITE error code is returned and an error message +** left in the database handle (to be retrieved using sqlite3_errmsg()). +** +** This API is only available if the library was compiled with the +** SQLITE_ENABLE_COLUMN_METADATA preprocessor symbol defined. +*/ +SQLITE_API int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if column is auto-increment */ +); + +/* +** CAPI3REF: Load An Extension {F12600} +** +** {F12601} The sqlite3_load_extension() interface +** attempts to load an SQLite extension library contained in the file +** zFile. {F12602} The entry point is zProc. {F12603} zProc may be 0 +** in which case the name of the entry point defaults +** to "sqlite3_extension_init". +** +** {F12604} The sqlite3_load_extension() interface shall +** return [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong. +** +** {F12605} +** If an error occurs and pzErrMsg is not 0, then the +** sqlite3_load_extension() interface shall attempt to fill *pzErrMsg with +** error message text stored in memory obtained from [sqlite3_malloc()]. +** {END} The calling function should free this memory +** by calling [sqlite3_free()]. +** +** {F12606} +** Extension loading must be enabled using [sqlite3_enable_load_extension()] +** prior to calling this API or an error will be returned. +*/ +SQLITE_API int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Derived from zFile if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +); + +/* +** CAPI3REF: Enable Or Disable Extension Loading {F12620} +** +** So as not to open security holes in older applications that are +** unprepared to deal with extension loading, and as a means of disabling +** extension loading while evaluating user-entered SQL, the following +** API is provided to turn the [sqlite3_load_extension()] mechanism on and +** off. {F12622} It is off by default. {END} See ticket #1863. +** +** {F12621} Call the sqlite3_enable_load_extension() routine +** with onoff==1 to turn extension loading on +** and call it with onoff==0 to turn it back off again. {END} +*/ +SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff); + +/* +** CAPI3REF: Make Arrangements To Automatically Load An Extension {F12640} +** +** {F12641} This function +** registers an extension entry point that is automatically invoked +** whenever a new database connection is opened using +** [sqlite3_open()], [sqlite3_open16()], or [sqlite3_open_v2()]. {END} +** +** This API can be invoked at program startup in order to register +** one or more statically linked extensions that will be available +** to all new database connections. +** +** {F12642} Duplicate extensions are detected so calling this routine multiple +** times with the same extension is harmless. +** +** {F12643} This routine stores a pointer to the extension in an array +** that is obtained from sqlite_malloc(). {END} If you run a memory leak +** checker on your program and it reports a leak because of this +** array, then invoke [sqlite3_reset_auto_extension()] prior +** to shutdown to free the memory. +** +** {F12644} Automatic extensions apply across all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +SQLITE_API int sqlite3_auto_extension(void *xEntryPoint); + + +/* +** CAPI3REF: Reset Automatic Extension Loading {F12660} +** +** {F12661} This function disables all previously registered +** automatic extensions. {END} This +** routine undoes the effect of all prior [sqlite3_auto_extension()] +** calls. +** +** {F12662} This call disabled automatic extensions in all threads. {END} +** +** This interface is experimental and is subject to change or +** removal in future releases of SQLite. +*/ +SQLITE_API void sqlite3_reset_auto_extension(void); + + +/* +****** EXPERIMENTAL - subject to change without notice ************** +** +** The interface to the virtual-table mechanism is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stablizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +*/ + +/* +** Structures used by the virtual table interface +*/ +typedef struct sqlite3_vtab sqlite3_vtab; +typedef struct sqlite3_index_info sqlite3_index_info; +typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor; +typedef struct sqlite3_module sqlite3_module; + +/* +** CAPI3REF: Virtual Table Object {F18000} +** KEYWORDS: sqlite3_module +** +** A module is a class of virtual tables. Each module is defined +** by an instance of the following structure. This structure consists +** mostly of methods for the module. +*/ +struct sqlite3_module { + int iVersion; + int (*xCreate)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xConnect)(sqlite3*, void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, char**); + int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*); + int (*xDisconnect)(sqlite3_vtab *pVTab); + int (*xDestroy)(sqlite3_vtab *pVTab); + int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor); + int (*xClose)(sqlite3_vtab_cursor*); + int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr, + int argc, sqlite3_value **argv); + int (*xNext)(sqlite3_vtab_cursor*); + int (*xEof)(sqlite3_vtab_cursor*); + int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int); + int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid); + int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *); + int (*xBegin)(sqlite3_vtab *pVTab); + int (*xSync)(sqlite3_vtab *pVTab); + int (*xCommit)(sqlite3_vtab *pVTab); + int (*xRollback)(sqlite3_vtab *pVTab); + int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg); + + int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); +}; + +/* +** CAPI3REF: Virtual Table Indexing Information {F18100} +** KEYWORDS: sqlite3_index_info +** +** The sqlite3_index_info structure and its substructures is used to +** pass information into and receive the reply from the xBestIndex +** method of an sqlite3_module. The fields under **Inputs** are the +** inputs to xBestIndex and are read-only. xBestIndex inserts its +** results into the **Outputs** fields. +** +** The aConstraint[] array records WHERE clause constraints of the +** form: +** +** column OP expr +** +** Where OP is =, <, <=, >, or >=. +** The particular operator is stored +** in aConstraint[].op. The index of the column is stored in +** aConstraint[].iColumn. aConstraint[].usable is TRUE if the +** expr on the right-hand side can be evaluated (and thus the constraint +** is usable) and false if it cannot. +** +** The optimizer automatically inverts terms of the form "expr OP column" +** and makes other simplifications to the WHERE clause in an attempt to +** get as many WHERE clause terms into the form shown above as possible. +** The aConstraint[] array only reports WHERE clause terms in the correct +** form that refer to the particular virtual table being queried. +** +** Information about the ORDER BY clause is stored in aOrderBy[]. +** Each term of aOrderBy records a column of the ORDER BY clause. +** +** The xBestIndex method must fill aConstraintUsage[] with information +** about what parameters to pass to xFilter. If argvIndex>0 then +** the right-hand side of the corresponding aConstraint[] is evaluated +** and becomes the argvIndex-th entry in argv. If aConstraintUsage[].omit +** is true, then the constraint is assumed to be fully handled by the +** virtual table and is not checked again by SQLite. +** +** The idxNum and idxPtr values are recorded and passed into xFilter. +** sqlite3_free() is used to free idxPtr if needToFreeIdxPtr is true. +** +** The orderByConsumed means that output from xFilter will occur in +** the correct order to satisfy the ORDER BY clause so that no separate +** sorting step is required. +** +** The estimatedCost value is an estimate of the cost of doing the +** particular lookup. A full scan of a table with N entries should have +** a cost of N. A binary search of a table of N entries should have a +** cost of approximately log(N). +*/ +struct sqlite3_index_info { + /* Inputs */ + int nConstraint; /* Number of entries in aConstraint */ + struct sqlite3_index_constraint { + int iColumn; /* Column on left-hand side of constraint */ + unsigned char op; /* Constraint operator */ + unsigned char usable; /* True if this constraint is usable */ + int iTermOffset; /* Used internally - xBestIndex should ignore */ + } *aConstraint; /* Table of WHERE clause constraints */ + int nOrderBy; /* Number of terms in the ORDER BY clause */ + struct sqlite3_index_orderby { + int iColumn; /* Column number */ + unsigned char desc; /* True for DESC. False for ASC. */ + } *aOrderBy; /* The ORDER BY clause */ + + /* Outputs */ + struct sqlite3_index_constraint_usage { + int argvIndex; /* if >0, constraint is part of argv to xFilter */ + unsigned char omit; /* Do not code a test for this constraint */ + } *aConstraintUsage; + int idxNum; /* Number used to identify the index */ + char *idxStr; /* String, possibly obtained from sqlite3_malloc */ + int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ + int orderByConsumed; /* True if output is already ordered */ + double estimatedCost; /* Estimated cost of using this index */ +}; +#define SQLITE_INDEX_CONSTRAINT_EQ 2 +#define SQLITE_INDEX_CONSTRAINT_GT 4 +#define SQLITE_INDEX_CONSTRAINT_LE 8 +#define SQLITE_INDEX_CONSTRAINT_LT 16 +#define SQLITE_INDEX_CONSTRAINT_GE 32 +#define SQLITE_INDEX_CONSTRAINT_MATCH 64 + +/* +** CAPI3REF: Register A Virtual Table Implementation {F18200} +** +** This routine is used to register a new module name with an SQLite +** connection. Module names must be registered before creating new +** virtual tables on the module, or before using preexisting virtual +** tables of the module. +*/ +SQLITE_API int sqlite3_create_module( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void * /* Client data for xCreate/xConnect */ +); + +/* +** CAPI3REF: Register A Virtual Table Implementation {F18210} +** +** This routine is identical to the sqlite3_create_module() method above, +** except that it allows a destructor function to be specified. It is +** even more experimental than the rest of the virtual tables API. +*/ +SQLITE_API int sqlite3_create_module_v2( + sqlite3 *db, /* SQLite connection to register module with */ + const char *zName, /* Name of the module */ + const sqlite3_module *, /* Methods for the module */ + void *, /* Client data for xCreate/xConnect */ + void(*xDestroy)(void*) /* Module destructor function */ +); + +/* +** CAPI3REF: Virtual Table Instance Object {F18010} +** KEYWORDS: sqlite3_vtab +** +** Every module implementation uses a subclass of the following structure +** to describe a particular instance of the module. Each subclass will +** be tailored to the specific needs of the module implementation. The +** purpose of this superclass is to define certain fields that are common +** to all module implementations. +** +** Virtual tables methods can set an error message by assigning a +** string obtained from sqlite3_mprintf() to zErrMsg. The method should +** take care that any prior string is freed by a call to sqlite3_free() +** prior to assigning a new string to zErrMsg. After the error message +** is delivered up to the client application, the string will be automatically +** freed by sqlite3_free() and the zErrMsg field will be zeroed. Note +** that sqlite3_mprintf() and sqlite3_free() are used on the zErrMsg field +** since virtual tables are commonly implemented in loadable extensions which +** do not have access to sqlite3MPrintf() or sqlite3Free(). +*/ +struct sqlite3_vtab { + const sqlite3_module *pModule; /* The module for this virtual table */ + int nRef; /* Used internally */ + char *zErrMsg; /* Error message from sqlite3_mprintf() */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** CAPI3REF: Virtual Table Cursor Object {F18020} +** KEYWORDS: sqlite3_vtab_cursor +** +** Every module implementation uses a subclass of the following structure +** to describe cursors that point into the virtual table and are used +** to loop through the virtual table. Cursors are created using the +** xOpen method of the module. Each module implementation will define +** the content of a cursor structure to suit its own needs. +** +** This superclass exists in order to define fields of the cursor that +** are common to all implementations. +*/ +struct sqlite3_vtab_cursor { + sqlite3_vtab *pVtab; /* Virtual table of this cursor */ + /* Virtual table implementations will typically add additional fields */ +}; + +/* +** CAPI3REF: Declare The Schema Of A Virtual Table {F18280} +** +** The xCreate and xConnect methods of a module use the following API +** to declare the format (the names and datatypes of the columns) of +** the virtual tables they implement. +*/ +SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zCreateTable); + +/* +** CAPI3REF: Overload A Function For A Virtual Table {F18300} +** +** Virtual tables can provide alternative implementations of functions +** using the xFindFunction method. But global versions of those functions +** must exist in order to be overloaded. +** +** This API makes sure a global version of a function with a particular +** name and number of parameters exists. If no such function exists +** before this API is called, a new function is created. The implementation +** of the new function always causes an exception to be thrown. So +** the new function is not good for anything by itself. Its only +** purpose is to be a place-holder function that can be overloaded +** by virtual tables. +** +** This API should be considered part of the virtual table interface, +** which is experimental and subject to change. +*/ +SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg); + +/* +** The interface to the virtual-table mechanism defined above (back up +** to a comment remarkably similar to this one) is currently considered +** to be experimental. The interface might change in incompatible ways. +** If this is a problem for you, do not use the interface at this time. +** +** When the virtual-table mechanism stabilizes, we will declare the +** interface fixed, support it indefinitely, and remove this comment. +** +****** EXPERIMENTAL - subject to change without notice ************** +*/ + +/* +** CAPI3REF: A Handle To An Open BLOB {F17800} +** +** An instance of this object represents an open BLOB on which +** incremental I/O can be preformed. +** Objects of this type are created by +** [sqlite3_blob_open()] and destroyed by [sqlite3_blob_close()]. +** The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces +** can be used to read or write small subsections of the blob. +** The [sqlite3_blob_bytes()] interface returns the size of the +** blob in bytes. +*/ +typedef struct sqlite3_blob sqlite3_blob; + +/* +** CAPI3REF: Open A BLOB For Incremental I/O {F17810} +** +** This interfaces opens a handle to the blob located +** in row iRow, column zColumn, table zTable in database zDb; +** in other words, the same blob that would be selected by: +** +** <pre> +** SELECT zColumn FROM zDb.zTable WHERE rowid = iRow; +** </pre> {END} +** +** If the flags parameter is non-zero, the blob is opened for +** read and write access. If it is zero, the blob is opened for read +** access. +** +** Note that the database name is not the filename that contains +** the database but rather the symbolic name of the database that +** is assigned when the database is connected using [ATTACH]. +** For the main database file, the database name is "main". For +** TEMP tables, the database name is "temp". +** +** On success, [SQLITE_OK] is returned and the new +** [sqlite3_blob | blob handle] is written to *ppBlob. +** Otherwise an error code is returned and +** any value written to *ppBlob should not be used by the caller. +** This function sets the database-handle error code and message +** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()]. +** +** INVARIANTS: +** +** {F17813} A successful invocation of the [sqlite3_blob_open(D,B,T,C,R,F,P)] +** interface opens an [sqlite3_blob] object P on the blob +** in column C of table T in database B on [database connection] D. +** +** {F17814} A successful invocation of [sqlite3_blob_open(D,...)] starts +** a new transaction on [database connection] D if that connection +** is not already in a transaction. +** +** {F17816} The [sqlite3_blob_open(D,B,T,C,R,F,P)] interface opens the blob +** for read and write access if and only if the F parameter +** is non-zero. +** +** {F17819} The [sqlite3_blob_open()] interface returns [SQLITE_OK] on +** success and an appropriate [error code] on failure. +** +** {F17821} If an error occurs during evaluation of [sqlite3_blob_open(D,...)] +** then subsequent calls to [sqlite3_errcode(D)], +** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return +** information approprate for that error. +*/ +SQLITE_API int sqlite3_blob_open( + sqlite3*, + const char *zDb, + const char *zTable, + const char *zColumn, + sqlite3_int64 iRow, + int flags, + sqlite3_blob **ppBlob +); + +/* +** CAPI3REF: Close A BLOB Handle {F17830} +** +** Close an open [sqlite3_blob | blob handle]. +** +** Closing a BLOB shall cause the current transaction to commit +** if there are no other BLOBs, no pending prepared statements, and the +** database connection is in autocommit mode. +** If any writes were made to the BLOB, they might be held in cache +** until the close operation if they will fit. {END} +** Closing the BLOB often forces the changes +** out to disk and so if any I/O errors occur, they will likely occur +** at the time when the BLOB is closed. {F17833} Any errors that occur during +** closing are reported as a non-zero return value. +** +** The BLOB is closed unconditionally. Even if this routine returns +** an error code, the BLOB is still closed. +** +** INVARIANTS: +** +** {F17833} The [sqlite3_blob_close(P)] interface closes an +** [sqlite3_blob] object P previously opened using +** [sqlite3_blob_open()]. +** +** {F17836} Closing an [sqlite3_blob] object using +** [sqlite3_blob_close()] shall cause the current transaction to +** commit if there are no other open [sqlite3_blob] objects +** or [prepared statements] on the same [database connection] and +** the [database connection] is in +** [sqlite3_get_autocommit | autocommit mode]. +** +** {F17839} The [sqlite3_blob_close(P)] interfaces closes the +** [sqlite3_blob] object P unconditionally, even if +** [sqlite3_blob_close(P)] returns something other than [SQLITE_OK]. +** +*/ +SQLITE_API int sqlite3_blob_close(sqlite3_blob *); + +/* +** CAPI3REF: Return The Size Of An Open BLOB {F17840} +** +** Return the size in bytes of the blob accessible via the open +** [sqlite3_blob] object in its only argument. +** +** INVARIANTS: +** +** {F17843} The [sqlite3_blob_bytes(P)] interface returns the size +** in bytes of the BLOB that the [sqlite3_blob] object P +** refers to. +*/ +SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *); + +/* +** CAPI3REF: Read Data From A BLOB Incrementally {F17850} +** +** This function is used to read data from an open +** [sqlite3_blob | blob-handle] into a caller supplied buffer. +** N bytes of data are copied into buffer +** Z from the open blob, starting at offset iOffset. +** +** If offset iOffset is less than N bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is read. If N or iOffset is +** less than zero [SQLITE_ERROR] is returned and no data is read. +** +** On success, SQLITE_OK is returned. Otherwise, an +** [error code] or an [extended error code] is returned. +** +** INVARIANTS: +** +** {F17853} The [sqlite3_blob_read(P,Z,N,X)] interface reads N bytes +** beginning at offset X from +** the blob that [sqlite3_blob] object P refers to +** and writes those N bytes into buffer Z. +** +** {F17856} In [sqlite3_blob_read(P,Z,N,X)] if the size of the blob +** is less than N+X bytes, then the function returns [SQLITE_ERROR] +** and nothing is read from the blob. +** +** {F17859} In [sqlite3_blob_read(P,Z,N,X)] if X or N is less than zero +** then the function returns [SQLITE_ERROR] +** and nothing is read from the blob. +** +** {F17862} The [sqlite3_blob_read(P,Z,N,X)] interface returns [SQLITE_OK] +** if N bytes where successfully read into buffer Z. +** +** {F17865} If the requested read could not be completed, +** the [sqlite3_blob_read(P,Z,N,X)] interface returns an +** appropriate [error code] or [extended error code]. +** +** {F17868} If an error occurs during evaluation of [sqlite3_blob_read(P,...)] +** then subsequent calls to [sqlite3_errcode(D)], +** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return +** information approprate for that error, where D is the +** database handle that was used to open blob handle P. +*/ +SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset); + +/* +** CAPI3REF: Write Data Into A BLOB Incrementally {F17870} +** +** This function is used to write data into an open +** [sqlite3_blob | blob-handle] from a user supplied buffer. +** n bytes of data are copied from the buffer +** pointed to by z into the open blob, starting at offset iOffset. +** +** If the [sqlite3_blob | blob-handle] passed as the first argument +** was not opened for writing (the flags parameter to [sqlite3_blob_open()] +*** was zero), this function returns [SQLITE_READONLY]. +** +** This function may only modify the contents of the blob; it is +** not possible to increase the size of a blob using this API. +** If offset iOffset is less than n bytes from the end of the blob, +** [SQLITE_ERROR] is returned and no data is written. If n is +** less than zero [SQLITE_ERROR] is returned and no data is written. +** +** On success, SQLITE_OK is returned. Otherwise, an +** [error code] or an [extended error code] is returned. +** +** INVARIANTS: +** +** {F17873} The [sqlite3_blob_write(P,Z,N,X)] interface writes N bytes +** from buffer Z into +** the blob that [sqlite3_blob] object P refers to +** beginning at an offset of X into the blob. +** +** {F17875} The [sqlite3_blob_write(P,Z,N,X)] interface returns +** [SQLITE_READONLY] if the [sqlite3_blob] object P was +** [sqlite3_blob_open | opened] for reading only. +** +** {F17876} In [sqlite3_blob_write(P,Z,N,X)] if the size of the blob +** is less than N+X bytes, then the function returns [SQLITE_ERROR] +** and nothing is written into the blob. +** +** {F17879} In [sqlite3_blob_write(P,Z,N,X)] if X or N is less than zero +** then the function returns [SQLITE_ERROR] +** and nothing is written into the blob. +** +** {F17882} The [sqlite3_blob_write(P,Z,N,X)] interface returns [SQLITE_OK] +** if N bytes where successfully written into blob. +** +** {F17885} If the requested write could not be completed, +** the [sqlite3_blob_write(P,Z,N,X)] interface returns an +** appropriate [error code] or [extended error code]. +** +** {F17888} If an error occurs during evaluation of [sqlite3_blob_write(D,...)] +** then subsequent calls to [sqlite3_errcode(D)], +** [sqlite3_errmsg(D)], and [sqlite3_errmsg16(D)] will return +** information approprate for that error. +*/ +SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset); + +/* +** CAPI3REF: Virtual File System Objects {F11200} +** +** A virtual filesystem (VFS) is an [sqlite3_vfs] object +** that SQLite uses to interact +** with the underlying operating system. Most SQLite builds come with a +** single default VFS that is appropriate for the host computer. +** New VFSes can be registered and existing VFSes can be unregistered. +** The following interfaces are provided. +** +** The sqlite3_vfs_find() interface returns a pointer to +** a VFS given its name. Names are case sensitive. +** Names are zero-terminated UTF-8 strings. +** If there is no match, a NULL +** pointer is returned. If zVfsName is NULL then the default +** VFS is returned. +** +** New VFSes are registered with sqlite3_vfs_register(). +** Each new VFS becomes the default VFS if the makeDflt flag is set. +** The same VFS can be registered multiple times without injury. +** To make an existing VFS into the default VFS, register it again +** with the makeDflt flag set. If two different VFSes with the +** same name are registered, the behavior is undefined. If a +** VFS is registered with a name that is NULL or an empty string, +** then the behavior is undefined. +** +** Unregister a VFS with the sqlite3_vfs_unregister() interface. +** If the default VFS is unregistered, another VFS is chosen as +** the default. The choice for the new VFS is arbitrary. +** +** INVARIANTS: +** +** {F11203} The [sqlite3_vfs_find(N)] interface returns a pointer to the +** registered [sqlite3_vfs] object whose name exactly matches +** the zero-terminated UTF-8 string N, or it returns NULL if +** there is no match. +** +** {F11206} If the N parameter to [sqlite3_vfs_find(N)] is NULL then +** the function returns a pointer to the default [sqlite3_vfs] +** object if there is one, or NULL if there is no default +** [sqlite3_vfs] object. +** +** {F11209} The [sqlite3_vfs_register(P,F)] interface registers the +** well-formed [sqlite3_vfs] object P using the name given +** by the zName field of the object. +** +** {F11212} Using the [sqlite3_vfs_register(P,F)] interface to register +** the same [sqlite3_vfs] object multiple times is a harmless no-op. +** +** {F11215} The [sqlite3_vfs_register(P,F)] interface makes the +** the [sqlite3_vfs] object P the default [sqlite3_vfs] object +** if F is non-zero. +** +** {F11218} The [sqlite3_vfs_unregister(P)] interface unregisters the +** [sqlite3_vfs] object P so that it is no longer returned by +** subsequent calls to [sqlite3_vfs_find()]. +*/ +SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName); +SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt); +SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*); + +/* +** CAPI3REF: Mutexes {F17000} +** +** The SQLite core uses these routines for thread +** synchronization. Though they are intended for internal +** use by SQLite, code that links against SQLite is +** permitted to use any of these routines. +** +** The SQLite source code contains multiple implementations +** of these mutex routines. An appropriate implementation +** is selected automatically at compile-time. The following +** implementations are available in the SQLite core: +** +** <ul> +** <li> SQLITE_MUTEX_OS2 +** <li> SQLITE_MUTEX_PTHREAD +** <li> SQLITE_MUTEX_W32 +** <li> SQLITE_MUTEX_NOOP +** </ul> +** +** The SQLITE_MUTEX_NOOP implementation is a set of routines +** that does no real locking and is appropriate for use in +** a single-threaded application. The SQLITE_MUTEX_OS2, +** SQLITE_MUTEX_PTHREAD, and SQLITE_MUTEX_W32 implementations +** are appropriate for use on os/2, unix, and windows. +** +** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor +** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex +** implementation is included with the library. The +** mutex interface routines defined here become external +** references in the SQLite library for which implementations +** must be provided by the application. This facility allows an +** application that links against SQLite to provide its own mutex +** implementation without having to modify the SQLite core. +** +** {F17011} The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. {F17012} If it returns NULL +** that means that a mutex could not be allocated. {F17013} SQLite +** will unwind its stack and return an error. {F17014} The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +** <ul> +** <li> SQLITE_MUTEX_FAST +** <li> SQLITE_MUTEX_RECURSIVE +** <li> SQLITE_MUTEX_STATIC_MASTER +** <li> SQLITE_MUTEX_STATIC_MEM +** <li> SQLITE_MUTEX_STATIC_MEM2 +** <li> SQLITE_MUTEX_STATIC_PRNG +** <li> SQLITE_MUTEX_STATIC_LRU +** <li> SQLITE_MUTEX_STATIC_LRU2 +** </ul> {END} +** +** {F17015} The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. {END} +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. {F17016} But SQLite will only request a recursive mutex in +** cases where it really needs one. {END} If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** {F17017} The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. {END} Four static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** {F17018} Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. {F17034} But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. {END} +** +** {F17019} The sqlite3_mutex_free() routine deallocates a previously +** allocated dynamic mutex. {F17020} SQLite is careful to deallocate every +** dynamic mutex that it allocates. {U17021} The dynamic mutexes must not be in +** use when they are deallocated. {U17022} Attempting to deallocate a static +** mutex results in undefined behavior. {F17023} SQLite never deallocates +** a static mutex. {END} +** +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. {F17024} If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. {F17025} The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. {F17026} Mutexes created using +** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread. +** {F17027} In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. {U17028} If the same thread tries to enter any other +** kind of mutex more than once, the behavior is undefined. +** {F17029} SQLite will never exhibit +** such behavior in its own use of mutexes. {END} +** +** Some systems (ex: windows95) do not the operation implemented by +** sqlite3_mutex_try(). On those systems, sqlite3_mutex_try() will +** always return SQLITE_BUSY. {F17030} The SQLite core only ever uses +** sqlite3_mutex_try() as an optimization so this is acceptable behavior. {END} +** +** {F17031} The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. {U17032} The behavior +** is undefined if the mutex is not currently entered by the +** calling thread or is not currently allocated. {F17033} SQLite will +** never do either. {END} +** +** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()]. +*/ +SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int); +SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*); +SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*); +SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*); +SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Verifcation Routines {F17080} +** +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines +** are intended for use inside assert() statements. {F17081} The SQLite core +** never uses these routines except inside an assert() and applications +** are advised to follow the lead of the core. {F17082} The core only +** provides implementations for these routines when it is compiled +** with the SQLITE_DEBUG flag. {U17087} External mutex implementations +** are only required to provide these routines if SQLITE_DEBUG is +** defined and if NDEBUG is not defined. +** +** {F17083} These routines should return true if the mutex in their argument +** is held or not held, respectively, by the calling thread. {END} +** +** {X17084} The implementation is not required to provided versions of these +** routines that actually work. +** If the implementation does not provide working +** versions of these routines, it should at least provide stubs +** that always return true so that one does not get spurious +** assertion failures. {END} +** +** {F17085} If the argument to sqlite3_mutex_held() is a NULL pointer then +** the routine should return 1. {END} This seems counter-intuitive since +** clearly the mutex cannot be held if it does not exist. But the +** the reason the mutex does not exist is because the build is not +** using mutexes. And we do not want the assert() containing the +** call to sqlite3_mutex_held() to fail, so a non-zero return is +** the appropriate thing to do. {F17086} The sqlite3_mutex_notheld() +** interface should also return 1 when given a NULL pointer. +*/ +SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*); +SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*); + +/* +** CAPI3REF: Mutex Types {F17001} +** +** {F17002} The [sqlite3_mutex_alloc()] interface takes a single argument +** which is one of these integer constants. {END} +*/ +#define SQLITE_MUTEX_FAST 0 +#define SQLITE_MUTEX_RECURSIVE 1 +#define SQLITE_MUTEX_STATIC_MASTER 2 +#define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */ +#define SQLITE_MUTEX_STATIC_MEM2 4 /* sqlite3_release_memory() */ +#define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */ +#define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */ +#define SQLITE_MUTEX_STATIC_LRU2 7 /* lru page list */ + +/* +** CAPI3REF: Low-Level Control Of Database Files {F11300} +** +** {F11301} The [sqlite3_file_control()] interface makes a direct call to the +** xFileControl method for the [sqlite3_io_methods] object associated +** with a particular database identified by the second argument. {F11302} The +** name of the database is the name assigned to the database by the +** <a href="lang_attach.html">ATTACH</a> SQL command that opened the +** database. {F11303} To control the main database file, use the name "main" +** or a NULL pointer. {F11304} The third and fourth parameters to this routine +** are passed directly through to the second and third parameters of +** the xFileControl method. {F11305} The return value of the xFileControl +** method becomes the return value of this routine. +** +** {F11306} If the second parameter (zDbName) does not match the name of any +** open database file, then SQLITE_ERROR is returned. {F11307} This error +** code is not remembered and will not be recalled by [sqlite3_errcode()] +** or [sqlite3_errmsg()]. {U11308} The underlying xFileControl method might +** also return SQLITE_ERROR. {U11309} There is no way to distinguish between +** an incorrect zDbName and an SQLITE_ERROR return from the underlying +** xFileControl method. {END} +** +** See also: [SQLITE_FCNTL_LOCKSTATE] +*/ +SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*); + +/* +** CAPI3REF: Testing Interface {F11400} +** +** The sqlite3_test_control() interface is used to read out internal +** state of SQLite and to inject faults into SQLite for testing +** purposes. The first parameter a operation code that determines +** the number, meaning, and operation of all subsequent parameters. +** +** This interface is not for use by applications. It exists solely +** for verifying the correct operation of the SQLite library. Depending +** on how the SQLite library is compiled, this interface might not exist. +** +** The details of the operation codes, their meanings, the parameters +** they take, and what they do are all subject to change without notice. +** Unlike most of the SQLite API, this function is not guaranteed to +** operate consistently from one release to the next. +*/ +SQLITE_API int sqlite3_test_control(int op, ...); + +/* +** CAPI3REF: Testing Interface Operation Codes {F11410} +** +** These constants are the valid operation code parameters used +** as the first argument to [sqlite3_test_control()]. +** +** These parameters and their meansing are subject to change +** without notice. These values are for testing purposes only. +** Applications should not use any of these parameters or the +** [sqlite3_test_control()] interface. +*/ +#define SQLITE_TESTCTRL_FAULT_CONFIG 1 +#define SQLITE_TESTCTRL_FAULT_FAILURES 2 +#define SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES 3 +#define SQLITE_TESTCTRL_FAULT_PENDING 4 +#define SQLITE_TESTCTRL_PRNG_SAVE 5 +#define SQLITE_TESTCTRL_PRNG_RESTORE 6 +#define SQLITE_TESTCTRL_PRNG_RESET 7 +#define SQLITE_TESTCTRL_BITVEC_TEST 8 + + +/* +** Undo the hack that converts floating point types to integer for +** builds on processors without floating point support. +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# undef double +#endif + +#if 0 +} /* End of the 'extern "C"' block */ +#endif +#endif + +/************** End of sqlite3.h *********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include hash.h in the middle of sqliteInt.h ******************/ +/************** Begin file hash.h ********************************************/ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for the generic hash-table implemenation +** used in SQLite. +** +** $Id: hash.h,v 1.11 2007/09/04 14:31:47 danielk1977 Exp $ +*/ +#ifndef _SQLITE_HASH_H_ +#define _SQLITE_HASH_H_ + +/* Forward declarations of structures. */ +typedef struct Hash Hash; +typedef struct HashElem HashElem; + +/* A complete hash table is an instance of the following structure. +** The internals of this structure are intended to be opaque -- client +** code should not attempt to access or modify the fields of this structure +** directly. Change this structure only by using the routines below. +** However, many of the "procedures" and "functions" for modifying and +** accessing this structure are really macros, so we can't really make +** this structure opaque. +*/ +struct Hash { + char keyClass; /* SQLITE_HASH_INT, _POINTER, _STRING, _BINARY */ + char copyKey; /* True if copy of key made on insert */ + int count; /* Number of entries in this table */ + int htsize; /* Number of buckets in the hash table */ + HashElem *first; /* The first element of the array */ + struct _ht { /* the hash table */ + int count; /* Number of entries with this hash */ + HashElem *chain; /* Pointer to first entry with this hash */ + } *ht; +}; + +/* Each element in the hash table is an instance of the following +** structure. All elements are stored on a single doubly-linked list. +** +** Again, this structure is intended to be opaque, but it can't really +** be opaque because it is used by macros. +*/ +struct HashElem { + HashElem *next, *prev; /* Next and previous elements in the table */ + void *data; /* Data associated with this element */ + void *pKey; int nKey; /* Key associated with this element */ +}; + +/* +** There are 4 different modes of operation for a hash table: +** +** SQLITE_HASH_INT nKey is used as the key and pKey is ignored. +** +** SQLITE_HASH_POINTER pKey is used as the key and nKey is ignored. +** +** SQLITE_HASH_STRING pKey points to a string that is nKey bytes long +** (including the null-terminator, if any). Case +** is ignored in comparisons. +** +** SQLITE_HASH_BINARY pKey points to binary data nKey bytes long. +** memcmp() is used to compare keys. +** +** A copy of the key is made for SQLITE_HASH_STRING and SQLITE_HASH_BINARY +** if the copyKey parameter to HashInit is 1. +*/ +/* #define SQLITE_HASH_INT 1 // NOT USED */ +/* #define SQLITE_HASH_POINTER 2 // NOT USED */ +#define SQLITE_HASH_STRING 3 +#define SQLITE_HASH_BINARY 4 + +/* +** Access routines. To delete, insert a NULL pointer. +*/ +SQLITE_PRIVATE void sqlite3HashInit(Hash*, int keytype, int copyKey); +SQLITE_PRIVATE void *sqlite3HashInsert(Hash*, const void *pKey, int nKey, void *pData); +SQLITE_PRIVATE void *sqlite3HashFind(const Hash*, const void *pKey, int nKey); +SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash*, const void *pKey, int nKey); +SQLITE_PRIVATE void sqlite3HashClear(Hash*); + +/* +** Macros for looping over all elements of a hash table. The idiom is +** like this: +** +** Hash h; +** HashElem *p; +** ... +** for(p=sqliteHashFirst(&h); p; p=sqliteHashNext(p)){ +** SomeStructure *pData = sqliteHashData(p); +** // do something with pData +** } +*/ +#define sqliteHashFirst(H) ((H)->first) +#define sqliteHashNext(E) ((E)->next) +#define sqliteHashData(E) ((E)->data) +#define sqliteHashKey(E) ((E)->pKey) +#define sqliteHashKeysize(E) ((E)->nKey) + +/* +** Number of entries in a hash table +*/ +#define sqliteHashCount(H) ((H)->count) + +#endif /* _SQLITE_HASH_H_ */ + +/************** End of hash.h ************************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include parse.h in the middle of sqliteInt.h *****************/ +/************** Begin file parse.h *******************************************/ +#define TK_SEMI 1 +#define TK_EXPLAIN 2 +#define TK_QUERY 3 +#define TK_PLAN 4 +#define TK_BEGIN 5 +#define TK_TRANSACTION 6 +#define TK_DEFERRED 7 +#define TK_IMMEDIATE 8 +#define TK_EXCLUSIVE 9 +#define TK_COMMIT 10 +#define TK_END 11 +#define TK_ROLLBACK 12 +#define TK_CREATE 13 +#define TK_TABLE 14 +#define TK_IF 15 +#define TK_NOT 16 +#define TK_EXISTS 17 +#define TK_TEMP 18 +#define TK_LP 19 +#define TK_RP 20 +#define TK_AS 21 +#define TK_COMMA 22 +#define TK_ID 23 +#define TK_ABORT 24 +#define TK_AFTER 25 +#define TK_ANALYZE 26 +#define TK_ASC 27 +#define TK_ATTACH 28 +#define TK_BEFORE 29 +#define TK_CASCADE 30 +#define TK_CAST 31 +#define TK_CONFLICT 32 +#define TK_DATABASE 33 +#define TK_DESC 34 +#define TK_DETACH 35 +#define TK_EACH 36 +#define TK_FAIL 37 +#define TK_FOR 38 +#define TK_IGNORE 39 +#define TK_INITIALLY 40 +#define TK_INSTEAD 41 +#define TK_LIKE_KW 42 +#define TK_MATCH 43 +#define TK_KEY 44 +#define TK_OF 45 +#define TK_OFFSET 46 +#define TK_PRAGMA 47 +#define TK_RAISE 48 +#define TK_REPLACE 49 +#define TK_RESTRICT 50 +#define TK_ROW 51 +#define TK_TRIGGER 52 +#define TK_VACUUM 53 +#define TK_VIEW 54 +#define TK_VIRTUAL 55 +#define TK_REINDEX 56 +#define TK_RENAME 57 +#define TK_CTIME_KW 58 +#define TK_ANY 59 +#define TK_OR 60 +#define TK_AND 61 +#define TK_IS 62 +#define TK_BETWEEN 63 +#define TK_IN 64 +#define TK_ISNULL 65 +#define TK_NOTNULL 66 +#define TK_NE 67 +#define TK_EQ 68 +#define TK_GT 69 +#define TK_LE 70 +#define TK_LT 71 +#define TK_GE 72 +#define TK_ESCAPE 73 +#define TK_BITAND 74 +#define TK_BITOR 75 +#define TK_LSHIFT 76 +#define TK_RSHIFT 77 +#define TK_PLUS 78 +#define TK_MINUS 79 +#define TK_STAR 80 +#define TK_SLASH 81 +#define TK_REM 82 +#define TK_CONCAT 83 +#define TK_COLLATE 84 +#define TK_UMINUS 85 +#define TK_UPLUS 86 +#define TK_BITNOT 87 +#define TK_STRING 88 +#define TK_JOIN_KW 89 +#define TK_CONSTRAINT 90 +#define TK_DEFAULT 91 +#define TK_NULL 92 +#define TK_PRIMARY 93 +#define TK_UNIQUE 94 +#define TK_CHECK 95 +#define TK_REFERENCES 96 +#define TK_AUTOINCR 97 +#define TK_ON 98 +#define TK_DELETE 99 +#define TK_UPDATE 100 +#define TK_INSERT 101 +#define TK_SET 102 +#define TK_DEFERRABLE 103 +#define TK_FOREIGN 104 +#define TK_DROP 105 +#define TK_UNION 106 +#define TK_ALL 107 +#define TK_EXCEPT 108 +#define TK_INTERSECT 109 +#define TK_SELECT 110 +#define TK_DISTINCT 111 +#define TK_DOT 112 +#define TK_FROM 113 +#define TK_JOIN 114 +#define TK_USING 115 +#define TK_ORDER 116 +#define TK_BY 117 +#define TK_GROUP 118 +#define TK_HAVING 119 +#define TK_LIMIT 120 +#define TK_WHERE 121 +#define TK_INTO 122 +#define TK_VALUES 123 +#define TK_INTEGER 124 +#define TK_FLOAT 125 +#define TK_BLOB 126 +#define TK_REGISTER 127 +#define TK_VARIABLE 128 +#define TK_CASE 129 +#define TK_WHEN 130 +#define TK_THEN 131 +#define TK_ELSE 132 +#define TK_INDEX 133 +#define TK_ALTER 134 +#define TK_TO 135 +#define TK_ADD 136 +#define TK_COLUMNKW 137 +#define TK_TO_TEXT 138 +#define TK_TO_BLOB 139 +#define TK_TO_NUMERIC 140 +#define TK_TO_INT 141 +#define TK_TO_REAL 142 +#define TK_END_OF_FILE 143 +#define TK_ILLEGAL 144 +#define TK_SPACE 145 +#define TK_UNCLOSED_STRING 146 +#define TK_COMMENT 147 +#define TK_FUNCTION 148 +#define TK_COLUMN 149 +#define TK_AGG_FUNCTION 150 +#define TK_AGG_COLUMN 151 +#define TK_CONST_FUNC 152 + +/************** End of parse.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <assert.h> +#include <stddef.h> + +/* +** If compiling for a processor that lacks floating point support, +** substitute integer for floating-point +*/ +#ifdef SQLITE_OMIT_FLOATING_POINT +# define double sqlite_int64 +# define LONGDOUBLE_TYPE sqlite_int64 +# ifndef SQLITE_BIG_DBL +# define SQLITE_BIG_DBL (0x7fffffffffffffff) +# endif +# define SQLITE_OMIT_DATETIME_FUNCS 1 +# define SQLITE_OMIT_TRACE 1 +# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT +#endif +#ifndef SQLITE_BIG_DBL +# define SQLITE_BIG_DBL (1e99) +#endif + +/* +** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 +** afterward. Having this macro allows us to cause the C compiler +** to omit code used by TEMP tables without messy #ifndef statements. +*/ +#ifdef SQLITE_OMIT_TEMPDB +#define OMIT_TEMPDB 1 +#else +#define OMIT_TEMPDB 0 +#endif + +/* +** If the following macro is set to 1, then NULL values are considered +** distinct when determining whether or not two entries are the same +** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, +** OCELOT, and Firebird all work. The SQL92 spec explicitly says this +** is the way things are suppose to work. +** +** If the following macro is set to 0, the NULLs are indistinct for +** a UNIQUE index. In this mode, you can only have a single NULL entry +** for a column declared UNIQUE. This is the way Informix and SQL Server +** work. +*/ +#define NULL_DISTINCT_FOR_UNIQUE 1 + +/* +** The "file format" number is an integer that is incremented whenever +** the VDBE-level file format changes. The following macros define the +** the default file format for new databases and the maximum file format +** that the library can read. +*/ +#define SQLITE_MAX_FILE_FORMAT 4 +#ifndef SQLITE_DEFAULT_FILE_FORMAT +# define SQLITE_DEFAULT_FILE_FORMAT 1 +#endif + +/* +** Provide a default value for TEMP_STORE in case it is not specified +** on the command-line +*/ +#ifndef TEMP_STORE +# define TEMP_STORE 1 +#endif + +/* +** GCC does not define the offsetof() macro so we'll have to do it +** ourselves. +*/ +#ifndef offsetof +#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) +#endif + +/* +** Check to see if this machine uses EBCDIC. (Yes, believe it or +** not, there are still machines out there that use EBCDIC.) +*/ +#if 'A' == '\301' +# define SQLITE_EBCDIC 1 +#else +# define SQLITE_ASCII 1 +#endif + +/* +** Integers of known sizes. These typedefs might change for architectures +** where the sizes very. Preprocessor macros are available so that the +** types can be conveniently redefined at compile-type. Like this: +** +** cc '-DUINTPTR_TYPE=long long int' ... +*/ +#ifndef UINT32_TYPE +# ifdef HAVE_UINT32_T +# define UINT32_TYPE uint32_t +# else +# define UINT32_TYPE unsigned int +# endif +#endif +#ifndef UINT16_TYPE +# ifdef HAVE_UINT16_T +# define UINT16_TYPE uint16_t +# else +# define UINT16_TYPE unsigned short int +# endif +#endif +#ifndef INT16_TYPE +# ifdef HAVE_INT16_T +# define INT16_TYPE int16_t +# else +# define INT16_TYPE short int +# endif +#endif +#ifndef UINT8_TYPE +# ifdef HAVE_UINT8_T +# define UINT8_TYPE uint8_t +# else +# define UINT8_TYPE unsigned char +# endif +#endif +#ifndef INT8_TYPE +# ifdef HAVE_INT8_T +# define INT8_TYPE int8_t +# else +# define INT8_TYPE signed char +# endif +#endif +#ifndef LONGDOUBLE_TYPE +# define LONGDOUBLE_TYPE long double +#endif +typedef sqlite_int64 i64; /* 8-byte signed integer */ +typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ +typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ +typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ +typedef INT16_TYPE i16; /* 2-byte signed integer */ +typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ +typedef UINT8_TYPE i8; /* 1-byte signed integer */ + +/* +** Macros to determine whether the machine is big or little endian, +** evaluated at runtime. +*/ +#ifdef SQLITE_AMALGAMATION +SQLITE_PRIVATE const int sqlite3one; +#else +SQLITE_PRIVATE const int sqlite3one; +#endif +#if defined(i386) || defined(__i386__) || defined(_M_IX86) +# define SQLITE_BIGENDIAN 0 +# define SQLITE_LITTLEENDIAN 1 +# define SQLITE_UTF16NATIVE SQLITE_UTF16LE +#else +# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) +# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) +# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) +#endif + +/* +** Constants for the largest and smallest possible 64-bit signed integers. +** These macros are designed to work correctly on both 32-bit and 64-bit +** compilers. +*/ +#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) +#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) + +/* +** An instance of the following structure is used to store the busy-handler +** callback for a given sqlite handle. +** +** The sqlite.busyHandler member of the sqlite struct contains the busy +** callback for the database handle. Each pager opened via the sqlite +** handle is passed a pointer to sqlite.busyHandler. The busy-handler +** callback is currently invoked only from within pager.c. +*/ +typedef struct BusyHandler BusyHandler; +struct BusyHandler { + int (*xFunc)(void *,int); /* The busy callback */ + void *pArg; /* First arg to busy callback */ + int nBusy; /* Incremented with each busy call */ +}; + +/* +** Name of the master database table. The master database table +** is a special table that holds the names and attributes of all +** user tables and indices. +*/ +#define MASTER_NAME "sqlite_master" +#define TEMP_MASTER_NAME "sqlite_temp_master" + +/* +** The root-page of the master database table. +*/ +#define MASTER_ROOT 1 + +/* +** The name of the schema table. +*/ +#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) + +/* +** A convenience macro that returns the number of elements in +** an array. +*/ +#define ArraySize(X) (sizeof(X)/sizeof(X[0])) + +/* +** Forward references to structures +*/ +typedef struct AggInfo AggInfo; +typedef struct AuthContext AuthContext; +typedef struct Bitvec Bitvec; +typedef struct CollSeq CollSeq; +typedef struct Column Column; +typedef struct Db Db; +typedef struct Schema Schema; +typedef struct Expr Expr; +typedef struct ExprList ExprList; +typedef struct FKey FKey; +typedef struct FuncDef FuncDef; +typedef struct IdList IdList; +typedef struct Index Index; +typedef struct KeyClass KeyClass; +typedef struct KeyInfo KeyInfo; +typedef struct Module Module; +typedef struct NameContext NameContext; +typedef struct Parse Parse; +typedef struct Select Select; +typedef struct SrcList SrcList; +typedef struct StrAccum StrAccum; +typedef struct Table Table; +typedef struct TableLock TableLock; +typedef struct Token Token; +typedef struct TriggerStack TriggerStack; +typedef struct TriggerStep TriggerStep; +typedef struct Trigger Trigger; +typedef struct WhereInfo WhereInfo; +typedef struct WhereLevel WhereLevel; + +/* +** Defer sourcing vdbe.h and btree.h until after the "u8" and +** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque +** pointer types (i.e. FuncDef) defined above. +*/ +/************** Include btree.h in the middle of sqliteInt.h *****************/ +/************** Begin file btree.h *******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite B-Tree file +** subsystem. See comments in the source code for a detailed description +** of what each interface routine does. +** +** @(#) $Id: btree.h,v 1.98 2008/04/26 13:39:47 drh Exp $ +*/ +#ifndef _BTREE_H_ +#define _BTREE_H_ + +/* TODO: This definition is just included so other modules compile. It +** needs to be revisited. +*/ +#define SQLITE_N_BTREE_META 10 + +/* +** If defined as non-zero, auto-vacuum is enabled by default. Otherwise +** it must be turned on for each database using "PRAGMA auto_vacuum = 1". +*/ +#ifndef SQLITE_DEFAULT_AUTOVACUUM + #define SQLITE_DEFAULT_AUTOVACUUM 0 +#endif + +#define BTREE_AUTOVACUUM_NONE 0 /* Do not do auto-vacuum */ +#define BTREE_AUTOVACUUM_FULL 1 /* Do full auto-vacuum */ +#define BTREE_AUTOVACUUM_INCR 2 /* Incremental vacuum */ + +/* +** Forward declarations of structure +*/ +typedef struct Btree Btree; +typedef struct BtCursor BtCursor; +typedef struct BtShared BtShared; +typedef struct BtreeMutexArray BtreeMutexArray; + +/* +** This structure records all of the Btrees that need to hold +** a mutex before we enter sqlite3VdbeExec(). The Btrees are +** are placed in aBtree[] in order of aBtree[]->pBt. That way, +** we can always lock and unlock them all quickly. +*/ +struct BtreeMutexArray { + int nMutex; + Btree *aBtree[SQLITE_MAX_ATTACHED+1]; +}; + + +SQLITE_PRIVATE int sqlite3BtreeOpen( + const char *zFilename, /* Name of database file to open */ + sqlite3 *db, /* Associated database connection */ + Btree **, /* Return open Btree* here */ + int flags, /* Flags */ + int vfsFlags /* Flags passed through to VFS open */ +); + +/* The flags parameter to sqlite3BtreeOpen can be the bitwise or of the +** following values. +** +** NOTE: These values must match the corresponding PAGER_ values in +** pager.h. +*/ +#define BTREE_OMIT_JOURNAL 1 /* Do not use journal. No argument */ +#define BTREE_NO_READLOCK 2 /* Omit readlocks on readonly files */ +#define BTREE_MEMORY 4 /* In-memory DB. No argument */ +#define BTREE_READONLY 8 /* Open the database in read-only mode */ +#define BTREE_READWRITE 16 /* Open for both reading and writing */ +#define BTREE_CREATE 32 /* Create the database if it does not exist */ + +/* Additional values for the 4th argument of sqlite3BtreeOpen that +** are not associated with PAGER_ values. +*/ +#define BTREE_PRIVATE 64 /* Never share with other connections */ + +SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); +SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int); +SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*); +SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree*,int,int); +SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*); +SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*); +SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int); +SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *); +SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int); +SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster); +SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*); +SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*); +SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*); +SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree*); +SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree*); +SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree*); +SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree*, int*, int flags); +SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree*); +SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree*); +SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree*); +SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *, int, void(*)(void *)); +SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *); +SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *, int, u8); + +SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *); +SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *); +SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *); +SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *, Btree *); + +SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *); + +/* The flags parameter to sqlite3BtreeCreateTable can be the bitwise OR +** of the following flags: +*/ +#define BTREE_INTKEY 1 /* Table has only 64-bit signed integer keys */ +#define BTREE_ZERODATA 2 /* Table has keys only - no data */ +#define BTREE_LEAFDATA 4 /* Data stored in leaves only. Implies INTKEY */ + +SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree*, int, int*); +SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree*, int); +SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree*, int idx, u32 *pValue); +SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree*, int idx, u32 value); +SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree*, int); + +struct UnpackedRecord; /* Forward declaration. Definition in vdbeaux.c. */ + +SQLITE_PRIVATE int sqlite3BtreeCursor( + Btree*, /* BTree containing table to open */ + int iTable, /* Index of root page */ + int wrFlag, /* 1 for writing. 0 for read-only */ + struct KeyInfo*, /* First argument to compare function */ + BtCursor *pCursor /* Space to write cursor structure */ +); +SQLITE_PRIVATE int sqlite3BtreeCursorSize(void); + +SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreeMoveto( + BtCursor*, + const void *pKey, + struct UnpackedRecord *pUnKey, + i64 nKey, + int bias, + int *pRes +); +SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreeInsert(BtCursor*, const void *pKey, i64 nKey, + const void *pData, int nData, + int nZero, int bias); +SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor*); +SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor*, int *pRes); +SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor*, i64 *pSize); +SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor*, u32 offset, u32 amt, void*); +SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor*); +SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor*, int *pAmt); +SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor*, int *pAmt); +SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor*, u32 *pSize); +SQLITE_PRIVATE int sqlite3BtreeData(BtCursor*, u32 offset, u32 amt, void*); + +SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*); +SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*); + +SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*); +SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *); + +#ifdef SQLITE_TEST +SQLITE_PRIVATE int sqlite3BtreeCursorInfo(BtCursor*, int*, int); +SQLITE_PRIVATE void sqlite3BtreeCursorList(Btree*); +SQLITE_PRIVATE int sqlite3BtreePageDump(Btree*, int, int recursive); +#endif + +/* +** If we are not using shared cache, then there is no need to +** use mutexes to access the BtShared structures. So make the +** Enter and Leave procedures no-ops. +*/ +#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE +SQLITE_PRIVATE void sqlite3BtreeEnter(Btree*); +SQLITE_PRIVATE void sqlite3BtreeLeave(Btree*); +SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree*); +SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor*); +SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor*); +SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3*); +SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3*); +SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3*); +SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray*); +SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray*); +SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray*, Btree*); +#else +# define sqlite3BtreeEnter(X) +# define sqlite3BtreeLeave(X) +# define sqlite3BtreeHoldsMutex(X) 1 +# define sqlite3BtreeEnterCursor(X) +# define sqlite3BtreeLeaveCursor(X) +# define sqlite3BtreeEnterAll(X) +# define sqlite3BtreeLeaveAll(X) +# define sqlite3BtreeHoldsAllMutexes(X) 1 +# define sqlite3BtreeMutexArrayEnter(X) +# define sqlite3BtreeMutexArrayLeave(X) +# define sqlite3BtreeMutexArrayInsert(X,Y) +#endif + + +#endif /* _BTREE_H_ */ + +/************** End of btree.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include vdbe.h in the middle of sqliteInt.h ******************/ +/************** Begin file vdbe.h ********************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Header file for the Virtual DataBase Engine (VDBE) +** +** This header defines the interface to the virtual database engine +** or VDBE. The VDBE implements an abstract machine that runs a +** simple program to access and modify the underlying database. +** +** $Id: vdbe.h,v 1.131 2008/05/01 17:03:49 drh Exp $ +*/ +#ifndef _SQLITE_VDBE_H_ +#define _SQLITE_VDBE_H_ + +/* +** A single VDBE is an opaque structure named "Vdbe". Only routines +** in the source file sqliteVdbe.c are allowed to see the insides +** of this structure. +*/ +typedef struct Vdbe Vdbe; + +/* +** The names of the following types declared in vdbeInt.h are required +** for the VdbeOp definition. +*/ +typedef struct VdbeFunc VdbeFunc; +typedef struct Mem Mem; +typedef struct UnpackedRecord UnpackedRecord; + +/* +** A single instruction of the virtual machine has an opcode +** and as many as three operands. The instruction is recorded +** as an instance of the following structure: +*/ +struct VdbeOp { + u8 opcode; /* What operation to perform */ + signed char p4type; /* One of the P4_xxx constants for p4 */ + u8 opflags; /* Not currently used */ + u8 p5; /* Fifth parameter is an unsigned character */ + int p1; /* First operand */ + int p2; /* Second parameter (often the jump destination) */ + int p3; /* The third parameter */ + union { /* forth parameter */ + int i; /* Integer value if p4type==P4_INT32 */ + void *p; /* Generic pointer */ + char *z; /* Pointer to data for string (char array) types */ + i64 *pI64; /* Used when p4type is P4_INT64 */ + double *pReal; /* Used when p4type is P4_REAL */ + FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ + VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */ + CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ + Mem *pMem; /* Used when p4type is P4_MEM */ + sqlite3_vtab *pVtab; /* Used when p4type is P4_VTAB */ + KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ + } p4; +#ifdef SQLITE_DEBUG + char *zComment; /* Comment to improve readability */ +#endif +#ifdef VDBE_PROFILE + int cnt; /* Number of times this instruction was executed */ + long long cycles; /* Total time spend executing this instruction */ +#endif +}; +typedef struct VdbeOp VdbeOp; + +/* +** A smaller version of VdbeOp used for the VdbeAddOpList() function because +** it takes up less space. +*/ +struct VdbeOpList { + u8 opcode; /* What operation to perform */ + signed char p1; /* First operand */ + signed char p2; /* Second parameter (often the jump destination) */ + signed char p3; /* Third parameter */ +}; +typedef struct VdbeOpList VdbeOpList; + +/* +** Allowed values of VdbeOp.p3type +*/ +#define P4_NOTUSED 0 /* The P4 parameter is not used */ +#define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ +#define P4_STATIC (-2) /* Pointer to a static string */ +#define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ +#define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ +#define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ +#define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */ +#define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ +#define P4_TRANSIENT (-9) /* P4 is a pointer to a transient string */ +#define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */ +#define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ +#define P4_REAL (-12) /* P4 is a 64-bit floating point value */ +#define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ +#define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ + +/* When adding a P4 argument using P4_KEYINFO, a copy of the KeyInfo structure +** is made. That copy is freed when the Vdbe is finalized. But if the +** argument is P4_KEYINFO_HANDOFF, the passed in pointer is used. It still +** gets freed when the Vdbe is finalized so it still should be obtained +** from a single sqliteMalloc(). But no copy is made and the calling +** function should *not* try to free the KeyInfo. +*/ +#define P4_KEYINFO_HANDOFF (-9) + +/* +** The Vdbe.aColName array contains 5n Mem structures, where n is the +** number of columns of data returned by the statement. +*/ +#define COLNAME_NAME 0 +#define COLNAME_DECLTYPE 1 +#define COLNAME_DATABASE 2 +#define COLNAME_TABLE 3 +#define COLNAME_COLUMN 4 +#ifdef SQLITE_ENABLE_COLUMN_METADATA +# define COLNAME_N 5 /* Number of COLNAME_xxx symbols */ +#else +# ifdef SQLITE_OMIT_DECLTYPE +# define COLNAME_N 1 /* Store only the name */ +# else +# define COLNAME_N 2 /* Store the name and decltype */ +# endif +#endif + +/* +** The following macro converts a relative address in the p2 field +** of a VdbeOp structure into a negative number so that +** sqlite3VdbeAddOpList() knows that the address is relative. Calling +** the macro again restores the address. +*/ +#define ADDR(X) (-1-(X)) + +/* +** The makefile scans the vdbe.c source file and creates the "opcodes.h" +** header file that defines a number for each opcode used by the VDBE. +*/ +/************** Include opcodes.h in the middle of vdbe.h ********************/ +/************** Begin file opcodes.h *****************************************/ +/* Automatically generated. Do not edit */ +/* See the mkopcodeh.awk script for details */ +#define OP_VNext 1 +#define OP_Affinity 2 +#define OP_Column 3 +#define OP_SetCookie 4 +#define OP_Real 125 /* same as TK_FLOAT */ +#define OP_Sequence 5 +#define OP_MoveGt 6 +#define OP_Ge 72 /* same as TK_GE */ +#define OP_RowKey 7 +#define OP_SCopy 8 +#define OP_Eq 68 /* same as TK_EQ */ +#define OP_OpenWrite 9 +#define OP_NotNull 66 /* same as TK_NOTNULL */ +#define OP_If 10 +#define OP_ToInt 141 /* same as TK_TO_INT */ +#define OP_String8 88 /* same as TK_STRING */ +#define OP_VRowid 11 +#define OP_CollSeq 12 +#define OP_OpenRead 13 +#define OP_Expire 14 +#define OP_AutoCommit 15 +#define OP_Gt 69 /* same as TK_GT */ +#define OP_IntegrityCk 17 +#define OP_Sort 18 +#define OP_Copy 19 +#define OP_Trace 20 +#define OP_Function 21 +#define OP_IfNeg 22 +#define OP_And 61 /* same as TK_AND */ +#define OP_Subtract 79 /* same as TK_MINUS */ +#define OP_Noop 23 +#define OP_Return 24 +#define OP_Remainder 82 /* same as TK_REM */ +#define OP_NewRowid 25 +#define OP_Multiply 80 /* same as TK_STAR */ +#define OP_Variable 26 +#define OP_String 27 +#define OP_RealAffinity 28 +#define OP_VRename 29 +#define OP_ParseSchema 30 +#define OP_VOpen 31 +#define OP_Close 32 +#define OP_CreateIndex 33 +#define OP_IsUnique 34 +#define OP_NotFound 35 +#define OP_Int64 36 +#define OP_MustBeInt 37 +#define OP_Halt 38 +#define OP_Rowid 39 +#define OP_IdxLT 40 +#define OP_AddImm 41 +#define OP_Statement 42 +#define OP_RowData 43 +#define OP_MemMax 44 +#define OP_Or 60 /* same as TK_OR */ +#define OP_NotExists 45 +#define OP_Gosub 46 +#define OP_Divide 81 /* same as TK_SLASH */ +#define OP_Integer 47 +#define OP_ToNumeric 140 /* same as TK_TO_NUMERIC*/ +#define OP_Prev 48 +#define OP_Concat 83 /* same as TK_CONCAT */ +#define OP_BitAnd 74 /* same as TK_BITAND */ +#define OP_VColumn 49 +#define OP_CreateTable 50 +#define OP_Last 51 +#define OP_IsNull 65 /* same as TK_ISNULL */ +#define OP_IncrVacuum 52 +#define OP_IdxRowid 53 +#define OP_ShiftRight 77 /* same as TK_RSHIFT */ +#define OP_ResetCount 54 +#define OP_FifoWrite 55 +#define OP_ContextPush 56 +#define OP_DropTrigger 57 +#define OP_DropIndex 58 +#define OP_IdxGE 59 +#define OP_IdxDelete 62 +#define OP_Vacuum 63 +#define OP_MoveLe 64 +#define OP_IfNot 73 +#define OP_DropTable 84 +#define OP_MakeRecord 85 +#define OP_ToBlob 139 /* same as TK_TO_BLOB */ +#define OP_ResultRow 86 +#define OP_Delete 89 +#define OP_AggFinal 90 +#define OP_ShiftLeft 76 /* same as TK_LSHIFT */ +#define OP_Goto 91 +#define OP_TableLock 92 +#define OP_FifoRead 93 +#define OP_Clear 94 +#define OP_MoveLt 95 +#define OP_Le 70 /* same as TK_LE */ +#define OP_VerifyCookie 96 +#define OP_AggStep 97 +#define OP_ToText 138 /* same as TK_TO_TEXT */ +#define OP_Not 16 /* same as TK_NOT */ +#define OP_ToReal 142 /* same as TK_TO_REAL */ +#define OP_SetNumColumns 98 +#define OP_Transaction 99 +#define OP_VFilter 100 +#define OP_Ne 67 /* same as TK_NE */ +#define OP_VDestroy 101 +#define OP_ContextPop 102 +#define OP_BitOr 75 /* same as TK_BITOR */ +#define OP_Next 103 +#define OP_IdxInsert 104 +#define OP_Lt 71 /* same as TK_LT */ +#define OP_Insert 105 +#define OP_Destroy 106 +#define OP_ReadCookie 107 +#define OP_ForceInt 108 +#define OP_LoadAnalysis 109 +#define OP_Explain 110 +#define OP_OpenPseudo 111 +#define OP_OpenEphemeral 112 +#define OP_Null 113 +#define OP_Move 114 +#define OP_Blob 115 +#define OP_Add 78 /* same as TK_PLUS */ +#define OP_Rewind 116 +#define OP_MoveGe 117 +#define OP_VBegin 118 +#define OP_VUpdate 119 +#define OP_IfZero 120 +#define OP_BitNot 87 /* same as TK_BITNOT */ +#define OP_VCreate 121 +#define OP_Found 122 +#define OP_IfPos 123 +#define OP_NullRow 124 + +/* The following opcode values are never used */ +#define OP_NotUsed_126 126 +#define OP_NotUsed_127 127 +#define OP_NotUsed_128 128 +#define OP_NotUsed_129 129 +#define OP_NotUsed_130 130 +#define OP_NotUsed_131 131 +#define OP_NotUsed_132 132 +#define OP_NotUsed_133 133 +#define OP_NotUsed_134 134 +#define OP_NotUsed_135 135 +#define OP_NotUsed_136 136 +#define OP_NotUsed_137 137 + + +/* Properties such as "out2" or "jump" that are specified in +** comments following the "case" for each opcode in the vdbe.c +** are encoded into bitvectors as follows: +*/ +#define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */ +#define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */ +#define OPFLG_IN1 0x0004 /* in1: P1 is an input */ +#define OPFLG_IN2 0x0008 /* in2: P2 is an input */ +#define OPFLG_IN3 0x0010 /* in3: P3 is an input */ +#define OPFLG_OUT3 0x0020 /* out3: P3 is an output */ +#define OPFLG_INITIALIZER {\ +/* 0 */ 0x00, 0x01, 0x00, 0x00, 0x10, 0x02, 0x11, 0x00,\ +/* 8 */ 0x00, 0x00, 0x05, 0x02, 0x00, 0x00, 0x00, 0x00,\ +/* 16 */ 0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x05, 0x00,\ +/* 24 */ 0x00, 0x02, 0x02, 0x02, 0x04, 0x00, 0x00, 0x00,\ +/* 32 */ 0x00, 0x02, 0x11, 0x11, 0x02, 0x05, 0x00, 0x02,\ +/* 40 */ 0x11, 0x04, 0x00, 0x00, 0x0c, 0x11, 0x01, 0x02,\ +/* 48 */ 0x01, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00, 0x04,\ +/* 56 */ 0x00, 0x00, 0x00, 0x11, 0x2c, 0x2c, 0x00, 0x00,\ +/* 64 */ 0x11, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\ +/* 72 */ 0x15, 0x05, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,\ +/* 80 */ 0x2c, 0x2c, 0x2c, 0x2c, 0x00, 0x00, 0x00, 0x04,\ +/* 88 */ 0x02, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x11,\ +/* 96 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x01,\ +/* 104 */ 0x08, 0x00, 0x02, 0x02, 0x05, 0x00, 0x00, 0x00,\ +/* 112 */ 0x00, 0x02, 0x00, 0x02, 0x01, 0x11, 0x00, 0x00,\ +/* 120 */ 0x05, 0x00, 0x11, 0x05, 0x00, 0x02, 0x00, 0x00,\ +/* 128 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ +/* 136 */ 0x00, 0x00, 0x04, 0x04, 0x04, 0x04, 0x04,} + +/************** End of opcodes.h *********************************************/ +/************** Continuing where we left off in vdbe.h ***********************/ + +/* +** Prototypes for the VDBE interface. See comments on the implementation +** for a description of what each of these routines does. +*/ +SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3*); +SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe*,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe*,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe*,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe*,int,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeAddOp4(Vdbe*,int,int,int,int,const char *zP4,int); +SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp); +SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1); +SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2); +SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe*, int addr, int P3); +SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe*, u8 P5); +SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe*, int addr); +SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe*, int addr, int N); +SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe*, int addr, const char *zP4, int N); +SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe*, int); +SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe*, int); +SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int); +SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe*, int); +SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe*); +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe*,FILE*); +#endif +SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe*); +SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe*, int); +SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); +SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, int); +SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); +SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n); +SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); + +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int); +#endif +SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,void*,int); +SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord*); +SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); + + +#ifndef NDEBUG +SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe*, const char*, ...); +# define VdbeComment(X) sqlite3VdbeComment X +#else +# define VdbeComment(X) +#endif + +#endif + +/************** End of vdbe.h ************************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include pager.h in the middle of sqliteInt.h *****************/ +/************** Begin file pager.h *******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the interface that the sqlite page cache +** subsystem. The page cache subsystem reads and writes a file a page +** at a time and provides a journal for rollback. +** +** @(#) $Id: pager.h,v 1.72 2008/05/01 17:03:49 drh Exp $ +*/ + +#ifndef _PAGER_H_ +#define _PAGER_H_ + +/* +** The type used to represent a page number. The first page in a file +** is called page 1. 0 is used to represent "not a page". +*/ +typedef unsigned int Pgno; + +/* +** Each open file is managed by a separate instance of the "Pager" structure. +*/ +typedef struct Pager Pager; + +/* +** Handle type for pages. +*/ +typedef struct PgHdr DbPage; + +/* +** Allowed values for the flags parameter to sqlite3PagerOpen(). +** +** NOTE: This values must match the corresponding BTREE_ values in btree.h. +*/ +#define PAGER_OMIT_JOURNAL 0x0001 /* Do not use a rollback journal */ +#define PAGER_NO_READLOCK 0x0002 /* Omit readlocks on readonly files */ + +/* +** Valid values for the second argument to sqlite3PagerLockingMode(). +*/ +#define PAGER_LOCKINGMODE_QUERY -1 +#define PAGER_LOCKINGMODE_NORMAL 0 +#define PAGER_LOCKINGMODE_EXCLUSIVE 1 + +/* +** Valid values for the second argument to sqlite3PagerJournalMode(). +*/ +#define PAGER_JOURNALMODE_QUERY -1 +#define PAGER_JOURNALMODE_DELETE 0 /* Commit by deleting journal file */ +#define PAGER_JOURNALMODE_PERSIST 1 /* Commit by zeroing journal header */ +#define PAGER_JOURNALMODE_OFF 2 /* Journal omitted. */ + +/* +** See source code comments for a detailed description of the following +** routines: +*/ +SQLITE_PRIVATE int sqlite3PagerOpen(sqlite3_vfs *, Pager **ppPager, const char*, int,int,int); +SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, BusyHandler *pBusyHandler); +SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager*, void(*)(DbPage*,int)); +SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager*, void(*)(DbPage*,int)); +SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u16*); +SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int); +SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager*, int, unsigned char*); +SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int); +SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager); +SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag); +#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0) +SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno); +SQLITE_PRIVATE int sqlite3PagerRef(DbPage*); +SQLITE_PRIVATE int sqlite3PagerUnref(DbPage*); +SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*); +SQLITE_PRIVATE int sqlite3PagerPagecount(Pager*); +SQLITE_PRIVATE int sqlite3PagerTruncate(Pager*,Pgno); +SQLITE_PRIVATE int sqlite3PagerBegin(DbPage*, int exFlag); +SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(Pager*,const char *zMaster, Pgno, int); +SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager*); +SQLITE_PRIVATE int sqlite3PagerRollback(Pager*); +SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager*); +SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager*); +SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager*); +SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager*); +SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage*); +SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage*); +SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*); +SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int); +SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*); +SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*); +SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*); +SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager*); +SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*); +SQLITE_PRIVATE int sqlite3PagerNosync(Pager*); +SQLITE_PRIVATE int sqlite3PagerMovepage(Pager*,DbPage*,Pgno); +SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *); +SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *); +SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int); +SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *, int); +SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*); +SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager); + +#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) && !defined(SQLITE_OMIT_DISKIO) +SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int); +#endif + +#ifdef SQLITE_HAS_CODEC +SQLITE_PRIVATE void sqlite3PagerSetCodec(Pager*,void*(*)(void*,void*,Pgno,int),void*); +#endif + +#if !defined(NDEBUG) || defined(SQLITE_TEST) +SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage*); +SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage*); +#endif + +#ifdef SQLITE_TEST +SQLITE_PRIVATE int *sqlite3PagerStats(Pager*); +SQLITE_PRIVATE void sqlite3PagerRefdump(Pager*); +#endif + +#ifdef SQLITE_TEST +void disable_simulated_io_errors(void); +void enable_simulated_io_errors(void); +#else +# define disable_simulated_io_errors() +# define enable_simulated_io_errors() +#endif + +#endif /* _PAGER_H_ */ + +/************** End of pager.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ + +/************** Include os.h in the middle of sqliteInt.h ********************/ +/************** Begin file os.h **********************************************/ +/* +** 2001 September 16 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This header file (together with is companion C source-code file +** "os.c") attempt to abstract the underlying operating system so that +** the SQLite library will work on both POSIX and windows systems. +** +** This header file is #include-ed by sqliteInt.h and thus ends up +** being included by every source file. +*/ +#ifndef _SQLITE_OS_H_ +#define _SQLITE_OS_H_ + +/* +** Figure out if we are dealing with Unix, Windows, or some other +** operating system. After the following block of preprocess macros, +** all of OS_UNIX, OS_WIN, OS_OS2, and OS_OTHER will defined to either +** 1 or 0. One of the four will be 1. The other three will be 0. +*/ +#if defined(OS_OTHER) +# if OS_OTHER==1 +# undef OS_UNIX +# define OS_UNIX 0 +# undef OS_WIN +# define OS_WIN 0 +# undef OS_OS2 +# define OS_OS2 0 +# else +# undef OS_OTHER +# endif +#endif +#if !defined(OS_UNIX) && !defined(OS_OTHER) +# define OS_OTHER 0 +# ifndef OS_WIN +# if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) +# define OS_WIN 1 +# define OS_UNIX 0 +# define OS_OS2 0 +# elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__) +# define OS_WIN 0 +# define OS_UNIX 0 +# define OS_OS2 1 +# else +# define OS_WIN 0 +# define OS_UNIX 1 +# define OS_OS2 0 +# endif +# else +# define OS_UNIX 0 +# define OS_OS2 0 +# endif +#else +# ifndef OS_WIN +# define OS_WIN 0 +# endif +#endif + + + +/* +** Define the maximum size of a temporary filename +*/ +#if OS_WIN +# include <windows.h> +# define SQLITE_TEMPNAME_SIZE (MAX_PATH+50) +#elif OS_OS2 +# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY) +# include <os2safe.h> /* has to be included before os2.h for linking to work */ +# endif +# define INCL_DOSDATETIME +# define INCL_DOSFILEMGR +# define INCL_DOSERRORS +# define INCL_DOSMISC +# define INCL_DOSPROCESS +# define INCL_DOSMODULEMGR +# define INCL_DOSSEMAPHORES +# include <os2.h> +# include <uconv.h> +# define SQLITE_TEMPNAME_SIZE (CCHMAXPATHCOMP) +#else +# define SQLITE_TEMPNAME_SIZE 200 +#endif + +/* If the SET_FULLSYNC macro is not defined above, then make it +** a no-op +*/ +#ifndef SET_FULLSYNC +# define SET_FULLSYNC(x,y) +#endif + +/* +** The default size of a disk sector +*/ +#ifndef SQLITE_DEFAULT_SECTOR_SIZE +# define SQLITE_DEFAULT_SECTOR_SIZE 512 +#endif + +/* +** Temporary files are named starting with this prefix followed by 16 random +** alphanumeric characters, and no file extension. They are stored in the +** OS's standard temporary file directory, and are deleted prior to exit. +** If sqlite is being embedded in another program, you may wish to change the +** prefix to reflect your program's name, so that if your program exits +** prematurely, old temporary files can be easily identified. This can be done +** using -DSQLITE_TEMP_FILE_PREFIX=myprefix_ on the compiler command line. +** +** 2006-10-31: The default prefix used to be "sqlite_". But then +** Mcafee started using SQLite in their anti-virus product and it +** started putting files with the "sqlite" name in the c:/temp folder. +** This annoyed many windows users. Those users would then do a +** Google search for "sqlite", find the telephone numbers of the +** developers and call to wake them up at night and complain. +** For this reason, the default name prefix is changed to be "sqlite" +** spelled backwards. So the temp files are still identified, but +** anybody smart enough to figure out the code is also likely smart +** enough to know that calling the developer will not help get rid +** of the file. +*/ +#ifndef SQLITE_TEMP_FILE_PREFIX +# define SQLITE_TEMP_FILE_PREFIX "etilqs_" +#endif + +/* +** The following values may be passed as the second argument to +** sqlite3OsLock(). The various locks exhibit the following semantics: +** +** SHARED: Any number of processes may hold a SHARED lock simultaneously. +** RESERVED: A single process may hold a RESERVED lock on a file at +** any time. Other processes may hold and obtain new SHARED locks. +** PENDING: A single process may hold a PENDING lock on a file at +** any one time. Existing SHARED locks may persist, but no new +** SHARED locks may be obtained by other processes. +** EXCLUSIVE: An EXCLUSIVE lock precludes all other locks. +** +** PENDING_LOCK may not be passed directly to sqlite3OsLock(). Instead, a +** process that requests an EXCLUSIVE lock may actually obtain a PENDING +** lock. This can be upgraded to an EXCLUSIVE lock by a subsequent call to +** sqlite3OsLock(). +*/ +#define NO_LOCK 0 +#define SHARED_LOCK 1 +#define RESERVED_LOCK 2 +#define PENDING_LOCK 3 +#define EXCLUSIVE_LOCK 4 + +/* +** File Locking Notes: (Mostly about windows but also some info for Unix) +** +** We cannot use LockFileEx() or UnlockFileEx() on Win95/98/ME because +** those functions are not available. So we use only LockFile() and +** UnlockFile(). +** +** LockFile() prevents not just writing but also reading by other processes. +** A SHARED_LOCK is obtained by locking a single randomly-chosen +** byte out of a specific range of bytes. The lock byte is obtained at +** random so two separate readers can probably access the file at the +** same time, unless they are unlucky and choose the same lock byte. +** An EXCLUSIVE_LOCK is obtained by locking all bytes in the range. +** There can only be one writer. A RESERVED_LOCK is obtained by locking +** a single byte of the file that is designated as the reserved lock byte. +** A PENDING_LOCK is obtained by locking a designated byte different from +** the RESERVED_LOCK byte. +** +** On WinNT/2K/XP systems, LockFileEx() and UnlockFileEx() are available, +** which means we can use reader/writer locks. When reader/writer locks +** are used, the lock is placed on the same range of bytes that is used +** for probabilistic locking in Win95/98/ME. Hence, the locking scheme +** will support two or more Win95 readers or two or more WinNT readers. +** But a single Win95 reader will lock out all WinNT readers and a single +** WinNT reader will lock out all other Win95 readers. +** +** The following #defines specify the range of bytes used for locking. +** SHARED_SIZE is the number of bytes available in the pool from which +** a random byte is selected for a shared lock. The pool of bytes for +** shared locks begins at SHARED_FIRST. +** +** These #defines are available in sqlite_aux.h so that adaptors for +** connecting SQLite to other operating systems can use the same byte +** ranges for locking. In particular, the same locking strategy and +** byte ranges are used for Unix. This leaves open the possiblity of having +** clients on win95, winNT, and unix all talking to the same shared file +** and all locking correctly. To do so would require that samba (or whatever +** tool is being used for file sharing) implements locks correctly between +** windows and unix. I'm guessing that isn't likely to happen, but by +** using the same locking range we are at least open to the possibility. +** +** Locking in windows is manditory. For this reason, we cannot store +** actual data in the bytes used for locking. The pager never allocates +** the pages involved in locking therefore. SHARED_SIZE is selected so +** that all locks will fit on a single page even at the minimum page size. +** PENDING_BYTE defines the beginning of the locks. By default PENDING_BYTE +** is set high so that we don't have to allocate an unused page except +** for very large databases. But one should test the page skipping logic +** by setting PENDING_BYTE low and running the entire regression suite. +** +** Changing the value of PENDING_BYTE results in a subtly incompatible +** file format. Depending on how it is changed, you might not notice +** the incompatibility right away, even running a full regression test. +** The default location of PENDING_BYTE is the first byte past the +** 1GB boundary. +** +*/ +#ifndef SQLITE_TEST +#define PENDING_BYTE 0x40000000 /* First byte past the 1GB boundary */ +#else +SQLITE_API extern unsigned int sqlite3_pending_byte; +#define PENDING_BYTE sqlite3_pending_byte +#endif + +#define RESERVED_BYTE (PENDING_BYTE+1) +#define SHARED_FIRST (PENDING_BYTE+2) +#define SHARED_SIZE 510 + +/* +** Functions for accessing sqlite3_file methods +*/ +SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file*); +SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file*, void*, int amt, i64 offset); +SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file*, const void*, int amt, i64 offset); +SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file*, i64 size); +SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file*, int); +SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file*, i64 *pSize); +SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file*, int); +SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file*, int); +SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id); +SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file*,int,void*); +SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id); +SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id); + +/* +** Functions for accessing sqlite3_vfs methods +*/ +SQLITE_PRIVATE int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *); +SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *, const char *, int); +SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *, const char *, int); +SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *, int, char *); +SQLITE_PRIVATE int sqlite3OsFullPathname(sqlite3_vfs *, const char *, int, char *); +SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *, const char *); +SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *, int, char *); +SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *, void *, const char *); +SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *, void *); +SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *, int, char *); +SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *, int); +SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *, double*); + +/* +** Convenience functions for opening and closing files using +** sqlite3_malloc() to obtain space for the file-handle structure. +*/ +SQLITE_PRIVATE int sqlite3OsOpenMalloc(sqlite3_vfs *, const char *, sqlite3_file **, int,int*); +SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *); + +/* +** Each OS-specific backend defines an instance of the following +** structure for returning a pointer to its sqlite3_vfs. If OS_OTHER +** is defined (meaning that the application-defined OS interface layer +** is used) then there is no default VFS. The application must +** register one or more VFS structures using sqlite3_vfs_register() +** before attempting to use SQLite. +*/ +SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void); + +#endif /* _SQLITE_OS_H_ */ + +/************** End of os.h **************************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ +/************** Include mutex.h in the middle of sqliteInt.h *****************/ +/************** Begin file mutex.h *******************************************/ +/* +** 2007 August 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains the common header for all mutex implementations. +** The sqliteInt.h header #includes this file so that it is available +** to all source files. We break it out in an effort to keep the code +** better organized. +** +** NOTE: source files should *not* #include this header file directly. +** Source files should #include the sqliteInt.h file and let that file +** include this one indirectly. +** +** $Id: mutex.h,v 1.2 2007/08/30 14:10:30 drh Exp $ +*/ + + +#ifdef SQLITE_MUTEX_APPDEF +/* +** If SQLITE_MUTEX_APPDEF is defined, then this whole module is +** omitted and equivalent functionality must be provided by the +** application that links against the SQLite library. +*/ +#else +/* +** Figure out what version of the code to use. The choices are +** +** SQLITE_MUTEX_NOOP For single-threaded applications that +** do not desire error checking. +** +** SQLITE_MUTEX_NOOP_DEBUG For single-threaded applications with +** error checking to help verify that mutexes +** are being used correctly even though they +** are not needed. Used when SQLITE_DEBUG is +** defined on single-threaded builds. +** +** SQLITE_MUTEX_PTHREADS For multi-threaded applications on Unix. +** +** SQLITE_MUTEX_W32 For multi-threaded applications on Win32. +** +** SQLITE_MUTEX_OS2 For multi-threaded applications on OS/2. +*/ +#define SQLITE_MUTEX_NOOP 1 /* The default */ +#if defined(SQLITE_DEBUG) && !SQLITE_THREADSAFE +# undef SQLITE_MUTEX_NOOP +# define SQLITE_MUTEX_NOOP_DEBUG +#endif +#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_UNIX +# undef SQLITE_MUTEX_NOOP +# define SQLITE_MUTEX_PTHREADS +#endif +#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_WIN +# undef SQLITE_MUTEX_NOOP +# define SQLITE_MUTEX_W32 +#endif +#if defined(SQLITE_MUTEX_NOOP) && SQLITE_THREADSAFE && OS_OS2 +# undef SQLITE_MUTEX_NOOP +# define SQLITE_MUTEX_OS2 +#endif + +#ifdef SQLITE_MUTEX_NOOP +/* +** If this is a no-op implementation, implement everything as macros. +*/ +#define sqlite3_mutex_alloc(X) ((sqlite3_mutex*)8) +#define sqlite3_mutex_free(X) +#define sqlite3_mutex_enter(X) +#define sqlite3_mutex_try(X) SQLITE_OK +#define sqlite3_mutex_leave(X) +#define sqlite3_mutex_held(X) 1 +#define sqlite3_mutex_notheld(X) 1 +#endif + +#endif /* SQLITE_MUTEX_APPDEF */ + +/************** End of mutex.h ***********************************************/ +/************** Continuing where we left off in sqliteInt.h ******************/ + + +/* +** Each database file to be accessed by the system is an instance +** of the following structure. There are normally two of these structures +** in the sqlite.aDb[] array. aDb[0] is the main database file and +** aDb[1] is the database file used to hold temporary tables. Additional +** databases may be attached. +*/ +struct Db { + char *zName; /* Name of this database */ + Btree *pBt; /* The B*Tree structure for this database file */ + u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ + u8 safety_level; /* How aggressive at synching data to disk */ + void *pAux; /* Auxiliary data. Usually NULL */ + void (*xFreeAux)(void*); /* Routine to free pAux */ + Schema *pSchema; /* Pointer to database schema (possibly shared) */ +}; + +/* +** An instance of the following structure stores a database schema. +** +** If there are no virtual tables configured in this schema, the +** Schema.db variable is set to NULL. After the first virtual table +** has been added, it is set to point to the database connection +** used to create the connection. Once a virtual table has been +** added to the Schema structure and the Schema.db variable populated, +** only that database connection may use the Schema to prepare +** statements. +*/ +struct Schema { + int schema_cookie; /* Database schema version number for this file */ + Hash tblHash; /* All tables indexed by name */ + Hash idxHash; /* All (named) indices indexed by name */ + Hash trigHash; /* All triggers indexed by name */ + Hash aFKey; /* Foreign keys indexed by to-table */ + Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ + u8 file_format; /* Schema format version for this file */ + u8 enc; /* Text encoding used by this database */ + u16 flags; /* Flags associated with this schema */ + int cache_size; /* Number of pages to use in the cache */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + sqlite3 *db; /* "Owner" connection. See comment above */ +#endif +}; + +/* +** These macros can be used to test, set, or clear bits in the +** Db.flags field. +*/ +#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) +#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) +#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) +#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) + +/* +** Allowed values for the DB.flags field. +** +** The DB_SchemaLoaded flag is set after the database schema has been +** read into internal hash tables. +** +** DB_UnresetViews means that one or more views have column names that +** have been filled out. If the schema changes, these column names might +** changes and so the view will need to be reset. +*/ +#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ +#define DB_UnresetViews 0x0002 /* Some views have defined column names */ +#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ + +/* +** The number of different kinds of things that can be limited +** using the sqlite3_limit() interface. +*/ +#define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1) + +/* +** Each database is an instance of the following structure. +** +** The sqlite.lastRowid records the last insert rowid generated by an +** insert statement. Inserts on views do not affect its value. Each +** trigger has its own context, so that lastRowid can be updated inside +** triggers as usual. The previous value will be restored once the trigger +** exits. Upon entering a before or instead of trigger, lastRowid is no +** longer (since after version 2.8.12) reset to -1. +** +** The sqlite.nChange does not count changes within triggers and keeps no +** context. It is reset at start of sqlite3_exec. +** The sqlite.lsChange represents the number of changes made by the last +** insert, update, or delete statement. It remains constant throughout the +** length of a statement and is then updated by OP_SetCounts. It keeps a +** context stack just like lastRowid so that the count of changes +** within a trigger is not seen outside the trigger. Changes to views do not +** affect the value of lsChange. +** The sqlite.csChange keeps track of the number of current changes (since +** the last statement) and is used to update sqlite_lsChange. +** +** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 +** store the most recent error code and, if applicable, string. The +** internal function sqlite3Error() is used to set these variables +** consistently. +*/ +struct sqlite3 { + sqlite3_vfs *pVfs; /* OS Interface */ + int nDb; /* Number of backends currently in use */ + Db *aDb; /* All backends */ + int flags; /* Miscellanous flags. See below */ + int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ + int errCode; /* Most recent error code (SQLITE_*) */ + int errMask; /* & result codes with this before returning */ + u8 autoCommit; /* The auto-commit flag. */ + u8 temp_store; /* 1: file 2: memory 0: default */ + u8 mallocFailed; /* True if we have seen a malloc failure */ + u8 dfltLockMode; /* Default locking-mode for attached dbs */ + u8 dfltJournalMode; /* Default journal mode for attached dbs */ + signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ + int nextPagesize; /* Pagesize after VACUUM if >0 */ + int nTable; /* Number of tables in the database */ + CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ + i64 lastRowid; /* ROWID of most recent insert (see above) */ + i64 priorNewRowid; /* Last randomly generated ROWID */ + int magic; /* Magic number for detect library misuse */ + int nChange; /* Value returned by sqlite3_changes() */ + int nTotalChange; /* Value returned by sqlite3_total_changes() */ + sqlite3_mutex *mutex; /* Connection mutex */ + int aLimit[SQLITE_N_LIMIT]; /* Limits */ + struct sqlite3InitInfo { /* Information used during initialization */ + int iDb; /* When back is being initialized */ + int newTnum; /* Rootpage of table being initialized */ + u8 busy; /* TRUE if currently initializing */ + } init; + int nExtension; /* Number of loaded extensions */ + void **aExtension; /* Array of shared libraray handles */ + struct Vdbe *pVdbe; /* List of active virtual machines */ + int activeVdbeCnt; /* Number of vdbes currently executing */ + void (*xTrace)(void*,const char*); /* Trace function */ + void *pTraceArg; /* Argument to the trace function */ + void (*xProfile)(void*,const char*,u64); /* Profiling function */ + void *pProfileArg; /* Argument to profile function */ + void *pCommitArg; /* Argument to xCommitCallback() */ + int (*xCommitCallback)(void*); /* Invoked at every commit. */ + void *pRollbackArg; /* Argument to xRollbackCallback() */ + void (*xRollbackCallback)(void*); /* Invoked at every commit. */ + void *pUpdateArg; + void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); + void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); + void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); + void *pCollNeededArg; + sqlite3_value *pErr; /* Most recent error message */ + char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ + char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ + union { + int isInterrupted; /* True if sqlite3_interrupt has been called */ + double notUsed1; /* Spacer */ + } u1; +#ifndef SQLITE_OMIT_AUTHORIZATION + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); + /* Access authorization function */ + void *pAuthArg; /* 1st argument to the access auth function */ +#endif +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + int (*xProgress)(void *); /* The progress callback */ + void *pProgressArg; /* Argument to the progress callback */ + int nProgressOps; /* Number of opcodes for progress callback */ +#endif +#ifndef SQLITE_OMIT_VIRTUALTABLE + Hash aModule; /* populated by sqlite3_create_module() */ + Table *pVTab; /* vtab with active Connect/Create method */ + sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ + int nVTrans; /* Allocated size of aVTrans */ +#endif + Hash aFunc; /* All functions that can be in SQL exprs */ + Hash aCollSeq; /* All collating sequences */ + BusyHandler busyHandler; /* Busy callback */ + int busyTimeout; /* Busy handler timeout, in msec */ + Db aDbStatic[2]; /* Static space for the 2 default backends */ +#ifdef SQLITE_SSE + sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ +#endif +}; + +/* +** A macro to discover the encoding of a database. +*/ +#define ENC(db) ((db)->aDb[0].pSchema->enc) + +/* +** Possible values for the sqlite.flags and or Db.flags fields. +** +** On sqlite.flags, the SQLITE_InTrans value means that we have +** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement +** transaction is active on that particular database file. +*/ +#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ +#define SQLITE_InTrans 0x00000008 /* True if in a transaction */ +#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ +#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ +#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ +#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ + /* DELETE, or UPDATE and return */ + /* the count using a callback. */ +#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ + /* result set is empty */ +#define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ +#define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ +#define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ +#define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when + ** accessing read-only databases */ +#define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ +#define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ +#define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ +#define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ +#define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ + +#define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ +#define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ +#define SQLITE_Vtab 0x00100000 /* There exists a virtual table */ + +/* +** Possible values for the sqlite.magic field. +** The numbers are obtained at random and have no special meaning, other +** than being distinct from one another. +*/ +#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ +#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ +#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ +#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ +#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ + +/* +** Each SQL function is defined by an instance of the following +** structure. A pointer to this structure is stored in the sqlite.aFunc +** hash table. When multiple functions have the same name, the hash table +** points to a linked list of these structures. +*/ +struct FuncDef { + i16 nArg; /* Number of arguments. -1 means unlimited */ + u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ + u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ + u8 flags; /* Some combination of SQLITE_FUNC_* */ + void *pUserData; /* User data parameter */ + FuncDef *pNext; /* Next function with same name */ + void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ + void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ + void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ + char zName[1]; /* SQL name of the function. MUST BE LAST */ +}; + +/* +** Each SQLite module (virtual table definition) is defined by an +** instance of the following structure, stored in the sqlite3.aModule +** hash table. +*/ +struct Module { + const sqlite3_module *pModule; /* Callback pointers */ + const char *zName; /* Name passed to create_module() */ + void *pAux; /* pAux passed to create_module() */ + void (*xDestroy)(void *); /* Module destructor function */ +}; + +/* +** Possible values for FuncDef.flags +*/ +#define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ +#define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ +#define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ + +/* +** information about each column of an SQL table is held in an instance +** of this structure. +*/ +struct Column { + char *zName; /* Name of this column */ + Expr *pDflt; /* Default value of this column */ + char *zType; /* Data type for this column */ + char *zColl; /* Collating sequence. If NULL, use the default */ + u8 notNull; /* True if there is a NOT NULL constraint */ + u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ + char affinity; /* One of the SQLITE_AFF_... values */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + u8 isHidden; /* True if this column is 'hidden' */ +#endif +}; + +/* +** A "Collating Sequence" is defined by an instance of the following +** structure. Conceptually, a collating sequence consists of a name and +** a comparison routine that defines the order of that sequence. +** +** There may two seperate implementations of the collation function, one +** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that +** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine +** native byte order. When a collation sequence is invoked, SQLite selects +** the version that will require the least expensive encoding +** translations, if any. +** +** The CollSeq.pUser member variable is an extra parameter that passed in +** as the first argument to the UTF-8 comparison function, xCmp. +** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, +** xCmp16. +** +** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the +** collating sequence is undefined. Indices built on an undefined +** collating sequence may not be read or written. +*/ +struct CollSeq { + char *zName; /* Name of the collating sequence, UTF-8 encoded */ + u8 enc; /* Text encoding handled by xCmp() */ + u8 type; /* One of the SQLITE_COLL_... values below */ + void *pUser; /* First argument to xCmp() */ + int (*xCmp)(void*,int, const void*, int, const void*); + void (*xDel)(void*); /* Destructor for pUser */ +}; + +/* +** Allowed values of CollSeq flags: +*/ +#define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ +#define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ +#define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ +#define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ + +/* +** A sort order can be either ASC or DESC. +*/ +#define SQLITE_SO_ASC 0 /* Sort in ascending order */ +#define SQLITE_SO_DESC 1 /* Sort in ascending order */ + +/* +** Column affinity types. +** +** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and +** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve +** the speed a little by number the values consecutively. +** +** But rather than start with 0 or 1, we begin with 'a'. That way, +** when multiple affinity types are concatenated into a string and +** used as the P4 operand, they will be more readable. +** +** Note also that the numeric types are grouped together so that testing +** for a numeric type is a single comparison. +*/ +#define SQLITE_AFF_TEXT 'a' +#define SQLITE_AFF_NONE 'b' +#define SQLITE_AFF_NUMERIC 'c' +#define SQLITE_AFF_INTEGER 'd' +#define SQLITE_AFF_REAL 'e' + +#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) + +/* +** The SQLITE_AFF_MASK values masks off the significant bits of an +** affinity value. +*/ +#define SQLITE_AFF_MASK 0x67 + +/* +** Additional bit values that can be ORed with an affinity without +** changing the affinity. +*/ +#define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ +#define SQLITE_NULLEQUAL 0x10 /* compare NULLs equal */ +#define SQLITE_STOREP2 0x80 /* Store result in reg[P2] rather than jump */ + +/* +** Each SQL table is represented in memory by an instance of the +** following structure. +** +** Table.zName is the name of the table. The case of the original +** CREATE TABLE statement is stored, but case is not significant for +** comparisons. +** +** Table.nCol is the number of columns in this table. Table.aCol is a +** pointer to an array of Column structures, one for each column. +** +** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of +** the column that is that key. Otherwise Table.iPKey is negative. Note +** that the datatype of the PRIMARY KEY must be INTEGER for this field to +** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of +** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid +** is generated for each row of the table. Table.hasPrimKey is true if +** the table has any PRIMARY KEY, INTEGER or otherwise. +** +** Table.tnum is the page number for the root BTree page of the table in the +** database file. If Table.iDb is the index of the database table backend +** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that +** holds temporary tables and indices. If Table.isEphem +** is true, then the table is stored in a file that is automatically deleted +** when the VDBE cursor to the table is closed. In this case Table.tnum +** refers VDBE cursor number that holds the table open, not to the root +** page number. Transient tables are used to hold the results of a +** sub-query that appears instead of a real table name in the FROM clause +** of a SELECT statement. +*/ +struct Table { + char *zName; /* Name of the table */ + int nCol; /* Number of columns in this table */ + Column *aCol; /* Information about each column */ + int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ + Index *pIndex; /* List of SQL indexes on this table. */ + int tnum; /* Root BTree node for this table (see note above) */ + Select *pSelect; /* NULL for tables. Points to definition if a view. */ + int nRef; /* Number of pointers to this Table */ + Trigger *pTrigger; /* List of SQL triggers on this table */ + FKey *pFKey; /* Linked list of all foreign keys in this table */ + char *zColAff; /* String defining the affinity of each column */ +#ifndef SQLITE_OMIT_CHECK + Expr *pCheck; /* The AND of all CHECK constraints */ +#endif +#ifndef SQLITE_OMIT_ALTERTABLE + int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ +#endif + u8 readOnly; /* True if this table should not be written by the user */ + u8 isEphem; /* True if created using OP_OpenEphermeral */ + u8 hasPrimKey; /* True if there exists a primary key */ + u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ + u8 autoInc; /* True if the integer primary key is autoincrement */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + u8 isVirtual; /* True if this is a virtual table */ + u8 isCommit; /* True once the CREATE TABLE has been committed */ + Module *pMod; /* Pointer to the implementation of the module */ + sqlite3_vtab *pVtab; /* Pointer to the module instance */ + int nModuleArg; /* Number of arguments to the module */ + char **azModuleArg; /* Text of all module args. [0] is module name */ +#endif + Schema *pSchema; /* Schema that contains this table */ +}; + +/* +** Test to see whether or not a table is a virtual table. This is +** done as a macro so that it will be optimized out when virtual +** table support is omitted from the build. +*/ +#ifndef SQLITE_OMIT_VIRTUALTABLE +# define IsVirtual(X) ((X)->isVirtual) +# define IsHiddenColumn(X) ((X)->isHidden) +#else +# define IsVirtual(X) 0 +# define IsHiddenColumn(X) 0 +#endif + +/* +** Each foreign key constraint is an instance of the following structure. +** +** A foreign key is associated with two tables. The "from" table is +** the table that contains the REFERENCES clause that creates the foreign +** key. The "to" table is the table that is named in the REFERENCES clause. +** Consider this example: +** +** CREATE TABLE ex1( +** a INTEGER PRIMARY KEY, +** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) +** ); +** +** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". +** +** Each REFERENCES clause generates an instance of the following structure +** which is attached to the from-table. The to-table need not exist when +** the from-table is created. The existance of the to-table is not checked +** until an attempt is made to insert data into the from-table. +** +** The sqlite.aFKey hash table stores pointers to this structure +** given the name of a to-table. For each to-table, all foreign keys +** associated with that table are on a linked list using the FKey.pNextTo +** field. +*/ +struct FKey { + Table *pFrom; /* The table that constains the REFERENCES clause */ + FKey *pNextFrom; /* Next foreign key in pFrom */ + char *zTo; /* Name of table that the key points to */ + FKey *pNextTo; /* Next foreign key that points to zTo */ + int nCol; /* Number of columns in this key */ + struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ + int iFrom; /* Index of column in pFrom */ + char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ + } *aCol; /* One entry for each of nCol column s */ + u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ + u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ + u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ + u8 insertConf; /* How to resolve conflicts that occur on INSERT */ +}; + +/* +** SQLite supports many different ways to resolve a constraint +** error. ROLLBACK processing means that a constraint violation +** causes the operation in process to fail and for the current transaction +** to be rolled back. ABORT processing means the operation in process +** fails and any prior changes from that one operation are backed out, +** but the transaction is not rolled back. FAIL processing means that +** the operation in progress stops and returns an error code. But prior +** changes due to the same operation are not backed out and no rollback +** occurs. IGNORE means that the particular row that caused the constraint +** error is not inserted or updated. Processing continues and no error +** is returned. REPLACE means that preexisting database rows that caused +** a UNIQUE constraint violation are removed so that the new insert or +** update can proceed. Processing continues and no error is reported. +** +** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. +** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the +** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign +** key is set to NULL. CASCADE means that a DELETE or UPDATE of the +** referenced table row is propagated into the row that holds the +** foreign key. +** +** The following symbolic values are used to record which type +** of action to take. +*/ +#define OE_None 0 /* There is no constraint to check */ +#define OE_Rollback 1 /* Fail the operation and rollback the transaction */ +#define OE_Abort 2 /* Back out changes but do no rollback transaction */ +#define OE_Fail 3 /* Stop the operation but leave all prior changes */ +#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ +#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ + +#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ +#define OE_SetNull 7 /* Set the foreign key value to NULL */ +#define OE_SetDflt 8 /* Set the foreign key value to its default */ +#define OE_Cascade 9 /* Cascade the changes */ + +#define OE_Default 99 /* Do whatever the default action is */ + + +/* +** An instance of the following structure is passed as the first +** argument to sqlite3VdbeKeyCompare and is used to control the +** comparison of the two index keys. +** +** If the KeyInfo.incrKey value is true and the comparison would +** otherwise be equal, then return a result as if the second key +** were larger. +*/ +struct KeyInfo { + sqlite3 *db; /* The database connection */ + u8 enc; /* Text encoding - one of the TEXT_Utf* values */ + u8 incrKey; /* Increase 2nd key by epsilon before comparison */ + u8 prefixIsEqual; /* Treat a prefix as equal */ + int nField; /* Number of entries in aColl[] */ + u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ + CollSeq *aColl[1]; /* Collating sequence for each term of the key */ +}; + +/* +** Each SQL index is represented in memory by an +** instance of the following structure. +** +** The columns of the table that are to be indexed are described +** by the aiColumn[] field of this structure. For example, suppose +** we have the following table and index: +** +** CREATE TABLE Ex1(c1 int, c2 int, c3 text); +** CREATE INDEX Ex2 ON Ex1(c3,c1); +** +** In the Table structure describing Ex1, nCol==3 because there are +** three columns in the table. In the Index structure describing +** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. +** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the +** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. +** The second column to be indexed (c1) has an index of 0 in +** Ex1.aCol[], hence Ex2.aiColumn[1]==0. +** +** The Index.onError field determines whether or not the indexed columns +** must be unique and what to do if they are not. When Index.onError=OE_None, +** it means this is not a unique index. Otherwise it is a unique index +** and the value of Index.onError indicate the which conflict resolution +** algorithm to employ whenever an attempt is made to insert a non-unique +** element. +*/ +struct Index { + char *zName; /* Name of this index */ + int nColumn; /* Number of columns in the table used by this index */ + int *aiColumn; /* Which columns are used by this index. 1st is 0 */ + unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ + Table *pTable; /* The SQL table being indexed */ + int tnum; /* Page containing root of this index in database file */ + u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ + u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ + char *zColAff; /* String defining the affinity of each column */ + Index *pNext; /* The next index associated with the same table */ + Schema *pSchema; /* Schema containing this index */ + u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ + char **azColl; /* Array of collation sequence names for index */ +}; + +/* +** Each token coming out of the lexer is an instance of +** this structure. Tokens are also used as part of an expression. +** +** Note if Token.z==0 then Token.dyn and Token.n are undefined and +** may contain random values. Do not make any assuptions about Token.dyn +** and Token.n when Token.z==0. +*/ +struct Token { + const unsigned char *z; /* Text of the token. Not NULL-terminated! */ + unsigned dyn : 1; /* True for malloced memory, false for static */ + unsigned n : 31; /* Number of characters in this token */ +}; + +/* +** An instance of this structure contains information needed to generate +** code for a SELECT that contains aggregate functions. +** +** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a +** pointer to this structure. The Expr.iColumn field is the index in +** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate +** code for that node. +** +** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the +** original Select structure that describes the SELECT statement. These +** fields do not need to be freed when deallocating the AggInfo structure. +*/ +struct AggInfo { + u8 directMode; /* Direct rendering mode means take data directly + ** from source tables rather than from accumulators */ + u8 useSortingIdx; /* In direct mode, reference the sorting index rather + ** than the source table */ + int sortingIdx; /* Cursor number of the sorting index */ + ExprList *pGroupBy; /* The group by clause */ + int nSortingColumn; /* Number of columns in the sorting index */ + struct AggInfo_col { /* For each column used in source tables */ + Table *pTab; /* Source table */ + int iTable; /* Cursor number of the source table */ + int iColumn; /* Column number within the source table */ + int iSorterColumn; /* Column number in the sorting index */ + int iMem; /* Memory location that acts as accumulator */ + Expr *pExpr; /* The original expression */ + } *aCol; + int nColumn; /* Number of used entries in aCol[] */ + int nColumnAlloc; /* Number of slots allocated for aCol[] */ + int nAccumulator; /* Number of columns that show through to the output. + ** Additional columns are used only as parameters to + ** aggregate functions */ + struct AggInfo_func { /* For each aggregate function */ + Expr *pExpr; /* Expression encoding the function */ + FuncDef *pFunc; /* The aggregate function implementation */ + int iMem; /* Memory location that acts as accumulator */ + int iDistinct; /* Ephermeral table used to enforce DISTINCT */ + } *aFunc; + int nFunc; /* Number of entries in aFunc[] */ + int nFuncAlloc; /* Number of slots allocated for aFunc[] */ +}; + +/* +** Each node of an expression in the parse tree is an instance +** of this structure. +** +** Expr.op is the opcode. The integer parser token codes are reused +** as opcodes here. For example, the parser defines TK_GE to be an integer +** code representing the ">=" operator. This same integer code is reused +** to represent the greater-than-or-equal-to operator in the expression +** tree. +** +** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list +** of argument if the expression is a function. +** +** Expr.token is the operator token for this node. For some expressions +** that have subexpressions, Expr.token can be the complete text that gave +** rise to the Expr. In the latter case, the token is marked as being +** a compound token. +** +** An expression of the form ID or ID.ID refers to a column in a table. +** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is +** the integer cursor number of a VDBE cursor pointing to that table and +** Expr.iColumn is the column number for the specific column. If the +** expression is used as a result in an aggregate SELECT, then the +** value is also stored in the Expr.iAgg column in the aggregate so that +** it can be accessed after all aggregates are computed. +** +** If the expression is a function, the Expr.iTable is an integer code +** representing which function. If the expression is an unbound variable +** marker (a question mark character '?' in the original SQL) then the +** Expr.iTable holds the index number for that variable. +** +** If the expression is a subquery then Expr.iColumn holds an integer +** register number containing the result of the subquery. If the +** subquery gives a constant result, then iTable is -1. If the subquery +** gives a different answer at different times during statement processing +** then iTable is the address of a subroutine that computes the subquery. +** +** The Expr.pSelect field points to a SELECT statement. The SELECT might +** be the right operand of an IN operator. Or, if a scalar SELECT appears +** in an expression the opcode is TK_SELECT and Expr.pSelect is the only +** operand. +** +** If the Expr is of type OP_Column, and the table it is selecting from +** is a disk table or the "old.*" pseudo-table, then pTab points to the +** corresponding table definition. +*/ +struct Expr { + u8 op; /* Operation performed by this node */ + char affinity; /* The affinity of the column or 0 if not a column */ + u16 flags; /* Various flags. See below */ + CollSeq *pColl; /* The collation type of the column or 0 */ + Expr *pLeft, *pRight; /* Left and right subnodes */ + ExprList *pList; /* A list of expressions used as function arguments + ** or in "<expr> IN (<expr-list)" */ + Token token; /* An operand token */ + Token span; /* Complete text of the expression */ + int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the + ** iColumn-th field of the iTable-th table. */ + AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ + int iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ + int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ + Select *pSelect; /* When the expression is a sub-select. Also the + ** right side of "<expr> IN (<select>)" */ + Table *pTab; /* Table for OP_Column expressions. */ +/* Schema *pSchema; */ +#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 + int nHeight; /* Height of the tree headed by this node */ +#endif +}; + +/* +** The following are the meanings of bits in the Expr.flags field. +*/ +#define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ +#define EP_Agg 0x0002 /* Contains one or more aggregate functions */ +#define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ +#define EP_Error 0x0008 /* Expression contains one or more errors */ +#define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ +#define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ +#define EP_Dequoted 0x0040 /* True if the string has been dequoted */ +#define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ +#define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ +#define EP_AnyAff 0x0200 /* Can take a cached column of any affinity */ +#define EP_FixedDest 0x0400 /* Result needed in a specific register */ + +/* +** These macros can be used to test, set, or clear bits in the +** Expr.flags field. +*/ +#define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) +#define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) +#define ExprSetProperty(E,P) (E)->flags|=(P) +#define ExprClearProperty(E,P) (E)->flags&=~(P) + +/* +** A list of expressions. Each expression may optionally have a +** name. An expr/name combination can be used in several ways, such +** as the list of "expr AS ID" fields following a "SELECT" or in the +** list of "ID = expr" items in an UPDATE. A list of expressions can +** also be used as the argument to a function, in which case the a.zName +** field is not used. +*/ +struct ExprList { + int nExpr; /* Number of expressions on the list */ + int nAlloc; /* Number of entries allocated below */ + int iECursor; /* VDBE Cursor associated with this ExprList */ + struct ExprList_item { + Expr *pExpr; /* The list of expressions */ + char *zName; /* Token associated with this expression */ + u8 sortOrder; /* 1 for DESC or 0 for ASC */ + u8 isAgg; /* True if this is an aggregate like count(*) */ + u8 done; /* A flag to indicate when processing is finished */ + } *a; /* One entry for each expression */ +}; + +/* +** An instance of this structure can hold a simple list of identifiers, +** such as the list "a,b,c" in the following statements: +** +** INSERT INTO t(a,b,c) VALUES ...; +** CREATE INDEX idx ON t(a,b,c); +** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; +** +** The IdList.a.idx field is used when the IdList represents the list of +** column names after a table name in an INSERT statement. In the statement +** +** INSERT INTO t(a,b,c) ... +** +** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. +*/ +struct IdList { + struct IdList_item { + char *zName; /* Name of the identifier */ + int idx; /* Index in some Table.aCol[] of a column named zName */ + } *a; + int nId; /* Number of identifiers on the list */ + int nAlloc; /* Number of entries allocated for a[] below */ +}; + +/* +** The bitmask datatype defined below is used for various optimizations. +** +** Changing this from a 64-bit to a 32-bit type limits the number of +** tables in a join to 32 instead of 64. But it also reduces the size +** of the library by 738 bytes on ix86. +*/ +typedef u64 Bitmask; + +/* +** The following structure describes the FROM clause of a SELECT statement. +** Each table or subquery in the FROM clause is a separate element of +** the SrcList.a[] array. +** +** With the addition of multiple database support, the following structure +** can also be used to describe a particular table such as the table that +** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, +** such a table must be a simple name: ID. But in SQLite, the table can +** now be identified by a database name, a dot, then the table name: ID.ID. +** +** The jointype starts out showing the join type between the current table +** and the next table on the list. The parser builds the list this way. +** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each +** jointype expresses the join between the table and the previous table. +*/ +struct SrcList { + i16 nSrc; /* Number of tables or subqueries in the FROM clause */ + i16 nAlloc; /* Number of entries allocated in a[] below */ + struct SrcList_item { + char *zDatabase; /* Name of database holding this table */ + char *zName; /* Name of the table */ + char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ + Table *pTab; /* An SQL table corresponding to zName */ + Select *pSelect; /* A SELECT statement used in place of a table name */ + u8 isPopulated; /* Temporary table associated with SELECT is populated */ + u8 jointype; /* Type of join between this able and the previous */ + int iCursor; /* The VDBE cursor number used to access this table */ + Expr *pOn; /* The ON clause of a join */ + IdList *pUsing; /* The USING clause of a join */ + Bitmask colUsed; /* Bit N (1<<N) set if column N or pTab is used */ + } a[1]; /* One entry for each identifier on the list */ +}; + +/* +** Permitted values of the SrcList.a.jointype field +*/ +#define JT_INNER 0x0001 /* Any kind of inner or cross join */ +#define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ +#define JT_NATURAL 0x0004 /* True for a "natural" join */ +#define JT_LEFT 0x0008 /* Left outer join */ +#define JT_RIGHT 0x0010 /* Right outer join */ +#define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ +#define JT_ERROR 0x0040 /* unknown or unsupported join type */ + +/* +** For each nested loop in a WHERE clause implementation, the WhereInfo +** structure contains a single instance of this structure. This structure +** is intended to be private the the where.c module and should not be +** access or modified by other modules. +** +** The pIdxInfo and pBestIdx fields are used to help pick the best +** index on a virtual table. The pIdxInfo pointer contains indexing +** information for the i-th table in the FROM clause before reordering. +** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. +** The pBestIdx pointer is a copy of pIdxInfo for the i-th table after +** FROM clause ordering. This is a little confusing so I will repeat +** it in different words. WhereInfo.a[i].pIdxInfo is index information +** for WhereInfo.pTabList.a[i]. WhereInfo.a[i].pBestInfo is the +** index information for the i-th loop of the join. pBestInfo is always +** either NULL or a copy of some pIdxInfo. So for cleanup it is +** sufficient to free all of the pIdxInfo pointers. +** +*/ +struct WhereLevel { + int iFrom; /* Which entry in the FROM clause */ + int flags; /* Flags associated with this level */ + int iMem; /* First memory cell used by this level */ + int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ + Index *pIdx; /* Index used. NULL if no index */ + int iTabCur; /* The VDBE cursor used to access the table */ + int iIdxCur; /* The VDBE cursor used to acesss pIdx */ + int brk; /* Jump here to break out of the loop */ + int nxt; /* Jump here to start the next IN combination */ + int cont; /* Jump here to continue with the next loop cycle */ + int top; /* First instruction of interior of the loop */ + int op, p1, p2; /* Opcode used to terminate the loop */ + int nEq; /* Number of == or IN constraints on this loop */ + int nIn; /* Number of IN operators constraining this loop */ + struct InLoop { + int iCur; /* The VDBE cursor used by this IN operator */ + int topAddr; /* Top of the IN loop */ + } *aInLoop; /* Information about each nested IN operator */ + sqlite3_index_info *pBestIdx; /* Index information for this level */ + + /* The following field is really not part of the current level. But + ** we need a place to cache index information for each table in the + ** FROM clause and the WhereLevel structure is a convenient place. + */ + sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ +}; + +/* +** Flags appropriate for the wflags parameter of sqlite3WhereBegin(). +*/ +#define WHERE_ORDERBY_NORMAL 0 /* No-op */ +#define WHERE_ORDERBY_MIN 1 /* ORDER BY processing for min() func */ +#define WHERE_ORDERBY_MAX 2 /* ORDER BY processing for max() func */ +#define WHERE_ONEPASS_DESIRED 4 /* Want to do one-pass UPDATE/DELETE */ + +/* +** The WHERE clause processing routine has two halves. The +** first part does the start of the WHERE loop and the second +** half does the tail of the WHERE loop. An instance of +** this structure is returned by the first half and passed +** into the second half to give some continuity. +*/ +struct WhereInfo { + Parse *pParse; /* Parsing and code generating context */ + u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ + SrcList *pTabList; /* List of tables in the join */ + int iTop; /* The very beginning of the WHERE loop */ + int iContinue; /* Jump here to continue with next record */ + int iBreak; /* Jump here to break out of the loop */ + int nLevel; /* Number of nested loop */ + sqlite3_index_info **apInfo; /* Array of pointers to index info structures */ + WhereLevel a[1]; /* Information about each nest loop in the WHERE */ +}; + +/* +** A NameContext defines a context in which to resolve table and column +** names. The context consists of a list of tables (the pSrcList) field and +** a list of named expression (pEList). The named expression list may +** be NULL. The pSrc corresponds to the FROM clause of a SELECT or +** to the table being operated on by INSERT, UPDATE, or DELETE. The +** pEList corresponds to the result set of a SELECT and is NULL for +** other statements. +** +** NameContexts can be nested. When resolving names, the inner-most +** context is searched first. If no match is found, the next outer +** context is checked. If there is still no match, the next context +** is checked. This process continues until either a match is found +** or all contexts are check. When a match is found, the nRef member of +** the context containing the match is incremented. +** +** Each subquery gets a new NameContext. The pNext field points to the +** NameContext in the parent query. Thus the process of scanning the +** NameContext list corresponds to searching through successively outer +** subqueries looking for a match. +*/ +struct NameContext { + Parse *pParse; /* The parser */ + SrcList *pSrcList; /* One or more tables used to resolve names */ + ExprList *pEList; /* Optional list of named expressions */ + int nRef; /* Number of names resolved by this context */ + int nErr; /* Number of errors encountered while resolving names */ + u8 allowAgg; /* Aggregate functions allowed here */ + u8 hasAgg; /* True if aggregates are seen */ + u8 isCheck; /* True if resolving names in a CHECK constraint */ + int nDepth; /* Depth of subquery recursion. 1 for no recursion */ + AggInfo *pAggInfo; /* Information about aggregates at this level */ + NameContext *pNext; /* Next outer name context. NULL for outermost */ +}; + +/* +** An instance of the following structure contains all information +** needed to generate code for a single SELECT statement. +** +** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. +** If there is a LIMIT clause, the parser sets nLimit to the value of the +** limit and nOffset to the value of the offset (or 0 if there is not +** offset). But later on, nLimit and nOffset become the memory locations +** in the VDBE that record the limit and offset counters. +** +** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. +** These addresses must be stored so that we can go back and fill in +** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor +** the number of columns in P2 can be computed at the same time +** as the OP_OpenEphm instruction is coded because not +** enough information about the compound query is known at that point. +** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences +** for the result set. The KeyInfo for addrOpenTran[2] contains collating +** sequences for the ORDER BY clause. +*/ +struct Select { + ExprList *pEList; /* The fields of the result */ + u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ + u8 isDistinct; /* True if the DISTINCT keyword is present */ + u8 isResolved; /* True once sqlite3SelectResolve() has run. */ + u8 isAgg; /* True if this is an aggregate query */ + u8 usesEphm; /* True if uses an OpenEphemeral opcode */ + u8 disallowOrderBy; /* Do not allow an ORDER BY to be attached if TRUE */ + char affinity; /* MakeRecord with this affinity for SRT_Set */ + SrcList *pSrc; /* The FROM clause */ + Expr *pWhere; /* The WHERE clause */ + ExprList *pGroupBy; /* The GROUP BY clause */ + Expr *pHaving; /* The HAVING clause */ + ExprList *pOrderBy; /* The ORDER BY clause */ + Select *pPrior; /* Prior select in a compound select statement */ + Select *pNext; /* Next select to the left in a compound */ + Select *pRightmost; /* Right-most select in a compound select statement */ + Expr *pLimit; /* LIMIT expression. NULL means not used. */ + Expr *pOffset; /* OFFSET expression. NULL means not used. */ + int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ + int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ +}; + +/* +** The results of a select can be distributed in several ways. +*/ +#define SRT_Union 1 /* Store result as keys in an index */ +#define SRT_Except 2 /* Remove result from a UNION index */ +#define SRT_Exists 3 /* Store 1 if the result is not empty */ +#define SRT_Discard 4 /* Do not save the results anywhere */ + +/* The ORDER BY clause is ignored for all of the above */ +#define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) + +#define SRT_Callback 5 /* Invoke a callback with each row of result */ +#define SRT_Mem 6 /* Store result in a memory cell */ +#define SRT_Set 7 /* Store non-null results as keys in an index */ +#define SRT_Table 8 /* Store result as data with an automatic rowid */ +#define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ +#define SRT_Subroutine 10 /* Call a subroutine to handle results */ + +/* +** A structure used to customize the behaviour of sqlite3Select(). See +** comments above sqlite3Select() for details. +*/ +typedef struct SelectDest SelectDest; +struct SelectDest { + u8 eDest; /* How to dispose of the results */ + u8 affinity; /* Affinity used when eDest==SRT_Set */ + int iParm; /* A parameter used by the eDest disposal method */ + int iMem; /* Base register where results are written */ + int nMem; /* Number of registers allocated */ +}; + +/* +** An SQL parser context. A copy of this structure is passed through +** the parser and down into all the parser action routine in order to +** carry around information that is global to the entire parse. +** +** The structure is divided into two parts. When the parser and code +** generate call themselves recursively, the first part of the structure +** is constant but the second part is reset at the beginning and end of +** each recursion. +** +** The nTableLock and aTableLock variables are only used if the shared-cache +** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are +** used to store the set of table-locks required by the statement being +** compiled. Function sqlite3TableLock() is used to add entries to the +** list. +*/ +struct Parse { + sqlite3 *db; /* The main database structure */ + int rc; /* Return code from execution */ + char *zErrMsg; /* An error message */ + Vdbe *pVdbe; /* An engine for executing database bytecode */ + u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ + u8 nameClash; /* A permanent table name clashes with temp table name */ + u8 checkSchema; /* Causes schema cookie check after an error */ + u8 nested; /* Number of nested calls to the parser/code generator */ + u8 parseError; /* True after a parsing error. Ticket #1794 */ + u8 nTempReg; /* Number of temporary registers in aTempReg[] */ + u8 nTempInUse; /* Number of aTempReg[] currently checked out */ + int aTempReg[8]; /* Holding area for temporary registers */ + int nRangeReg; /* Size of the temporary register block */ + int iRangeReg; /* First register in temporary register block */ + int nErr; /* Number of errors seen */ + int nTab; /* Number of previously allocated VDBE cursors */ + int nMem; /* Number of memory cells used so far */ + int nSet; /* Number of sets used so far */ + int ckBase; /* Base register of data during check constraints */ + int disableColCache; /* True to disable adding to column cache */ + int nColCache; /* Number of entries in the column cache */ + int iColCache; /* Next entry of the cache to replace */ + struct yColCache { + int iTable; /* Table cursor number */ + int iColumn; /* Table column number */ + char affChange; /* True if this register has had an affinity change */ + int iReg; /* Register holding value of this column */ + } aColCache[10]; /* One for each valid column cache entry */ + u32 writeMask; /* Start a write transaction on these databases */ + u32 cookieMask; /* Bitmask of schema verified databases */ + int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ + int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ +#ifndef SQLITE_OMIT_SHARED_CACHE + int nTableLock; /* Number of locks in aTableLock */ + TableLock *aTableLock; /* Required table locks for shared-cache mode */ +#endif + int regRowid; /* Register holding rowid of CREATE TABLE entry */ + int regRoot; /* Register holding root page number for new objects */ + + /* Above is constant between recursions. Below is reset before and after + ** each recursion */ + + int nVar; /* Number of '?' variables seen in the SQL so far */ + int nVarExpr; /* Number of used slots in apVarExpr[] */ + int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ + Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ + u8 explain; /* True if the EXPLAIN flag is found on the query */ + Token sErrToken; /* The token at which the error occurred */ + Token sNameToken; /* Token with unqualified schema object name */ + Token sLastToken; /* The last token parsed */ + const char *zSql; /* All SQL text */ + const char *zTail; /* All SQL text past the last semicolon parsed */ + Table *pNewTable; /* A table being constructed by CREATE TABLE */ + Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ + TriggerStack *trigStack; /* Trigger actions being coded */ + const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + Token sArg; /* Complete text of a module argument */ + u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ + int nVtabLock; /* Number of virtual tables to lock */ + Table **apVtabLock; /* Pointer to virtual tables needing locking */ +#endif +#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 + int nHeight; /* Expression tree height of current sub-select */ +#endif +}; + +#ifdef SQLITE_OMIT_VIRTUALTABLE + #define IN_DECLARE_VTAB 0 +#else + #define IN_DECLARE_VTAB (pParse->declareVtab) +#endif + +/* +** An instance of the following structure can be declared on a stack and used +** to save the Parse.zAuthContext value so that it can be restored later. +*/ +struct AuthContext { + const char *zAuthContext; /* Put saved Parse.zAuthContext here */ + Parse *pParse; /* The Parse structure */ +}; + +/* +** Bitfield flags for P2 value in OP_Insert and OP_Delete +*/ +#define OPFLAG_NCHANGE 1 /* Set to update db->nChange */ +#define OPFLAG_LASTROWID 2 /* Set to update db->lastRowid */ +#define OPFLAG_ISUPDATE 4 /* This OP_Insert is an sql UPDATE */ +#define OPFLAG_APPEND 8 /* This is likely to be an append */ + +/* + * Each trigger present in the database schema is stored as an instance of + * struct Trigger. + * + * Pointers to instances of struct Trigger are stored in two ways. + * 1. In the "trigHash" hash table (part of the sqlite3* that represents the + * database). This allows Trigger structures to be retrieved by name. + * 2. All triggers associated with a single table form a linked list, using the + * pNext member of struct Trigger. A pointer to the first element of the + * linked list is stored as the "pTrigger" member of the associated + * struct Table. + * + * The "step_list" member points to the first element of a linked list + * containing the SQL statements specified as the trigger program. + */ +struct Trigger { + char *name; /* The name of the trigger */ + char *table; /* The table or view to which the trigger applies */ + u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ + u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ + Expr *pWhen; /* The WHEN clause of the expresion (may be NULL) */ + IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, + the <column-list> is stored here */ + Token nameToken; /* Token containing zName. Use during parsing only */ + Schema *pSchema; /* Schema containing the trigger */ + Schema *pTabSchema; /* Schema containing the table */ + TriggerStep *step_list; /* Link list of trigger program steps */ + Trigger *pNext; /* Next trigger associated with the table */ +}; + +/* +** A trigger is either a BEFORE or an AFTER trigger. The following constants +** determine which. +** +** If there are multiple triggers, you might of some BEFORE and some AFTER. +** In that cases, the constants below can be ORed together. +*/ +#define TRIGGER_BEFORE 1 +#define TRIGGER_AFTER 2 + +/* + * An instance of struct TriggerStep is used to store a single SQL statement + * that is a part of a trigger-program. + * + * Instances of struct TriggerStep are stored in a singly linked list (linked + * using the "pNext" member) referenced by the "step_list" member of the + * associated struct Trigger instance. The first element of the linked list is + * the first step of the trigger-program. + * + * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or + * "SELECT" statement. The meanings of the other members is determined by the + * value of "op" as follows: + * + * (op == TK_INSERT) + * orconf -> stores the ON CONFLICT algorithm + * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then + * this stores a pointer to the SELECT statement. Otherwise NULL. + * target -> A token holding the name of the table to insert into. + * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then + * this stores values to be inserted. Otherwise NULL. + * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... + * statement, then this stores the column-names to be + * inserted into. + * + * (op == TK_DELETE) + * target -> A token holding the name of the table to delete from. + * pWhere -> The WHERE clause of the DELETE statement if one is specified. + * Otherwise NULL. + * + * (op == TK_UPDATE) + * target -> A token holding the name of the table to update rows of. + * pWhere -> The WHERE clause of the UPDATE statement if one is specified. + * Otherwise NULL. + * pExprList -> A list of the columns to update and the expressions to update + * them to. See sqlite3Update() documentation of "pChanges" + * argument. + * + */ +struct TriggerStep { + int op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ + int orconf; /* OE_Rollback etc. */ + Trigger *pTrig; /* The trigger that this step is a part of */ + + Select *pSelect; /* Valid for SELECT and sometimes + INSERT steps (when pExprList == 0) */ + Token target; /* Valid for DELETE, UPDATE, INSERT steps */ + Expr *pWhere; /* Valid for DELETE, UPDATE steps */ + ExprList *pExprList; /* Valid for UPDATE statements and sometimes + INSERT steps (when pSelect == 0) */ + IdList *pIdList; /* Valid for INSERT statements only */ + TriggerStep *pNext; /* Next in the link-list */ + TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ +}; + +/* + * An instance of struct TriggerStack stores information required during code + * generation of a single trigger program. While the trigger program is being + * coded, its associated TriggerStack instance is pointed to by the + * "pTriggerStack" member of the Parse structure. + * + * The pTab member points to the table that triggers are being coded on. The + * newIdx member contains the index of the vdbe cursor that points at the temp + * table that stores the new.* references. If new.* references are not valid + * for the trigger being coded (for example an ON DELETE trigger), then newIdx + * is set to -1. The oldIdx member is analogous to newIdx, for old.* references. + * + * The ON CONFLICT policy to be used for the trigger program steps is stored + * as the orconf member. If this is OE_Default, then the ON CONFLICT clause + * specified for individual triggers steps is used. + * + * struct TriggerStack has a "pNext" member, to allow linked lists to be + * constructed. When coding nested triggers (triggers fired by other triggers) + * each nested trigger stores its parent trigger's TriggerStack as the "pNext" + * pointer. Once the nested trigger has been coded, the pNext value is restored + * to the pTriggerStack member of the Parse stucture and coding of the parent + * trigger continues. + * + * Before a nested trigger is coded, the linked list pointed to by the + * pTriggerStack is scanned to ensure that the trigger is not about to be coded + * recursively. If this condition is detected, the nested trigger is not coded. + */ +struct TriggerStack { + Table *pTab; /* Table that triggers are currently being coded on */ + int newIdx; /* Index of vdbe cursor to "new" temp table */ + int oldIdx; /* Index of vdbe cursor to "old" temp table */ + u32 newColMask; + u32 oldColMask; + int orconf; /* Current orconf policy */ + int ignoreJump; /* where to jump to for a RAISE(IGNORE) */ + Trigger *pTrigger; /* The trigger currently being coded */ + TriggerStack *pNext; /* Next trigger down on the trigger stack */ +}; + +/* +** The following structure contains information used by the sqliteFix... +** routines as they walk the parse tree to make database references +** explicit. +*/ +typedef struct DbFixer DbFixer; +struct DbFixer { + Parse *pParse; /* The parsing context. Error messages written here */ + const char *zDb; /* Make sure all objects are contained in this database */ + const char *zType; /* Type of the container - used for error messages */ + const Token *pName; /* Name of the container - used for error messages */ +}; + +/* +** An objected used to accumulate the text of a string where we +** do not necessarily know how big the string will be in the end. +*/ +struct StrAccum { + char *zBase; /* A base allocation. Not from malloc. */ + char *zText; /* The string collected so far */ + int nChar; /* Length of the string so far */ + int nAlloc; /* Amount of space allocated in zText */ + int mxAlloc; /* Maximum allowed string length */ + u8 mallocFailed; /* Becomes true if any memory allocation fails */ + u8 useMalloc; /* True if zText is enlargable using realloc */ + u8 tooBig; /* Becomes true if string size exceeds limits */ +}; + +/* +** A pointer to this structure is used to communicate information +** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. +*/ +typedef struct { + sqlite3 *db; /* The database being initialized */ + int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ + char **pzErrMsg; /* Error message stored here */ + int rc; /* Result code stored here */ +} InitData; + +/* +** Assuming zIn points to the first byte of a UTF-8 character, +** advance zIn to point to the first byte of the next UTF-8 character. +*/ +#define SQLITE_SKIP_UTF8(zIn) { \ + if( (*(zIn++))>=0xc0 ){ \ + while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ + } \ +} + +/* +** The SQLITE_CORRUPT_BKPT macro can be either a constant (for production +** builds) or a function call (for debugging). If it is a function call, +** it allows the operator to set a breakpoint at the spot where database +** corruption is first detected. +*/ +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3Corrupt(void); +# define SQLITE_CORRUPT_BKPT sqlite3Corrupt() +# define DEBUGONLY(X) X +#else +# define SQLITE_CORRUPT_BKPT SQLITE_CORRUPT +# define DEBUGONLY(X) +#endif + +/* +** Internal function prototypes +*/ +SQLITE_PRIVATE int sqlite3StrICmp(const char *, const char *); +SQLITE_PRIVATE int sqlite3StrNICmp(const char *, const char *, int); +SQLITE_PRIVATE int sqlite3IsNumber(const char*, int*, u8); + +SQLITE_PRIVATE void *sqlite3MallocZero(unsigned); +SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3*, unsigned); +SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3*, unsigned); +SQLITE_PRIVATE char *sqlite3StrDup(const char*); +SQLITE_PRIVATE char *sqlite3StrNDup(const char*, int); +SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3*,const char*); +SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3*,const char*, int); +SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); +SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *, void *, int); +SQLITE_PRIVATE int sqlite3MallocSize(void *); + +SQLITE_PRIVATE int sqlite3IsNaN(double); + +SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3*,const char*, ...); +SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3*,const char*, va_list); +#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) +SQLITE_PRIVATE void sqlite3DebugPrintf(const char*, ...); +#endif +#if defined(SQLITE_TEST) +SQLITE_PRIVATE void *sqlite3TextToPtr(const char*); +#endif +SQLITE_PRIVATE void sqlite3SetString(char **, ...); +SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...); +SQLITE_PRIVATE void sqlite3ErrorClear(Parse*); +SQLITE_PRIVATE void sqlite3Dequote(char*); +SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3*, Expr*); +SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int); +SQLITE_PRIVATE int sqlite3RunParser(Parse*, const char*, char **); +SQLITE_PRIVATE void sqlite3FinishCoding(Parse*); +SQLITE_PRIVATE int sqlite3GetTempReg(Parse*); +SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse*,int); +SQLITE_PRIVATE int sqlite3GetTempRange(Parse*,int); +SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse*,int,int); +SQLITE_PRIVATE Expr *sqlite3Expr(sqlite3*, int, Expr*, Expr*, const Token*); +SQLITE_PRIVATE Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); +SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse*,Token*); +SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); +SQLITE_PRIVATE void sqlite3ExprSpan(Expr*,Token*,Token*); +SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); +SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*); +SQLITE_PRIVATE void sqlite3ExprDelete(Expr*); +SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*,Token*); +SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList*); +SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**); +SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**); +SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); +SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3*, int); +SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int); +SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3*); +SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,char*,Select*); +SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int); +SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); +SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*); +SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int); +SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); +SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*); +SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*); +SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,Expr*); +SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*); +SQLITE_PRIVATE void sqlite3EndTable(Parse*,Token*,Token*,Select*); + +SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32); +SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec*, u32); +SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec*, u32); +SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec*, u32); +SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec*); +SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int,int*); + +SQLITE_PRIVATE void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); + +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) +SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse*,Table*); +#else +# define sqlite3ViewGetColumnNames(A,B) 0 +#endif + +SQLITE_PRIVATE void sqlite3DropTable(Parse*, SrcList*, int, int); +SQLITE_PRIVATE void sqlite3DeleteTable(Table*); +SQLITE_PRIVATE void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); +SQLITE_PRIVATE void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); +SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); +SQLITE_PRIVATE int sqlite3IdListIndex(IdList*,const char*); +SQLITE_PRIVATE SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); +SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, Token*, + Select*, Expr*, IdList*); +SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*); +SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*); +SQLITE_PRIVATE void sqlite3IdListDelete(IdList*); +SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList*); +SQLITE_PRIVATE void sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, + Token*, int, int); +SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int); +SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*, Select*, int, int*, char *aff); +SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, + Expr*,ExprList*,int,Expr*,Expr*); +SQLITE_PRIVATE void sqlite3SelectDelete(Select*); +SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*); +SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int); +SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); +SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); +SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); +SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u8); +SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*); +SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, int); +SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int); +SQLITE_PRIVATE void sqlite3ExprClearColumnCache(Parse*, int); +SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int); +SQLITE_PRIVATE int sqlite3ExprWritableRegister(Parse*,int,int); +SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse*,int,int); +SQLITE_PRIVATE int sqlite3ExprCode(Parse*, Expr*, int); +SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*); +SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int); +SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse*, Expr*, int); +SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse*, Expr*); +SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); +SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse*, Expr*, int, int); +SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse*, Expr*, int, int); +SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3*,const char*, const char*); +SQLITE_PRIVATE Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); +SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*); +SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); +SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); +SQLITE_PRIVATE void sqlite3Vacuum(Parse*); +SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*); +SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*); +SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*); +SQLITE_PRIVATE int sqlite3ExprResolveNames(NameContext *, Expr *); +SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); +SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); +SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); +SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *, const char*); +SQLITE_PRIVATE void sqlite3PrngSaveState(void); +SQLITE_PRIVATE void sqlite3PrngRestoreState(void); +SQLITE_PRIVATE void sqlite3PrngResetState(void); +SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*); +SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int); +SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int); +SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*); +SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*); +SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*); +SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*); +SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*); +SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); +SQLITE_PRIVATE int sqlite3IsRowid(const char*); +SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int); +SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); +SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); +SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, + int*,int,int,int,int); +SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*,int,int,int,int); +SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); +SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int); +SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*); +SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3*,Token*, Token*); +SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*); +SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*); +SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*); +SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*); +SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); +SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3*); +SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3*); +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3*); +SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3*); +#else +# define sqlite3SafetyOn(A) 0 +# define sqlite3SafetyOff(A) 0 +#endif +SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*); +SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*); +SQLITE_PRIVATE void sqlite3ChangeCookie(Parse*, int); +SQLITE_PRIVATE void sqlite3MaterializeView(Parse*, Select*, Expr*, int); + +#ifndef SQLITE_OMIT_TRIGGER +SQLITE_PRIVATE void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, + Expr*,int, int); +SQLITE_PRIVATE void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); +SQLITE_PRIVATE void sqlite3DropTrigger(Parse*, SrcList*, int); +SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse*, Trigger*); +SQLITE_PRIVATE int sqlite3TriggersExist(Parse*, Table*, int, ExprList*); +SQLITE_PRIVATE int sqlite3CodeRowTrigger(Parse*, int, ExprList*, int, Table *, int, int, + int, int, u32*, u32*); + void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); +SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep*); +SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); +SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, + ExprList*,Select*,int); +SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, int); +SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); +SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger*); +SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); +#else +# define sqlite3TriggersExist(A,B,C,D,E,F) 0 +# define sqlite3DeleteTrigger(A) +# define sqlite3DropTriggerPtr(A,B) +# define sqlite3UnlinkAndDeleteTrigger(A,B,C) +# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I,J,K) 0 +#endif + +SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*); +SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); +SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int); +#ifndef SQLITE_OMIT_AUTHORIZATION +SQLITE_PRIVATE void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); +SQLITE_PRIVATE int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); +SQLITE_PRIVATE void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); +SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext*); +#else +# define sqlite3AuthRead(a,b,c,d) +# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK +# define sqlite3AuthContextPush(a,b,c) +# define sqlite3AuthContextPop(a) ((void)(a)) +#endif +SQLITE_PRIVATE void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); +SQLITE_PRIVATE void sqlite3Detach(Parse*, Expr*); +SQLITE_PRIVATE int sqlite3BtreeFactory(const sqlite3 *db, const char *zFilename, + int omitJournal, int nCache, int flags, Btree **ppBtree); +SQLITE_PRIVATE int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); +SQLITE_PRIVATE int sqlite3FixSrcList(DbFixer*, SrcList*); +SQLITE_PRIVATE int sqlite3FixSelect(DbFixer*, Select*); +SQLITE_PRIVATE int sqlite3FixExpr(DbFixer*, Expr*); +SQLITE_PRIVATE int sqlite3FixExprList(DbFixer*, ExprList*); +SQLITE_PRIVATE int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); +SQLITE_PRIVATE int sqlite3AtoF(const char *z, double*); +SQLITE_API char *sqlite3_snprintf(int,char*,const char*,...); +SQLITE_PRIVATE int sqlite3GetInt32(const char *, int*); +SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *, int); +SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *pData, int nChar); +SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *pData, int nByte); +SQLITE_PRIVATE int sqlite3Utf8Read(const u8*, const u8*, const u8**); + +/* +** Routines to read and write variable-length integers. These used to +** be defined locally, but now we use the varint routines in the util.c +** file. Code should use the MACRO forms below, as the Varint32 versions +** are coded to assume the single byte case is already handled (which +** the MACRO form does). +*/ +SQLITE_PRIVATE int sqlite3PutVarint(unsigned char*, u64); +SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char*, u32); +SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *, u64 *); +SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *, u32 *); +SQLITE_PRIVATE int sqlite3VarintLen(u64 v); + +/* +** The header of a record consists of a sequence variable-length integers. +** These integers are almost always small and are encoded as a single byte. +** The following macros take advantage this fact to provide a fast encode +** and decode of the integers in a record header. It is faster for the common +** case where the integer is a single byte. It is a little slower when the +** integer is two or more bytes. But overall it is faster. +** +** The following expressions are equivalent: +** +** x = sqlite3GetVarint32( A, &B ); +** x = sqlite3PutVarint32( A, B ); +** +** x = getVarint32( A, B ); +** x = putVarint32( A, B ); +** +*/ +#define getVarint32(A,B) ((*(A)<(unsigned char)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), &(B))) +#define putVarint32(A,B) (((B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) +#define getVarint sqlite3GetVarint +#define putVarint sqlite3PutVarint + + +SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *, Index *); +SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *, Table *); +SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2); +SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); +SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr); +SQLITE_PRIVATE int sqlite3Atoi64(const char*, i64*); +SQLITE_PRIVATE void sqlite3Error(sqlite3*, int, const char*,...); +SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3*, const char *z, int n); +SQLITE_PRIVATE int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); +SQLITE_PRIVATE const char *sqlite3ErrStr(int); +SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse); +SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char *,int,int); +SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName); +SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); +SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *, Token *); +SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *); +SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *); +SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int); + +SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value*, u8); +SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value*, u8); +SQLITE_PRIVATE void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, + void(*)(void*)); +SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*); +SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *); +SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int); +SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); +SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); +#ifndef SQLITE_AMALGAMATION +SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[]; +#endif +SQLITE_PRIVATE void sqlite3RootPageMoved(Db*, int, int); +SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*); +SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3*); +SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); +SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *); +SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); +SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*); +SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *, Expr *); +SQLITE_PRIVATE int sqlite3SelectResolve(Parse *, Select *, NameContext *); +SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int); +SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *); +SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *); +SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(sqlite3*, CollSeq *, const char *, int); +SQLITE_PRIVATE char sqlite3AffinityType(const Token*); +SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*); +SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*); +SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*); +SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB); +SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*); +SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int); +SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); +SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *); +SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int); +SQLITE_PRIVATE void sqlite3SchemaFree(void *); +SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *); +SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *); +SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); +SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, + void (*)(sqlite3_context*,int,sqlite3_value **), + void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*)); +SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int); +SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *); + +SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum*,const char*,int); +SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum*); +SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum*); +SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest*,int,int); + +/* +** The interface to the LEMON-generated parser +*/ +SQLITE_PRIVATE void *sqlite3ParserAlloc(void*(*)(size_t)); +SQLITE_PRIVATE void sqlite3ParserFree(void*, void(*)(void*)); +SQLITE_PRIVATE void sqlite3Parser(void*, int, Token, Parse*); + +SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3*); +#ifndef SQLITE_OMIT_LOAD_EXTENSION +SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3*); +#else +# define sqlite3CloseExtensions(X) +#endif + +#ifndef SQLITE_OMIT_SHARED_CACHE +SQLITE_PRIVATE void sqlite3TableLock(Parse *, int, int, u8, const char *); +#else + #define sqlite3TableLock(v,w,x,y,z) +#endif + +#ifdef SQLITE_TEST +SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char*); +#endif + +#ifdef SQLITE_OMIT_VIRTUALTABLE +# define sqlite3VtabClear(X) +# define sqlite3VtabSync(X,Y) (Y) +# define sqlite3VtabRollback(X) +# define sqlite3VtabCommit(X) +#else +SQLITE_PRIVATE void sqlite3VtabClear(Table*); +SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc); +SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db); +SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db); +#endif +SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse*,Table*); +SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab*); +SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3*, sqlite3_vtab*); +SQLITE_PRIVATE void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); +SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse*, Token*); +SQLITE_PRIVATE void sqlite3VtabArgInit(Parse*); +SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse*, Token*); +SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); +SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse*, Table*); +SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *); +SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, sqlite3_vtab *); +SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); +SQLITE_PRIVATE void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); +SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*); +SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); +SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); + + +/* +** Available fault injectors. Should be numbered beginning with 0. +*/ +#define SQLITE_FAULTINJECTOR_MALLOC 0 +#define SQLITE_FAULTINJECTOR_COUNT 1 + +/* +** The interface to the fault injector subsystem. If the fault injector +** mechanism is disabled at compile-time then set up macros so that no +** unnecessary code is generated. +*/ +#ifndef SQLITE_OMIT_BUILTIN_TEST +SQLITE_PRIVATE void sqlite3FaultConfig(int,int,int); +SQLITE_PRIVATE int sqlite3FaultFailures(int); +SQLITE_PRIVATE int sqlite3FaultBenignFailures(int); +SQLITE_PRIVATE int sqlite3FaultPending(int); +SQLITE_PRIVATE void sqlite3FaultBeginBenign(int); +SQLITE_PRIVATE void sqlite3FaultEndBenign(int); +SQLITE_PRIVATE int sqlite3FaultStep(int); +#else +# define sqlite3FaultConfig(A,B,C) +# define sqlite3FaultFailures(A) 0 +# define sqlite3FaultBenignFailures(A) 0 +# define sqlite3FaultPending(A) (-1) +# define sqlite3FaultBeginBenign(A) +# define sqlite3FaultEndBenign(A) +# define sqlite3FaultStep(A) 0 +#endif + + + +#define IN_INDEX_ROWID 1 +#define IN_INDEX_EPH 2 +#define IN_INDEX_INDEX 3 +SQLITE_PRIVATE int sqlite3FindInIndex(Parse *, Expr *, int); + +#ifdef SQLITE_ENABLE_ATOMIC_WRITE +SQLITE_PRIVATE int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); +SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *); +SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *); +#else + #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) +#endif + +#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 +SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *); +SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *); +#else + #define sqlite3ExprSetHeight(x) +#endif + +SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*); +SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32); + +#ifdef SQLITE_SSE +#include "sseInt.h" +#endif + +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE void sqlite3ParserTrace(FILE*, char *); +#endif + +/* +** If the SQLITE_ENABLE IOTRACE exists then the global variable +** sqlite3IoTrace is a pointer to a printf-like routine used to +** print I/O tracing messages. +*/ +#ifdef SQLITE_ENABLE_IOTRACE +# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } +SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe*); +SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*,...); +#else +# define IOTRACE(A) +# define sqlite3VdbeIOTraceSql(X) +#endif + +#endif + +/************** End of sqliteInt.h *******************************************/ +/************** Begin file date.c ********************************************/ +/* +** 2003 October 31 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement date and time +** functions for SQLite. +** +** There is only one exported symbol in this file - the function +** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. +** All other code has file scope. +** +** $Id: date.c,v 1.79 2008/03/20 14:03:29 drh Exp $ +** +** SQLite processes all times and dates as Julian Day numbers. The +** dates and times are stored as the number of days since noon +** in Greenwich on November 24, 4714 B.C. according to the Gregorian +** calendar system. +** +** 1970-01-01 00:00:00 is JD 2440587.5 +** 2000-01-01 00:00:00 is JD 2451544.5 +** +** This implemention requires years to be expressed as a 4-digit number +** which means that only dates between 0000-01-01 and 9999-12-31 can +** be represented, even though julian day numbers allow a much wider +** range of dates. +** +** The Gregorian calendar system is used for all dates and times, +** even those that predate the Gregorian calendar. Historians usually +** use the Julian calendar for dates prior to 1582-10-15 and for some +** dates afterwards, depending on locale. Beware of this difference. +** +** The conversion algorithms are implemented based on descriptions +** in the following text: +** +** Jean Meeus +** Astronomical Algorithms, 2nd Edition, 1998 +** ISBM 0-943396-61-1 +** Willmann-Bell, Inc +** Richmond, Virginia (USA) +*/ +#include <ctype.h> +#include <time.h> + +#ifndef SQLITE_OMIT_DATETIME_FUNCS + +/* +** A structure for holding a single date and time. +*/ +typedef struct DateTime DateTime; +struct DateTime { + double rJD; /* The julian day number */ + int Y, M, D; /* Year, month, and day */ + int h, m; /* Hour and minutes */ + int tz; /* Timezone offset in minutes */ + double s; /* Seconds */ + char validYMD; /* True if Y,M,D are valid */ + char validHMS; /* True if h,m,s are valid */ + char validJD; /* True if rJD is valid */ + char validTZ; /* True if tz is valid */ +}; + + +/* +** Convert zDate into one or more integers. Additional arguments +** come in groups of 5 as follows: +** +** N number of digits in the integer +** min minimum allowed value of the integer +** max maximum allowed value of the integer +** nextC first character after the integer +** pVal where to write the integers value. +** +** Conversions continue until one with nextC==0 is encountered. +** The function returns the number of successful conversions. +*/ +static int getDigits(const char *zDate, ...){ + va_list ap; + int val; + int N; + int min; + int max; + int nextC; + int *pVal; + int cnt = 0; + va_start(ap, zDate); + do{ + N = va_arg(ap, int); + min = va_arg(ap, int); + max = va_arg(ap, int); + nextC = va_arg(ap, int); + pVal = va_arg(ap, int*); + val = 0; + while( N-- ){ + if( !isdigit(*(u8*)zDate) ){ + goto end_getDigits; + } + val = val*10 + *zDate - '0'; + zDate++; + } + if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ + goto end_getDigits; + } + *pVal = val; + zDate++; + cnt++; + }while( nextC ); +end_getDigits: + va_end(ap); + return cnt; +} + +/* +** Read text from z[] and convert into a floating point number. Return +** the number of digits converted. +*/ +#define getValue sqlite3AtoF + +/* +** Parse a timezone extension on the end of a date-time. +** The extension is of the form: +** +** (+/-)HH:MM +** +** Or the "zulu" notation: +** +** Z +** +** If the parse is successful, write the number of minutes +** of change in p->tz and return 0. If a parser error occurs, +** return non-zero. +** +** A missing specifier is not considered an error. +*/ +static int parseTimezone(const char *zDate, DateTime *p){ + int sgn = 0; + int nHr, nMn; + int c; + while( isspace(*(u8*)zDate) ){ zDate++; } + p->tz = 0; + c = *zDate; + if( c=='-' ){ + sgn = -1; + }else if( c=='+' ){ + sgn = +1; + }else if( c=='Z' || c=='z' ){ + zDate++; + goto zulu_time; + }else{ + return c!=0; + } + zDate++; + if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ + return 1; + } + zDate += 5; + p->tz = sgn*(nMn + nHr*60); +zulu_time: + while( isspace(*(u8*)zDate) ){ zDate++; } + return *zDate!=0; +} + +/* +** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. +** The HH, MM, and SS must each be exactly 2 digits. The +** fractional seconds FFFF can be one or more digits. +** +** Return 1 if there is a parsing error and 0 on success. +*/ +static int parseHhMmSs(const char *zDate, DateTime *p){ + int h, m, s; + double ms = 0.0; + if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ + return 1; + } + zDate += 5; + if( *zDate==':' ){ + zDate++; + if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ + return 1; + } + zDate += 2; + if( *zDate=='.' && isdigit((u8)zDate[1]) ){ + double rScale = 1.0; + zDate++; + while( isdigit(*(u8*)zDate) ){ + ms = ms*10.0 + *zDate - '0'; + rScale *= 10.0; + zDate++; + } + ms /= rScale; + } + }else{ + s = 0; + } + p->validJD = 0; + p->validHMS = 1; + p->h = h; + p->m = m; + p->s = s + ms; + if( parseTimezone(zDate, p) ) return 1; + p->validTZ = p->tz!=0; + return 0; +} + +/* +** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume +** that the YYYY-MM-DD is according to the Gregorian calendar. +** +** Reference: Meeus page 61 +*/ +static void computeJD(DateTime *p){ + int Y, M, D, A, B, X1, X2; + + if( p->validJD ) return; + if( p->validYMD ){ + Y = p->Y; + M = p->M; + D = p->D; + }else{ + Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ + M = 1; + D = 1; + } + if( M<=2 ){ + Y--; + M += 12; + } + A = Y/100; + B = 2 - A + (A/4); + X1 = 365.25*(Y+4716); + X2 = 30.6001*(M+1); + p->rJD = X1 + X2 + D + B - 1524.5; + p->validJD = 1; + if( p->validHMS ){ + p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0; + if( p->validTZ ){ + p->rJD -= p->tz*60/86400.0; + p->validYMD = 0; + p->validHMS = 0; + p->validTZ = 0; + } + } +} + +/* +** Parse dates of the form +** +** YYYY-MM-DD HH:MM:SS.FFF +** YYYY-MM-DD HH:MM:SS +** YYYY-MM-DD HH:MM +** YYYY-MM-DD +** +** Write the result into the DateTime structure and return 0 +** on success and 1 if the input string is not a well-formed +** date. +*/ +static int parseYyyyMmDd(const char *zDate, DateTime *p){ + int Y, M, D, neg; + + if( zDate[0]=='-' ){ + zDate++; + neg = 1; + }else{ + neg = 0; + } + if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ + return 1; + } + zDate += 10; + while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; } + if( parseHhMmSs(zDate, p)==0 ){ + /* We got the time */ + }else if( *zDate==0 ){ + p->validHMS = 0; + }else{ + return 1; + } + p->validJD = 0; + p->validYMD = 1; + p->Y = neg ? -Y : Y; + p->M = M; + p->D = D; + if( p->validTZ ){ + computeJD(p); + } + return 0; +} + +/* +** Attempt to parse the given string into a Julian Day Number. Return +** the number of errors. +** +** The following are acceptable forms for the input string: +** +** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM +** DDDD.DD +** now +** +** In the first form, the +/-HH:MM is always optional. The fractional +** seconds extension (the ".FFF") is optional. The seconds portion +** (":SS.FFF") is option. The year and date can be omitted as long +** as there is a time string. The time string can be omitted as long +** as there is a year and date. +*/ +static int parseDateOrTime( + sqlite3_context *context, + const char *zDate, + DateTime *p +){ + memset(p, 0, sizeof(*p)); + if( parseYyyyMmDd(zDate,p)==0 ){ + return 0; + }else if( parseHhMmSs(zDate, p)==0 ){ + return 0; + }else if( sqlite3StrICmp(zDate,"now")==0){ + double r; + sqlite3 *db = sqlite3_context_db_handle(context); + sqlite3OsCurrentTime(db->pVfs, &r); + p->rJD = r; + p->validJD = 1; + return 0; + }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){ + getValue(zDate, &p->rJD); + p->validJD = 1; + return 0; + } + return 1; +} + +/* +** Compute the Year, Month, and Day from the julian day number. +*/ +static void computeYMD(DateTime *p){ + int Z, A, B, C, D, E, X1; + if( p->validYMD ) return; + if( !p->validJD ){ + p->Y = 2000; + p->M = 1; + p->D = 1; + }else{ + Z = p->rJD + 0.5; + A = (Z - 1867216.25)/36524.25; + A = Z + 1 + A - (A/4); + B = A + 1524; + C = (B - 122.1)/365.25; + D = 365.25*C; + E = (B-D)/30.6001; + X1 = 30.6001*E; + p->D = B - D - X1; + p->M = E<14 ? E-1 : E-13; + p->Y = p->M>2 ? C - 4716 : C - 4715; + } + p->validYMD = 1; +} + +/* +** Compute the Hour, Minute, and Seconds from the julian day number. +*/ +static void computeHMS(DateTime *p){ + int Z, s; + if( p->validHMS ) return; + computeJD(p); + Z = p->rJD + 0.5; + s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5; + p->s = 0.001*s; + s = p->s; + p->s -= s; + p->h = s/3600; + s -= p->h*3600; + p->m = s/60; + p->s += s - p->m*60; + p->validHMS = 1; +} + +/* +** Compute both YMD and HMS +*/ +static void computeYMD_HMS(DateTime *p){ + computeYMD(p); + computeHMS(p); +} + +/* +** Clear the YMD and HMS and the TZ +*/ +static void clearYMD_HMS_TZ(DateTime *p){ + p->validYMD = 0; + p->validHMS = 0; + p->validTZ = 0; +} + +/* +** Compute the difference (in days) between localtime and UTC (a.k.a. GMT) +** for the time value p where p is in UTC. +*/ +static double localtimeOffset(DateTime *p){ + DateTime x, y; + time_t t; + x = *p; + computeYMD_HMS(&x); + if( x.Y<1971 || x.Y>=2038 ){ + x.Y = 2000; + x.M = 1; + x.D = 1; + x.h = 0; + x.m = 0; + x.s = 0.0; + } else { + int s = x.s + 0.5; + x.s = s; + } + x.tz = 0; + x.validJD = 0; + computeJD(&x); + t = (x.rJD-2440587.5)*86400.0 + 0.5; +#ifdef HAVE_LOCALTIME_R + { + struct tm sLocal; + localtime_r(&t, &sLocal); + y.Y = sLocal.tm_year + 1900; + y.M = sLocal.tm_mon + 1; + y.D = sLocal.tm_mday; + y.h = sLocal.tm_hour; + y.m = sLocal.tm_min; + y.s = sLocal.tm_sec; + } +#else + { + struct tm *pTm; + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); + pTm = localtime(&t); + y.Y = pTm->tm_year + 1900; + y.M = pTm->tm_mon + 1; + y.D = pTm->tm_mday; + y.h = pTm->tm_hour; + y.m = pTm->tm_min; + y.s = pTm->tm_sec; + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); + } +#endif + y.validYMD = 1; + y.validHMS = 1; + y.validJD = 0; + y.validTZ = 0; + computeJD(&y); + return y.rJD - x.rJD; +} + +/* +** Process a modifier to a date-time stamp. The modifiers are +** as follows: +** +** NNN days +** NNN hours +** NNN minutes +** NNN.NNNN seconds +** NNN months +** NNN years +** start of month +** start of year +** start of week +** start of day +** weekday N +** unixepoch +** localtime +** utc +** +** Return 0 on success and 1 if there is any kind of error. +*/ +static int parseModifier(const char *zMod, DateTime *p){ + int rc = 1; + int n; + double r; + char *z, zBuf[30]; + z = zBuf; + for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){ + z[n] = tolower(zMod[n]); + } + z[n] = 0; + switch( z[0] ){ + case 'l': { + /* localtime + ** + ** Assuming the current time value is UTC (a.k.a. GMT), shift it to + ** show local time. + */ + if( strcmp(z, "localtime")==0 ){ + computeJD(p); + p->rJD += localtimeOffset(p); + clearYMD_HMS_TZ(p); + rc = 0; + } + break; + } + case 'u': { + /* + ** unixepoch + ** + ** Treat the current value of p->rJD as the number of + ** seconds since 1970. Convert to a real julian day number. + */ + if( strcmp(z, "unixepoch")==0 && p->validJD ){ + p->rJD = p->rJD/86400.0 + 2440587.5; + clearYMD_HMS_TZ(p); + rc = 0; + }else if( strcmp(z, "utc")==0 ){ + double c1; + computeJD(p); + c1 = localtimeOffset(p); + p->rJD -= c1; + clearYMD_HMS_TZ(p); + p->rJD += c1 - localtimeOffset(p); + rc = 0; + } + break; + } + case 'w': { + /* + ** weekday N + ** + ** Move the date to the same time on the next occurrence of + ** weekday N where 0==Sunday, 1==Monday, and so forth. If the + ** date is already on the appropriate weekday, this is a no-op. + */ + if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0 + && (n=r)==r && n>=0 && r<7 ){ + int Z; + computeYMD_HMS(p); + p->validTZ = 0; + p->validJD = 0; + computeJD(p); + Z = p->rJD + 1.5; + Z %= 7; + if( Z>n ) Z -= 7; + p->rJD += n - Z; + clearYMD_HMS_TZ(p); + rc = 0; + } + break; + } + case 's': { + /* + ** start of TTTTT + ** + ** Move the date backwards to the beginning of the current day, + ** or month or year. + */ + if( strncmp(z, "start of ", 9)!=0 ) break; + z += 9; + computeYMD(p); + p->validHMS = 1; + p->h = p->m = 0; + p->s = 0.0; + p->validTZ = 0; + p->validJD = 0; + if( strcmp(z,"month")==0 ){ + p->D = 1; + rc = 0; + }else if( strcmp(z,"year")==0 ){ + computeYMD(p); + p->M = 1; + p->D = 1; + rc = 0; + }else if( strcmp(z,"day")==0 ){ + rc = 0; + } + break; + } + case '+': + case '-': + case '0': + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + case '8': + case '9': { + n = getValue(z, &r); + assert( n>=1 ); + if( z[n]==':' ){ + /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the + ** specified number of hours, minutes, seconds, and fractional seconds + ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be + ** omitted. + */ + const char *z2 = z; + DateTime tx; + int day; + if( !isdigit(*(u8*)z2) ) z2++; + memset(&tx, 0, sizeof(tx)); + if( parseHhMmSs(z2, &tx) ) break; + computeJD(&tx); + tx.rJD -= 0.5; + day = (int)tx.rJD; + tx.rJD -= day; + if( z[0]=='-' ) tx.rJD = -tx.rJD; + computeJD(p); + clearYMD_HMS_TZ(p); + p->rJD += tx.rJD; + rc = 0; + break; + } + z += n; + while( isspace(*(u8*)z) ) z++; + n = strlen(z); + if( n>10 || n<3 ) break; + if( z[n-1]=='s' ){ z[n-1] = 0; n--; } + computeJD(p); + rc = 0; + if( n==3 && strcmp(z,"day")==0 ){ + p->rJD += r; + }else if( n==4 && strcmp(z,"hour")==0 ){ + p->rJD += r/24.0; + }else if( n==6 && strcmp(z,"minute")==0 ){ + p->rJD += r/(24.0*60.0); + }else if( n==6 && strcmp(z,"second")==0 ){ + p->rJD += r/(24.0*60.0*60.0); + }else if( n==5 && strcmp(z,"month")==0 ){ + int x, y; + computeYMD_HMS(p); + p->M += r; + x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; + p->Y += x; + p->M -= x*12; + p->validJD = 0; + computeJD(p); + y = r; + if( y!=r ){ + p->rJD += (r - y)*30.0; + } + }else if( n==4 && strcmp(z,"year")==0 ){ + computeYMD_HMS(p); + p->Y += r; + p->validJD = 0; + computeJD(p); + }else{ + rc = 1; + } + clearYMD_HMS_TZ(p); + break; + } + default: { + break; + } + } + return rc; +} + +/* +** Process time function arguments. argv[0] is a date-time stamp. +** argv[1] and following are modifiers. Parse them all and write +** the resulting time into the DateTime structure p. Return 0 +** on success and 1 if there are any errors. +** +** If there are zero parameters (if even argv[0] is undefined) +** then assume a default value of "now" for argv[0]. +*/ +static int isDate( + sqlite3_context *context, + int argc, + sqlite3_value **argv, + DateTime *p +){ + int i; + const unsigned char *z; + static const unsigned char zDflt[] = "now"; + if( argc==0 ){ + z = zDflt; + }else{ + z = sqlite3_value_text(argv[0]); + } + if( !z || parseDateOrTime(context, (char*)z, p) ){ + return 1; + } + for(i=1; i<argc; i++){ + if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){ + return 1; + } + } + return 0; +} + + +/* +** The following routines implement the various date and time functions +** of SQLite. +*/ + +/* +** julianday( TIMESTRING, MOD, MOD, ...) +** +** Return the julian day number of the date specified in the arguments +*/ +static void juliandayFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + if( isDate(context, argc, argv, &x)==0 ){ + computeJD(&x); + sqlite3_result_double(context, x.rJD); + } +} + +/* +** datetime( TIMESTRING, MOD, MOD, ...) +** +** Return YYYY-MM-DD HH:MM:SS +*/ +static void datetimeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + if( isDate(context, argc, argv, &x)==0 ){ + char zBuf[100]; + computeYMD_HMS(&x); + sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", + x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); + } +} + +/* +** time( TIMESTRING, MOD, MOD, ...) +** +** Return HH:MM:SS +*/ +static void timeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + if( isDate(context, argc, argv, &x)==0 ){ + char zBuf[100]; + computeHMS(&x); + sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); + } +} + +/* +** date( TIMESTRING, MOD, MOD, ...) +** +** Return YYYY-MM-DD +*/ +static void dateFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + if( isDate(context, argc, argv, &x)==0 ){ + char zBuf[100]; + computeYMD(&x); + sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); + } +} + +/* +** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) +** +** Return a string described by FORMAT. Conversions as follows: +** +** %d day of month +** %f ** fractional seconds SS.SSS +** %H hour 00-24 +** %j day of year 000-366 +** %J ** Julian day number +** %m month 01-12 +** %M minute 00-59 +** %s seconds since 1970-01-01 +** %S seconds 00-59 +** %w day of week 0-6 sunday==0 +** %W week of year 00-53 +** %Y year 0000-9999 +** %% % +*/ +static void strftimeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + DateTime x; + u64 n; + int i, j; + char *z; + const char *zFmt = (const char*)sqlite3_value_text(argv[0]); + char zBuf[100]; + if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; + for(i=0, n=1; zFmt[i]; i++, n++){ + if( zFmt[i]=='%' ){ + switch( zFmt[i+1] ){ + case 'd': + case 'H': + case 'm': + case 'M': + case 'S': + case 'W': + n++; + /* fall thru */ + case 'w': + case '%': + break; + case 'f': + n += 8; + break; + case 'j': + n += 3; + break; + case 'Y': + n += 8; + break; + case 's': + case 'J': + n += 50; + break; + default: + return; /* ERROR. return a NULL */ + } + i++; + } + } + if( n<sizeof(zBuf) ){ + z = zBuf; + }else if( n>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){ + sqlite3_result_error_toobig(context); + return; + }else{ + z = sqlite3_malloc( n ); + if( z==0 ){ + sqlite3_result_error_nomem(context); + return; + } + } + computeJD(&x); + computeYMD_HMS(&x); + for(i=j=0; zFmt[i]; i++){ + if( zFmt[i]!='%' ){ + z[j++] = zFmt[i]; + }else{ + i++; + switch( zFmt[i] ){ + case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; + case 'f': { + double s = x.s; + if( s>59.999 ) s = 59.999; + sqlite3_snprintf(7, &z[j],"%06.3f", s); + j += strlen(&z[j]); + break; + } + case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; + case 'W': /* Fall thru */ + case 'j': { + int nDay; /* Number of days since 1st day of year */ + DateTime y = x; + y.validJD = 0; + y.M = 1; + y.D = 1; + computeJD(&y); + nDay = x.rJD - y.rJD + 0.5; + if( zFmt[i]=='W' ){ + int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ + wd = ((int)(x.rJD+0.5)) % 7; + sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); + j += 2; + }else{ + sqlite3_snprintf(4, &z[j],"%03d",nDay+1); + j += 3; + } + break; + } + case 'J': { + sqlite3_snprintf(20, &z[j],"%.16g",x.rJD); + j+=strlen(&z[j]); + break; + } + case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; + case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; + case 's': { + sqlite3_snprintf(30,&z[j],"%d", + (int)((x.rJD-2440587.5)*86400.0 + 0.5)); + j += strlen(&z[j]); + break; + } + case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; + case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break; + case 'Y': sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=strlen(&z[j]);break; + default: z[j++] = '%'; break; + } + } + } + z[j] = 0; + sqlite3_result_text(context, z, -1, + z==zBuf ? SQLITE_TRANSIENT : sqlite3_free); +} + +/* +** current_time() +** +** This function returns the same value as time('now'). +*/ +static void ctimeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + timeFunc(context, 0, 0); +} + +/* +** current_date() +** +** This function returns the same value as date('now'). +*/ +static void cdateFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + dateFunc(context, 0, 0); +} + +/* +** current_timestamp() +** +** This function returns the same value as datetime('now'). +*/ +static void ctimestampFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + datetimeFunc(context, 0, 0); +} +#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ + +#ifdef SQLITE_OMIT_DATETIME_FUNCS +/* +** If the library is compiled to omit the full-scale date and time +** handling (to get a smaller binary), the following minimal version +** of the functions current_time(), current_date() and current_timestamp() +** are included instead. This is to support column declarations that +** include "DEFAULT CURRENT_TIME" etc. +** +** This function uses the C-library functions time(), gmtime() +** and strftime(). The format string to pass to strftime() is supplied +** as the user-data for the function. +*/ +static void currentTimeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + time_t t; + char *zFormat = (char *)sqlite3_user_data(context); + sqlite3 *db; + double rT; + char zBuf[20]; + + db = sqlite3_context_db_handle(context); + sqlite3OsCurrentTime(db->pVfs, &rT); + t = 86400.0*(rT - 2440587.5) + 0.5; +#ifdef HAVE_GMTIME_R + { + struct tm sNow; + gmtime_r(&t, &sNow); + strftime(zBuf, 20, zFormat, &sNow); + } +#else + { + struct tm *pTm; + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); + pTm = gmtime(&t); + strftime(zBuf, 20, zFormat, pTm); + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); + } +#endif + + sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); +} +#endif + +/* +** This function registered all of the above C functions as SQL +** functions. This should be the only routine in this file with +** external linkage. +*/ +SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(sqlite3 *db){ +#ifndef SQLITE_OMIT_DATETIME_FUNCS + static const struct { + char *zName; + int nArg; + void (*xFunc)(sqlite3_context*,int,sqlite3_value**); + } aFuncs[] = { + { "julianday", -1, juliandayFunc }, + { "date", -1, dateFunc }, + { "time", -1, timeFunc }, + { "datetime", -1, datetimeFunc }, + { "strftime", -1, strftimeFunc }, + { "current_time", 0, ctimeFunc }, + { "current_timestamp", 0, ctimestampFunc }, + { "current_date", 0, cdateFunc }, + }; + int i; + + for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ + sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg, + SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0); + } +#else + static const struct { + char *zName; + char *zFormat; + } aFuncs[] = { + { "current_time", "%H:%M:%S" }, + { "current_date", "%Y-%m-%d" }, + { "current_timestamp", "%Y-%m-%d %H:%M:%S" } + }; + int i; + + for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ + sqlite3CreateFunc(db, aFuncs[i].zName, 0, SQLITE_UTF8, + aFuncs[i].zFormat, currentTimeFunc, 0, 0); + } +#endif +} + +/************** End of date.c ************************************************/ +/************** Begin file os.c **********************************************/ +/* +** 2005 November 29 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains OS interface code that is common to all +** architectures. +*/ +#define _SQLITE_OS_C_ 1 +#undef _SQLITE_OS_C_ + +/* +** The default SQLite sqlite3_vfs implementations do not allocate +** memory (actually, os_unix.c allocates a small amount of memory +** from within OsOpen()), but some third-party implementations may. +** So we test the effects of a malloc() failing and the sqlite3OsXXX() +** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro. +** +** The following functions are instrumented for malloc() failure +** testing: +** +** sqlite3OsOpen() +** sqlite3OsRead() +** sqlite3OsWrite() +** sqlite3OsSync() +** sqlite3OsLock() +** +*/ +#if defined(SQLITE_TEST) && (OS_WIN==0) + #define DO_OS_MALLOC_TEST if (1) { \ + void *pTstAlloc = sqlite3_malloc(10); \ + if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \ + sqlite3_free(pTstAlloc); \ + } +#else + #define DO_OS_MALLOC_TEST +#endif + +/* +** The following routines are convenience wrappers around methods +** of the sqlite3_file object. This is mostly just syntactic sugar. All +** of this would be completely automatic if SQLite were coded using +** C++ instead of plain old C. +*/ +SQLITE_PRIVATE int sqlite3OsClose(sqlite3_file *pId){ + int rc = SQLITE_OK; + if( pId->pMethods ){ + rc = pId->pMethods->xClose(pId); + pId->pMethods = 0; + } + return rc; +} +SQLITE_PRIVATE int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){ + DO_OS_MALLOC_TEST; + return id->pMethods->xRead(id, pBuf, amt, offset); +} +SQLITE_PRIVATE int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){ + DO_OS_MALLOC_TEST; + return id->pMethods->xWrite(id, pBuf, amt, offset); +} +SQLITE_PRIVATE int sqlite3OsTruncate(sqlite3_file *id, i64 size){ + return id->pMethods->xTruncate(id, size); +} +SQLITE_PRIVATE int sqlite3OsSync(sqlite3_file *id, int flags){ + DO_OS_MALLOC_TEST; + return id->pMethods->xSync(id, flags); +} +SQLITE_PRIVATE int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){ + return id->pMethods->xFileSize(id, pSize); +} +SQLITE_PRIVATE int sqlite3OsLock(sqlite3_file *id, int lockType){ + DO_OS_MALLOC_TEST; + return id->pMethods->xLock(id, lockType); +} +SQLITE_PRIVATE int sqlite3OsUnlock(sqlite3_file *id, int lockType){ + return id->pMethods->xUnlock(id, lockType); +} +SQLITE_PRIVATE int sqlite3OsCheckReservedLock(sqlite3_file *id){ + return id->pMethods->xCheckReservedLock(id); +} +SQLITE_PRIVATE int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){ + return id->pMethods->xFileControl(id,op,pArg); +} +SQLITE_PRIVATE int sqlite3OsSectorSize(sqlite3_file *id){ + int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize; + return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE); +} +SQLITE_PRIVATE int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ + return id->pMethods->xDeviceCharacteristics(id); +} + +/* +** The next group of routines are convenience wrappers around the +** VFS methods. +*/ +SQLITE_PRIVATE int sqlite3OsOpen( + sqlite3_vfs *pVfs, + const char *zPath, + sqlite3_file *pFile, + int flags, + int *pFlagsOut +){ + DO_OS_MALLOC_TEST; + return pVfs->xOpen(pVfs, zPath, pFile, flags, pFlagsOut); +} +SQLITE_PRIVATE int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ + return pVfs->xDelete(pVfs, zPath, dirSync); +} +SQLITE_PRIVATE int sqlite3OsAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){ + int rc; +#ifdef SQLITE_TEST + void *pTstAlloc = sqlite3_malloc(10); + if (!pTstAlloc) return -1; + sqlite3_free(pTstAlloc); +#endif + rc = pVfs->xAccess(pVfs, zPath, flags); + return rc; +} +SQLITE_PRIVATE int sqlite3OsGetTempname(sqlite3_vfs *pVfs, int nBufOut, char *zBufOut){ + return pVfs->xGetTempname(pVfs, nBufOut, zBufOut); +} +SQLITE_PRIVATE int sqlite3OsFullPathname( + sqlite3_vfs *pVfs, + const char *zPath, + int nPathOut, + char *zPathOut +){ + return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); +} +SQLITE_PRIVATE void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){ + return pVfs->xDlOpen(pVfs, zPath); +} +SQLITE_PRIVATE void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ + pVfs->xDlError(pVfs, nByte, zBufOut); +} +SQLITE_PRIVATE void *sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){ + return pVfs->xDlSym(pVfs, pHandle, zSymbol); +} +SQLITE_PRIVATE void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){ + pVfs->xDlClose(pVfs, pHandle); +} +SQLITE_PRIVATE int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ + return pVfs->xRandomness(pVfs, nByte, zBufOut); +} +SQLITE_PRIVATE int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){ + return pVfs->xSleep(pVfs, nMicro); +} +SQLITE_PRIVATE int sqlite3OsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){ + return pVfs->xCurrentTime(pVfs, pTimeOut); +} + +SQLITE_PRIVATE int sqlite3OsOpenMalloc( + sqlite3_vfs *pVfs, + const char *zFile, + sqlite3_file **ppFile, + int flags, + int *pOutFlags +){ + int rc = SQLITE_NOMEM; + sqlite3_file *pFile; + pFile = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile); + if( pFile ){ + rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags); + if( rc!=SQLITE_OK ){ + sqlite3_free(pFile); + }else{ + *ppFile = pFile; + } + } + return rc; +} +SQLITE_PRIVATE int sqlite3OsCloseFree(sqlite3_file *pFile){ + int rc = SQLITE_OK; + assert( pFile ); + rc = sqlite3OsClose(pFile); + sqlite3_free(pFile); + return rc; +} + +/* +** The list of all registered VFS implementations. This list is +** initialized to the single VFS returned by sqlite3OsDefaultVfs() +** upon the first call to sqlite3_vfs_find(). +*/ +static sqlite3_vfs *vfsList = 0; + +/* +** Locate a VFS by name. If no name is given, simply return the +** first VFS on the list. +*/ +SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){ +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + sqlite3_vfs *pVfs = 0; + static int isInit = 0; + sqlite3_mutex_enter(mutex); + if( !isInit ){ + vfsList = sqlite3OsDefaultVfs(); + isInit = 1; + } + for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){ + if( zVfs==0 ) break; + if( strcmp(zVfs, pVfs->zName)==0 ) break; + } + sqlite3_mutex_leave(mutex); + return pVfs; +} + +/* +** Unlink a VFS from the linked list +*/ +static void vfsUnlink(sqlite3_vfs *pVfs){ + assert( sqlite3_mutex_held(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)) ); + if( pVfs==0 ){ + /* No-op */ + }else if( vfsList==pVfs ){ + vfsList = pVfs->pNext; + }else if( vfsList ){ + sqlite3_vfs *p = vfsList; + while( p->pNext && p->pNext!=pVfs ){ + p = p->pNext; + } + if( p->pNext==pVfs ){ + p->pNext = pVfs->pNext; + } + } +} + +/* +** Register a VFS with the system. It is harmless to register the same +** VFS multiple times. The new VFS becomes the default if makeDflt is +** true. +*/ +SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + sqlite3_vfs_find(0); /* Make sure we are initialized */ + sqlite3_mutex_enter(mutex); + vfsUnlink(pVfs); + if( makeDflt || vfsList==0 ){ + pVfs->pNext = vfsList; + vfsList = pVfs; + }else{ + pVfs->pNext = vfsList->pNext; + vfsList->pNext = pVfs; + } + assert(vfsList); + sqlite3_mutex_leave(mutex); + return SQLITE_OK; +} + +/* +** Unregister a VFS so that it is no longer accessible. +*/ +SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){ +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + sqlite3_mutex_enter(mutex); + vfsUnlink(pVfs); + sqlite3_mutex_leave(mutex); + return SQLITE_OK; +} + +/* +** Provide a default sqlite3OsDefaultVfs() implementation in the +** cases where none of the standard backends are used. +*/ +#if !OS_UNIX && !OS_WIN && !OS_OS2 +SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){ return 0; } +#endif + +/************** End of os.c **************************************************/ +/************** Begin file fault.c *******************************************/ +/* +** 2008 Jan 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code to implement a fault-injector used for +** testing and verification of SQLite. +** +** Subsystems within SQLite can call sqlite3FaultStep() to see if +** they should simulate a fault. sqlite3FaultStep() normally returns +** zero but will return non-zero if a fault should be simulated. +** Fault injectors can be used, for example, to simulate memory +** allocation failures or I/O errors. +** +** The fault injector is omitted from the code if SQLite is +** compiled with -DSQLITE_OMIT_BUILTIN_TEST=1. There is a very +** small performance hit for leaving the fault injector in the code. +** Commerical products will probably want to omit the fault injector +** from production builds. But safety-critical systems who work +** under the motto "fly what you test and test what you fly" may +** choose to leave the fault injector enabled even in production. +*/ + +#ifndef SQLITE_OMIT_BUILTIN_TEST + +/* +** There can be various kinds of faults. For example, there can be +** a memory allocation failure. Or an I/O failure. For each different +** fault type, there is a separate FaultInjector structure to keep track +** of the status of that fault. +*/ +static struct FaultInjector { + int iCountdown; /* Number of pending successes before we hit a failure */ + int nRepeat; /* Number of times to repeat the failure */ + int nBenign; /* Number of benign failures seen since last config */ + int nFail; /* Number of failures seen since last config */ + u8 enable; /* True if enabled */ + i16 benign; /* Positive if next failure will be benign */ +} aFault[SQLITE_FAULTINJECTOR_COUNT]; + +/* +** This routine configures and enables a fault injector. After +** calling this routine, aFaultStep() will return false (zero) +** nDelay times, then it will return true nRepeat times, +** then it will again begin returning false. +*/ +SQLITE_PRIVATE void sqlite3FaultConfig(int id, int nDelay, int nRepeat){ + assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT ); + aFault[id].iCountdown = nDelay; + aFault[id].nRepeat = nRepeat; + aFault[id].nBenign = 0; + aFault[id].nFail = 0; + aFault[id].enable = nDelay>=0; + aFault[id].benign = 0; +} + +/* +** Return the number of faults (both hard and benign faults) that have +** occurred since the injector was last configured. +*/ +SQLITE_PRIVATE int sqlite3FaultFailures(int id){ + assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT ); + return aFault[id].nFail; +} + +/* +** Return the number of benign faults that have occurred since the +** injector was last configured. +*/ +SQLITE_PRIVATE int sqlite3FaultBenignFailures(int id){ + assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT ); + return aFault[id].nBenign; +} + +/* +** Return the number of successes that will occur before the next failure. +** If no failures are scheduled, return -1. +*/ +SQLITE_PRIVATE int sqlite3FaultPending(int id){ + assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT ); + if( aFault[id].enable ){ + return aFault[id].iCountdown; + }else{ + return -1; + } +} + +/* +** After this routine causes subsequent faults to be either benign +** or hard (not benign), according to the "enable" parameter. +** +** Most faults are hard. In other words, most faults cause +** an error to be propagated back up to the application interface. +** However, sometimes a fault is easily recoverable. For example, +** if a malloc fails while resizing a hash table, this is completely +** recoverable simply by not carrying out the resize. The hash table +** will continue to function normally. So a malloc failure during +** a hash table resize is a benign fault. +*/ +SQLITE_PRIVATE void sqlite3FaultBeginBenign(int id){ + if( id<0 ){ + for(id=0; id<SQLITE_FAULTINJECTOR_COUNT; id++){ + aFault[id].benign++; + } + }else{ + assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT ); + aFault[id].benign++; + } +} +SQLITE_PRIVATE void sqlite3FaultEndBenign(int id){ + if( id<0 ){ + for(id=0; id<SQLITE_FAULTINJECTOR_COUNT; id++){ + assert( aFault[id].benign>0 ); + aFault[id].benign--; + } + }else{ + assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT ); + assert( aFault[id].benign>0 ); + aFault[id].benign--; + } +} + +/* +** This routine exists as a place to set a breakpoint that will +** fire on any simulated fault. +*/ +static void sqlite3Fault(void){ + static int cnt = 0; + cnt++; +} + + +/* +** Check to see if a fault should be simulated. Return true to simulate +** the fault. Return false if the fault should not be simulated. +*/ +SQLITE_PRIVATE int sqlite3FaultStep(int id){ + assert( id>=0 && id<SQLITE_FAULTINJECTOR_COUNT ); + if( likely(!aFault[id].enable) ){ + return 0; + } + if( aFault[id].iCountdown>0 ){ + aFault[id].iCountdown--; + return 0; + } + sqlite3Fault(); + aFault[id].nFail++; + if( aFault[id].benign>0 ){ + aFault[id].nBenign++; + } + aFault[id].nRepeat--; + if( aFault[id].nRepeat<=0 ){ + aFault[id].enable = 0; + } + return 1; +} + +#endif /* SQLITE_OMIT_BUILTIN_TEST */ + +/************** End of fault.c ***********************************************/ +/************** Begin file mem1.c ********************************************/ +/* +** 2007 August 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement a memory +** allocation subsystem for use by SQLite. +** +** $Id: mem1.c,v 1.17 2008/03/18 00:07:11 drh Exp $ +*/ + +/* +** This version of the memory allocator is the default. It is +** used when no other memory allocator is specified using compile-time +** macros. +*/ +#ifdef SQLITE_SYSTEM_MALLOC + +/* +** All of the static variables used by this module are collected +** into a single structure named "mem". This is to keep the +** static variables organized and to reduce namespace pollution +** when this module is combined with other in the amalgamation. +*/ +static struct { + /* + ** The alarm callback and its arguments. The mem.mutex lock will + ** be held while the callback is running. Recursive calls into + ** the memory subsystem are allowed, but no new callbacks will be + ** issued. The alarmBusy variable is set to prevent recursive + ** callbacks. + */ + sqlite3_int64 alarmThreshold; + void (*alarmCallback)(void*, sqlite3_int64,int); + void *alarmArg; + int alarmBusy; + + /* + ** Mutex to control access to the memory allocation subsystem. + */ + sqlite3_mutex *mutex; + + /* + ** Current allocation and high-water mark. + */ + sqlite3_int64 nowUsed; + sqlite3_int64 mxUsed; + + +} mem; + +/* +** Enter the mutex mem.mutex. Allocate it if it is not already allocated. +*/ +static void enterMem(void){ + if( mem.mutex==0 ){ + mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM); + } + sqlite3_mutex_enter(mem.mutex); +} + +/* +** Return the amount of memory currently checked out. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_used(void){ + sqlite3_int64 n; + enterMem(); + n = mem.nowUsed; + sqlite3_mutex_leave(mem.mutex); + return n; +} + +/* +** Return the maximum amount of memory that has ever been +** checked out since either the beginning of this process +** or since the most recent reset. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ + sqlite3_int64 n; + enterMem(); + n = mem.mxUsed; + if( resetFlag ){ + mem.mxUsed = mem.nowUsed; + } + sqlite3_mutex_leave(mem.mutex); + return n; +} + +/* +** Change the alarm callback +*/ +SQLITE_API int sqlite3_memory_alarm( + void(*xCallback)(void *pArg, sqlite3_int64 used,int N), + void *pArg, + sqlite3_int64 iThreshold +){ + enterMem(); + mem.alarmCallback = xCallback; + mem.alarmArg = pArg; + mem.alarmThreshold = iThreshold; + sqlite3_mutex_leave(mem.mutex); + return SQLITE_OK; +} + +/* +** Trigger the alarm +*/ +static void sqlite3MemsysAlarm(int nByte){ + void (*xCallback)(void*,sqlite3_int64,int); + sqlite3_int64 nowUsed; + void *pArg; + if( mem.alarmCallback==0 || mem.alarmBusy ) return; + mem.alarmBusy = 1; + xCallback = mem.alarmCallback; + nowUsed = mem.nowUsed; + pArg = mem.alarmArg; + sqlite3_mutex_leave(mem.mutex); + xCallback(pArg, nowUsed, nByte); + sqlite3_mutex_enter(mem.mutex); + mem.alarmBusy = 0; +} + +/* +** Allocate nBytes of memory +*/ +SQLITE_API void *sqlite3_malloc(int nBytes){ + sqlite3_int64 *p = 0; + if( nBytes>0 ){ + enterMem(); + if( mem.alarmCallback!=0 && mem.nowUsed+nBytes>=mem.alarmThreshold ){ + sqlite3MemsysAlarm(nBytes); + } + if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){ + p = 0; + }else{ + p = malloc(nBytes+8); + if( p==0 ){ + sqlite3MemsysAlarm(nBytes); + p = malloc(nBytes+8); + } + } + if( p ){ + p[0] = nBytes; + p++; + mem.nowUsed += nBytes; + if( mem.nowUsed>mem.mxUsed ){ + mem.mxUsed = mem.nowUsed; + } + } + sqlite3_mutex_leave(mem.mutex); + } + return (void*)p; +} + +/* +** Free memory. +*/ +SQLITE_API void sqlite3_free(void *pPrior){ + sqlite3_int64 *p; + int nByte; + if( pPrior==0 ){ + return; + } + assert( mem.mutex!=0 ); + p = pPrior; + p--; + nByte = (int)*p; + sqlite3_mutex_enter(mem.mutex); + mem.nowUsed -= nByte; + free(p); + sqlite3_mutex_leave(mem.mutex); +} + +/* +** Return the number of bytes allocated at p. +*/ +SQLITE_PRIVATE int sqlite3MallocSize(void *p){ + sqlite3_int64 *pInt; + if( !p ) return 0; + pInt = p; + return pInt[-1]; +} + +/* +** Change the size of an existing memory allocation +*/ +SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){ + int nOld; + sqlite3_int64 *p; + if( pPrior==0 ){ + return sqlite3_malloc(nBytes); + } + if( nBytes<=0 ){ + sqlite3_free(pPrior); + return 0; + } + p = pPrior; + p--; + nOld = (int)p[0]; + assert( mem.mutex!=0 ); + sqlite3_mutex_enter(mem.mutex); + if( mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){ + sqlite3MemsysAlarm(nBytes-nOld); + } + if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){ + p = 0; + }else{ + p = realloc(p, nBytes+8); + if( p==0 ){ + sqlite3MemsysAlarm(nBytes); + p = pPrior; + p--; + p = realloc(p, nBytes+8); + } + } + if( p ){ + p[0] = nBytes; + p++; + mem.nowUsed += nBytes-nOld; + if( mem.nowUsed>mem.mxUsed ){ + mem.mxUsed = mem.nowUsed; + } + } + sqlite3_mutex_leave(mem.mutex); + return (void*)p; +} + +#endif /* SQLITE_SYSTEM_MALLOC */ + +/************** End of mem1.c ************************************************/ +/************** Begin file mem2.c ********************************************/ +/* +** 2007 August 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement a memory +** allocation subsystem for use by SQLite. +** +** $Id: mem2.c,v 1.26 2008/04/10 14:57:25 drh Exp $ +*/ + +/* +** This version of the memory allocator is used only if the +** SQLITE_MEMDEBUG macro is defined +*/ +#ifdef SQLITE_MEMDEBUG + +/* +** The backtrace functionality is only available with GLIBC +*/ +#ifdef __GLIBC__ + extern int backtrace(void**,int); + extern void backtrace_symbols_fd(void*const*,int,int); +#else +# define backtrace(A,B) 0 +# define backtrace_symbols_fd(A,B,C) +#endif + +/* +** Each memory allocation looks like this: +** +** ------------------------------------------------------------------------ +** | Title | backtrace pointers | MemBlockHdr | allocation | EndGuard | +** ------------------------------------------------------------------------ +** +** The application code sees only a pointer to the allocation. We have +** to back up from the allocation pointer to find the MemBlockHdr. The +** MemBlockHdr tells us the size of the allocation and the number of +** backtrace pointers. There is also a guard word at the end of the +** MemBlockHdr. +*/ +struct MemBlockHdr { + i64 iSize; /* Size of this allocation */ + struct MemBlockHdr *pNext, *pPrev; /* Linked list of all unfreed memory */ + char nBacktrace; /* Number of backtraces on this alloc */ + char nBacktraceSlots; /* Available backtrace slots */ + short nTitle; /* Bytes of title; includes '\0' */ + int iForeGuard; /* Guard word for sanity */ +}; + +/* +** Guard words +*/ +#define FOREGUARD 0x80F5E153 +#define REARGUARD 0xE4676B53 + +/* +** Number of malloc size increments to track. +*/ +#define NCSIZE 1000 + +/* +** All of the static variables used by this module are collected +** into a single structure named "mem". This is to keep the +** static variables organized and to reduce namespace pollution +** when this module is combined with other in the amalgamation. +*/ +static struct { + /* + ** The alarm callback and its arguments. The mem.mutex lock will + ** be held while the callback is running. Recursive calls into + ** the memory subsystem are allowed, but no new callbacks will be + ** issued. The alarmBusy variable is set to prevent recursive + ** callbacks. + */ + sqlite3_int64 alarmThreshold; + void (*alarmCallback)(void*, sqlite3_int64, int); + void *alarmArg; + int alarmBusy; + + /* + ** Mutex to control access to the memory allocation subsystem. + */ + sqlite3_mutex *mutex; + + /* + ** Current allocation and high-water mark. + */ + sqlite3_int64 nowUsed; + sqlite3_int64 mxUsed; + + /* + ** Head and tail of a linked list of all outstanding allocations + */ + struct MemBlockHdr *pFirst; + struct MemBlockHdr *pLast; + + /* + ** The number of levels of backtrace to save in new allocations. + */ + int nBacktrace; + void (*xBacktrace)(int, int, void **); + + /* + ** Title text to insert in front of each block + */ + int nTitle; /* Bytes of zTitle to save. Includes '\0' and padding */ + char zTitle[100]; /* The title text */ + + /* + ** sqlite3MallocDisallow() increments the following counter. + ** sqlite3MallocAllow() decrements it. + */ + int disallow; /* Do not allow memory allocation */ + + /* + ** Gather statistics on the sizes of memory allocations. + ** sizeCnt[i] is the number of allocation attempts of i*8 + ** bytes. i==NCSIZE is the number of allocation attempts for + ** sizes more than NCSIZE*8 bytes. + */ + int sizeCnt[NCSIZE]; + +} mem; + + +/* +** Enter the mutex mem.mutex. Allocate it if it is not already allocated. +*/ +static void enterMem(void){ + if( mem.mutex==0 ){ + mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM); + } + sqlite3_mutex_enter(mem.mutex); +} + +/* +** Return the amount of memory currently checked out. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_used(void){ + sqlite3_int64 n; + enterMem(); + n = mem.nowUsed; + sqlite3_mutex_leave(mem.mutex); + return n; +} + +/* +** Return the maximum amount of memory that has ever been +** checked out since either the beginning of this process +** or since the most recent reset. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ + sqlite3_int64 n; + enterMem(); + n = mem.mxUsed; + if( resetFlag ){ + mem.mxUsed = mem.nowUsed; + } + sqlite3_mutex_leave(mem.mutex); + return n; +} + +/* +** Change the alarm callback +*/ +SQLITE_API int sqlite3_memory_alarm( + void(*xCallback)(void *pArg, sqlite3_int64 used, int N), + void *pArg, + sqlite3_int64 iThreshold +){ + enterMem(); + mem.alarmCallback = xCallback; + mem.alarmArg = pArg; + mem.alarmThreshold = iThreshold; + sqlite3_mutex_leave(mem.mutex); + return SQLITE_OK; +} + +/* +** Trigger the alarm +*/ +static void sqlite3MemsysAlarm(int nByte){ + void (*xCallback)(void*,sqlite3_int64,int); + sqlite3_int64 nowUsed; + void *pArg; + if( mem.alarmCallback==0 || mem.alarmBusy ) return; + mem.alarmBusy = 1; + xCallback = mem.alarmCallback; + nowUsed = mem.nowUsed; + pArg = mem.alarmArg; + sqlite3_mutex_leave(mem.mutex); + xCallback(pArg, nowUsed, nByte); + sqlite3_mutex_enter(mem.mutex); + mem.alarmBusy = 0; +} + +/* +** Given an allocation, find the MemBlockHdr for that allocation. +** +** This routine checks the guards at either end of the allocation and +** if they are incorrect it asserts. +*/ +static struct MemBlockHdr *sqlite3MemsysGetHeader(void *pAllocation){ + struct MemBlockHdr *p; + int *pInt; + u8 *pU8; + int nReserve; + + p = (struct MemBlockHdr*)pAllocation; + p--; + assert( p->iForeGuard==FOREGUARD ); + nReserve = (p->iSize+7)&~7; + pInt = (int*)pAllocation; + pU8 = (u8*)pAllocation; + assert( pInt[nReserve/sizeof(int)]==REARGUARD ); + assert( (nReserve-0)<=p->iSize || pU8[nReserve-1]==0x65 ); + assert( (nReserve-1)<=p->iSize || pU8[nReserve-2]==0x65 ); + assert( (nReserve-2)<=p->iSize || pU8[nReserve-3]==0x65 ); + return p; +} + +/* +** Return the number of bytes currently allocated at address p. +*/ +SQLITE_PRIVATE int sqlite3MallocSize(void *p){ + struct MemBlockHdr *pHdr; + if( !p ){ + return 0; + } + pHdr = sqlite3MemsysGetHeader(p); + return pHdr->iSize; +} + +/* +** Allocate nByte bytes of memory. +*/ +SQLITE_API void *sqlite3_malloc(int nByte){ + struct MemBlockHdr *pHdr; + void **pBt; + char *z; + int *pInt; + void *p = 0; + int totalSize; + + if( nByte>0 ){ + int nReserve; + enterMem(); + assert( mem.disallow==0 ); + if( mem.alarmCallback!=0 && mem.nowUsed+nByte>=mem.alarmThreshold ){ + sqlite3MemsysAlarm(nByte); + } + nReserve = (nByte+7)&~7; + if( nReserve/8>NCSIZE-1 ){ + mem.sizeCnt[NCSIZE-1]++; + }else{ + mem.sizeCnt[nReserve/8]++; + } + totalSize = nReserve + sizeof(*pHdr) + sizeof(int) + + mem.nBacktrace*sizeof(void*) + mem.nTitle; + if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ){ + p = 0; + }else{ + p = malloc(totalSize); + if( p==0 ){ + sqlite3MemsysAlarm(nByte); + p = malloc(totalSize); + } + } + if( p ){ + z = p; + pBt = (void**)&z[mem.nTitle]; + pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace]; + pHdr->pNext = 0; + pHdr->pPrev = mem.pLast; + if( mem.pLast ){ + mem.pLast->pNext = pHdr; + }else{ + mem.pFirst = pHdr; + } + mem.pLast = pHdr; + pHdr->iForeGuard = FOREGUARD; + pHdr->nBacktraceSlots = mem.nBacktrace; + pHdr->nTitle = mem.nTitle; + if( mem.nBacktrace ){ + void *aAddr[40]; + pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1; + memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*)); + if( mem.xBacktrace ){ + mem.xBacktrace(nByte, pHdr->nBacktrace-1, &aAddr[1]); + } + }else{ + pHdr->nBacktrace = 0; + } + if( mem.nTitle ){ + memcpy(z, mem.zTitle, mem.nTitle); + } + pHdr->iSize = nByte; + pInt = (int*)&pHdr[1]; + pInt[nReserve/sizeof(int)] = REARGUARD; + memset(pInt, 0x65, nReserve); + mem.nowUsed += nByte; + if( mem.nowUsed>mem.mxUsed ){ + mem.mxUsed = mem.nowUsed; + } + p = (void*)pInt; + } + sqlite3_mutex_leave(mem.mutex); + } + return p; +} + +/* +** Free memory. +*/ +SQLITE_API void sqlite3_free(void *pPrior){ + struct MemBlockHdr *pHdr; + void **pBt; + char *z; + if( pPrior==0 ){ + return; + } + assert( mem.mutex!=0 ); + pHdr = sqlite3MemsysGetHeader(pPrior); + pBt = (void**)pHdr; + pBt -= pHdr->nBacktraceSlots; + sqlite3_mutex_enter(mem.mutex); + mem.nowUsed -= pHdr->iSize; + if( pHdr->pPrev ){ + assert( pHdr->pPrev->pNext==pHdr ); + pHdr->pPrev->pNext = pHdr->pNext; + }else{ + assert( mem.pFirst==pHdr ); + mem.pFirst = pHdr->pNext; + } + if( pHdr->pNext ){ + assert( pHdr->pNext->pPrev==pHdr ); + pHdr->pNext->pPrev = pHdr->pPrev; + }else{ + assert( mem.pLast==pHdr ); + mem.pLast = pHdr->pPrev; + } + z = (char*)pBt; + z -= pHdr->nTitle; + memset(z, 0x2b, sizeof(void*)*pHdr->nBacktraceSlots + sizeof(*pHdr) + + pHdr->iSize + sizeof(int) + pHdr->nTitle); + free(z); + sqlite3_mutex_leave(mem.mutex); +} + +/* +** Change the size of an existing memory allocation. +** +** For this debugging implementation, we *always* make a copy of the +** allocation into a new place in memory. In this way, if the +** higher level code is using pointer to the old allocation, it is +** much more likely to break and we are much more liking to find +** the error. +*/ +SQLITE_API void *sqlite3_realloc(void *pPrior, int nByte){ + struct MemBlockHdr *pOldHdr; + void *pNew; + if( pPrior==0 ){ + return sqlite3_malloc(nByte); + } + if( nByte<=0 ){ + sqlite3_free(pPrior); + return 0; + } + assert( mem.disallow==0 ); + pOldHdr = sqlite3MemsysGetHeader(pPrior); + pNew = sqlite3_malloc(nByte); + if( pNew ){ + memcpy(pNew, pPrior, nByte<pOldHdr->iSize ? nByte : pOldHdr->iSize); + if( nByte>pOldHdr->iSize ){ + memset(&((char*)pNew)[pOldHdr->iSize], 0x2b, nByte - pOldHdr->iSize); + } + sqlite3_free(pPrior); + } + return pNew; +} + +/* +** Set the number of backtrace levels kept for each allocation. +** A value of zero turns of backtracing. The number is always rounded +** up to a multiple of 2. +*/ +SQLITE_PRIVATE void sqlite3MemdebugBacktrace(int depth){ + if( depth<0 ){ depth = 0; } + if( depth>20 ){ depth = 20; } + depth = (depth+1)&0xfe; + mem.nBacktrace = depth; +} + +SQLITE_PRIVATE void sqlite3MemdebugBacktraceCallback(void (*xBacktrace)(int, int, void **)){ + mem.xBacktrace = xBacktrace; +} + +/* +** Set the title string for subsequent allocations. +*/ +SQLITE_PRIVATE void sqlite3MemdebugSettitle(const char *zTitle){ + int n = strlen(zTitle) + 1; + enterMem(); + if( n>=sizeof(mem.zTitle) ) n = sizeof(mem.zTitle)-1; + memcpy(mem.zTitle, zTitle, n); + mem.zTitle[n] = 0; + mem.nTitle = (n+7)&~7; + sqlite3_mutex_leave(mem.mutex); +} + +SQLITE_PRIVATE void sqlite3MemdebugSync(){ + struct MemBlockHdr *pHdr; + for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ + void **pBt = (void**)pHdr; + pBt -= pHdr->nBacktraceSlots; + mem.xBacktrace(pHdr->iSize, pHdr->nBacktrace-1, &pBt[1]); + } +} + +/* +** Open the file indicated and write a log of all unfreed memory +** allocations into that log. +*/ +SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){ + FILE *out; + struct MemBlockHdr *pHdr; + void **pBt; + int i; + out = fopen(zFilename, "w"); + if( out==0 ){ + fprintf(stderr, "** Unable to output memory debug output log: %s **\n", + zFilename); + return; + } + for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ + char *z = (char*)pHdr; + z -= pHdr->nBacktraceSlots*sizeof(void*) + pHdr->nTitle; + fprintf(out, "**** %lld bytes at %p from %s ****\n", + pHdr->iSize, &pHdr[1], pHdr->nTitle ? z : "???"); + if( pHdr->nBacktrace ){ + fflush(out); + pBt = (void**)pHdr; + pBt -= pHdr->nBacktraceSlots; + backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out)); + fprintf(out, "\n"); + } + } + fprintf(out, "COUNTS:\n"); + for(i=0; i<NCSIZE-1; i++){ + if( mem.sizeCnt[i] ){ + fprintf(out, " %3d: %d\n", i*8+8, mem.sizeCnt[i]); + } + } + if( mem.sizeCnt[NCSIZE-1] ){ + fprintf(out, " >%3d: %d\n", NCSIZE*8, mem.sizeCnt[NCSIZE-1]); + } + fclose(out); +} + +/* +** Return the number of times sqlite3_malloc() has been called. +*/ +SQLITE_PRIVATE int sqlite3MemdebugMallocCount(){ + int i; + int nTotal = 0; + for(i=0; i<NCSIZE; i++){ + nTotal += mem.sizeCnt[i]; + } + return nTotal; +} + + +#endif /* SQLITE_MEMDEBUG */ + +/************** End of mem2.c ************************************************/ +/************** Begin file mem3.c ********************************************/ +/* +** 2007 October 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement a memory +** allocation subsystem for use by SQLite. +** +** This version of the memory allocation subsystem omits all +** use of malloc(). All dynamically allocatable memory is +** contained in a static array, mem.aPool[]. The size of this +** fixed memory pool is SQLITE_MEMORY_SIZE bytes. +** +** This version of the memory allocation subsystem is used if +** and only if SQLITE_MEMORY_SIZE is defined. +** +** $Id: mem3.c,v 1.12 2008/02/19 15:15:16 drh Exp $ +*/ + +/* +** This version of the memory allocator is used only when +** SQLITE_MEMORY_SIZE is defined. +*/ +#ifdef SQLITE_MEMORY_SIZE + +/* +** Maximum size (in Mem3Blocks) of a "small" chunk. +*/ +#define MX_SMALL 10 + + +/* +** Number of freelist hash slots +*/ +#define N_HASH 61 + +/* +** A memory allocation (also called a "chunk") consists of two or +** more blocks where each block is 8 bytes. The first 8 bytes are +** a header that is not returned to the user. +** +** A chunk is two or more blocks that is either checked out or +** free. The first block has format u.hdr. u.hdr.size4x is 4 times the +** size of the allocation in blocks if the allocation is free. +** The u.hdr.size4x&1 bit is true if the chunk is checked out and +** false if the chunk is on the freelist. The u.hdr.size4x&2 bit +** is true if the previous chunk is checked out and false if the +** previous chunk is free. The u.hdr.prevSize field is the size of +** the previous chunk in blocks if the previous chunk is on the +** freelist. If the previous chunk is checked out, then +** u.hdr.prevSize can be part of the data for that chunk and should +** not be read or written. +** +** We often identify a chunk by its index in mem.aPool[]. When +** this is done, the chunk index refers to the second block of +** the chunk. In this way, the first chunk has an index of 1. +** A chunk index of 0 means "no such chunk" and is the equivalent +** of a NULL pointer. +** +** The second block of free chunks is of the form u.list. The +** two fields form a double-linked list of chunks of related sizes. +** Pointers to the head of the list are stored in mem.aiSmall[] +** for smaller chunks and mem.aiHash[] for larger chunks. +** +** The second block of a chunk is user data if the chunk is checked +** out. If a chunk is checked out, the user data may extend into +** the u.hdr.prevSize value of the following chunk. +*/ +typedef struct Mem3Block Mem3Block; +struct Mem3Block { + union { + struct { + u32 prevSize; /* Size of previous chunk in Mem3Block elements */ + u32 size4x; /* 4x the size of current chunk in Mem3Block elements */ + } hdr; + struct { + u32 next; /* Index in mem.aPool[] of next free chunk */ + u32 prev; /* Index in mem.aPool[] of previous free chunk */ + } list; + } u; +}; + +/* +** All of the static variables used by this module are collected +** into a single structure named "mem". This is to keep the +** static variables organized and to reduce namespace pollution +** when this module is combined with other in the amalgamation. +*/ +static struct { + /* + ** True if we are evaluating an out-of-memory callback. + */ + int alarmBusy; + + /* + ** Mutex to control access to the memory allocation subsystem. + */ + sqlite3_mutex *mutex; + + /* + ** The minimum amount of free space that we have seen. + */ + u32 mnMaster; + + /* + ** iMaster is the index of the master chunk. Most new allocations + ** occur off of this chunk. szMaster is the size (in Mem3Blocks) + ** of the current master. iMaster is 0 if there is not master chunk. + ** The master chunk is not in either the aiHash[] or aiSmall[]. + */ + u32 iMaster; + u32 szMaster; + + /* + ** Array of lists of free blocks according to the block size + ** for smaller chunks, or a hash on the block size for larger + ** chunks. + */ + u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */ + u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */ + + /* + ** Memory available for allocation + */ + Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2]; +} mem; + +/* +** Unlink the chunk at mem.aPool[i] from list it is currently +** on. *pRoot is the list that i is a member of. +*/ +static void memsys3UnlinkFromList(u32 i, u32 *pRoot){ + u32 next = mem.aPool[i].u.list.next; + u32 prev = mem.aPool[i].u.list.prev; + assert( sqlite3_mutex_held(mem.mutex) ); + if( prev==0 ){ + *pRoot = next; + }else{ + mem.aPool[prev].u.list.next = next; + } + if( next ){ + mem.aPool[next].u.list.prev = prev; + } + mem.aPool[i].u.list.next = 0; + mem.aPool[i].u.list.prev = 0; +} + +/* +** Unlink the chunk at index i from +** whatever list is currently a member of. +*/ +static void memsys3Unlink(u32 i){ + u32 size, hash; + assert( sqlite3_mutex_held(mem.mutex) ); + assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 ); + assert( i>=1 ); + size = mem.aPool[i-1].u.hdr.size4x/4; + assert( size==mem.aPool[i+size-1].u.hdr.prevSize ); + assert( size>=2 ); + if( size <= MX_SMALL ){ + memsys3UnlinkFromList(i, &mem.aiSmall[size-2]); + }else{ + hash = size % N_HASH; + memsys3UnlinkFromList(i, &mem.aiHash[hash]); + } +} + +/* +** Link the chunk at mem.aPool[i] so that is on the list rooted +** at *pRoot. +*/ +static void memsys3LinkIntoList(u32 i, u32 *pRoot){ + assert( sqlite3_mutex_held(mem.mutex) ); + mem.aPool[i].u.list.next = *pRoot; + mem.aPool[i].u.list.prev = 0; + if( *pRoot ){ + mem.aPool[*pRoot].u.list.prev = i; + } + *pRoot = i; +} + +/* +** Link the chunk at index i into either the appropriate +** small chunk list, or into the large chunk hash table. +*/ +static void memsys3Link(u32 i){ + u32 size, hash; + assert( sqlite3_mutex_held(mem.mutex) ); + assert( i>=1 ); + assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 ); + size = mem.aPool[i-1].u.hdr.size4x/4; + assert( size==mem.aPool[i+size-1].u.hdr.prevSize ); + assert( size>=2 ); + if( size <= MX_SMALL ){ + memsys3LinkIntoList(i, &mem.aiSmall[size-2]); + }else{ + hash = size % N_HASH; + memsys3LinkIntoList(i, &mem.aiHash[hash]); + } +} + +/* +** Enter the mutex mem.mutex. Allocate it if it is not already allocated. +** +** Also: Initialize the memory allocation subsystem the first time +** this routine is called. +*/ +static void memsys3Enter(void){ + if( mem.mutex==0 ){ + mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM); + mem.aPool[0].u.hdr.size4x = SQLITE_MEMORY_SIZE/2 + 2; + mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8; + mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.size4x = 1; + mem.iMaster = 1; + mem.szMaster = SQLITE_MEMORY_SIZE/8; + mem.mnMaster = mem.szMaster; + } + sqlite3_mutex_enter(mem.mutex); +} + +/* +** Return the amount of memory currently checked out. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_used(void){ + sqlite3_int64 n; + memsys3Enter(); + n = SQLITE_MEMORY_SIZE - mem.szMaster*8; + sqlite3_mutex_leave(mem.mutex); + return n; +} + +/* +** Return the maximum amount of memory that has ever been +** checked out since either the beginning of this process +** or since the most recent reset. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ + sqlite3_int64 n; + memsys3Enter(); + n = SQLITE_MEMORY_SIZE - mem.mnMaster*8; + if( resetFlag ){ + mem.mnMaster = mem.szMaster; + } + sqlite3_mutex_leave(mem.mutex); + return n; +} + +/* +** Change the alarm callback. +** +** This is a no-op for the static memory allocator. The purpose +** of the memory alarm is to support sqlite3_soft_heap_limit(). +** But with this memory allocator, the soft_heap_limit is really +** a hard limit that is fixed at SQLITE_MEMORY_SIZE. +*/ +SQLITE_API int sqlite3_memory_alarm( + void(*xCallback)(void *pArg, sqlite3_int64 used,int N), + void *pArg, + sqlite3_int64 iThreshold +){ + return SQLITE_OK; +} + +/* +** Called when we are unable to satisfy an allocation of nBytes. +*/ +static void memsys3OutOfMemory(int nByte){ + if( !mem.alarmBusy ){ + mem.alarmBusy = 1; + assert( sqlite3_mutex_held(mem.mutex) ); + sqlite3_mutex_leave(mem.mutex); + sqlite3_release_memory(nByte); + sqlite3_mutex_enter(mem.mutex); + mem.alarmBusy = 0; + } +} + +/* +** Return the size of an outstanding allocation, in bytes. The +** size returned omits the 8-byte header overhead. This only +** works for chunks that are currently checked out. +*/ +SQLITE_PRIVATE int sqlite3MallocSize(void *p){ + int iSize = 0; + if( p ){ + Mem3Block *pBlock = (Mem3Block*)p; + assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); + iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4; + } + return iSize; +} + +/* +** Chunk i is a free chunk that has been unlinked. Adjust its +** size parameters for check-out and return a pointer to the +** user portion of the chunk. +*/ +static void *memsys3Checkout(u32 i, int nBlock){ + u32 x; + assert( sqlite3_mutex_held(mem.mutex) ); + assert( i>=1 ); + assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock ); + assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); + x = mem.aPool[i-1].u.hdr.size4x; + mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); + mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; + mem.aPool[i+nBlock-1].u.hdr.size4x |= 2; + return &mem.aPool[i]; +} + +/* +** Carve a piece off of the end of the mem.iMaster free chunk. +** Return a pointer to the new allocation. Or, if the master chunk +** is not large enough, return 0. +*/ +static void *memsys3FromMaster(int nBlock){ + assert( sqlite3_mutex_held(mem.mutex) ); + assert( mem.szMaster>=nBlock ); + if( nBlock>=mem.szMaster-1 ){ + /* Use the entire master */ + void *p = memsys3Checkout(mem.iMaster, mem.szMaster); + mem.iMaster = 0; + mem.szMaster = 0; + mem.mnMaster = 0; + return p; + }else{ + /* Split the master block. Return the tail. */ + u32 newi, x; + newi = mem.iMaster + mem.szMaster - nBlock; + assert( newi > mem.iMaster+1 ); + mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock; + mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2; + mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; + mem.szMaster -= nBlock; + mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster; + x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2; + mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x; + if( mem.szMaster < mem.mnMaster ){ + mem.mnMaster = mem.szMaster; + } + return (void*)&mem.aPool[newi]; + } +} + +/* +** *pRoot is the head of a list of free chunks of the same size +** or same size hash. In other words, *pRoot is an entry in either +** mem.aiSmall[] or mem.aiHash[]. +** +** This routine examines all entries on the given list and tries +** to coalesce each entries with adjacent free chunks. +** +** If it sees a chunk that is larger than mem.iMaster, it replaces +** the current mem.iMaster with the new larger chunk. In order for +** this mem.iMaster replacement to work, the master chunk must be +** linked into the hash tables. That is not the normal state of +** affairs, of course. The calling routine must link the master +** chunk before invoking this routine, then must unlink the (possibly +** changed) master chunk once this routine has finished. +*/ +static void memsys3Merge(u32 *pRoot){ + u32 iNext, prev, size, i, x; + + assert( sqlite3_mutex_held(mem.mutex) ); + for(i=*pRoot; i>0; i=iNext){ + iNext = mem.aPool[i].u.list.next; + size = mem.aPool[i-1].u.hdr.size4x; + assert( (size&1)==0 ); + if( (size&2)==0 ){ + memsys3UnlinkFromList(i, pRoot); + assert( i > mem.aPool[i-1].u.hdr.prevSize ); + prev = i - mem.aPool[i-1].u.hdr.prevSize; + if( prev==iNext ){ + iNext = mem.aPool[prev].u.list.next; + } + memsys3Unlink(prev); + size = i + size/4 - prev; + x = mem.aPool[prev-1].u.hdr.size4x & 2; + mem.aPool[prev-1].u.hdr.size4x = size*4 | x; + mem.aPool[prev+size-1].u.hdr.prevSize = size; + memsys3Link(prev); + i = prev; + }else{ + size /= 4; + } + if( size>mem.szMaster ){ + mem.iMaster = i; + mem.szMaster = size; + } + } +} + +/* +** Return a block of memory of at least nBytes in size. +** Return NULL if unable. +*/ +static void *memsys3Malloc(int nByte){ + u32 i; + int nBlock; + int toFree; + + assert( sqlite3_mutex_held(mem.mutex) ); + assert( sizeof(Mem3Block)==8 ); + if( nByte<=12 ){ + nBlock = 2; + }else{ + nBlock = (nByte + 11)/8; + } + assert( nBlock >= 2 ); + + /* STEP 1: + ** Look for an entry of the correct size in either the small + ** chunk table or in the large chunk hash table. This is + ** successful most of the time (about 9 times out of 10). + */ + if( nBlock <= MX_SMALL ){ + i = mem.aiSmall[nBlock-2]; + if( i>0 ){ + memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]); + return memsys3Checkout(i, nBlock); + } + }else{ + int hash = nBlock % N_HASH; + for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){ + if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){ + memsys3UnlinkFromList(i, &mem.aiHash[hash]); + return memsys3Checkout(i, nBlock); + } + } + } + + /* STEP 2: + ** Try to satisfy the allocation by carving a piece off of the end + ** of the master chunk. This step usually works if step 1 fails. + */ + if( mem.szMaster>=nBlock ){ + return memsys3FromMaster(nBlock); + } + + + /* STEP 3: + ** Loop through the entire memory pool. Coalesce adjacent free + ** chunks. Recompute the master chunk as the largest free chunk. + ** Then try again to satisfy the allocation by carving a piece off + ** of the end of the master chunk. This step happens very + ** rarely (we hope!) + */ + for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){ + memsys3OutOfMemory(toFree); + if( mem.iMaster ){ + memsys3Link(mem.iMaster); + mem.iMaster = 0; + mem.szMaster = 0; + } + for(i=0; i<N_HASH; i++){ + memsys3Merge(&mem.aiHash[i]); + } + for(i=0; i<MX_SMALL-1; i++){ + memsys3Merge(&mem.aiSmall[i]); + } + if( mem.szMaster ){ + memsys3Unlink(mem.iMaster); + if( mem.szMaster>=nBlock ){ + return memsys3FromMaster(nBlock); + } + } + } + + /* If none of the above worked, then we fail. */ + return 0; +} + +/* +** Free an outstanding memory allocation. +*/ +void memsys3Free(void *pOld){ + Mem3Block *p = (Mem3Block*)pOld; + int i; + u32 size, x; + assert( sqlite3_mutex_held(mem.mutex) ); + assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] ); + i = p - mem.aPool; + assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 ); + size = mem.aPool[i-1].u.hdr.size4x/4; + assert( i+size<=SQLITE_MEMORY_SIZE/8+1 ); + mem.aPool[i-1].u.hdr.size4x &= ~1; + mem.aPool[i+size-1].u.hdr.prevSize = size; + mem.aPool[i+size-1].u.hdr.size4x &= ~2; + memsys3Link(i); + + /* Try to expand the master using the newly freed chunk */ + if( mem.iMaster ){ + while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){ + size = mem.aPool[mem.iMaster-1].u.hdr.prevSize; + mem.iMaster -= size; + mem.szMaster += size; + memsys3Unlink(mem.iMaster); + x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2; + mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x; + mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster; + } + x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2; + while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){ + memsys3Unlink(mem.iMaster+mem.szMaster); + mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4; + mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x; + mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster; + } + } +} + +/* +** Allocate nBytes of memory +*/ +SQLITE_API void *sqlite3_malloc(int nBytes){ + sqlite3_int64 *p = 0; + if( nBytes>0 ){ + memsys3Enter(); + p = memsys3Malloc(nBytes); + sqlite3_mutex_leave(mem.mutex); + } + return (void*)p; +} + +/* +** Free memory. +*/ +SQLITE_API void sqlite3_free(void *pPrior){ + if( pPrior==0 ){ + return; + } + assert( mem.mutex!=0 ); + sqlite3_mutex_enter(mem.mutex); + memsys3Free(pPrior); + sqlite3_mutex_leave(mem.mutex); +} + +/* +** Change the size of an existing memory allocation +*/ +SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){ + int nOld; + void *p; + if( pPrior==0 ){ + return sqlite3_malloc(nBytes); + } + if( nBytes<=0 ){ + sqlite3_free(pPrior); + return 0; + } + assert( mem.mutex!=0 ); + nOld = sqlite3MallocSize(pPrior); + if( nBytes<=nOld && nBytes>=nOld-128 ){ + return pPrior; + } + sqlite3_mutex_enter(mem.mutex); + p = memsys3Malloc(nBytes); + if( p ){ + if( nOld<nBytes ){ + memcpy(p, pPrior, nOld); + }else{ + memcpy(p, pPrior, nBytes); + } + memsys3Free(pPrior); + } + sqlite3_mutex_leave(mem.mutex); + return p; +} + +/* +** Open the file indicated and write a log of all unfreed memory +** allocations into that log. +*/ +SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){ +#ifdef SQLITE_DEBUG + FILE *out; + int i, j; + u32 size; + if( zFilename==0 || zFilename[0]==0 ){ + out = stdout; + }else{ + out = fopen(zFilename, "w"); + if( out==0 ){ + fprintf(stderr, "** Unable to output memory debug output log: %s **\n", + zFilename); + return; + } + } + memsys3Enter(); + fprintf(out, "CHUNKS:\n"); + for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size/4){ + size = mem.aPool[i-1].u.hdr.size4x; + if( size/4<=1 ){ + fprintf(out, "%p size error\n", &mem.aPool[i]); + assert( 0 ); + break; + } + if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){ + fprintf(out, "%p tail size does not match\n", &mem.aPool[i]); + assert( 0 ); + break; + } + if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){ + fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]); + assert( 0 ); + break; + } + if( size&1 ){ + fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8); + }else{ + fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8, + i==mem.iMaster ? " **master**" : ""); + } + } + for(i=0; i<MX_SMALL-1; i++){ + if( mem.aiSmall[i]==0 ) continue; + fprintf(out, "small(%2d):", i); + for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){ + fprintf(out, " %p(%d)", &mem.aPool[j], + (mem.aPool[j-1].u.hdr.size4x/4)*8-8); + } + fprintf(out, "\n"); + } + for(i=0; i<N_HASH; i++){ + if( mem.aiHash[i]==0 ) continue; + fprintf(out, "hash(%2d):", i); + for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){ + fprintf(out, " %p(%d)", &mem.aPool[j], + (mem.aPool[j-1].u.hdr.size4x/4)*8-8); + } + fprintf(out, "\n"); + } + fprintf(out, "master=%d\n", mem.iMaster); + fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8); + fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8); + sqlite3_mutex_leave(mem.mutex); + if( out==stdout ){ + fflush(stdout); + }else{ + fclose(out); + } +#endif +} + + +#endif /* !SQLITE_MEMORY_SIZE */ + +/************** End of mem3.c ************************************************/ +/************** Begin file mem5.c ********************************************/ +/* +** 2007 October 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement a memory +** allocation subsystem for use by SQLite. +** +** This version of the memory allocation subsystem omits all +** use of malloc(). All dynamically allocatable memory is +** contained in a static array, mem.aPool[]. The size of this +** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes. +** +** This version of the memory allocation subsystem is used if +** and only if SQLITE_POW2_MEMORY_SIZE is defined. +** +** $Id: mem5.c,v 1.4 2008/02/19 15:15:16 drh Exp $ +*/ + +/* +** This version of the memory allocator is used only when +** SQLITE_POW2_MEMORY_SIZE is defined. +*/ +#ifdef SQLITE_POW2_MEMORY_SIZE + +/* +** Log2 of the minimum size of an allocation. For example, if +** 4 then all allocations will be rounded up to at least 16 bytes. +** If 5 then all allocations will be rounded up to at least 32 bytes. +*/ +#ifndef SQLITE_POW2_LOGMIN +# define SQLITE_POW2_LOGMIN 6 +#endif +#define POW2_MIN (1<<SQLITE_POW2_LOGMIN) + +/* +** Log2 of the maximum size of an allocation. +*/ +#ifndef SQLITE_POW2_LOGMAX +# define SQLITE_POW2_LOGMAX 18 +#endif +#define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX) + +/* +** Number of distinct allocation sizes. +*/ +#define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1) + +/* +** A minimum allocation is an instance of the following structure. +** Larger allocations are an array of these structures where the +** size of the array is a power of 2. +*/ +typedef struct Mem5Block Mem5Block; +struct Mem5Block { + union { + char aData[POW2_MIN]; + struct { + int next; /* Index in mem.aPool[] of next free chunk */ + int prev; /* Index in mem.aPool[] of previous free chunk */ + } list; + } u; +}; + +/* +** Number of blocks of memory available for allocation. +*/ +#define NBLOCK (SQLITE_POW2_MEMORY_SIZE/POW2_MIN) + +/* +** The size in blocks of an POW2_MAX allocation +*/ +#define SZ_MAX (1<<(NSIZE-1)) + +/* +** Masks used for mem.aCtrl[] elements. +*/ +#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */ +#define CTRL_FREE 0x20 /* True if not checked out */ + +/* +** All of the static variables used by this module are collected +** into a single structure named "mem". This is to keep the +** static variables organized and to reduce namespace pollution +** when this module is combined with other in the amalgamation. +*/ +static struct { + /* + ** The alarm callback and its arguments. The mem.mutex lock will + ** be held while the callback is running. Recursive calls into + ** the memory subsystem are allowed, but no new callbacks will be + ** issued. The alarmBusy variable is set to prevent recursive + ** callbacks. + */ + sqlite3_int64 alarmThreshold; + void (*alarmCallback)(void*, sqlite3_int64,int); + void *alarmArg; + int alarmBusy; + + /* + ** Mutex to control access to the memory allocation subsystem. + */ + sqlite3_mutex *mutex; + + /* + ** Performance statistics + */ + u64 nAlloc; /* Total number of calls to malloc */ + u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ + u64 totalExcess; /* Total internal fragmentation */ + u32 currentOut; /* Current checkout, including internal fragmentation */ + u32 currentCount; /* Current number of distinct checkouts */ + u32 maxOut; /* Maximum instantaneous currentOut */ + u32 maxCount; /* Maximum instantaneous currentCount */ + u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ + + /* + ** Lists of free blocks of various sizes. + */ + int aiFreelist[NSIZE]; + + /* + ** Space for tracking which blocks are checked out and the size + ** of each block. One byte per block. + */ + u8 aCtrl[NBLOCK]; + + /* + ** Memory available for allocation + */ + Mem5Block aPool[NBLOCK]; +} mem; + +/* +** Unlink the chunk at mem.aPool[i] from list it is currently +** on. It should be found on mem.aiFreelist[iLogsize]. +*/ +static void memsys5Unlink(int i, int iLogsize){ + int next, prev; + assert( i>=0 && i<NBLOCK ); + assert( iLogsize>=0 && iLogsize<NSIZE ); + assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); + assert( sqlite3_mutex_held(mem.mutex) ); + + next = mem.aPool[i].u.list.next; + prev = mem.aPool[i].u.list.prev; + if( prev<0 ){ + mem.aiFreelist[iLogsize] = next; + }else{ + mem.aPool[prev].u.list.next = next; + } + if( next>=0 ){ + mem.aPool[next].u.list.prev = prev; + } +} + +/* +** Link the chunk at mem.aPool[i] so that is on the iLogsize +** free list. +*/ +static void memsys5Link(int i, int iLogsize){ + int x; + assert( sqlite3_mutex_held(mem.mutex) ); + assert( i>=0 && i<NBLOCK ); + assert( iLogsize>=0 && iLogsize<NSIZE ); + assert( (mem.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); + + mem.aPool[i].u.list.next = x = mem.aiFreelist[iLogsize]; + mem.aPool[i].u.list.prev = -1; + if( x>=0 ){ + assert( x<NBLOCK ); + mem.aPool[x].u.list.prev = i; + } + mem.aiFreelist[iLogsize] = i; +} + +/* +** Enter the mutex mem.mutex. Allocate it if it is not already allocated. +** +** Also: Initialize the memory allocation subsystem the first time +** this routine is called. +*/ +static void memsys5Enter(void){ + if( mem.mutex==0 ){ + int i; + assert( sizeof(Mem5Block)==POW2_MIN ); + assert( (SQLITE_POW2_MEMORY_SIZE % POW2_MAX)==0 ); + assert( SQLITE_POW2_MEMORY_SIZE>=POW2_MAX ); + mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM); + sqlite3_mutex_enter(mem.mutex); + for(i=0; i<NSIZE; i++) mem.aiFreelist[i] = -1; + for(i=0; i<=NBLOCK-SZ_MAX; i += SZ_MAX){ + mem.aCtrl[i] = (NSIZE-1) | CTRL_FREE; + memsys5Link(i, NSIZE-1); + } + }else{ + sqlite3_mutex_enter(mem.mutex); + } +} + +/* +** Return the amount of memory currently checked out. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_used(void){ + return mem.currentOut; +} + +/* +** Return the maximum amount of memory that has ever been +** checked out since either the beginning of this process +** or since the most recent reset. +*/ +SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ + sqlite3_int64 n; + memsys5Enter(); + n = mem.maxOut; + if( resetFlag ){ + mem.maxOut = mem.currentOut; + } + sqlite3_mutex_leave(mem.mutex); + return n; +} + + +/* +** Trigger the alarm +*/ +static void memsys5Alarm(int nByte){ + void (*xCallback)(void*,sqlite3_int64,int); + sqlite3_int64 nowUsed; + void *pArg; + if( mem.alarmCallback==0 || mem.alarmBusy ) return; + mem.alarmBusy = 1; + xCallback = mem.alarmCallback; + nowUsed = mem.currentOut; + pArg = mem.alarmArg; + sqlite3_mutex_leave(mem.mutex); + xCallback(pArg, nowUsed, nByte); + sqlite3_mutex_enter(mem.mutex); + mem.alarmBusy = 0; +} + +/* +** Change the alarm callback. +** +** This is a no-op for the static memory allocator. The purpose +** of the memory alarm is to support sqlite3_soft_heap_limit(). +** But with this memory allocator, the soft_heap_limit is really +** a hard limit that is fixed at SQLITE_POW2_MEMORY_SIZE. +*/ +SQLITE_API int sqlite3_memory_alarm( + void(*xCallback)(void *pArg, sqlite3_int64 used,int N), + void *pArg, + sqlite3_int64 iThreshold +){ + memsys5Enter(); + mem.alarmCallback = xCallback; + mem.alarmArg = pArg; + mem.alarmThreshold = iThreshold; + sqlite3_mutex_leave(mem.mutex); + return SQLITE_OK; +} + +/* +** Return the size of an outstanding allocation, in bytes. The +** size returned omits the 8-byte header overhead. This only +** works for chunks that are currently checked out. +*/ +SQLITE_PRIVATE int sqlite3MallocSize(void *p){ + int iSize = 0; + if( p ){ + int i = ((Mem5Block*)p) - mem.aPool; + assert( i>=0 && i<NBLOCK ); + iSize = 1 << ((mem.aCtrl[i]&CTRL_LOGSIZE) + SQLITE_POW2_LOGMIN); + } + return iSize; +} + +/* +** Find the first entry on the freelist iLogsize. Unlink that +** entry and return its index. +*/ +static int memsys5UnlinkFirst(int iLogsize){ + int i; + int iFirst; + + assert( iLogsize>=0 && iLogsize<NSIZE ); + i = iFirst = mem.aiFreelist[iLogsize]; + assert( iFirst>=0 ); + while( i>0 ){ + if( i<iFirst ) iFirst = i; + i = mem.aPool[i].u.list.next; + } + memsys5Unlink(iFirst, iLogsize); + return iFirst; +} + +/* +** Return a block of memory of at least nBytes in size. +** Return NULL if unable. +*/ +static void *memsys5Malloc(int nByte){ + int i; /* Index of a mem.aPool[] slot */ + int iBin; /* Index into mem.aiFreelist[] */ + int iFullSz; /* Size of allocation rounded up to power of 2 */ + int iLogsize; /* Log2 of iFullSz/POW2_MIN */ + + assert( sqlite3_mutex_held(mem.mutex) ); + + /* Keep track of the maximum allocation request. Even unfulfilled + ** requests are counted */ + if( nByte>mem.maxRequest ){ + mem.maxRequest = nByte; + } + + /* Simulate a memory allocation fault */ + if( sqlite3FaultStep(SQLITE_FAULTINJECTOR_MALLOC) ) return 0; + + /* Round nByte up to the next valid power of two */ + if( nByte>POW2_MAX ) return 0; + for(iFullSz=POW2_MIN, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){} + + /* If we will be over the memory alarm threshold after this allocation, + ** then trigger the memory overflow alarm */ + if( mem.alarmCallback!=0 && mem.currentOut+iFullSz>=mem.alarmThreshold ){ + memsys5Alarm(iFullSz); + } + + /* Make sure mem.aiFreelist[iLogsize] contains at least one free + ** block. If not, then split a block of the next larger power of + ** two in order to create a new free block of size iLogsize. + */ + for(iBin=iLogsize; mem.aiFreelist[iBin]<0 && iBin<NSIZE; iBin++){} + if( iBin>=NSIZE ) return 0; + i = memsys5UnlinkFirst(iBin); + while( iBin>iLogsize ){ + int newSize; + + iBin--; + newSize = 1 << iBin; + mem.aCtrl[i+newSize] = CTRL_FREE | iBin; + memsys5Link(i+newSize, iBin); + } + mem.aCtrl[i] = iLogsize; + + /* Update allocator performance statistics. */ + mem.nAlloc++; + mem.totalAlloc += iFullSz; + mem.totalExcess += iFullSz - nByte; + mem.currentCount++; + mem.currentOut += iFullSz; + if( mem.maxCount<mem.currentCount ) mem.maxCount = mem.currentCount; + if( mem.maxOut<mem.currentOut ) mem.maxOut = mem.currentOut; + + /* Return a pointer to the allocated memory. */ + return (void*)&mem.aPool[i]; +} + +/* +** Free an outstanding memory allocation. +*/ +void memsys5Free(void *pOld){ + u32 size, iLogsize; + int i; + + i = ((Mem5Block*)pOld) - mem.aPool; + assert( sqlite3_mutex_held(mem.mutex) ); + assert( i>=0 && i<NBLOCK ); + assert( (mem.aCtrl[i] & CTRL_FREE)==0 ); + iLogsize = mem.aCtrl[i] & CTRL_LOGSIZE; + size = 1<<iLogsize; + assert( i+size-1<NBLOCK ); + mem.aCtrl[i] |= CTRL_FREE; + mem.aCtrl[i+size-1] |= CTRL_FREE; + assert( mem.currentCount>0 ); + assert( mem.currentOut>=0 ); + mem.currentCount--; + mem.currentOut -= size*POW2_MIN; + assert( mem.currentOut>0 || mem.currentCount==0 ); + assert( mem.currentCount>0 || mem.currentOut==0 ); + + mem.aCtrl[i] = CTRL_FREE | iLogsize; + while( iLogsize<NSIZE-1 ){ + int iBuddy; + + if( (i>>iLogsize) & 1 ){ + iBuddy = i - size; + }else{ + iBuddy = i + size; + } + assert( iBuddy>=0 && iBuddy<NBLOCK ); + if( mem.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; + memsys5Unlink(iBuddy, iLogsize); + iLogsize++; + if( iBuddy<i ){ + mem.aCtrl[iBuddy] = CTRL_FREE | iLogsize; + mem.aCtrl[i] = 0; + i = iBuddy; + }else{ + mem.aCtrl[i] = CTRL_FREE | iLogsize; + mem.aCtrl[iBuddy] = 0; + } + size *= 2; + } + memsys5Link(i, iLogsize); +} + +/* +** Allocate nBytes of memory +*/ +SQLITE_API void *sqlite3_malloc(int nBytes){ + sqlite3_int64 *p = 0; + if( nBytes>0 ){ + memsys5Enter(); + p = memsys5Malloc(nBytes); + sqlite3_mutex_leave(mem.mutex); + } + return (void*)p; +} + +/* +** Free memory. +*/ +SQLITE_API void sqlite3_free(void *pPrior){ + if( pPrior==0 ){ + return; + } + assert( mem.mutex!=0 ); + sqlite3_mutex_enter(mem.mutex); + memsys5Free(pPrior); + sqlite3_mutex_leave(mem.mutex); +} + +/* +** Change the size of an existing memory allocation +*/ +SQLITE_API void *sqlite3_realloc(void *pPrior, int nBytes){ + int nOld; + void *p; + if( pPrior==0 ){ + return sqlite3_malloc(nBytes); + } + if( nBytes<=0 ){ + sqlite3_free(pPrior); + return 0; + } + assert( mem.mutex!=0 ); + nOld = sqlite3MallocSize(pPrior); + if( nBytes<=nOld ){ + return pPrior; + } + sqlite3_mutex_enter(mem.mutex); + p = memsys5Malloc(nBytes); + if( p ){ + memcpy(p, pPrior, nOld); + memsys5Free(pPrior); + } + sqlite3_mutex_leave(mem.mutex); + return p; +} + +/* +** Open the file indicated and write a log of all unfreed memory +** allocations into that log. +*/ +SQLITE_PRIVATE void sqlite3MemdebugDump(const char *zFilename){ +#ifdef SQLITE_DEBUG + FILE *out; + int i, j, n; + + if( zFilename==0 || zFilename[0]==0 ){ + out = stdout; + }else{ + out = fopen(zFilename, "w"); + if( out==0 ){ + fprintf(stderr, "** Unable to output memory debug output log: %s **\n", + zFilename); + return; + } + } + memsys5Enter(); + for(i=0; i<NSIZE; i++){ + for(n=0, j=mem.aiFreelist[i]; j>=0; j = mem.aPool[j].u.list.next, n++){} + fprintf(out, "freelist items of size %d: %d\n", POW2_MIN << i, n); + } + fprintf(out, "mem.nAlloc = %llu\n", mem.nAlloc); + fprintf(out, "mem.totalAlloc = %llu\n", mem.totalAlloc); + fprintf(out, "mem.totalExcess = %llu\n", mem.totalExcess); + fprintf(out, "mem.currentOut = %u\n", mem.currentOut); + fprintf(out, "mem.currentCount = %u\n", mem.currentCount); + fprintf(out, "mem.maxOut = %u\n", mem.maxOut); + fprintf(out, "mem.maxCount = %u\n", mem.maxCount); + fprintf(out, "mem.maxRequest = %u\n", mem.maxRequest); + sqlite3_mutex_leave(mem.mutex); + if( out==stdout ){ + fflush(stdout); + }else{ + fclose(out); + } +#endif +} + + +#endif /* !SQLITE_POW2_MEMORY_SIZE */ + +/************** End of mem5.c ************************************************/ +/************** Begin file mutex.c *******************************************/ +/* +** 2007 August 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes. +** +** The implementation in this file does not provide any mutual +** exclusion and is thus suitable for use only in applications +** that use SQLite in a single thread. But this implementation +** does do a lot of error checking on mutexes to make sure they +** are called correctly and at appropriate times. Hence, this +** implementation is suitable for testing. +** debugging purposes +** +** $Id: mutex.c,v 1.17 2008/03/26 18:34:43 danielk1977 Exp $ +*/ + +#ifdef SQLITE_MUTEX_NOOP_DEBUG +/* +** In this implementation, mutexes do not provide any mutual exclusion. +** But the error checking is provided. This implementation is useful +** for test purposes. +*/ + +/* +** The mutex object +*/ +struct sqlite3_mutex { + int id; /* The mutex type */ + int cnt; /* Number of entries without a matching leave */ +}; + +/* +** The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. If it returns NULL +** that means that a mutex could not be allocated. +*/ +SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){ + static sqlite3_mutex aStatic[6]; + sqlite3_mutex *pNew = 0; + switch( id ){ + case SQLITE_MUTEX_FAST: + case SQLITE_MUTEX_RECURSIVE: { + pNew = sqlite3_malloc(sizeof(*pNew)); + if( pNew ){ + pNew->id = id; + pNew->cnt = 0; + } + break; + } + default: { + assert( id-2 >= 0 ); + assert( id-2 < sizeof(aStatic)/sizeof(aStatic[0]) ); + pNew = &aStatic[id-2]; + pNew->id = id; + break; + } + } + return pNew; +} + +/* +** This routine deallocates a previously allocated mutex. +*/ +SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){ + assert( p ); + assert( p->cnt==0 ); + assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); + sqlite3_free(p); +} + +/* +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can +** be entered multiple times by the same thread. In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. If the same thread tries to enter any other kind of mutex +** more than once, the behavior is undefined. +*/ +SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){ + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + p->cnt++; +} +SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){ + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + p->cnt++; + return SQLITE_OK; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. The behavior +** is undefined if the mutex is not currently entered or +** is not currently allocated. SQLite will never do either. +*/ +SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){ + assert( p ); + assert( sqlite3_mutex_held(p) ); + p->cnt--; + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); +} + +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use inside assert() statements. +*/ +SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){ + return p==0 || p->cnt>0; +} +SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ + return p==0 || p->cnt==0; +} +#endif /* SQLITE_MUTEX_NOOP_DEBUG */ + +/************** End of mutex.c ***********************************************/ +/************** Begin file mutex_os2.c ***************************************/ +/* +** 2007 August 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes for OS/2 +** +** $Id: mutex_os2.c,v 1.6 2008/03/26 18:34:43 danielk1977 Exp $ +*/ + +/* +** The code in this file is only used if SQLITE_MUTEX_OS2 is defined. +** See the mutex.h file for details. +*/ +#ifdef SQLITE_MUTEX_OS2 + +/********************** OS/2 Mutex Implementation ********************** +** +** This implementation of mutexes is built using the OS/2 API. +*/ + +/* +** The mutex object +** Each recursive mutex is an instance of the following structure. +*/ +struct sqlite3_mutex { + HMTX mutex; /* Mutex controlling the lock */ + int id; /* Mutex type */ + int nRef; /* Number of references */ + TID owner; /* Thread holding this mutex */ +}; + +#define OS2_MUTEX_INITIALIZER 0,0,0,0 + +/* +** The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. If it returns NULL +** that means that a mutex could not be allocated. +** SQLite will unwind its stack and return an error. The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +** <ul> +** <li> SQLITE_MUTEX_FAST 0 +** <li> SQLITE_MUTEX_RECURSIVE 1 +** <li> SQLITE_MUTEX_STATIC_MASTER 2 +** <li> SQLITE_MUTEX_STATIC_MEM 3 +** <li> SQLITE_MUTEX_STATIC_PRNG 4 +** </ul> +** +** The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. But SQLite will only request a recursive mutex in +** cases where it really needs one. If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. Three static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. +*/ +SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){ + sqlite3_mutex *p = NULL; + switch( iType ){ + case SQLITE_MUTEX_FAST: + case SQLITE_MUTEX_RECURSIVE: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ + p->id = iType; + if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){ + sqlite3_free( p ); + p = NULL; + } + } + break; + } + default: { + static volatile int isInit = 0; + static sqlite3_mutex staticMutexes[] = { + { OS2_MUTEX_INITIALIZER, }, + { OS2_MUTEX_INITIALIZER, }, + { OS2_MUTEX_INITIALIZER, }, + { OS2_MUTEX_INITIALIZER, }, + { OS2_MUTEX_INITIALIZER, }, + { OS2_MUTEX_INITIALIZER, }, + }; + if ( !isInit ){ + APIRET rc; + PTIB ptib; + PPIB ppib; + HMTX mutex; + char name[32]; + DosGetInfoBlocks( &ptib, &ppib ); + sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x", + ppib->pib_ulpid ); + while( !isInit ){ + mutex = 0; + rc = DosCreateMutexSem( name, &mutex, 0, FALSE); + if( rc == NO_ERROR ){ + int i; + if( !isInit ){ + for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){ + DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE ); + } + isInit = 1; + } + DosCloseMutexSem( mutex ); + }else if( rc == ERROR_DUPLICATE_NAME ){ + DosSleep( 1 ); + }else{ + return p; + } + } + } + assert( iType-2 >= 0 ); + assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) ); + p = &staticMutexes[iType-2]; + p->id = iType; + break; + } + } + return p; +} + + +/* +** This routine deallocates a previously allocated mutex. +** SQLite is careful to deallocate every mutex that it allocates. +*/ +SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){ + assert( p ); + assert( p->nRef==0 ); + assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); + DosCloseMutexSem( p->mutex ); + sqlite3_free( p ); +} + +/* +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can +** be entered multiple times by the same thread. In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. If the same thread tries to enter any other kind of mutex +** more than once, the behavior is undefined. +*/ +SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){ + TID tid; + PID holder1; + ULONG holder2; + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT); + DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2); + p->owner = tid; + p->nRef++; +} +SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){ + int rc; + TID tid; + PID holder1; + ULONG holder2; + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR) { + DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2); + p->owner = tid; + p->nRef++; + rc = SQLITE_OK; + } else { + rc = SQLITE_BUSY; + } + + return rc; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. The behavior +** is undefined if the mutex is not currently entered or +** is not currently allocated. SQLite will never do either. +*/ +SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){ + TID tid; + PID holder1; + ULONG holder2; + assert( p->nRef>0 ); + DosQueryMutexSem(p->mutex, &holder1, &tid, &holder2); + assert( p->owner==tid ); + p->nRef--; + assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); + DosReleaseMutexSem(p->mutex); +} + +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use inside assert() statements. +*/ +SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){ + TID tid; + PID pid; + ULONG ulCount; + PTIB ptib; + if( p!=0 ) { + DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); + } else { + DosGetInfoBlocks(&ptib, NULL); + tid = ptib->tib_ptib2->tib2_ultid; + } + return p==0 || (p->nRef!=0 && p->owner==tid); +} +SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ + TID tid; + PID pid; + ULONG ulCount; + PTIB ptib; + if( p!= 0 ) { + DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount); + } else { + DosGetInfoBlocks(&ptib, NULL); + tid = ptib->tib_ptib2->tib2_ultid; + } + return p==0 || p->nRef==0 || p->owner!=tid; +} +#endif /* SQLITE_MUTEX_OS2 */ + +/************** End of mutex_os2.c *******************************************/ +/************** Begin file mutex_unix.c **************************************/ +/* +** 2007 August 28 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes for pthreads +** +** $Id: mutex_unix.c,v 1.7 2008/03/29 12:47:27 rse Exp $ +*/ + +/* +** The code in this file is only used if we are compiling threadsafe +** under unix with pthreads. +** +** Note that this implementation requires a version of pthreads that +** supports recursive mutexes. +*/ +#ifdef SQLITE_MUTEX_PTHREADS + +#include <pthread.h> + + +/* +** Each recursive mutex is an instance of the following structure. +*/ +struct sqlite3_mutex { + pthread_mutex_t mutex; /* Mutex controlling the lock */ + int id; /* Mutex type */ + int nRef; /* Number of entrances */ + pthread_t owner; /* Thread that is within this mutex */ +#ifdef SQLITE_DEBUG + int trace; /* True to trace changes */ +#endif +}; +#ifdef SQLITE_DEBUG +#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 } +#else +#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0 } +#endif + +/* +** The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. If it returns NULL +** that means that a mutex could not be allocated. SQLite +** will unwind its stack and return an error. The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +** <ul> +** <li> SQLITE_MUTEX_FAST +** <li> SQLITE_MUTEX_RECURSIVE +** <li> SQLITE_MUTEX_STATIC_MASTER +** <li> SQLITE_MUTEX_STATIC_MEM +** <li> SQLITE_MUTEX_STATIC_MEM2 +** <li> SQLITE_MUTEX_STATIC_PRNG +** <li> SQLITE_MUTEX_STATIC_LRU +** </ul> +** +** The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. But SQLite will only request a recursive mutex in +** cases where it really needs one. If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. Three static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. +*/ +SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){ + static sqlite3_mutex staticMutexes[] = { + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER, + SQLITE3_MUTEX_INITIALIZER + }; + sqlite3_mutex *p; + switch( iType ){ + case SQLITE_MUTEX_RECURSIVE: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + /* If recursive mutexes are not available, we will have to + ** build our own. See below. */ + pthread_mutex_init(&p->mutex, 0); +#else + /* Use a recursive mutex if it is available */ + pthread_mutexattr_t recursiveAttr; + pthread_mutexattr_init(&recursiveAttr); + pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE); + pthread_mutex_init(&p->mutex, &recursiveAttr); + pthread_mutexattr_destroy(&recursiveAttr); +#endif + p->id = iType; + } + break; + } + case SQLITE_MUTEX_FAST: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ + p->id = iType; + pthread_mutex_init(&p->mutex, 0); + } + break; + } + default: { + assert( iType-2 >= 0 ); + assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) ); + p = &staticMutexes[iType-2]; + p->id = iType; + break; + } + } + return p; +} + + +/* +** This routine deallocates a previously +** allocated mutex. SQLite is careful to deallocate every +** mutex that it allocates. +*/ +SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){ + assert( p ); + assert( p->nRef==0 ); + assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); + pthread_mutex_destroy(&p->mutex); + sqlite3_free(p); +} + +/* +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can +** be entered multiple times by the same thread. In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. If the same thread tries to enter any other kind of mutex +** more than once, the behavior is undefined. +*/ +SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){ + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + /* If recursive mutexes are not available, then we have to grow + ** our own. This implementation assumes that pthread_equal() + ** is atomic - that it cannot be deceived into thinking self + ** and p->owner are equal if p->owner changes between two values + ** that are not equal to self while the comparison is taking place. + ** This implementation also assumes a coherent cache - that + ** separate processes cannot read different values from the same + ** address at the same time. If either of these two conditions + ** are not met, then the mutexes will fail and problems will result. + */ + { + pthread_t self = pthread_self(); + if( p->nRef>0 && pthread_equal(p->owner, self) ){ + p->nRef++; + }else{ + pthread_mutex_lock(&p->mutex); + assert( p->nRef==0 ); + p->owner = self; + p->nRef = 1; + } + } +#else + /* Use the built-in recursive mutexes if they are available. + */ + pthread_mutex_lock(&p->mutex); + p->owner = pthread_self(); + p->nRef++; +#endif + +#ifdef SQLITE_DEBUG + if( p->trace ){ + printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif +} +SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){ + int rc; + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + /* If recursive mutexes are not available, then we have to grow + ** our own. This implementation assumes that pthread_equal() + ** is atomic - that it cannot be deceived into thinking self + ** and p->owner are equal if p->owner changes between two values + ** that are not equal to self while the comparison is taking place. + ** This implementation also assumes a coherent cache - that + ** separate processes cannot read different values from the same + ** address at the same time. If either of these two conditions + ** are not met, then the mutexes will fail and problems will result. + */ + { + pthread_t self = pthread_self(); + if( p->nRef>0 && pthread_equal(p->owner, self) ){ + p->nRef++; + rc = SQLITE_OK; + }else if( pthread_mutex_lock(&p->mutex)==0 ){ + assert( p->nRef==0 ); + p->owner = self; + p->nRef = 1; + rc = SQLITE_OK; + }else{ + rc = SQLITE_BUSY; + } + } +#else + /* Use the built-in recursive mutexes if they are available. + */ + if( pthread_mutex_trylock(&p->mutex)==0 ){ + p->owner = pthread_self(); + p->nRef++; + rc = SQLITE_OK; + }else{ + rc = SQLITE_BUSY; + } +#endif + +#ifdef SQLITE_DEBUG + if( rc==SQLITE_OK && p->trace ){ + printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif + return rc; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. The behavior +** is undefined if the mutex is not currently entered or +** is not currently allocated. SQLite will never do either. +*/ +SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){ + assert( p ); + assert( sqlite3_mutex_held(p) ); + p->nRef--; + assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); + +#ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX + if( p->nRef==0 ){ + pthread_mutex_unlock(&p->mutex); + } +#else + pthread_mutex_unlock(&p->mutex); +#endif + +#ifdef SQLITE_DEBUG + if( p->trace ){ + printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef); + } +#endif +} + +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use only inside assert() statements. On some platforms, +** there might be race conditions that can cause these routines to +** deliver incorrect results. In particular, if pthread_equal() is +** not an atomic operation, then these routines might delivery +** incorrect results. On most platforms, pthread_equal() is a +** comparison of two integers and is therefore atomic. But we are +** told that HPUX is not such a platform. If so, then these routines +** will not always work correctly on HPUX. +** +** On those platforms where pthread_equal() is not atomic, SQLite +** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to +** make sure no assert() statements are evaluated and hence these +** routines are never called. +*/ +#ifndef NDEBUG +SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){ + return p==0 || (p->nRef!=0 && pthread_equal(p->owner, pthread_self())); +} +SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ + return p==0 || p->nRef==0 || pthread_equal(p->owner, pthread_self())==0; +} +#endif +#endif /* SQLITE_MUTEX_PTHREAD */ + +/************** End of mutex_unix.c ******************************************/ +/************** Begin file mutex_w32.c ***************************************/ +/* +** 2007 August 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement mutexes for win32 +** +** $Id: mutex_w32.c,v 1.6 2008/03/26 18:34:43 danielk1977 Exp $ +*/ + +/* +** The code in this file is only used if we are compiling multithreaded +** on a win32 system. +*/ +#ifdef SQLITE_MUTEX_W32 + +/* +** Each recursive mutex is an instance of the following structure. +*/ +struct sqlite3_mutex { + CRITICAL_SECTION mutex; /* Mutex controlling the lock */ + int id; /* Mutex type */ + int nRef; /* Number of enterances */ + DWORD owner; /* Thread holding this mutex */ +}; + +/* +** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, +** or WinCE. Return false (zero) for Win95, Win98, or WinME. +** +** Here is an interesting observation: Win95, Win98, and WinME lack +** the LockFileEx() API. But we can still statically link against that +** API as long as we don't call it win running Win95/98/ME. A call to +** this routine is used to determine if the host is Win95/98/ME or +** WinNT/2K/XP so that we will know whether or not we can safely call +** the LockFileEx() API. +*/ +#if OS_WINCE +# define mutexIsNT() (1) +#else + static int mutexIsNT(void){ + static int osType = 0; + if( osType==0 ){ + OSVERSIONINFO sInfo; + sInfo.dwOSVersionInfoSize = sizeof(sInfo); + GetVersionEx(&sInfo); + osType = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1; + } + return osType==2; + } +#endif /* OS_WINCE */ + + +/* +** The sqlite3_mutex_alloc() routine allocates a new +** mutex and returns a pointer to it. If it returns NULL +** that means that a mutex could not be allocated. SQLite +** will unwind its stack and return an error. The argument +** to sqlite3_mutex_alloc() is one of these integer constants: +** +** <ul> +** <li> SQLITE_MUTEX_FAST 0 +** <li> SQLITE_MUTEX_RECURSIVE 1 +** <li> SQLITE_MUTEX_STATIC_MASTER 2 +** <li> SQLITE_MUTEX_STATIC_MEM 3 +** <li> SQLITE_MUTEX_STATIC_PRNG 4 +** </ul> +** +** The first two constants cause sqlite3_mutex_alloc() to create +** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE +** is used but not necessarily so when SQLITE_MUTEX_FAST is used. +** The mutex implementation does not need to make a distinction +** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does +** not want to. But SQLite will only request a recursive mutex in +** cases where it really needs one. If a faster non-recursive mutex +** implementation is available on the host platform, the mutex subsystem +** might return such a mutex in response to SQLITE_MUTEX_FAST. +** +** The other allowed parameters to sqlite3_mutex_alloc() each return +** a pointer to a static preexisting mutex. Three static mutexes are +** used by the current version of SQLite. Future versions of SQLite +** may add additional static mutexes. Static mutexes are for internal +** use by SQLite only. Applications that use SQLite mutexes should +** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or +** SQLITE_MUTEX_RECURSIVE. +** +** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST +** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc() +** returns a different mutex on every call. But for the static +** mutex types, the same mutex is returned on every call that has +** the same type number. +*/ +SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int iType){ + sqlite3_mutex *p; + + switch( iType ){ + case SQLITE_MUTEX_FAST: + case SQLITE_MUTEX_RECURSIVE: { + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ + p->id = iType; + InitializeCriticalSection(&p->mutex); + } + break; + } + default: { + static sqlite3_mutex staticMutexes[6]; + static int isInit = 0; + while( !isInit ){ + static long lock = 0; + if( InterlockedIncrement(&lock)==1 ){ + int i; + for(i=0; i<sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++){ + InitializeCriticalSection(&staticMutexes[i].mutex); + } + isInit = 1; + }else{ + Sleep(1); + } + } + assert( iType-2 >= 0 ); + assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) ); + p = &staticMutexes[iType-2]; + p->id = iType; + break; + } + } + return p; +} + + +/* +** This routine deallocates a previously +** allocated mutex. SQLite is careful to deallocate every +** mutex that it allocates. +*/ +SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){ + assert( p ); + assert( p->nRef==0 ); + assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); + DeleteCriticalSection(&p->mutex); + sqlite3_free(p); +} + +/* +** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt +** to enter a mutex. If another thread is already within the mutex, +** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return +** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK +** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can +** be entered multiple times by the same thread. In such cases the, +** mutex must be exited an equal number of times before another thread +** can enter. If the same thread tries to enter any other kind of mutex +** more than once, the behavior is undefined. +*/ +SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){ + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + EnterCriticalSection(&p->mutex); + p->owner = GetCurrentThreadId(); + p->nRef++; +} +SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){ + int rc = SQLITE_BUSY; + assert( p ); + assert( p->id==SQLITE_MUTEX_RECURSIVE || sqlite3_mutex_notheld(p) ); + /* + ** The sqlite3_mutex_try() routine is very rarely used, and when it + ** is used it is merely an optimization. So it is OK for it to always + ** fail. + ** + ** The TryEnterCriticalSection() interface is only available on WinNT. + ** And some windows compilers complain if you try to use it without + ** first doing some #defines that prevent SQLite from building on Win98. + ** For that reason, we will omit this optimization for now. See + ** ticket #2685. + */ +#if 0 + if( mutexIsNT() && TryEnterCriticalSection(&p->mutex) ){ + p->owner = GetCurrentThreadId(); + p->nRef++; + rc = SQLITE_OK; + } +#endif + return rc; +} + +/* +** The sqlite3_mutex_leave() routine exits a mutex that was +** previously entered by the same thread. The behavior +** is undefined if the mutex is not currently entered or +** is not currently allocated. SQLite will never do either. +*/ +SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){ + assert( p->nRef>0 ); + assert( p->owner==GetCurrentThreadId() ); + p->nRef--; + assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE ); + LeaveCriticalSection(&p->mutex); +} + +/* +** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are +** intended for use only inside assert() statements. +*/ +SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){ + return p==0 || (p->nRef!=0 && p->owner==GetCurrentThreadId()); +} +SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){ + return p==0 || p->nRef==0 || p->owner!=GetCurrentThreadId(); +} +#endif /* SQLITE_MUTEX_W32 */ + +/************** End of mutex_w32.c *******************************************/ +/************** Begin file malloc.c ******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Memory allocation functions used throughout sqlite. +** +** +** $Id: malloc.c,v 1.15 2008/03/26 18:34:43 danielk1977 Exp $ +*/ + +/* +** This routine runs when the memory allocator sees that the +** total memory allocation is about to exceed the soft heap +** limit. +*/ +static void softHeapLimitEnforcer( + void *NotUsed, + sqlite3_int64 inUse, + int allocSize +){ + sqlite3_release_memory(allocSize); +} + +/* +** Set the soft heap-size limit for the current thread. Passing a +** zero or negative value indicates no limit. +*/ +SQLITE_API void sqlite3_soft_heap_limit(int n){ + sqlite3_uint64 iLimit; + int overage; + if( n<0 ){ + iLimit = 0; + }else{ + iLimit = n; + } + if( iLimit>0 ){ + sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit); + }else{ + sqlite3_memory_alarm(0, 0, 0); + } + overage = sqlite3_memory_used() - n; + if( overage>0 ){ + sqlite3_release_memory(overage); + } +} + +/* +** Release memory held by SQLite instances created by the current thread. +*/ +SQLITE_API int sqlite3_release_memory(int n){ +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + int nRet = sqlite3VdbeReleaseMemory(n); + nRet += sqlite3PagerReleaseMemory(n-nRet); + return nRet; +#else + return SQLITE_OK; +#endif +} + + +/* +** Allocate and zero memory. +*/ +SQLITE_PRIVATE void *sqlite3MallocZero(unsigned n){ + void *p = sqlite3_malloc(n); + if( p ){ + memset(p, 0, n); + } + return p; +} + +/* +** Allocate and zero memory. If the allocation fails, make +** the mallocFailed flag in the connection pointer. +*/ +SQLITE_PRIVATE void *sqlite3DbMallocZero(sqlite3 *db, unsigned n){ + void *p = sqlite3DbMallocRaw(db, n); + if( p ){ + memset(p, 0, n); + } + return p; +} + +/* +** Allocate and zero memory. If the allocation fails, make +** the mallocFailed flag in the connection pointer. +*/ +SQLITE_PRIVATE void *sqlite3DbMallocRaw(sqlite3 *db, unsigned n){ + void *p = 0; + if( !db || db->mallocFailed==0 ){ + p = sqlite3_malloc(n); + if( !p && db ){ + db->mallocFailed = 1; + } + } + return p; +} + +/* +** Resize the block of memory pointed to by p to n bytes. If the +** resize fails, set the mallocFailed flag inthe connection object. +*/ +SQLITE_PRIVATE void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ + void *pNew = 0; + if( db->mallocFailed==0 ){ + pNew = sqlite3_realloc(p, n); + if( !pNew ){ + db->mallocFailed = 1; + } + } + return pNew; +} + +/* +** Attempt to reallocate p. If the reallocation fails, then free p +** and set the mallocFailed flag in the database connection. +*/ +SQLITE_PRIVATE void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ + void *pNew; + pNew = sqlite3DbRealloc(db, p, n); + if( !pNew ){ + sqlite3_free(p); + } + return pNew; +} + +/* +** Make a copy of a string in memory obtained from sqliteMalloc(). These +** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This +** is because when memory debugging is turned on, these two functions are +** called via macros that record the current file and line number in the +** ThreadData structure. +*/ +SQLITE_PRIVATE char *sqlite3StrDup(const char *z){ + char *zNew; + int n; + if( z==0 ) return 0; + n = strlen(z)+1; + zNew = sqlite3_malloc(n); + if( zNew ) memcpy(zNew, z, n); + return zNew; +} +SQLITE_PRIVATE char *sqlite3StrNDup(const char *z, int n){ + char *zNew; + if( z==0 ) return 0; + zNew = sqlite3_malloc(n+1); + if( zNew ){ + memcpy(zNew, z, n); + zNew[n] = 0; + } + return zNew; +} + +SQLITE_PRIVATE char *sqlite3DbStrDup(sqlite3 *db, const char *z){ + char *zNew = sqlite3StrDup(z); + if( z && !zNew ){ + db->mallocFailed = 1; + } + return zNew; +} +SQLITE_PRIVATE char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ + char *zNew = sqlite3StrNDup(z, n); + if( z && !zNew ){ + db->mallocFailed = 1; + } + return zNew; +} + +/* +** Create a string from the 2nd and subsequent arguments (up to the +** first NULL argument), store the string in memory obtained from +** sqliteMalloc() and make the pointer indicated by the 1st argument +** point to that string. The 1st argument must either be NULL or +** point to memory obtained from sqliteMalloc(). +*/ +SQLITE_PRIVATE void sqlite3SetString(char **pz, ...){ + va_list ap; + int nByte; + const char *z; + char *zResult; + + assert( pz!=0 ); + nByte = 1; + va_start(ap, pz); + while( (z = va_arg(ap, const char*))!=0 ){ + nByte += strlen(z); + } + va_end(ap); + sqlite3_free(*pz); + *pz = zResult = sqlite3_malloc(nByte); + if( zResult==0 ){ + return; + } + *zResult = 0; + va_start(ap, pz); + while( (z = va_arg(ap, const char*))!=0 ){ + int n = strlen(z); + memcpy(zResult, z, n); + zResult += n; + } + zResult[0] = 0; + va_end(ap); +} + + +/* +** This function must be called before exiting any API function (i.e. +** returning control to the user) that has called sqlite3_malloc or +** sqlite3_realloc. +** +** The returned value is normally a copy of the second argument to this +** function. However, if a malloc() failure has occured since the previous +** invocation SQLITE_NOMEM is returned instead. +** +** If the first argument, db, is not NULL and a malloc() error has occured, +** then the connection error-code (the value returned by sqlite3_errcode()) +** is set to SQLITE_NOMEM. +*/ +SQLITE_PRIVATE int sqlite3ApiExit(sqlite3* db, int rc){ + /* If the db handle is not NULL, then we must hold the connection handle + ** mutex here. Otherwise the read (and possible write) of db->mallocFailed + ** is unsafe, as is the call to sqlite3Error(). + */ + assert( !db || sqlite3_mutex_held(db->mutex) ); + if( db && db->mallocFailed ){ + sqlite3Error(db, SQLITE_NOMEM, 0); + db->mallocFailed = 0; + rc = SQLITE_NOMEM; + } + return rc & (db ? db->errMask : 0xff); +} + +/************** End of malloc.c **********************************************/ +/************** Begin file printf.c ******************************************/ +/* +** The "printf" code that follows dates from the 1980's. It is in +** the public domain. The original comments are included here for +** completeness. They are very out-of-date but might be useful as +** an historical reference. Most of the "enhancements" have been backed +** out so that the functionality is now the same as standard printf(). +** +************************************************************************** +** +** The following modules is an enhanced replacement for the "printf" subroutines +** found in the standard C library. The following enhancements are +** supported: +** +** + Additional functions. The standard set of "printf" functions +** includes printf, fprintf, sprintf, vprintf, vfprintf, and +** vsprintf. This module adds the following: +** +** * snprintf -- Works like sprintf, but has an extra argument +** which is the size of the buffer written to. +** +** * mprintf -- Similar to sprintf. Writes output to memory +** obtained from malloc. +** +** * xprintf -- Calls a function to dispose of output. +** +** * nprintf -- No output, but returns the number of characters +** that would have been output by printf. +** +** * A v- version (ex: vsnprintf) of every function is also +** supplied. +** +** + A few extensions to the formatting notation are supported: +** +** * The "=" flag (similar to "-") causes the output to be +** be centered in the appropriately sized field. +** +** * The %b field outputs an integer in binary notation. +** +** * The %c field now accepts a precision. The character output +** is repeated by the number of times the precision specifies. +** +** * The %' field works like %c, but takes as its character the +** next character of the format string, instead of the next +** argument. For example, printf("%.78'-") prints 78 minus +** signs, the same as printf("%.78c",'-'). +** +** + When compiled using GCC on a SPARC, this version of printf is +** faster than the library printf for SUN OS 4.1. +** +** + All functions are fully reentrant. +** +*/ + +/* +** Conversion types fall into various categories as defined by the +** following enumeration. +*/ +#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ +#define etFLOAT 2 /* Floating point. %f */ +#define etEXP 3 /* Exponentional notation. %e and %E */ +#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ +#define etSIZE 5 /* Return number of characters processed so far. %n */ +#define etSTRING 6 /* Strings. %s */ +#define etDYNSTRING 7 /* Dynamically allocated strings. %z */ +#define etPERCENT 8 /* Percent symbol. %% */ +#define etCHARX 9 /* Characters. %c */ +/* The rest are extensions, not normally found in printf() */ +#define etCHARLIT 10 /* Literal characters. %' */ +#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */ +#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '', + NULL pointers replaced by SQL NULL. %Q */ +#define etTOKEN 13 /* a pointer to a Token structure */ +#define etSRCLIST 14 /* a pointer to a SrcList */ +#define etPOINTER 15 /* The %p conversion */ +#define etSQLESCAPE3 16 /* %w -> Strings with '\"' doubled */ +#define etORDINAL 17 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ + + +/* +** An "etByte" is an 8-bit unsigned value. +*/ +typedef unsigned char etByte; + +/* +** Each builtin conversion character (ex: the 'd' in "%d") is described +** by an instance of the following structure +*/ +typedef struct et_info { /* Information about each format field */ + char fmttype; /* The format field code letter */ + etByte base; /* The base for radix conversion */ + etByte flags; /* One or more of FLAG_ constants below */ + etByte type; /* Conversion paradigm */ + etByte charset; /* Offset into aDigits[] of the digits string */ + etByte prefix; /* Offset into aPrefix[] of the prefix string */ +} et_info; + +/* +** Allowed values for et_info.flags +*/ +#define FLAG_SIGNED 1 /* True if the value to convert is signed */ +#define FLAG_INTERN 2 /* True if for internal use only */ +#define FLAG_STRING 4 /* Allow infinity precision */ + + +/* +** The following table is searched linearly, so it is good to put the +** most frequently used conversion types first. +*/ +static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; +static const char aPrefix[] = "-x0\000X0"; +static const et_info fmtinfo[] = { + { 'd', 10, 1, etRADIX, 0, 0 }, + { 's', 0, 4, etSTRING, 0, 0 }, + { 'g', 0, 1, etGENERIC, 30, 0 }, + { 'z', 0, 4, etDYNSTRING, 0, 0 }, + { 'q', 0, 4, etSQLESCAPE, 0, 0 }, + { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, + { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, + { 'c', 0, 0, etCHARX, 0, 0 }, + { 'o', 8, 0, etRADIX, 0, 2 }, + { 'u', 10, 0, etRADIX, 0, 0 }, + { 'x', 16, 0, etRADIX, 16, 1 }, + { 'X', 16, 0, etRADIX, 0, 4 }, +#ifndef SQLITE_OMIT_FLOATING_POINT + { 'f', 0, 1, etFLOAT, 0, 0 }, + { 'e', 0, 1, etEXP, 30, 0 }, + { 'E', 0, 1, etEXP, 14, 0 }, + { 'G', 0, 1, etGENERIC, 14, 0 }, +#endif + { 'i', 10, 1, etRADIX, 0, 0 }, + { 'n', 0, 0, etSIZE, 0, 0 }, + { '%', 0, 0, etPERCENT, 0, 0 }, + { 'p', 16, 0, etPOINTER, 0, 1 }, + { 'T', 0, 2, etTOKEN, 0, 0 }, + { 'S', 0, 2, etSRCLIST, 0, 0 }, + { 'r', 10, 3, etORDINAL, 0, 0 }, +}; +#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0])) + +/* +** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point +** conversions will work. +*/ +#ifndef SQLITE_OMIT_FLOATING_POINT +/* +** "*val" is a double such that 0.1 <= *val < 10.0 +** Return the ascii code for the leading digit of *val, then +** multiply "*val" by 10.0 to renormalize. +** +** Example: +** input: *val = 3.14159 +** output: *val = 1.4159 function return = '3' +** +** The counter *cnt is incremented each time. After counter exceeds +** 16 (the number of significant digits in a 64-bit float) '0' is +** always returned. +*/ +static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ + int digit; + LONGDOUBLE_TYPE d; + if( (*cnt)++ >= 16 ) return '0'; + digit = (int)*val; + d = digit; + digit += '0'; + *val = (*val - d)*10.0; + return digit; +} +#endif /* SQLITE_OMIT_FLOATING_POINT */ + +/* +** Append N space characters to the given string buffer. +*/ +static void appendSpace(StrAccum *pAccum, int N){ + static const char zSpaces[] = " "; + while( N>=sizeof(zSpaces)-1 ){ + sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); + N -= sizeof(zSpaces)-1; + } + if( N>0 ){ + sqlite3StrAccumAppend(pAccum, zSpaces, N); + } +} + +/* +** On machines with a small stack size, you can redefine the +** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for +** smaller values some %f conversions may go into an infinite loop. +*/ +#ifndef SQLITE_PRINT_BUF_SIZE +# define SQLITE_PRINT_BUF_SIZE 350 +#endif +#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ + +/* +** The root program. All variations call this core. +** +** INPUTS: +** func This is a pointer to a function taking three arguments +** 1. A pointer to anything. Same as the "arg" parameter. +** 2. A pointer to the list of characters to be output +** (Note, this list is NOT null terminated.) +** 3. An integer number of characters to be output. +** (Note: This number might be zero.) +** +** arg This is the pointer to anything which will be passed as the +** first argument to "func". Use it for whatever you like. +** +** fmt This is the format string, as in the usual print. +** +** ap This is a pointer to a list of arguments. Same as in +** vfprint. +** +** OUTPUTS: +** The return value is the total number of characters sent to +** the function "func". Returns -1 on a error. +** +** Note that the order in which automatic variables are declared below +** seems to make a big difference in determining how fast this beast +** will run. +*/ +static void vxprintf( + StrAccum *pAccum, /* Accumulate results here */ + int useExtended, /* Allow extended %-conversions */ + const char *fmt, /* Format string */ + va_list ap /* arguments */ +){ + int c; /* Next character in the format string */ + char *bufpt; /* Pointer to the conversion buffer */ + int precision; /* Precision of the current field */ + int length; /* Length of the field */ + int idx; /* A general purpose loop counter */ + int width; /* Width of the current field */ + etByte flag_leftjustify; /* True if "-" flag is present */ + etByte flag_plussign; /* True if "+" flag is present */ + etByte flag_blanksign; /* True if " " flag is present */ + etByte flag_alternateform; /* True if "#" flag is present */ + etByte flag_altform2; /* True if "!" flag is present */ + etByte flag_zeropad; /* True if field width constant starts with zero */ + etByte flag_long; /* True if "l" flag is present */ + etByte flag_longlong; /* True if the "ll" flag is present */ + etByte done; /* Loop termination flag */ + sqlite_uint64 longvalue; /* Value for integer types */ + LONGDOUBLE_TYPE realvalue; /* Value for real types */ + const et_info *infop; /* Pointer to the appropriate info structure */ + char buf[etBUFSIZE]; /* Conversion buffer */ + char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ + etByte errorflag = 0; /* True if an error is encountered */ + etByte xtype; /* Conversion paradigm */ + char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ +#ifndef SQLITE_OMIT_FLOATING_POINT + int exp, e2; /* exponent of real numbers */ + double rounder; /* Used for rounding floating point values */ + etByte flag_dp; /* True if decimal point should be shown */ + etByte flag_rtz; /* True if trailing zeros should be removed */ + etByte flag_exp; /* True to force display of the exponent */ + int nsd; /* Number of significant digits returned */ +#endif + + length = 0; + bufpt = 0; + for(; (c=(*fmt))!=0; ++fmt){ + if( c!='%' ){ + int amt; + bufpt = (char *)fmt; + amt = 1; + while( (c=(*++fmt))!='%' && c!=0 ) amt++; + sqlite3StrAccumAppend(pAccum, bufpt, amt); + if( c==0 ) break; + } + if( (c=(*++fmt))==0 ){ + errorflag = 1; + sqlite3StrAccumAppend(pAccum, "%", 1); + break; + } + /* Find out what flags are present */ + flag_leftjustify = flag_plussign = flag_blanksign = + flag_alternateform = flag_altform2 = flag_zeropad = 0; + done = 0; + do{ + switch( c ){ + case '-': flag_leftjustify = 1; break; + case '+': flag_plussign = 1; break; + case ' ': flag_blanksign = 1; break; + case '#': flag_alternateform = 1; break; + case '!': flag_altform2 = 1; break; + case '0': flag_zeropad = 1; break; + default: done = 1; break; + } + }while( !done && (c=(*++fmt))!=0 ); + /* Get the field width */ + width = 0; + if( c=='*' ){ + width = va_arg(ap,int); + if( width<0 ){ + flag_leftjustify = 1; + width = -width; + } + c = *++fmt; + }else{ + while( c>='0' && c<='9' ){ + width = width*10 + c - '0'; + c = *++fmt; + } + } + if( width > etBUFSIZE-10 ){ + width = etBUFSIZE-10; + } + /* Get the precision */ + if( c=='.' ){ + precision = 0; + c = *++fmt; + if( c=='*' ){ + precision = va_arg(ap,int); + if( precision<0 ) precision = -precision; + c = *++fmt; + }else{ + while( c>='0' && c<='9' ){ + precision = precision*10 + c - '0'; + c = *++fmt; + } + } + }else{ + precision = -1; + } + /* Get the conversion type modifier */ + if( c=='l' ){ + flag_long = 1; + c = *++fmt; + if( c=='l' ){ + flag_longlong = 1; + c = *++fmt; + }else{ + flag_longlong = 0; + } + }else{ + flag_long = flag_longlong = 0; + } + /* Fetch the info entry for the field */ + infop = 0; + for(idx=0; idx<etNINFO; idx++){ + if( c==fmtinfo[idx].fmttype ){ + infop = &fmtinfo[idx]; + if( useExtended || (infop->flags & FLAG_INTERN)==0 ){ + xtype = infop->type; + }else{ + return; + } + break; + } + } + zExtra = 0; + if( infop==0 ){ + return; + } + + + /* Limit the precision to prevent overflowing buf[] during conversion */ + if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){ + precision = etBUFSIZE-40; + } + + /* + ** At this point, variables are initialized as follows: + ** + ** flag_alternateform TRUE if a '#' is present. + ** flag_altform2 TRUE if a '!' is present. + ** flag_plussign TRUE if a '+' is present. + ** flag_leftjustify TRUE if a '-' is present or if the + ** field width was negative. + ** flag_zeropad TRUE if the width began with 0. + ** flag_long TRUE if the letter 'l' (ell) prefixed + ** the conversion character. + ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed + ** the conversion character. + ** flag_blanksign TRUE if a ' ' is present. + ** width The specified field width. This is + ** always non-negative. Zero is the default. + ** precision The specified precision. The default + ** is -1. + ** xtype The class of the conversion. + ** infop Pointer to the appropriate info struct. + */ + switch( xtype ){ + case etPOINTER: + flag_longlong = sizeof(char*)==sizeof(i64); + flag_long = sizeof(char*)==sizeof(long int); + /* Fall through into the next case */ + case etORDINAL: + case etRADIX: + if( infop->flags & FLAG_SIGNED ){ + i64 v; + if( flag_longlong ) v = va_arg(ap,i64); + else if( flag_long ) v = va_arg(ap,long int); + else v = va_arg(ap,int); + if( v<0 ){ + longvalue = -v; + prefix = '-'; + }else{ + longvalue = v; + if( flag_plussign ) prefix = '+'; + else if( flag_blanksign ) prefix = ' '; + else prefix = 0; + } + }else{ + if( flag_longlong ) longvalue = va_arg(ap,u64); + else if( flag_long ) longvalue = va_arg(ap,unsigned long int); + else longvalue = va_arg(ap,unsigned int); + prefix = 0; + } + if( longvalue==0 ) flag_alternateform = 0; + if( flag_zeropad && precision<width-(prefix!=0) ){ + precision = width-(prefix!=0); + } + bufpt = &buf[etBUFSIZE-1]; + if( xtype==etORDINAL ){ + static const char zOrd[] = "thstndrd"; + int x = longvalue % 10; + if( x>=4 || (longvalue/10)%10==1 ){ + x = 0; + } + buf[etBUFSIZE-3] = zOrd[x*2]; + buf[etBUFSIZE-2] = zOrd[x*2+1]; + bufpt -= 2; + } + { + const char *cset; /* Use registers for speed */ + int base; + cset = &aDigits[infop->charset]; + base = infop->base; + do{ /* Convert to ascii */ + *(--bufpt) = cset[longvalue%base]; + longvalue = longvalue/base; + }while( longvalue>0 ); + } + length = &buf[etBUFSIZE-1]-bufpt; + for(idx=precision-length; idx>0; idx--){ + *(--bufpt) = '0'; /* Zero pad */ + } + if( prefix ) *(--bufpt) = prefix; /* Add sign */ + if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ + const char *pre; + char x; + pre = &aPrefix[infop->prefix]; + if( *bufpt!=pre[0] ){ + for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; + } + } + length = &buf[etBUFSIZE-1]-bufpt; + break; + case etFLOAT: + case etEXP: + case etGENERIC: + realvalue = va_arg(ap,double); +#ifndef SQLITE_OMIT_FLOATING_POINT + if( precision<0 ) precision = 6; /* Set default precision */ + if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10; + if( realvalue<0.0 ){ + realvalue = -realvalue; + prefix = '-'; + }else{ + if( flag_plussign ) prefix = '+'; + else if( flag_blanksign ) prefix = ' '; + else prefix = 0; + } + if( xtype==etGENERIC && precision>0 ) precision--; +#if 0 + /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ + for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); +#else + /* It makes more sense to use 0.5 */ + for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} +#endif + if( xtype==etFLOAT ) realvalue += rounder; + /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ + exp = 0; + if( sqlite3IsNaN(realvalue) ){ + bufpt = "NaN"; + length = 3; + break; + } + if( realvalue>0.0 ){ + while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; } + while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } + while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } + while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; } + while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; } + if( exp>350 || exp<-350 ){ + if( prefix=='-' ){ + bufpt = "-Inf"; + }else if( prefix=='+' ){ + bufpt = "+Inf"; + }else{ + bufpt = "Inf"; + } + length = strlen(bufpt); + break; + } + } + bufpt = buf; + /* + ** If the field type is etGENERIC, then convert to either etEXP + ** or etFLOAT, as appropriate. + */ + flag_exp = xtype==etEXP; + if( xtype!=etFLOAT ){ + realvalue += rounder; + if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } + } + if( xtype==etGENERIC ){ + flag_rtz = !flag_alternateform; + if( exp<-4 || exp>precision ){ + xtype = etEXP; + }else{ + precision = precision - exp; + xtype = etFLOAT; + } + }else{ + flag_rtz = 0; + } + if( xtype==etEXP ){ + e2 = 0; + }else{ + e2 = exp; + } + nsd = 0; + flag_dp = (precision>0) | flag_alternateform | flag_altform2; + /* The sign in front of the number */ + if( prefix ){ + *(bufpt++) = prefix; + } + /* Digits prior to the decimal point */ + if( e2<0 ){ + *(bufpt++) = '0'; + }else{ + for(; e2>=0; e2--){ + *(bufpt++) = et_getdigit(&realvalue,&nsd); + } + } + /* The decimal point */ + if( flag_dp ){ + *(bufpt++) = '.'; + } + /* "0" digits after the decimal point but before the first + ** significant digit of the number */ + for(e2++; e2<0 && precision>0; precision--, e2++){ + *(bufpt++) = '0'; + } + /* Significant digits after the decimal point */ + while( (precision--)>0 ){ + *(bufpt++) = et_getdigit(&realvalue,&nsd); + } + /* Remove trailing zeros and the "." if no digits follow the "." */ + if( flag_rtz && flag_dp ){ + while( bufpt[-1]=='0' ) *(--bufpt) = 0; + assert( bufpt>buf ); + if( bufpt[-1]=='.' ){ + if( flag_altform2 ){ + *(bufpt++) = '0'; + }else{ + *(--bufpt) = 0; + } + } + } + /* Add the "eNNN" suffix */ + if( flag_exp || (xtype==etEXP && exp) ){ + *(bufpt++) = aDigits[infop->charset]; + if( exp<0 ){ + *(bufpt++) = '-'; exp = -exp; + }else{ + *(bufpt++) = '+'; + } + if( exp>=100 ){ + *(bufpt++) = (exp/100)+'0'; /* 100's digit */ + exp %= 100; + } + *(bufpt++) = exp/10+'0'; /* 10's digit */ + *(bufpt++) = exp%10+'0'; /* 1's digit */ + } + *bufpt = 0; + + /* The converted number is in buf[] and zero terminated. Output it. + ** Note that the number is in the usual order, not reversed as with + ** integer conversions. */ + length = bufpt-buf; + bufpt = buf; + + /* Special case: Add leading zeros if the flag_zeropad flag is + ** set and we are not left justified */ + if( flag_zeropad && !flag_leftjustify && length < width){ + int i; + int nPad = width - length; + for(i=width; i>=nPad; i--){ + bufpt[i] = bufpt[i-nPad]; + } + i = prefix!=0; + while( nPad-- ) bufpt[i++] = '0'; + length = width; + } +#endif + break; + case etSIZE: + *(va_arg(ap,int*)) = pAccum->nChar; + length = width = 0; + break; + case etPERCENT: + buf[0] = '%'; + bufpt = buf; + length = 1; + break; + case etCHARLIT: + case etCHARX: + c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt); + if( precision>=0 ){ + for(idx=1; idx<precision; idx++) buf[idx] = c; + length = precision; + }else{ + length =1; + } + bufpt = buf; + break; + case etSTRING: + case etDYNSTRING: + bufpt = va_arg(ap,char*); + if( bufpt==0 ){ + bufpt = ""; + }else if( xtype==etDYNSTRING ){ + zExtra = bufpt; + } + if( precision>=0 ){ + for(length=0; length<precision && bufpt[length]; length++){} + }else{ + length = strlen(bufpt); + } + break; + case etSQLESCAPE: + case etSQLESCAPE2: + case etSQLESCAPE3: { + int i, j, n, ch, isnull; + int needQuote; + char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */ + char *escarg = va_arg(ap,char*); + isnull = escarg==0; + if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)"); + for(i=n=0; (ch=escarg[i])!=0; i++){ + if( ch==q ) n++; + } + needQuote = !isnull && xtype==etSQLESCAPE2; + n += i + 1 + needQuote*2; + if( n>etBUFSIZE ){ + bufpt = zExtra = sqlite3_malloc( n ); + if( bufpt==0 ) return; + }else{ + bufpt = buf; + } + j = 0; + if( needQuote ) bufpt[j++] = q; + for(i=0; (ch=escarg[i])!=0; i++){ + bufpt[j++] = ch; + if( ch==q ) bufpt[j++] = ch; + } + if( needQuote ) bufpt[j++] = q; + bufpt[j] = 0; + length = j; + /* The precision is ignored on %q and %Q */ + /* if( precision>=0 && precision<length ) length = precision; */ + break; + } + case etTOKEN: { + Token *pToken = va_arg(ap, Token*); + if( pToken && pToken->z ){ + sqlite3StrAccumAppend(pAccum, (const char*)pToken->z, pToken->n); + } + length = width = 0; + break; + } + case etSRCLIST: { + SrcList *pSrc = va_arg(ap, SrcList*); + int k = va_arg(ap, int); + struct SrcList_item *pItem = &pSrc->a[k]; + assert( k>=0 && k<pSrc->nSrc ); + if( pItem->zDatabase && pItem->zDatabase[0] ){ + sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1); + sqlite3StrAccumAppend(pAccum, ".", 1); + } + sqlite3StrAccumAppend(pAccum, pItem->zName, -1); + length = width = 0; + break; + } + }/* End switch over the format type */ + /* + ** The text of the conversion is pointed to by "bufpt" and is + ** "length" characters long. The field width is "width". Do + ** the output. + */ + if( !flag_leftjustify ){ + int nspace; + nspace = width-length; + if( nspace>0 ){ + appendSpace(pAccum, nspace); + } + } + if( length>0 ){ + sqlite3StrAccumAppend(pAccum, bufpt, length); + } + if( flag_leftjustify ){ + int nspace; + nspace = width-length; + if( nspace>0 ){ + appendSpace(pAccum, nspace); + } + } + if( zExtra ){ + sqlite3_free(zExtra); + } + }/* End for loop over the format string */ +} /* End of function */ + +/* +** Append N bytes of text from z to the StrAccum object. +*/ +SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ + if( p->tooBig | p->mallocFailed ){ + return; + } + if( N<0 ){ + N = strlen(z); + } + if( N==0 ){ + return; + } + if( p->nChar+N >= p->nAlloc ){ + char *zNew; + if( !p->useMalloc ){ + p->tooBig = 1; + N = p->nAlloc - p->nChar - 1; + if( N<=0 ){ + return; + } + }else{ + i64 szNew = p->nAlloc; + szNew += N + 1; + if( szNew > p->mxAlloc ){ + p->nAlloc = p->mxAlloc; + if( ((i64)p->nChar)+((i64)N) >= p->nAlloc ){ + sqlite3StrAccumReset(p); + p->tooBig = 1; + return; + } + }else{ + p->nAlloc = szNew; + } + zNew = sqlite3_malloc( p->nAlloc ); + if( zNew ){ + memcpy(zNew, p->zText, p->nChar); + sqlite3StrAccumReset(p); + p->zText = zNew; + }else{ + p->mallocFailed = 1; + sqlite3StrAccumReset(p); + return; + } + } + } + memcpy(&p->zText[p->nChar], z, N); + p->nChar += N; +} + +/* +** Finish off a string by making sure it is zero-terminated. +** Return a pointer to the resulting string. Return a NULL +** pointer if any kind of error was encountered. +*/ +SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){ + if( p->zText ){ + p->zText[p->nChar] = 0; + if( p->useMalloc && p->zText==p->zBase ){ + p->zText = sqlite3_malloc( p->nChar+1 ); + if( p->zText ){ + memcpy(p->zText, p->zBase, p->nChar+1); + }else{ + p->mallocFailed = 1; + } + } + } + return p->zText; +} + +/* +** Reset an StrAccum string. Reclaim all malloced memory. +*/ +SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){ + if( p->zText!=p->zBase ){ + sqlite3_free(p->zText); + p->zText = 0; + } +} + +/* +** Initialize a string accumulator +*/ +static void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){ + p->zText = p->zBase = zBase; + p->nChar = 0; + p->nAlloc = n; + p->mxAlloc = mx; + p->useMalloc = 1; + p->tooBig = 0; + p->mallocFailed = 0; +} + +/* +** Print into memory obtained from sqliteMalloc(). Use the internal +** %-conversion extensions. +*/ +SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ + char *z; + char zBase[SQLITE_PRINT_BUF_SIZE]; + StrAccum acc; + sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), + db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); + vxprintf(&acc, 1, zFormat, ap); + z = sqlite3StrAccumFinish(&acc); + if( acc.mallocFailed && db ){ + db->mallocFailed = 1; + } + return z; +} + +/* +** Print into memory obtained from sqliteMalloc(). Use the internal +** %-conversion extensions. +*/ +SQLITE_PRIVATE char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ + va_list ap; + char *z; + va_start(ap, zFormat); + z = sqlite3VMPrintf(db, zFormat, ap); + va_end(ap); + return z; +} + +/* +** Print into memory obtained from sqlite3_malloc(). Omit the internal +** %-conversion extensions. +*/ +SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){ + char *z; + char zBase[SQLITE_PRINT_BUF_SIZE]; + StrAccum acc; + sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); + vxprintf(&acc, 0, zFormat, ap); + z = sqlite3StrAccumFinish(&acc); + return z; +} + +/* +** Print into memory obtained from sqlite3_malloc()(). Omit the internal +** %-conversion extensions. +*/ +SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){ + va_list ap; + char *z; + va_start(ap, zFormat); + z = sqlite3_vmprintf(zFormat, ap); + va_end(ap); + return z; +} + +/* +** sqlite3_snprintf() works like snprintf() except that it ignores the +** current locale settings. This is important for SQLite because we +** are not able to use a "," as the decimal point in place of "." as +** specified by some locales. +*/ +SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ + char *z; + va_list ap; + StrAccum acc; + + if( n<=0 ){ + return zBuf; + } + sqlite3StrAccumInit(&acc, zBuf, n, 0); + acc.useMalloc = 0; + va_start(ap,zFormat); + vxprintf(&acc, 0, zFormat, ap); + va_end(ap); + z = sqlite3StrAccumFinish(&acc); + return z; +} + +#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) || defined(SQLITE_MEMDEBUG) +/* +** A version of printf() that understands %lld. Used for debugging. +** The printf() built into some versions of windows does not understand %lld +** and segfaults if you give it a long long int. +*/ +SQLITE_PRIVATE void sqlite3DebugPrintf(const char *zFormat, ...){ + va_list ap; + StrAccum acc; + char zBuf[500]; + sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0); + acc.useMalloc = 0; + va_start(ap,zFormat); + vxprintf(&acc, 0, zFormat, ap); + va_end(ap); + sqlite3StrAccumFinish(&acc); + fprintf(stdout,"%s", zBuf); + fflush(stdout); +} +#endif + +/************** End of printf.c **********************************************/ +/************** Begin file random.c ******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code to implement a pseudo-random number +** generator (PRNG) for SQLite. +** +** Random numbers are used by some of the database backends in order +** to generate random integer keys for tables or random filenames. +** +** $Id: random.c,v 1.23 2008/03/21 16:45:47 drh Exp $ +*/ + + +/* All threads share a single random number generator. +** This structure is the current state of the generator. +*/ +static struct sqlite3PrngType { + unsigned char isInit; /* True if initialized */ + unsigned char i, j; /* State variables */ + unsigned char s[256]; /* State variables */ +} sqlite3Prng; + +/* +** Get a single 8-bit random value from the RC4 PRNG. The Mutex +** must be held while executing this routine. +** +** Why not just use a library random generator like lrand48() for this? +** Because the OP_NewRowid opcode in the VDBE depends on having a very +** good source of random numbers. The lrand48() library function may +** well be good enough. But maybe not. Or maybe lrand48() has some +** subtle problems on some systems that could cause problems. It is hard +** to know. To minimize the risk of problems due to bad lrand48() +** implementations, SQLite uses this random number generator based +** on RC4, which we know works very well. +** +** (Later): Actually, OP_NewRowid does not depend on a good source of +** randomness any more. But we will leave this code in all the same. +*/ +static int randomByte(void){ + unsigned char t; + + + /* Initialize the state of the random number generator once, + ** the first time this routine is called. The seed value does + ** not need to contain a lot of randomness since we are not + ** trying to do secure encryption or anything like that... + ** + ** Nothing in this file or anywhere else in SQLite does any kind of + ** encryption. The RC4 algorithm is being used as a PRNG (pseudo-random + ** number generator) not as an encryption device. + */ + if( !sqlite3Prng.isInit ){ + int i; + char k[256]; + sqlite3Prng.j = 0; + sqlite3Prng.i = 0; + sqlite3OsRandomness(sqlite3_vfs_find(0), 256, k); + for(i=0; i<256; i++){ + sqlite3Prng.s[i] = i; + } + for(i=0; i<256; i++){ + sqlite3Prng.j += sqlite3Prng.s[i] + k[i]; + t = sqlite3Prng.s[sqlite3Prng.j]; + sqlite3Prng.s[sqlite3Prng.j] = sqlite3Prng.s[i]; + sqlite3Prng.s[i] = t; + } + sqlite3Prng.isInit = 1; + } + + /* Generate and return single random byte + */ + sqlite3Prng.i++; + t = sqlite3Prng.s[sqlite3Prng.i]; + sqlite3Prng.j += t; + sqlite3Prng.s[sqlite3Prng.i] = sqlite3Prng.s[sqlite3Prng.j]; + sqlite3Prng.s[sqlite3Prng.j] = t; + t += sqlite3Prng.s[sqlite3Prng.i]; + return sqlite3Prng.s[t]; +} + +/* +** Return N random bytes. +*/ +SQLITE_API void sqlite3_randomness(int N, void *pBuf){ + unsigned char *zBuf = pBuf; + static sqlite3_mutex *mutex = 0; + if( mutex==0 ){ + mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PRNG); + } + sqlite3_mutex_enter(mutex); + while( N-- ){ + *(zBuf++) = randomByte(); + } + sqlite3_mutex_leave(mutex); +} + +#ifndef SQLITE_OMIT_BUILTIN_TEST +/* +** For testing purposes, we sometimes want to preserve the state of +** PRNG and restore the PRNG to its saved state at a later time. +** The sqlite3_test_control() interface calls these routines to +** control the PRNG. +*/ +static struct sqlite3PrngType sqlite3SavedPrng; +SQLITE_PRIVATE void sqlite3PrngSaveState(void){ + memcpy(&sqlite3SavedPrng, &sqlite3Prng, sizeof(sqlite3Prng)); +} +SQLITE_PRIVATE void sqlite3PrngRestoreState(void){ + memcpy(&sqlite3Prng, &sqlite3SavedPrng, sizeof(sqlite3Prng)); +} +SQLITE_PRIVATE void sqlite3PrngResetState(void){ + sqlite3Prng.isInit = 0; +} +#endif /* SQLITE_OMIT_BUILTIN_TEST */ + +/************** End of random.c **********************************************/ +/************** Begin file utf.c *********************************************/ +/* +** 2004 April 13 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains routines used to translate between UTF-8, +** UTF-16, UTF-16BE, and UTF-16LE. +** +** $Id: utf.c,v 1.61 2008/03/28 15:44:10 danielk1977 Exp $ +** +** Notes on UTF-8: +** +** Byte-0 Byte-1 Byte-2 Byte-3 Value +** 0xxxxxxx 00000000 00000000 0xxxxxxx +** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx +** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx +** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx +** +** +** Notes on UTF-16: (with wwww+1==uuuuu) +** +** Word-0 Word-1 Value +** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx +** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx +** +** +** BOM or Byte Order Mark: +** 0xff 0xfe little-endian utf-16 follows +** 0xfe 0xff big-endian utf-16 follows +** +*/ +/************** Include vdbeInt.h in the middle of utf.c *********************/ +/************** Begin file vdbeInt.h *****************************************/ +/* +** 2003 September 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for information that is private to the +** VDBE. This information used to all be at the top of the single +** source code file "vdbe.c". When that file became too big (over +** 6000 lines long) it was split up into several smaller files and +** this header information was factored out. +*/ +#ifndef _VDBEINT_H_ +#define _VDBEINT_H_ + +/* +** intToKey() and keyToInt() used to transform the rowid. But with +** the latest versions of the design they are no-ops. +*/ +#define keyToInt(X) (X) +#define intToKey(X) (X) + + +/* +** SQL is translated into a sequence of instructions to be +** executed by a virtual machine. Each instruction is an instance +** of the following structure. +*/ +typedef struct VdbeOp Op; + +/* +** Boolean values +*/ +typedef unsigned char Bool; + +/* +** A cursor is a pointer into a single BTree within a database file. +** The cursor can seek to a BTree entry with a particular key, or +** loop over all entries of the Btree. You can also insert new BTree +** entries or retrieve the key or data from the entry that the cursor +** is currently pointing to. +** +** Every cursor that the virtual machine has open is represented by an +** instance of the following structure. +** +** If the Cursor.isTriggerRow flag is set it means that this cursor is +** really a single row that represents the NEW or OLD pseudo-table of +** a row trigger. The data for the row is stored in Cursor.pData and +** the rowid is in Cursor.iKey. +*/ +struct Cursor { + BtCursor *pCursor; /* The cursor structure of the backend */ + int iDb; /* Index of cursor database in db->aDb[] (or -1) */ + i64 lastRowid; /* Last rowid from a Next or NextIdx operation */ + i64 nextRowid; /* Next rowid returned by OP_NewRowid */ + Bool zeroed; /* True if zeroed out and ready for reuse */ + Bool rowidIsValid; /* True if lastRowid is valid */ + Bool atFirst; /* True if pointing to first entry */ + Bool useRandomRowid; /* Generate new record numbers semi-randomly */ + Bool nullRow; /* True if pointing to a row with no data */ + Bool nextRowidValid; /* True if the nextRowid field is valid */ + Bool pseudoTable; /* This is a NEW or OLD pseudo-tables of a trigger */ + Bool ephemPseudoTable; + Bool deferredMoveto; /* A call to sqlite3BtreeMoveto() is needed */ + Bool isTable; /* True if a table requiring integer keys */ + Bool isIndex; /* True if an index containing keys only - no data */ + u8 bogusIncrKey; /* Something for pIncrKey to point to if pKeyInfo==0 */ + i64 movetoTarget; /* Argument to the deferred sqlite3BtreeMoveto() */ + Btree *pBt; /* Separate file holding temporary table */ + int nData; /* Number of bytes in pData */ + char *pData; /* Data for a NEW or OLD pseudo-table */ + i64 iKey; /* Key for the NEW or OLD pseudo-table row */ + u8 *pIncrKey; /* Pointer to pKeyInfo->incrKey */ + KeyInfo *pKeyInfo; /* Info about index keys needed by index cursors */ + int nField; /* Number of fields in the header */ + i64 seqCount; /* Sequence counter */ + sqlite3_vtab_cursor *pVtabCursor; /* The cursor for a virtual table */ + const sqlite3_module *pModule; /* Module for cursor pVtabCursor */ + + /* Cached information about the header for the data record that the + ** cursor is currently pointing to. Only valid if cacheValid is true. + ** aRow might point to (ephemeral) data for the current row, or it might + ** be NULL. + */ + int cacheStatus; /* Cache is valid if this matches Vdbe.cacheCtr */ + int payloadSize; /* Total number of bytes in the record */ + u32 *aType; /* Type values for all entries in the record */ + u32 *aOffset; /* Cached offsets to the start of each columns data */ + u8 *aRow; /* Data for the current row, if all on one page */ +}; +typedef struct Cursor Cursor; + +/* +** A value for Cursor.cacheValid that means the cache is always invalid. +*/ +#define CACHE_STALE 0 + +/* +** Internally, the vdbe manipulates nearly all SQL values as Mem +** structures. Each Mem struct may cache multiple representations (string, +** integer etc.) of the same value. A value (and therefore Mem structure) +** has the following properties: +** +** Each value has a manifest type. The manifest type of the value stored +** in a Mem struct is returned by the MemType(Mem*) macro. The type is +** one of SQLITE_NULL, SQLITE_INTEGER, SQLITE_REAL, SQLITE_TEXT or +** SQLITE_BLOB. +*/ +struct Mem { + union { + i64 i; /* Integer value. Or FuncDef* when flags==MEM_Agg */ + FuncDef *pDef; /* Used only when flags==MEM_Agg */ + } u; + double r; /* Real value */ + sqlite3 *db; /* The associated database connection */ + char *z; /* String or BLOB value */ + int n; /* Number of characters in string value, excluding '\0' */ + u16 flags; /* Some combination of MEM_Null, MEM_Str, MEM_Dyn, etc. */ + u8 type; /* One of SQLITE_NULL, SQLITE_TEXT, SQLITE_INTEGER, etc */ + u8 enc; /* SQLITE_UTF8, SQLITE_UTF16BE, SQLITE_UTF16LE */ + void (*xDel)(void *); /* If not null, call this function to delete Mem.z */ + char *zMalloc; /* Dynamic buffer allocated by sqlite3_malloc() */ +}; + +/* One or more of the following flags are set to indicate the validOK +** representations of the value stored in the Mem struct. +** +** If the MEM_Null flag is set, then the value is an SQL NULL value. +** No other flags may be set in this case. +** +** If the MEM_Str flag is set then Mem.z points at a string representation. +** Usually this is encoded in the same unicode encoding as the main +** database (see below for exceptions). If the MEM_Term flag is also +** set, then the string is nul terminated. The MEM_Int and MEM_Real +** flags may coexist with the MEM_Str flag. +** +** Multiple of these values can appear in Mem.flags. But only one +** at a time can appear in Mem.type. +*/ +#define MEM_Null 0x0001 /* Value is NULL */ +#define MEM_Str 0x0002 /* Value is a string */ +#define MEM_Int 0x0004 /* Value is an integer */ +#define MEM_Real 0x0008 /* Value is a real number */ +#define MEM_Blob 0x0010 /* Value is a BLOB */ + +#define MemSetTypeFlag(p, f) \ + ((p)->flags = ((p)->flags&~(MEM_Int|MEM_Real|MEM_Null|MEM_Blob|MEM_Str))|f) + +/* Whenever Mem contains a valid string or blob representation, one of +** the following flags must be set to determine the memory management +** policy for Mem.z. The MEM_Term flag tells us whether or not the +** string is \000 or \u0000 terminated +*/ +#define MEM_Term 0x0020 /* String rep is nul terminated */ +#define MEM_Dyn 0x0040 /* Need to call sqliteFree() on Mem.z */ +#define MEM_Static 0x0080 /* Mem.z points to a static string */ +#define MEM_Ephem 0x0100 /* Mem.z points to an ephemeral string */ +#define MEM_Agg 0x0400 /* Mem.z points to an agg function context */ +#define MEM_Zero 0x0800 /* Mem.i contains count of 0s appended to blob */ + +#ifdef SQLITE_OMIT_INCRBLOB + #undef MEM_Zero + #define MEM_Zero 0x0000 +#endif + + +/* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains +** additional information about auxiliary information bound to arguments +** of the function. This is used to implement the sqlite3_get_auxdata() +** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data +** that can be associated with a constant argument to a function. This +** allows functions such as "regexp" to compile their constant regular +** expression argument once and reused the compiled code for multiple +** invocations. +*/ +struct VdbeFunc { + FuncDef *pFunc; /* The definition of the function */ + int nAux; /* Number of entries allocated for apAux[] */ + struct AuxData { + void *pAux; /* Aux data for the i-th argument */ + void (*xDelete)(void *); /* Destructor for the aux data */ + } apAux[1]; /* One slot for each function argument */ +}; + +/* +** The "context" argument for a installable function. A pointer to an +** instance of this structure is the first argument to the routines used +** implement the SQL functions. +** +** There is a typedef for this structure in sqlite.h. So all routines, +** even the public interface to SQLite, can use a pointer to this structure. +** But this file is the only place where the internal details of this +** structure are known. +** +** This structure is defined inside of vdbeInt.h because it uses substructures +** (Mem) which are only defined there. +*/ +struct sqlite3_context { + FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ + VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */ + Mem s; /* The return value is stored here */ + Mem *pMem; /* Memory cell used to store aggregate context */ + int isError; /* Error code returned by the function. */ + CollSeq *pColl; /* Collating sequence */ +}; + +/* +** A Set structure is used for quick testing to see if a value +** is part of a small set. Sets are used to implement code like +** this: +** x.y IN ('hi','hoo','hum') +*/ +typedef struct Set Set; +struct Set { + Hash hash; /* A set is just a hash table */ + HashElem *prev; /* Previously accessed hash elemen */ +}; + +/* +** A FifoPage structure holds a single page of valves. Pages are arranged +** in a list. +*/ +typedef struct FifoPage FifoPage; +struct FifoPage { + int nSlot; /* Number of entries aSlot[] */ + int iWrite; /* Push the next value into this entry in aSlot[] */ + int iRead; /* Read the next value from this entry in aSlot[] */ + FifoPage *pNext; /* Next page in the fifo */ + i64 aSlot[1]; /* One or more slots for rowid values */ +}; + +/* +** The Fifo structure is typedef-ed in vdbeInt.h. But the implementation +** of that structure is private to this file. +** +** The Fifo structure describes the entire fifo. +*/ +typedef struct Fifo Fifo; +struct Fifo { + int nEntry; /* Total number of entries */ + FifoPage *pFirst; /* First page on the list */ + FifoPage *pLast; /* Last page on the list */ +}; + +/* +** A Context stores the last insert rowid, the last statement change count, +** and the current statement change count (i.e. changes since last statement). +** The current keylist is also stored in the context. +** Elements of Context structure type make up the ContextStack, which is +** updated by the ContextPush and ContextPop opcodes (used by triggers). +** The context is pushed before executing a trigger a popped when the +** trigger finishes. +*/ +typedef struct Context Context; +struct Context { + i64 lastRowid; /* Last insert rowid (sqlite3.lastRowid) */ + int nChange; /* Statement changes (Vdbe.nChanges) */ + Fifo sFifo; /* Records that will participate in a DELETE or UPDATE */ +}; + +/* +** An instance of the virtual machine. This structure contains the complete +** state of the virtual machine. +** +** The "sqlite3_stmt" structure pointer that is returned by sqlite3_compile() +** is really a pointer to an instance of this structure. +** +** The Vdbe.inVtabMethod variable is set to non-zero for the duration of +** any virtual table method invocations made by the vdbe program. It is +** set to 2 for xDestroy method calls and 1 for all other methods. This +** variable is used for two purposes: to allow xDestroy methods to execute +** "DROP TABLE" statements and to prevent some nasty side effects of +** malloc failure when SQLite is invoked recursively by a virtual table +** method function. +*/ +struct Vdbe { + sqlite3 *db; /* The whole database */ + Vdbe *pPrev,*pNext; /* Linked list of VDBEs with the same Vdbe.db */ + int nOp; /* Number of instructions in the program */ + int nOpAlloc; /* Number of slots allocated for aOp[] */ + Op *aOp; /* Space to hold the virtual machine's program */ + int nLabel; /* Number of labels used */ + int nLabelAlloc; /* Number of slots allocated in aLabel[] */ + int *aLabel; /* Space to hold the labels */ + Mem **apArg; /* Arguments to currently executing user function */ + Mem *aColName; /* Column names to return */ + int nCursor; /* Number of slots in apCsr[] */ + Cursor **apCsr; /* One element of this array for each open cursor */ + int nVar; /* Number of entries in aVar[] */ + Mem *aVar; /* Values for the OP_Variable opcode. */ + char **azVar; /* Name of variables */ + int okVar; /* True if azVar[] has been initialized */ + int magic; /* Magic number for sanity checking */ + int nMem; /* Number of memory locations currently allocated */ + Mem *aMem; /* The memory locations */ + int nCallback; /* Number of callbacks invoked so far */ + int cacheCtr; /* Cursor row cache generation counter */ + Fifo sFifo; /* A list of ROWIDs */ + int contextStackTop; /* Index of top element in the context stack */ + int contextStackDepth; /* The size of the "context" stack */ + Context *contextStack; /* Stack used by opcodes ContextPush & ContextPop*/ + int pc; /* The program counter */ + int rc; /* Value to return */ + unsigned uniqueCnt; /* Used by OP_MakeRecord when P2!=0 */ + int errorAction; /* Recovery action to do in case of an error */ + int inTempTrans; /* True if temp database is transactioned */ + int returnStack[25]; /* Return address stack for OP_Gosub & OP_Return */ + int returnDepth; /* Next unused element in returnStack[] */ + int nResColumn; /* Number of columns in one row of the result set */ + char **azResColumn; /* Values for one row of result */ + char *zErrMsg; /* Error message written here */ + Mem *pResultSet; /* Pointer to an array of results */ + u8 explain; /* True if EXPLAIN present on SQL command */ + u8 changeCntOn; /* True to update the change-counter */ + u8 aborted; /* True if ROLLBACK in another VM causes an abort */ + u8 expired; /* True if the VM needs to be recompiled */ + u8 minWriteFileFormat; /* Minimum file format for writable database files */ + u8 inVtabMethod; /* See comments above */ + int nChange; /* Number of db changes made since last reset */ + i64 startTime; /* Time when query started - used for profiling */ + int btreeMask; /* Bitmask of db->aDb[] entries referenced */ + BtreeMutexArray aMutex; /* An array of Btree used here and needing locks */ + int nSql; /* Number of bytes in zSql */ + char *zSql; /* Text of the SQL statement that generated this */ +#ifdef SQLITE_DEBUG + FILE *trace; /* Write an execution trace here, if not NULL */ +#endif + int openedStatement; /* True if this VM has opened a statement journal */ +#ifdef SQLITE_SSE + int fetchId; /* Statement number used by sqlite3_fetch_statement */ + int lru; /* Counter used for LRU cache replacement */ +#endif +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + Vdbe *pLruPrev; + Vdbe *pLruNext; +#endif +}; + +/* +** An instance of the following structure holds information about a +** single index record that has already been parsed out into individual +** values. +** +** A record is an object that contains one or more fields of data. +** Records are used to store the content of a table row and to store +** the key of an index. A blob encoding of a record is created by +** the OP_MakeRecord opcode of the VDBE and is disassemblied by the +** OP_Column opcode. +** +** This structure holds a record that has already been disassembled +** into its constitutent fields. +*/ +struct UnpackedRecord { + KeyInfo *pKeyInfo; /* Collation and sort-order information */ + u16 nField; /* Number of entries in apMem[] */ + u8 needFree; /* True if memory obtained from sqlite3_malloc() */ + u8 needDestroy; /* True if apMem[]s should be destroyed on close */ + Mem *aMem; /* Values */ +}; + +/* +** The following are allowed values for Vdbe.magic +*/ +#define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ +#define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ +#define VDBE_MAGIC_HALT 0x519c2973 /* VDBE has completed execution */ +#define VDBE_MAGIC_DEAD 0xb606c3c8 /* The VDBE has been deallocated */ + +/* +** Function prototypes +*/ +SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *, Cursor*); +void sqliteVdbePopStack(Vdbe*,int); +SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor*); +#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) +SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*); +#endif +SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32); +SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int); +SQLITE_PRIVATE int sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int); +SQLITE_PRIVATE int sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); +SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int); + +int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); +SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(Cursor*,UnpackedRecord *,int,const unsigned char*,int*); +SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *, i64 *); +SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); +SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8*); +SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*); +SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*); +SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*); +SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int); +SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*); +SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*); +SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int); +SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*); +SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*); +SQLITE_PRIVATE int sqlite3VdbeMemSetStr(Mem*, const char*, int, u8, void(*)(void*)); +SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem*, i64); +SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem*, double); +SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem*); +SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem*,int); +SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem*); +SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem*); +SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem*, int); +SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem*); +SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem*); +SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem*); +SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem*); +SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem*); +SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem*); +SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*); +SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); +SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p); +SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); +SQLITE_PRIVATE const char *sqlite3OpcodeName(int); +SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int, int); +SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p); +#endif + +#ifndef NDEBUG +SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem*); +#endif +SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem*, u8); +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe*); +SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf); +#endif +SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem); +SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo*); +SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo*, i64); +SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo*, i64*); +SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo*); + +#ifndef SQLITE_OMIT_INCRBLOB +SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *); +#else + #define sqlite3VdbeMemExpandBlob(x) SQLITE_OK +#endif + +#endif /* !defined(_VDBEINT_H_) */ + +/************** End of vdbeInt.h *********************************************/ +/************** Continuing where we left off in utf.c ************************/ + +/* +** The following constant value is used by the SQLITE_BIGENDIAN and +** SQLITE_LITTLEENDIAN macros. +*/ +SQLITE_PRIVATE const int sqlite3one = 1; + +/* +** This lookup table is used to help decode the first byte of +** a multi-byte UTF8 character. +*/ +static const unsigned char sqlite3UtfTrans1[] = { + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, + 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, +}; + + +#define WRITE_UTF8(zOut, c) { \ + if( c<0x00080 ){ \ + *zOut++ = (c&0xFF); \ + } \ + else if( c<0x00800 ){ \ + *zOut++ = 0xC0 + ((c>>6)&0x1F); \ + *zOut++ = 0x80 + (c & 0x3F); \ + } \ + else if( c<0x10000 ){ \ + *zOut++ = 0xE0 + ((c>>12)&0x0F); \ + *zOut++ = 0x80 + ((c>>6) & 0x3F); \ + *zOut++ = 0x80 + (c & 0x3F); \ + }else{ \ + *zOut++ = 0xF0 + ((c>>18) & 0x07); \ + *zOut++ = 0x80 + ((c>>12) & 0x3F); \ + *zOut++ = 0x80 + ((c>>6) & 0x3F); \ + *zOut++ = 0x80 + (c & 0x3F); \ + } \ +} + +#define WRITE_UTF16LE(zOut, c) { \ + if( c<=0xFFFF ){ \ + *zOut++ = (c&0x00FF); \ + *zOut++ = ((c>>8)&0x00FF); \ + }else{ \ + *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ + *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ + *zOut++ = (c&0x00FF); \ + *zOut++ = (0x00DC + ((c>>8)&0x03)); \ + } \ +} + +#define WRITE_UTF16BE(zOut, c) { \ + if( c<=0xFFFF ){ \ + *zOut++ = ((c>>8)&0x00FF); \ + *zOut++ = (c&0x00FF); \ + }else{ \ + *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ + *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ + *zOut++ = (0x00DC + ((c>>8)&0x03)); \ + *zOut++ = (c&0x00FF); \ + } \ +} + +#define READ_UTF16LE(zIn, c){ \ + c = (*zIn++); \ + c += ((*zIn++)<<8); \ + if( c>=0xD800 && c<0xE000 ){ \ + int c2 = (*zIn++); \ + c2 += ((*zIn++)<<8); \ + c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ + if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \ + } \ +} + +#define READ_UTF16BE(zIn, c){ \ + c = ((*zIn++)<<8); \ + c += (*zIn++); \ + if( c>=0xD800 && c<0xE000 ){ \ + int c2 = ((*zIn++)<<8); \ + c2 += (*zIn++); \ + c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ + if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \ + } \ +} + +/* +** Translate a single UTF-8 character. Return the unicode value. +** +** During translation, assume that the byte that zTerm points +** is a 0x00. +** +** Write a pointer to the next unread byte back into *pzNext. +** +** Notes On Invalid UTF-8: +** +** * This routine never allows a 7-bit character (0x00 through 0x7f) to +** be encoded as a multi-byte character. Any multi-byte character that +** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. +** +** * This routine never allows a UTF16 surrogate value to be encoded. +** If a multi-byte character attempts to encode a value between +** 0xd800 and 0xe000 then it is rendered as 0xfffd. +** +** * Bytes in the range of 0x80 through 0xbf which occur as the first +** byte of a character are interpreted as single-byte characters +** and rendered as themselves even though they are technically +** invalid characters. +** +** * This routine accepts an infinite number of different UTF8 encodings +** for unicode values 0x80 and greater. It do not change over-length +** encodings to 0xfffd as some systems recommend. +*/ +SQLITE_PRIVATE int sqlite3Utf8Read( + const unsigned char *z, /* First byte of UTF-8 character */ + const unsigned char *zTerm, /* Pretend this byte is 0x00 */ + const unsigned char **pzNext /* Write first byte past UTF-8 char here */ +){ + int c = *(z++); + if( c>=0xc0 ){ + c = sqlite3UtfTrans1[c-0xc0]; + while( z!=zTerm && (*z & 0xc0)==0x80 ){ + c = (c<<6) + (0x3f & *(z++)); + } + if( c<0x80 + || (c&0xFFFFF800)==0xD800 + || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } + } + *pzNext = z; + return c; +} + + + +/* +** If the TRANSLATE_TRACE macro is defined, the value of each Mem is +** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). +*/ +/* #define TRANSLATE_TRACE 1 */ + +#ifndef SQLITE_OMIT_UTF16 +/* +** This routine transforms the internal text encoding used by pMem to +** desiredEnc. It is an error if the string is already of the desired +** encoding, or if *pMem does not contain a string value. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ + int len; /* Maximum length of output string in bytes */ + unsigned char *zOut; /* Output buffer */ + unsigned char *zIn; /* Input iterator */ + unsigned char *zTerm; /* End of input */ + unsigned char *z; /* Output iterator */ + unsigned int c; + + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + assert( pMem->flags&MEM_Str ); + assert( pMem->enc!=desiredEnc ); + assert( pMem->enc!=0 ); + assert( pMem->n>=0 ); + +#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) + { + char zBuf[100]; + sqlite3VdbeMemPrettyPrint(pMem, zBuf); + fprintf(stderr, "INPUT: %s\n", zBuf); + } +#endif + + /* If the translation is between UTF-16 little and big endian, then + ** all that is required is to swap the byte order. This case is handled + ** differently from the others. + */ + if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ + u8 temp; + int rc; + rc = sqlite3VdbeMemMakeWriteable(pMem); + if( rc!=SQLITE_OK ){ + assert( rc==SQLITE_NOMEM ); + return SQLITE_NOMEM; + } + zIn = (u8*)pMem->z; + zTerm = &zIn[pMem->n]; + while( zIn<zTerm ){ + temp = *zIn; + *zIn = *(zIn+1); + zIn++; + *zIn++ = temp; + } + pMem->enc = desiredEnc; + goto translate_out; + } + + /* Set len to the maximum number of bytes required in the output buffer. */ + if( desiredEnc==SQLITE_UTF8 ){ + /* When converting from UTF-16, the maximum growth results from + ** translating a 2-byte character to a 4-byte UTF-8 character. + ** A single byte is required for the output string + ** nul-terminator. + */ + len = pMem->n * 2 + 1; + }else{ + /* When converting from UTF-8 to UTF-16 the maximum growth is caused + ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 + ** character. Two bytes are required in the output buffer for the + ** nul-terminator. + */ + len = pMem->n * 2 + 2; + } + + /* Set zIn to point at the start of the input buffer and zTerm to point 1 + ** byte past the end. + ** + ** Variable zOut is set to point at the output buffer, space obtained + ** from sqlite3_malloc(). + */ + zIn = (u8*)pMem->z; + zTerm = &zIn[pMem->n]; + zOut = sqlite3DbMallocRaw(pMem->db, len); + if( !zOut ){ + return SQLITE_NOMEM; + } + z = zOut; + + if( pMem->enc==SQLITE_UTF8 ){ + if( desiredEnc==SQLITE_UTF16LE ){ + /* UTF-8 -> UTF-16 Little-endian */ + while( zIn<zTerm ){ + c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); + WRITE_UTF16LE(z, c); + } + }else{ + assert( desiredEnc==SQLITE_UTF16BE ); + /* UTF-8 -> UTF-16 Big-endian */ + while( zIn<zTerm ){ + c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); + WRITE_UTF16BE(z, c); + } + } + pMem->n = z - zOut; + *z++ = 0; + }else{ + assert( desiredEnc==SQLITE_UTF8 ); + if( pMem->enc==SQLITE_UTF16LE ){ + /* UTF-16 Little-endian -> UTF-8 */ + while( zIn<zTerm ){ + READ_UTF16LE(zIn, c); + WRITE_UTF8(z, c); + } + }else{ + /* UTF-16 Little-endian -> UTF-8 */ + while( zIn<zTerm ){ + READ_UTF16BE(zIn, c); + WRITE_UTF8(z, c); + } + } + pMem->n = z - zOut; + } + *z = 0; + assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); + + sqlite3VdbeMemRelease(pMem); + pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); + pMem->enc = desiredEnc; + pMem->flags |= (MEM_Term|MEM_Dyn); + pMem->z = (char*)zOut; + pMem->zMalloc = pMem->z; + +translate_out: +#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) + { + char zBuf[100]; + sqlite3VdbeMemPrettyPrint(pMem, zBuf); + fprintf(stderr, "OUTPUT: %s\n", zBuf); + } +#endif + return SQLITE_OK; +} + +/* +** This routine checks for a byte-order mark at the beginning of the +** UTF-16 string stored in *pMem. If one is present, it is removed and +** the encoding of the Mem adjusted. This routine does not do any +** byte-swapping, it just sets Mem.enc appropriately. +** +** The allocation (static, dynamic etc.) and encoding of the Mem may be +** changed by this function. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemHandleBom(Mem *pMem){ + int rc = SQLITE_OK; + u8 bom = 0; + + if( pMem->n<0 || pMem->n>1 ){ + u8 b1 = *(u8 *)pMem->z; + u8 b2 = *(((u8 *)pMem->z) + 1); + if( b1==0xFE && b2==0xFF ){ + bom = SQLITE_UTF16BE; + } + if( b1==0xFF && b2==0xFE ){ + bom = SQLITE_UTF16LE; + } + } + + if( bom ){ + rc = sqlite3VdbeMemMakeWriteable(pMem); + if( rc==SQLITE_OK ){ + pMem->n -= 2; + memmove(pMem->z, &pMem->z[2], pMem->n); + pMem->z[pMem->n] = '\0'; + pMem->z[pMem->n+1] = '\0'; + pMem->flags |= MEM_Term; + pMem->enc = bom; + } + } + return rc; +} +#endif /* SQLITE_OMIT_UTF16 */ + +/* +** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, +** return the number of unicode characters in pZ up to (but not including) +** the first 0x00 byte. If nByte is not less than zero, return the +** number of unicode characters in the first nByte of pZ (or up to +** the first 0x00, whichever comes first). +*/ +SQLITE_PRIVATE int sqlite3Utf8CharLen(const char *zIn, int nByte){ + int r = 0; + const u8 *z = (const u8*)zIn; + const u8 *zTerm; + if( nByte>=0 ){ + zTerm = &z[nByte]; + }else{ + zTerm = (const u8*)(-1); + } + assert( z<=zTerm ); + while( *z!=0 && z<zTerm ){ + SQLITE_SKIP_UTF8(z); + r++; + } + return r; +} + +/* This test function is not currently used by the automated test-suite. +** Hence it is only available in debug builds. +*/ +#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) +/* +** Translate UTF-8 to UTF-8. +** +** This has the effect of making sure that the string is well-formed +** UTF-8. Miscoded characters are removed. +** +** The translation is done in-place (since it is impossible for the +** correct UTF-8 encoding to be longer than a malformed encoding). +*/ +SQLITE_PRIVATE int sqlite3Utf8To8(unsigned char *zIn){ + unsigned char *zOut = zIn; + unsigned char *zStart = zIn; + unsigned char *zTerm; + u32 c; + + while( zIn[0] ){ + c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); + if( c!=0xfffd ){ + WRITE_UTF8(zOut, c); + } + } + *zOut = 0; + return zOut - zStart; +} +#endif + +#ifndef SQLITE_OMIT_UTF16 +/* +** Convert a UTF-16 string in the native encoding into a UTF-8 string. +** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must +** be freed by the calling function. +** +** NULL is returned if there is an allocation error. +*/ +SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){ + Mem m; + memset(&m, 0, sizeof(m)); + m.db = db; + sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC); + sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); + if( db->mallocFailed ){ + sqlite3VdbeMemRelease(&m); + m.z = 0; + } + assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); + assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); + return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z); +} + +/* +** pZ is a UTF-16 encoded unicode string. If nChar is less than zero, +** return the number of bytes up to (but not including), the first pair +** of consecutive 0x00 bytes in pZ. If nChar is not less than zero, +** then return the number of bytes in the first nChar unicode characters +** in pZ (or up until the first pair of 0x00 bytes, whichever comes first). +*/ +SQLITE_PRIVATE int sqlite3Utf16ByteLen(const void *zIn, int nChar){ + unsigned int c = 1; + char const *z = zIn; + int n = 0; + if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ + /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here + ** and in other parts of this file means that at one branch will + ** not be covered by coverage testing on any single host. But coverage + ** will be complete if the tests are run on both a little-endian and + ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE + ** macros are constant at compile time the compiler can determine + ** which branch will be followed. It is therefore assumed that no runtime + ** penalty is paid for this "if" statement. + */ + while( c && ((nChar<0) || n<nChar) ){ + READ_UTF16BE(z, c); + n++; + } + }else{ + while( c && ((nChar<0) || n<nChar) ){ + READ_UTF16LE(z, c); + n++; + } + } + return (z-(char const *)zIn)-((c==0)?2:0); +} + +#if defined(SQLITE_TEST) +/* +** This routine is called from the TCL test function "translate_selftest". +** It checks that the primitives for serializing and deserializing +** characters in each encoding are inverses of each other. +*/ +SQLITE_PRIVATE void sqlite3UtfSelfTest(){ + unsigned int i, t; + unsigned char zBuf[20]; + unsigned char *z; + unsigned char *zTerm; + int n; + unsigned int c; + + for(i=0; i<0x00110000; i++){ + z = zBuf; + WRITE_UTF8(z, i); + n = z-zBuf; + z[0] = 0; + zTerm = z; + z = zBuf; + c = sqlite3Utf8Read(z, zTerm, (const u8**)&z); + t = i; + if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD; + if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; + assert( c==t ); + assert( (z-zBuf)==n ); + } + for(i=0; i<0x00110000; i++){ + if( i>=0xD800 && i<0xE000 ) continue; + z = zBuf; + WRITE_UTF16LE(z, i); + n = z-zBuf; + z[0] = 0; + z = zBuf; + READ_UTF16LE(z, c); + assert( c==i ); + assert( (z-zBuf)==n ); + } + for(i=0; i<0x00110000; i++){ + if( i>=0xD800 && i<0xE000 ) continue; + z = zBuf; + WRITE_UTF16BE(z, i); + n = z-zBuf; + z[0] = 0; + z = zBuf; + READ_UTF16BE(z, c); + assert( c==i ); + assert( (z-zBuf)==n ); + } +} +#endif /* SQLITE_TEST */ +#endif /* SQLITE_OMIT_UTF16 */ + +/************** End of utf.c *************************************************/ +/************** Begin file util.c ********************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Utility functions used throughout sqlite. +** +** This file contains functions for allocating memory, comparing +** strings, and stuff like that. +** +** $Id: util.c,v 1.229 2008/05/13 16:41:50 drh Exp $ +*/ + + +/* +** Return true if the floating point value is Not a Number. +*/ +SQLITE_PRIVATE int sqlite3IsNaN(double x){ + /* This NaN test sometimes fails if compiled on GCC with -ffast-math. + ** On the other hand, the use of -ffast-math comes with the following + ** warning: + ** + ** This option [-ffast-math] should never be turned on by any + ** -O option since it can result in incorrect output for programs + ** which depend on an exact implementation of IEEE or ISO + ** rules/specifications for math functions. + */ + volatile double y = x; + return x!=y; +} + +/* +** Set the most recent error code and error string for the sqlite +** handle "db". The error code is set to "err_code". +** +** If it is not NULL, string zFormat specifies the format of the +** error string in the style of the printf functions: The following +** format characters are allowed: +** +** %s Insert a string +** %z A string that should be freed after use +** %d Insert an integer +** %T Insert a token +** %S Insert the first element of a SrcList +** +** zFormat and any string tokens that follow it are assumed to be +** encoded in UTF-8. +** +** To clear the most recent error for sqlite handle "db", sqlite3Error +** should be called with err_code set to SQLITE_OK and zFormat set +** to NULL. +*/ +SQLITE_PRIVATE void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ + if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ + db->errCode = err_code; + if( zFormat ){ + char *z; + va_list ap; + va_start(ap, zFormat); + z = sqlite3VMPrintf(db, zFormat, ap); + va_end(ap); + sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, sqlite3_free); + }else{ + sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); + } + } +} + +/* +** Add an error message to pParse->zErrMsg and increment pParse->nErr. +** The following formatting characters are allowed: +** +** %s Insert a string +** %z A string that should be freed after use +** %d Insert an integer +** %T Insert a token +** %S Insert the first element of a SrcList +** +** This function should be used to report any error that occurs whilst +** compiling an SQL statement (i.e. within sqlite3_prepare()). The +** last thing the sqlite3_prepare() function does is copy the error +** stored by this function into the database handle using sqlite3Error(). +** Function sqlite3Error() should be used during statement execution +** (sqlite3_step() etc.). +*/ +SQLITE_PRIVATE void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ + va_list ap; + pParse->nErr++; + sqlite3_free(pParse->zErrMsg); + va_start(ap, zFormat); + pParse->zErrMsg = sqlite3VMPrintf(pParse->db, zFormat, ap); + va_end(ap); + if( pParse->rc==SQLITE_OK ){ + pParse->rc = SQLITE_ERROR; + } +} + +/* +** Clear the error message in pParse, if any +*/ +SQLITE_PRIVATE void sqlite3ErrorClear(Parse *pParse){ + sqlite3_free(pParse->zErrMsg); + pParse->zErrMsg = 0; + pParse->nErr = 0; +} + +/* +** Convert an SQL-style quoted string into a normal string by removing +** the quote characters. The conversion is done in-place. If the +** input does not begin with a quote character, then this routine +** is a no-op. +** +** 2002-Feb-14: This routine is extended to remove MS-Access style +** brackets from around identifers. For example: "[a-b-c]" becomes +** "a-b-c". +*/ +SQLITE_PRIVATE void sqlite3Dequote(char *z){ + int quote; + int i, j; + if( z==0 ) return; + quote = z[0]; + switch( quote ){ + case '\'': break; + case '"': break; + case '`': break; /* For MySQL compatibility */ + case '[': quote = ']'; break; /* For MS SqlServer compatibility */ + default: return; + } + for(i=1, j=0; z[i]; i++){ + if( z[i]==quote ){ + if( z[i+1]==quote ){ + z[j++] = quote; + i++; + }else{ + z[j++] = 0; + break; + } + }else{ + z[j++] = z[i]; + } + } +} + +/* An array to map all upper-case characters into their corresponding +** lower-case character. +*/ +SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[] = { +#ifdef SQLITE_ASCII + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, + 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, + 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, + 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, + 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, + 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, + 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, + 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, + 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, + 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, + 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, + 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, + 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, + 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, + 252,253,254,255 +#endif +#ifdef SQLITE_EBCDIC + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 0x */ + 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */ + 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */ + 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */ + 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */ + 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */ + 96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */ + 112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */ + 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */ + 144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */ + 160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */ + 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */ + 192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */ + 208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */ + 224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */ + 239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */ +#endif +}; +#define UpperToLower sqlite3UpperToLower + +/* +** Some systems have stricmp(). Others have strcasecmp(). Because +** there is no consistency, we will define our own. +*/ +SQLITE_PRIVATE int sqlite3StrICmp(const char *zLeft, const char *zRight){ + unsigned char *a, *b; + a = (unsigned char *)zLeft; + b = (unsigned char *)zRight; + while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } + return UpperToLower[*a] - UpperToLower[*b]; +} +SQLITE_PRIVATE int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ + unsigned char *a, *b; + a = (unsigned char *)zLeft; + b = (unsigned char *)zRight; + while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } + return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; +} + +/* +** Return TRUE if z is a pure numeric string. Return FALSE if the +** string contains any character which is not part of a number. If +** the string is numeric and contains the '.' character, set *realnum +** to TRUE (otherwise FALSE). +** +** An empty string is considered non-numeric. +*/ +SQLITE_PRIVATE int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ + int incr = (enc==SQLITE_UTF8?1:2); + if( enc==SQLITE_UTF16BE ) z++; + if( *z=='-' || *z=='+' ) z += incr; + if( !isdigit(*(u8*)z) ){ + return 0; + } + z += incr; + if( realnum ) *realnum = 0; + while( isdigit(*(u8*)z) ){ z += incr; } + if( *z=='.' ){ + z += incr; + if( !isdigit(*(u8*)z) ) return 0; + while( isdigit(*(u8*)z) ){ z += incr; } + if( realnum ) *realnum = 1; + } + if( *z=='e' || *z=='E' ){ + z += incr; + if( *z=='+' || *z=='-' ) z += incr; + if( !isdigit(*(u8*)z) ) return 0; + while( isdigit(*(u8*)z) ){ z += incr; } + if( realnum ) *realnum = 1; + } + return *z==0; +} + +/* +** The string z[] is an ascii representation of a real number. +** Convert this string to a double. +** +** This routine assumes that z[] really is a valid number. If it +** is not, the result is undefined. +** +** This routine is used instead of the library atof() function because +** the library atof() might want to use "," as the decimal point instead +** of "." depending on how locale is set. But that would cause problems +** for SQL. So this routine always uses "." regardless of locale. +*/ +SQLITE_PRIVATE int sqlite3AtoF(const char *z, double *pResult){ +#ifndef SQLITE_OMIT_FLOATING_POINT + int sign = 1; + const char *zBegin = z; + LONGDOUBLE_TYPE v1 = 0.0; + int nSignificant = 0; + while( isspace(*(u8*)z) ) z++; + if( *z=='-' ){ + sign = -1; + z++; + }else if( *z=='+' ){ + z++; + } + while( z[0]=='0' ){ + z++; + } + while( isdigit(*(u8*)z) ){ + v1 = v1*10.0 + (*z - '0'); + z++; + nSignificant++; + } + if( *z=='.' ){ + LONGDOUBLE_TYPE divisor = 1.0; + z++; + if( nSignificant==0 ){ + while( z[0]=='0' ){ + divisor *= 10.0; + z++; + } + } + while( isdigit(*(u8*)z) ){ + if( nSignificant<18 ){ + v1 = v1*10.0 + (*z - '0'); + divisor *= 10.0; + nSignificant++; + } + z++; + } + v1 /= divisor; + } + if( *z=='e' || *z=='E' ){ + int esign = 1; + int eval = 0; + LONGDOUBLE_TYPE scale = 1.0; + z++; + if( *z=='-' ){ + esign = -1; + z++; + }else if( *z=='+' ){ + z++; + } + while( isdigit(*(u8*)z) ){ + eval = eval*10 + *z - '0'; + z++; + } + while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } + while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } + while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } + while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } + if( esign<0 ){ + v1 /= scale; + }else{ + v1 *= scale; + } + } + *pResult = sign<0 ? -v1 : v1; + return z - zBegin; +#else + return sqlite3Atoi64(z, pResult); +#endif /* SQLITE_OMIT_FLOATING_POINT */ +} + +/* +** Compare the 19-character string zNum against the text representation +** value 2^63: 9223372036854775808. Return negative, zero, or positive +** if zNum is less than, equal to, or greater than the string. +** +** Unlike memcmp() this routine is guaranteed to return the difference +** in the values of the last digit if the only difference is in the +** last digit. So, for example, +** +** compare2pow63("9223372036854775800") +** +** will return -8. +*/ +static int compare2pow63(const char *zNum){ + int c; + c = memcmp(zNum,"922337203685477580",18); + if( c==0 ){ + c = zNum[18] - '8'; + } + return c; +} + + +/* +** Return TRUE if zNum is a 64-bit signed integer and write +** the value of the integer into *pNum. If zNum is not an integer +** or is an integer that is too large to be expressed with 64 bits, +** then return false. +** +** When this routine was originally written it dealt with only +** 32-bit numbers. At that time, it was much faster than the +** atoi() library routine in RedHat 7.2. +*/ +SQLITE_PRIVATE int sqlite3Atoi64(const char *zNum, i64 *pNum){ + i64 v = 0; + int neg; + int i, c; + while( isspace(*(u8*)zNum) ) zNum++; + if( *zNum=='-' ){ + neg = 1; + zNum++; + }else if( *zNum=='+' ){ + neg = 0; + zNum++; + }else{ + neg = 0; + } + while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ + for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ + v = v*10 + c - '0'; + } + *pNum = neg ? -v : v; + if( c!=0 || i==0 || i>19 ){ + /* zNum is empty or contains non-numeric text or is longer + ** than 19 digits (thus guaranting that it is too large) */ + return 0; + }else if( i<19 ){ + /* Less than 19 digits, so we know that it fits in 64 bits */ + return 1; + }else{ + /* 19-digit numbers must be no larger than 9223372036854775807 if positive + ** or 9223372036854775808 if negative. Note that 9223372036854665808 + ** is 2^63. */ + return compare2pow63(zNum)<neg; + } +} + +/* +** The string zNum represents an integer. There might be some other +** information following the integer too, but that part is ignored. +** If the integer that the prefix of zNum represents will fit in a +** 64-bit signed integer, return TRUE. Otherwise return FALSE. +** +** This routine returns FALSE for the string -9223372036854775808 even that +** that number will, in theory fit in a 64-bit integer. Positive +** 9223373036854775808 will not fit in 64 bits. So it seems safer to return +** false. +*/ +SQLITE_PRIVATE int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ + int i, c; + int neg = 0; + if( *zNum=='-' ){ + neg = 1; + zNum++; + }else if( *zNum=='+' ){ + zNum++; + } + if( negFlag ) neg = 1-neg; + while( *zNum=='0' ){ + zNum++; /* Skip leading zeros. Ticket #2454 */ + } + for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} + if( i<19 ){ + /* Guaranteed to fit if less than 19 digits */ + return 1; + }else if( i>19 ){ + /* Guaranteed to be too big if greater than 19 digits */ + return 0; + }else{ + /* Compare against 2^63. */ + return compare2pow63(zNum)<neg; + } +} + +/* +** If zNum represents an integer that will fit in 32-bits, then set +** *pValue to that integer and return true. Otherwise return false. +** +** Any non-numeric characters that following zNum are ignored. +** This is different from sqlite3Atoi64() which requires the +** input number to be zero-terminated. +*/ +SQLITE_PRIVATE int sqlite3GetInt32(const char *zNum, int *pValue){ + sqlite_int64 v = 0; + int i, c; + int neg = 0; + if( zNum[0]=='-' ){ + neg = 1; + zNum++; + }else if( zNum[0]=='+' ){ + zNum++; + } + while( zNum[0]=='0' ) zNum++; + for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ + v = v*10 + c; + } + + /* The longest decimal representation of a 32 bit integer is 10 digits: + ** + ** 1234567890 + ** 2^31 -> 2147483648 + */ + if( i>10 ){ + return 0; + } + if( v-neg>2147483647 ){ + return 0; + } + if( neg ){ + v = -v; + } + *pValue = (int)v; + return 1; +} + +/* +** The variable-length integer encoding is as follows: +** +** KEY: +** A = 0xxxxxxx 7 bits of data and one flag bit +** B = 1xxxxxxx 7 bits of data and one flag bit +** C = xxxxxxxx 8 bits of data +** +** 7 bits - A +** 14 bits - BA +** 21 bits - BBA +** 28 bits - BBBA +** 35 bits - BBBBA +** 42 bits - BBBBBA +** 49 bits - BBBBBBA +** 56 bits - BBBBBBBA +** 64 bits - BBBBBBBBC +*/ + +/* +** Write a 64-bit variable-length integer to memory starting at p[0]. +** The length of data write will be between 1 and 9 bytes. The number +** of bytes written is returned. +** +** A variable-length integer consists of the lower 7 bits of each byte +** for all bytes that have the 8th bit set and one byte with the 8th +** bit clear. Except, if we get to the 9th byte, it stores the full +** 8 bits and is the last byte. +*/ +SQLITE_PRIVATE int sqlite3PutVarint(unsigned char *p, u64 v){ + int i, j, n; + u8 buf[10]; + if( v & (((u64)0xff000000)<<32) ){ + p[8] = v; + v >>= 8; + for(i=7; i>=0; i--){ + p[i] = (v & 0x7f) | 0x80; + v >>= 7; + } + return 9; + } + n = 0; + do{ + buf[n++] = (v & 0x7f) | 0x80; + v >>= 7; + }while( v!=0 ); + buf[0] &= 0x7f; + assert( n<=9 ); + for(i=0, j=n-1; j>=0; j--, i++){ + p[i] = buf[j]; + } + return n; +} + +/* +** This routine is a faster version of sqlite3PutVarint() that only +** works for 32-bit positive integers and which is optimized for +** the common case of small integers. A MACRO version, putVarint32, +** is provided which inlines the single-byte case. All code should use +** the MACRO version as this function assumes the single-byte case has +** already been handled. +*/ +SQLITE_PRIVATE int sqlite3PutVarint32(unsigned char *p, u32 v){ +#ifndef putVarint32 + if( (v & ~0x7f)==0 ){ + p[0] = v; + return 1; + } +#endif + if( (v & ~0x3fff)==0 ){ + p[0] = (v>>7) | 0x80; + p[1] = v & 0x7f; + return 2; + } + return sqlite3PutVarint(p, v); +} + +/* +** Read a 64-bit variable-length integer from memory starting at p[0]. +** Return the number of bytes read. The value is stored in *v. +*/ +SQLITE_PRIVATE int sqlite3GetVarint(const unsigned char *p, u64 *v){ + u32 a,b,s; + + a = *p; + /* a: p0 (unmasked)*/ + if (!(a&0x80)) + { + *v = a; + return 1; + } + + p++; + b = *p; + /* b: p1 (unmasked)*/ + if (!(b&0x80)) + { + a &= 0x7f; + a = a<<7; + a |= b; + *v = a; + return 2; + } + + p++; + a = a<<14; + a |= *p; + /* a: p0<<14 | p2 (unmasked)*/ + if (!(a&0x80)) + { + a &= (0x7f<<14)|(0x7f); + b &= 0x7f; + b = b<<7; + a |= b; + *v = a; + return 3; + } + + /* CSE1 from below*/ + a &= (0x7f<<14)|(0x7f); + p++; + b = b<<14; + b |= *p; + /* b: p1<<14 | p3 (unmasked)*/ + if (!(b&0x80)) + { + b &= (0x7f<<14)|(0x7f); + /* moved CSE1 up + a &= (0x7f<<14)|(0x7f);*/ + a = a<<7; + a |= b; + *v = a; + return 4; + } + + /* a: p0<<14 | p2 (masked) + b: p1<<14 | p3 (unmasked) + 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) + moved CSE1 up + a &= (0x7f<<14)|(0x7f);*/ + b &= (0x7f<<14)|(0x7f); + s = a; + /* s: p0<<14 | p2 (masked)*/ + + p++; + a = a<<14; + a |= *p; + /* a: p0<<28 | p2<<14 | p4 (unmasked)*/ + if (!(a&0x80)) + { + /* we can skip these cause they were (effectively) done above in calc'ing s + a &= (0x7f<<28)|(0x7f<<14)|(0x7f); + b &= (0x7f<<14)|(0x7f);*/ + b = b<<7; + a |= b; + s = s>>18; + *v = ((u64)s)<<32 | a; + return 5; + } + + /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked)*/ + s = s<<7; + s |= b; + /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked)*/ + + p++; + b = b<<14; + b |= *p; + /* b: p1<<28 | p3<<14 | p5 (unmasked)*/ + if (!(b&0x80)) + { + /* we can skip this cause it was (effectively) done above in calc'ing s + b &= (0x7f<<28)|(0x7f<<14)|(0x7f);*/ + a &= (0x7f<<14)|(0x7f); + a = a<<7; + a |= b; + s = s>>18; + *v = ((u64)s)<<32 | a; + return 6; + } + + p++; + a = a<<14; + a |= *p; + /* a: p2<<28 | p4<<14 | p6 (unmasked)*/ + if (!(a&0x80)) + { + a &= (0x7f<<28)|(0x7f<<14)|(0x7f); + b &= (0x7f<<14)|(0x7f); + b = b<<7; + a |= b; + s = s>>11; + *v = ((u64)s)<<32 | a; + return 7; + } + + /* CSE2 from below*/ + a &= (0x7f<<14)|(0x7f); + p++; + b = b<<14; + b |= *p; + /* b: p3<<28 | p5<<14 | p7 (unmasked)*/ + if (!(b&0x80)) + { + b &= (0x7f<<28)|(0x7f<<14)|(0x7f); + /* moved CSE2 up + a &= (0x7f<<14)|(0x7f);*/ + a = a<<7; + a |= b; + s = s>>4; + *v = ((u64)s)<<32 | a; + return 8; + } + + p++; + a = a<<15; + a |= *p; + /* a: p4<<29 | p6<<15 | p8 (unmasked)*/ + + /* moved CSE2 up + a &= (0x7f<<29)|(0x7f<<15)|(0xff);*/ + b &= (0x7f<<14)|(0x7f); + b = b<<8; + a |= b; + + s = s<<4; + b = p[-4]; + b &= 0x7f; + b = b>>3; + s |= b; + + *v = ((u64)s)<<32 | a; + + return 9; +} + +/* +** Read a 32-bit variable-length integer from memory starting at p[0]. +** Return the number of bytes read. The value is stored in *v. +** A MACRO version, getVarint32, is provided which inlines the +** single-byte case. All code should use the MACRO version as +** this function assumes the single-byte case has already been handled. +*/ +SQLITE_PRIVATE int sqlite3GetVarint32(const unsigned char *p, u32 *v){ + u32 a,b; + + a = *p; + /* a: p0 (unmasked)*/ +#ifndef getVarint32 + if (!(a&0x80)) + { + *v = a; + return 1; + } +#endif + + p++; + b = *p; + /* b: p1 (unmasked)*/ + if (!(b&0x80)) + { + a &= 0x7f; + a = a<<7; + *v = a | b; + return 2; + } + + p++; + a = a<<14; + a |= *p; + /* a: p0<<14 | p2 (unmasked)*/ + if (!(a&0x80)) + { + a &= (0x7f<<14)|(0x7f); + b &= 0x7f; + b = b<<7; + *v = a | b; + return 3; + } + + p++; + b = b<<14; + b |= *p; + /* b: p1<<14 | p3 (unmasked)*/ + if (!(b&0x80)) + { + b &= (0x7f<<14)|(0x7f); + a &= (0x7f<<14)|(0x7f); + a = a<<7; + *v = a | b; + return 4; + } + + p++; + a = a<<14; + a |= *p; + /* a: p0<<28 | p2<<14 | p4 (unmasked)*/ + if (!(a&0x80)) + { + a &= (0x7f<<28)|(0x7f<<14)|(0x7f); + b &= (0x7f<<28)|(0x7f<<14)|(0x7f); + b = b<<7; + *v = a | b; + return 5; + } + + /* We can only reach this point when reading a corrupt database + ** file. In that case we are not in any hurry. Use the (relatively + ** slow) general-purpose sqlite3GetVarint() routine to extract the + ** value. */ + { + u64 v64; + int n; + + p -= 4; + n = sqlite3GetVarint(p, &v64); + assert( n>5 && n<=9 ); + *v = (u32)v64; + return n; + } +} + +/* +** Return the number of bytes that will be needed to store the given +** 64-bit integer. +*/ +SQLITE_PRIVATE int sqlite3VarintLen(u64 v){ + int i = 0; + do{ + i++; + v >>= 7; + }while( v!=0 && i<9 ); + return i; +} + + +/* +** Read or write a four-byte big-endian integer value. +*/ +SQLITE_PRIVATE u32 sqlite3Get4byte(const u8 *p){ + return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; +} +SQLITE_PRIVATE void sqlite3Put4byte(unsigned char *p, u32 v){ + p[0] = v>>24; + p[1] = v>>16; + p[2] = v>>8; + p[3] = v; +} + + + +#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) +/* +** Translate a single byte of Hex into an integer. +** This routinen only works if h really is a valid hexadecimal +** character: 0..9a..fA..F +*/ +static int hexToInt(int h){ + assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); +#ifdef SQLITE_ASCII + h += 9*(1&(h>>6)); +#endif +#ifdef SQLITE_EBCDIC + h += 9*(1&~(h>>4)); +#endif + return h & 0xf; +} +#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ + +#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) +/* +** Convert a BLOB literal of the form "x'hhhhhh'" into its binary +** value. Return a pointer to its binary value. Space to hold the +** binary value has been obtained from malloc and must be freed by +** the calling routine. +*/ +SQLITE_PRIVATE void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ + char *zBlob; + int i; + + zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); + n--; + if( zBlob ){ + for(i=0; i<n; i+=2){ + zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); + } + zBlob[i/2] = 0; + } + return zBlob; +} +#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ + + +/* +** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. +** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN +** when this routine is called. +** +** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN +** value indicates that the database connection passed into the API is +** open and is not being used by another thread. By changing the value +** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. +** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN +** when the API exits. +** +** This routine is a attempt to detect if two threads use the +** same sqlite* pointer at the same time. There is a race +** condition so it is possible that the error is not detected. +** But usually the problem will be seen. The result will be an +** error which can be used to debug the application that is +** using SQLite incorrectly. +** +** Ticket #202: If db->magic is not a valid open value, take care not +** to modify the db structure at all. It could be that db is a stale +** pointer. In other words, it could be that there has been a prior +** call to sqlite3_close(db) and db has been deallocated. And we do +** not want to write into deallocated memory. +*/ +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3SafetyOn(sqlite3 *db){ + if( db->magic==SQLITE_MAGIC_OPEN ){ + db->magic = SQLITE_MAGIC_BUSY; + assert( sqlite3_mutex_held(db->mutex) ); + return 0; + }else if( db->magic==SQLITE_MAGIC_BUSY ){ + db->magic = SQLITE_MAGIC_ERROR; + db->u1.isInterrupted = 1; + } + return 1; +} +#endif + +/* +** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. +** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY +** when this routine is called. +*/ +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3SafetyOff(sqlite3 *db){ + if( db->magic==SQLITE_MAGIC_BUSY ){ + db->magic = SQLITE_MAGIC_OPEN; + assert( sqlite3_mutex_held(db->mutex) ); + return 0; + }else{ + db->magic = SQLITE_MAGIC_ERROR; + db->u1.isInterrupted = 1; + return 1; + } +} +#endif + +/* +** Check to make sure we have a valid db pointer. This test is not +** foolproof but it does provide some measure of protection against +** misuse of the interface such as passing in db pointers that are +** NULL or which have been previously closed. If this routine returns +** 1 it means that the db pointer is valid and 0 if it should not be +** dereferenced for any reason. The calling function should invoke +** SQLITE_MISUSE immediately. +** +** sqlite3SafetyCheckOk() requires that the db pointer be valid for +** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to +** open properly and is not fit for general use but which can be +** used as an argument to sqlite3_errmsg() or sqlite3_close(). +*/ +SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3 *db){ + int magic; + if( db==0 ) return 0; + magic = db->magic; + if( magic!=SQLITE_MAGIC_OPEN && + magic!=SQLITE_MAGIC_BUSY ) return 0; + return 1; +} +SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ + int magic; + if( db==0 ) return 0; + magic = db->magic; + if( magic!=SQLITE_MAGIC_SICK && + magic!=SQLITE_MAGIC_OPEN && + magic!=SQLITE_MAGIC_BUSY ) return 0; + return 1; +} + +/************** End of util.c ************************************************/ +/************** Begin file hash.c ********************************************/ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the implementation of generic hash-tables +** used in SQLite. +** +** $Id: hash.c,v 1.28 2008/05/13 13:27:34 drh Exp $ +*/ + +/* Turn bulk memory into a hash table object by initializing the +** fields of the Hash structure. +** +** "pNew" is a pointer to the hash table that is to be initialized. +** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER, +** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING. The value of keyClass +** determines what kind of key the hash table will use. "copyKey" is +** true if the hash table should make its own private copy of keys and +** false if it should just use the supplied pointer. CopyKey only makes +** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored +** for other key classes. +*/ +SQLITE_PRIVATE void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){ + assert( pNew!=0 ); + assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY ); + pNew->keyClass = keyClass; +#if 0 + if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0; +#endif + pNew->copyKey = copyKey; + pNew->first = 0; + pNew->count = 0; + pNew->htsize = 0; + pNew->ht = 0; +} + +/* Remove all entries from a hash table. Reclaim all memory. +** Call this routine to delete a hash table or to reset a hash table +** to the empty state. +*/ +SQLITE_PRIVATE void sqlite3HashClear(Hash *pH){ + HashElem *elem; /* For looping over all elements of the table */ + + assert( pH!=0 ); + elem = pH->first; + pH->first = 0; + sqlite3_free(pH->ht); + pH->ht = 0; + pH->htsize = 0; + while( elem ){ + HashElem *next_elem = elem->next; + if( pH->copyKey && elem->pKey ){ + sqlite3_free(elem->pKey); + } + sqlite3_free(elem); + elem = next_elem; + } + pH->count = 0; +} + +#if 0 /* NOT USED */ +/* +** Hash and comparison functions when the mode is SQLITE_HASH_INT +*/ +static int intHash(const void *pKey, int nKey){ + return nKey ^ (nKey<<8) ^ (nKey>>8); +} +static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + return n2 - n1; +} +#endif + +#if 0 /* NOT USED */ +/* +** Hash and comparison functions when the mode is SQLITE_HASH_POINTER +*/ +static int ptrHash(const void *pKey, int nKey){ + uptr x = Addr(pKey); + return x ^ (x<<8) ^ (x>>8); +} +static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( pKey1==pKey2 ) return 0; + if( pKey1<pKey2 ) return -1; + return 1; +} +#endif + +/* +** Hash and comparison functions when the mode is SQLITE_HASH_STRING +*/ +static int strHash(const void *pKey, int nKey){ + const char *z = (const char *)pKey; + int h = 0; + if( nKey<=0 ) nKey = strlen(z); + while( nKey > 0 ){ + h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++]; + nKey--; + } + return h & 0x7fffffff; +} +static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( n1!=n2 ) return 1; + return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1); +} + +/* +** Hash and comparison functions when the mode is SQLITE_HASH_BINARY +*/ +static int binHash(const void *pKey, int nKey){ + int h = 0; + const char *z = (const char *)pKey; + while( nKey-- > 0 ){ + h = (h<<3) ^ h ^ *(z++); + } + return h & 0x7fffffff; +} +static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( n1!=n2 ) return 1; + return memcmp(pKey1,pKey2,n1); +} + +/* +** Return a pointer to the appropriate hash function given the key class. +** +** The C syntax in this function definition may be unfamilar to some +** programmers, so we provide the following additional explanation: +** +** The name of the function is "hashFunction". The function takes a +** single parameter "keyClass". The return value of hashFunction() +** is a pointer to another function. Specifically, the return value +** of hashFunction() is a pointer to a function that takes two parameters +** with types "const void*" and "int" and returns an "int". +*/ +static int (*hashFunction(int keyClass))(const void*,int){ +#if 0 /* HASH_INT and HASH_POINTER are never used */ + switch( keyClass ){ + case SQLITE_HASH_INT: return &intHash; + case SQLITE_HASH_POINTER: return &ptrHash; + case SQLITE_HASH_STRING: return &strHash; + case SQLITE_HASH_BINARY: return &binHash;; + default: break; + } + return 0; +#else + if( keyClass==SQLITE_HASH_STRING ){ + return &strHash; + }else{ + assert( keyClass==SQLITE_HASH_BINARY ); + return &binHash; + } +#endif +} + +/* +** Return a pointer to the appropriate hash function given the key class. +** +** For help in interpreted the obscure C code in the function definition, +** see the header comment on the previous function. +*/ +static int (*compareFunction(int keyClass))(const void*,int,const void*,int){ +#if 0 /* HASH_INT and HASH_POINTER are never used */ + switch( keyClass ){ + case SQLITE_HASH_INT: return &intCompare; + case SQLITE_HASH_POINTER: return &ptrCompare; + case SQLITE_HASH_STRING: return &strCompare; + case SQLITE_HASH_BINARY: return &binCompare; + default: break; + } + return 0; +#else + if( keyClass==SQLITE_HASH_STRING ){ + return &strCompare; + }else{ + assert( keyClass==SQLITE_HASH_BINARY ); + return &binCompare; + } +#endif +} + +/* Link an element into the hash table +*/ +static void insertElement( + Hash *pH, /* The complete hash table */ + struct _ht *pEntry, /* The entry into which pNew is inserted */ + HashElem *pNew /* The element to be inserted */ +){ + HashElem *pHead; /* First element already in pEntry */ + pHead = pEntry->chain; + if( pHead ){ + pNew->next = pHead; + pNew->prev = pHead->prev; + if( pHead->prev ){ pHead->prev->next = pNew; } + else { pH->first = pNew; } + pHead->prev = pNew; + }else{ + pNew->next = pH->first; + if( pH->first ){ pH->first->prev = pNew; } + pNew->prev = 0; + pH->first = pNew; + } + pEntry->count++; + pEntry->chain = pNew; +} + + +/* Resize the hash table so that it cantains "new_size" buckets. +** "new_size" must be a power of 2. The hash table might fail +** to resize if sqlite3_malloc() fails. +*/ +static void rehash(Hash *pH, int new_size){ + struct _ht *new_ht; /* The new hash table */ + HashElem *elem, *next_elem; /* For looping over existing elements */ + int (*xHash)(const void*,int); /* The hash function */ + +#ifdef SQLITE_MALLOC_SOFT_LIMIT + if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){ + new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); + } + if( new_size==pH->htsize ) return; +#endif + + /* There is a call to sqlite3_malloc() inside rehash(). If there is + ** already an allocation at pH->ht, then if this malloc() fails it + ** is benign (since failing to resize a hash table is a performance + ** hit only, not a fatal error). + */ + if( pH->htsize>0 ) sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC); + new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) ); + if( pH->htsize>0 ) sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC); + + if( new_ht==0 ) return; + sqlite3_free(pH->ht); + pH->ht = new_ht; + pH->htsize = new_size; + xHash = hashFunction(pH->keyClass); + for(elem=pH->first, pH->first=0; elem; elem = next_elem){ + int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); + next_elem = elem->next; + insertElement(pH, &new_ht[h], elem); + } +} + +/* This function (for internal use only) locates an element in an +** hash table that matches the given key. The hash for this key has +** already been computed and is passed as the 4th parameter. +*/ +static HashElem *findElementGivenHash( + const Hash *pH, /* The pH to be searched */ + const void *pKey, /* The key we are searching for */ + int nKey, + int h /* The hash for this key. */ +){ + HashElem *elem; /* Used to loop thru the element list */ + int count; /* Number of elements left to test */ + int (*xCompare)(const void*,int,const void*,int); /* comparison function */ + + if( pH->ht ){ + struct _ht *pEntry = &pH->ht[h]; + elem = pEntry->chain; + count = pEntry->count; + xCompare = compareFunction(pH->keyClass); + while( count-- && elem ){ + if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ + return elem; + } + elem = elem->next; + } + } + return 0; +} + +/* Remove a single entry from the hash table given a pointer to that +** element and a hash on the element's key. +*/ +static void removeElementGivenHash( + Hash *pH, /* The pH containing "elem" */ + HashElem* elem, /* The element to be removed from the pH */ + int h /* Hash value for the element */ +){ + struct _ht *pEntry; + if( elem->prev ){ + elem->prev->next = elem->next; + }else{ + pH->first = elem->next; + } + if( elem->next ){ + elem->next->prev = elem->prev; + } + pEntry = &pH->ht[h]; + if( pEntry->chain==elem ){ + pEntry->chain = elem->next; + } + pEntry->count--; + if( pEntry->count<=0 ){ + pEntry->chain = 0; + } + if( pH->copyKey ){ + sqlite3_free(elem->pKey); + } + sqlite3_free( elem ); + pH->count--; + if( pH->count<=0 ){ + assert( pH->first==0 ); + assert( pH->count==0 ); + sqlite3HashClear(pH); + } +} + +/* Attempt to locate an element of the hash table pH with a key +** that matches pKey,nKey. Return a pointer to the corresponding +** HashElem structure for this element if it is found, or NULL +** otherwise. +*/ +SQLITE_PRIVATE HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){ + int h; /* A hash on key */ + HashElem *elem; /* The element that matches key */ + int (*xHash)(const void*,int); /* The hash function */ + + if( pH==0 || pH->ht==0 ) return 0; + xHash = hashFunction(pH->keyClass); + assert( xHash!=0 ); + h = (*xHash)(pKey,nKey); + elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize); + return elem; +} + +/* Attempt to locate an element of the hash table pH with a key +** that matches pKey,nKey. Return the data for this element if it is +** found, or NULL if there is no match. +*/ +SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){ + HashElem *elem; /* The element that matches key */ + elem = sqlite3HashFindElem(pH, pKey, nKey); + return elem ? elem->data : 0; +} + +/* Insert an element into the hash table pH. The key is pKey,nKey +** and the data is "data". +** +** If no element exists with a matching key, then a new +** element is created. A copy of the key is made if the copyKey +** flag is set. NULL is returned. +** +** If another element already exists with the same key, then the +** new data replaces the old data and the old data is returned. +** The key is not copied in this instance. If a malloc fails, then +** the new data is returned and the hash table is unchanged. +** +** If the "data" parameter to this function is NULL, then the +** element corresponding to "key" is removed from the hash table. +*/ +SQLITE_PRIVATE void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){ + int hraw; /* Raw hash value of the key */ + int h; /* the hash of the key modulo hash table size */ + HashElem *elem; /* Used to loop thru the element list */ + HashElem *new_elem; /* New element added to the pH */ + int (*xHash)(const void*,int); /* The hash function */ + + assert( pH!=0 ); + xHash = hashFunction(pH->keyClass); + assert( xHash!=0 ); + hraw = (*xHash)(pKey, nKey); + if( pH->htsize ){ + h = hraw % pH->htsize; + elem = findElementGivenHash(pH,pKey,nKey,h); + if( elem ){ + void *old_data = elem->data; + if( data==0 ){ + removeElementGivenHash(pH,elem,h); + }else{ + elem->data = data; + if( !pH->copyKey ){ + elem->pKey = (void *)pKey; + } + assert(nKey==elem->nKey); + } + return old_data; + } + } + if( data==0 ) return 0; + new_elem = (HashElem*)sqlite3_malloc( sizeof(HashElem) ); + if( new_elem==0 ) return data; + if( pH->copyKey && pKey!=0 ){ + new_elem->pKey = sqlite3_malloc( nKey ); + if( new_elem->pKey==0 ){ + sqlite3_free(new_elem); + return data; + } + memcpy((void*)new_elem->pKey, pKey, nKey); + }else{ + new_elem->pKey = (void*)pKey; + } + new_elem->nKey = nKey; + pH->count++; + if( pH->htsize==0 ){ + rehash(pH, 128/sizeof(pH->ht[0])); + if( pH->htsize==0 ){ + pH->count = 0; + if( pH->copyKey ){ + sqlite3_free(new_elem->pKey); + } + sqlite3_free(new_elem); + return data; + } + } + if( pH->count > pH->htsize ){ + rehash(pH,pH->htsize*2); + } + assert( pH->htsize>0 ); + h = hraw % pH->htsize; + insertElement(pH, &pH->ht[h], new_elem); + new_elem->data = data; + return 0; +} + +/************** End of hash.c ************************************************/ +/************** Begin file opcodes.c *****************************************/ +/* Automatically generated. Do not edit */ +/* See the mkopcodec.awk script for details. */ +#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) +SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ + static const char *const azName[] = { "?", + /* 1 */ "VNext", + /* 2 */ "Affinity", + /* 3 */ "Column", + /* 4 */ "SetCookie", + /* 5 */ "Sequence", + /* 6 */ "MoveGt", + /* 7 */ "RowKey", + /* 8 */ "SCopy", + /* 9 */ "OpenWrite", + /* 10 */ "If", + /* 11 */ "VRowid", + /* 12 */ "CollSeq", + /* 13 */ "OpenRead", + /* 14 */ "Expire", + /* 15 */ "AutoCommit", + /* 16 */ "Not", + /* 17 */ "IntegrityCk", + /* 18 */ "Sort", + /* 19 */ "Copy", + /* 20 */ "Trace", + /* 21 */ "Function", + /* 22 */ "IfNeg", + /* 23 */ "Noop", + /* 24 */ "Return", + /* 25 */ "NewRowid", + /* 26 */ "Variable", + /* 27 */ "String", + /* 28 */ "RealAffinity", + /* 29 */ "VRename", + /* 30 */ "ParseSchema", + /* 31 */ "VOpen", + /* 32 */ "Close", + /* 33 */ "CreateIndex", + /* 34 */ "IsUnique", + /* 35 */ "NotFound", + /* 36 */ "Int64", + /* 37 */ "MustBeInt", + /* 38 */ "Halt", + /* 39 */ "Rowid", + /* 40 */ "IdxLT", + /* 41 */ "AddImm", + /* 42 */ "Statement", + /* 43 */ "RowData", + /* 44 */ "MemMax", + /* 45 */ "NotExists", + /* 46 */ "Gosub", + /* 47 */ "Integer", + /* 48 */ "Prev", + /* 49 */ "VColumn", + /* 50 */ "CreateTable", + /* 51 */ "Last", + /* 52 */ "IncrVacuum", + /* 53 */ "IdxRowid", + /* 54 */ "ResetCount", + /* 55 */ "FifoWrite", + /* 56 */ "ContextPush", + /* 57 */ "DropTrigger", + /* 58 */ "DropIndex", + /* 59 */ "IdxGE", + /* 60 */ "Or", + /* 61 */ "And", + /* 62 */ "IdxDelete", + /* 63 */ "Vacuum", + /* 64 */ "MoveLe", + /* 65 */ "IsNull", + /* 66 */ "NotNull", + /* 67 */ "Ne", + /* 68 */ "Eq", + /* 69 */ "Gt", + /* 70 */ "Le", + /* 71 */ "Lt", + /* 72 */ "Ge", + /* 73 */ "IfNot", + /* 74 */ "BitAnd", + /* 75 */ "BitOr", + /* 76 */ "ShiftLeft", + /* 77 */ "ShiftRight", + /* 78 */ "Add", + /* 79 */ "Subtract", + /* 80 */ "Multiply", + /* 81 */ "Divide", + /* 82 */ "Remainder", + /* 83 */ "Concat", + /* 84 */ "DropTable", + /* 85 */ "MakeRecord", + /* 86 */ "ResultRow", + /* 87 */ "BitNot", + /* 88 */ "String8", + /* 89 */ "Delete", + /* 90 */ "AggFinal", + /* 91 */ "Goto", + /* 92 */ "TableLock", + /* 93 */ "FifoRead", + /* 94 */ "Clear", + /* 95 */ "MoveLt", + /* 96 */ "VerifyCookie", + /* 97 */ "AggStep", + /* 98 */ "SetNumColumns", + /* 99 */ "Transaction", + /* 100 */ "VFilter", + /* 101 */ "VDestroy", + /* 102 */ "ContextPop", + /* 103 */ "Next", + /* 104 */ "IdxInsert", + /* 105 */ "Insert", + /* 106 */ "Destroy", + /* 107 */ "ReadCookie", + /* 108 */ "ForceInt", + /* 109 */ "LoadAnalysis", + /* 110 */ "Explain", + /* 111 */ "OpenPseudo", + /* 112 */ "OpenEphemeral", + /* 113 */ "Null", + /* 114 */ "Move", + /* 115 */ "Blob", + /* 116 */ "Rewind", + /* 117 */ "MoveGe", + /* 118 */ "VBegin", + /* 119 */ "VUpdate", + /* 120 */ "IfZero", + /* 121 */ "VCreate", + /* 122 */ "Found", + /* 123 */ "IfPos", + /* 124 */ "NullRow", + /* 125 */ "Real", + /* 126 */ "NotUsed_126", + /* 127 */ "NotUsed_127", + /* 128 */ "NotUsed_128", + /* 129 */ "NotUsed_129", + /* 130 */ "NotUsed_130", + /* 131 */ "NotUsed_131", + /* 132 */ "NotUsed_132", + /* 133 */ "NotUsed_133", + /* 134 */ "NotUsed_134", + /* 135 */ "NotUsed_135", + /* 136 */ "NotUsed_136", + /* 137 */ "NotUsed_137", + /* 138 */ "ToText", + /* 139 */ "ToBlob", + /* 140 */ "ToNumeric", + /* 141 */ "ToInt", + /* 142 */ "ToReal", + }; + return azName[i]; +} +#endif + +/************** End of opcodes.c *********************************************/ +/************** Begin file os_os2.c ******************************************/ +/* +** 2006 Feb 14 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains code that is specific to OS/2. +*/ + + +#if OS_OS2 + +/* +** A Note About Memory Allocation: +** +** This driver uses malloc()/free() directly rather than going through +** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers +** are designed for use on embedded systems where memory is scarce and +** malloc failures happen frequently. OS/2 does not typically run on +** embedded systems, and when it does the developers normally have bigger +** problems to worry about than running out of memory. So there is not +** a compelling need to use the wrappers. +** +** But there is a good reason to not use the wrappers. If we use the +** wrappers then we will get simulated malloc() failures within this +** driver. And that causes all kinds of problems for our tests. We +** could enhance SQLite to deal with simulated malloc failures within +** the OS driver, but the code to deal with those failure would not +** be exercised on Linux (which does not need to malloc() in the driver) +** and so we would have difficulty writing coverage tests for that +** code. Better to leave the code out, we think. +** +** The point of this discussion is as follows: When creating a new +** OS layer for an embedded system, if you use this file as an example, +** avoid the use of malloc()/free(). Those routines work ok on OS/2 +** desktops but not so well in embedded systems. +*/ + +/* +** Macros used to determine whether or not to use threads. +*/ +#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE +# define SQLITE_OS2_THREADS 1 +#endif + +/* +** Include code that is common to all os_*.c files +*/ +/************** Include os_common.h in the middle of os_os2.c ****************/ +/************** Begin file os_common.h ***************************************/ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains macros and a little bit of code that is common to +** all of the platform-specific files (os_*.c) and is #included into those +** files. +** +** This file should be #included by the os_*.c files only. It is not a +** general purpose header file. +*/ + +/* +** At least two bugs have slipped in because we changed the MEMORY_DEBUG +** macro to SQLITE_DEBUG and some older makefiles have not yet made the +** switch. The following code should catch this problem at compile-time. +*/ +#ifdef MEMORY_DEBUG +# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." +#endif + + +/* + * When testing, this global variable stores the location of the + * pending-byte in the database file. + */ +#ifdef SQLITE_TEST +SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000; +#endif + +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3OSTrace = 0; +#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X) +#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y) +#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z) +#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A) +#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B) +#define OSTRACE6(X,Y,Z,A,B,C) \ + if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C) +#define OSTRACE7(X,Y,Z,A,B,C,D) \ + if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D) +#else +#define OSTRACE1(X) +#define OSTRACE2(X,Y) +#define OSTRACE3(X,Y,Z) +#define OSTRACE4(X,Y,Z,A) +#define OSTRACE5(X,Y,Z,A,B) +#define OSTRACE6(X,Y,Z,A,B,C) +#define OSTRACE7(X,Y,Z,A,B,C,D) +#endif + +/* +** Macros for performance tracing. Normally turned off. Only works +** on i486 hardware. +*/ +#ifdef SQLITE_PERFORMANCE_TRACE +__inline__ unsigned long long int hwtime(void){ + unsigned long long int x; + __asm__("rdtsc\n\t" + "mov %%edx, %%ecx\n\t" + :"=A" (x)); + return x; +} +static unsigned long long int g_start; +static unsigned int elapse; +#define TIMER_START g_start=hwtime() +#define TIMER_END elapse=hwtime()-g_start +#define TIMER_ELAPSED elapse +#else +#define TIMER_START +#define TIMER_END +#define TIMER_ELAPSED 0 +#endif + +/* +** If we compile with the SQLITE_TEST macro set, then the following block +** of code will give us the ability to simulate a disk I/O error. This +** is used for testing the I/O recovery logic. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ +SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ +SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ +SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ +SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */ +SQLITE_API int sqlite3_diskfull_pending = 0; +SQLITE_API int sqlite3_diskfull = 0; +#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X) +#define SimulateIOError(CODE) \ + if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \ + || sqlite3_io_error_pending-- == 1 ) \ + { local_ioerr(); CODE; } +static void local_ioerr(){ + IOTRACE(("IOERR\n")); + sqlite3_io_error_hit++; + if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++; +} +#define SimulateDiskfullError(CODE) \ + if( sqlite3_diskfull_pending ){ \ + if( sqlite3_diskfull_pending == 1 ){ \ + local_ioerr(); \ + sqlite3_diskfull = 1; \ + sqlite3_io_error_hit = 1; \ + CODE; \ + }else{ \ + sqlite3_diskfull_pending--; \ + } \ + } +#else +#define SimulateIOErrorBenign(X) +#define SimulateIOError(A) +#define SimulateDiskfullError(A) +#endif + +/* +** When testing, keep a count of the number of open files. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_open_file_count = 0; +#define OpenCounter(X) sqlite3_open_file_count+=(X) +#else +#define OpenCounter(X) +#endif + +/************** End of os_common.h *******************************************/ +/************** Continuing where we left off in os_os2.c *********************/ + +/* +** The os2File structure is subclass of sqlite3_file specific for the OS/2 +** protability layer. +*/ +typedef struct os2File os2File; +struct os2File { + const sqlite3_io_methods *pMethod; /* Always the first entry */ + HFILE h; /* Handle for accessing the file */ + char* pathToDel; /* Name of file to delete on close, NULL if not */ + unsigned char locktype; /* Type of lock currently held on this file */ +}; + +#define LOCK_TIMEOUT 10L /* the default locking timeout */ + +/***************************************************************************** +** The next group of routines implement the I/O methods specified +** by the sqlite3_io_methods object. +******************************************************************************/ + +/* +** Close a file. +*/ +int os2Close( sqlite3_file *id ){ + APIRET rc = NO_ERROR; + os2File *pFile; + if( id && (pFile = (os2File*)id) != 0 ){ + OSTRACE2( "CLOSE %d\n", pFile->h ); + rc = DosClose( pFile->h ); + pFile->locktype = NO_LOCK; + if( pFile->pathToDel != NULL ){ + rc = DosForceDelete( (PSZ)pFile->pathToDel ); + free( pFile->pathToDel ); + pFile->pathToDel = NULL; + } + id = 0; + OpenCounter( -1 ); + } + + return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; +} + +/* +** Read data from a file into a buffer. Return SQLITE_OK if all +** bytes were read successfully and SQLITE_IOERR if anything goes +** wrong. +*/ +int os2Read( + sqlite3_file *id, /* File to read from */ + void *pBuf, /* Write content into this buffer */ + int amt, /* Number of bytes to read */ + sqlite3_int64 offset /* Begin reading at this offset */ +){ + ULONG fileLocation = 0L; + ULONG got; + os2File *pFile = (os2File*)id; + assert( id!=0 ); + SimulateIOError( return SQLITE_IOERR_READ ); + OSTRACE3( "READ %d lock=%d\n", pFile->h, pFile->locktype ); + if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){ + return SQLITE_IOERR; + } + if( DosRead( pFile->h, pBuf, amt, &got ) != NO_ERROR ){ + return SQLITE_IOERR_READ; + } + if( got == (ULONG)amt ) + return SQLITE_OK; + else { + memset(&((char*)pBuf)[got], 0, amt-got); + return SQLITE_IOERR_SHORT_READ; + } +} + +/* +** Write data from a buffer into a file. Return SQLITE_OK on success +** or some other error code on failure. +*/ +int os2Write( + sqlite3_file *id, /* File to write into */ + const void *pBuf, /* The bytes to be written */ + int amt, /* Number of bytes to write */ + sqlite3_int64 offset /* Offset into the file to begin writing at */ +){ + ULONG fileLocation = 0L; + APIRET rc = NO_ERROR; + ULONG wrote; + os2File *pFile = (os2File*)id; + assert( id!=0 ); + SimulateIOError( return SQLITE_IOERR_WRITE ); + SimulateDiskfullError( return SQLITE_FULL ); + OSTRACE3( "WRITE %d lock=%d\n", pFile->h, pFile->locktype ); + if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){ + return SQLITE_IOERR; + } + assert( amt>0 ); + while( amt > 0 && + ( rc = DosWrite( pFile->h, (PVOID)pBuf, amt, &wrote ) ) == NO_ERROR && + wrote > 0 + ){ + amt -= wrote; + pBuf = &((char*)pBuf)[wrote]; + } + + return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK; +} + +/* +** Truncate an open file to a specified size +*/ +int os2Truncate( sqlite3_file *id, i64 nByte ){ + APIRET rc = NO_ERROR; + os2File *pFile = (os2File*)id; + OSTRACE3( "TRUNCATE %d %lld\n", pFile->h, nByte ); + SimulateIOError( return SQLITE_IOERR_TRUNCATE ); + rc = DosSetFileSize( pFile->h, nByte ); + return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; +} + +#ifdef SQLITE_TEST +/* +** Count the number of fullsyncs and normal syncs. This is used to test +** that syncs and fullsyncs are occuring at the right times. +*/ +SQLITE_API int sqlite3_sync_count = 0; +SQLITE_API int sqlite3_fullsync_count = 0; +#endif + +/* +** Make sure all writes to a particular file are committed to disk. +*/ +int os2Sync( sqlite3_file *id, int flags ){ + os2File *pFile = (os2File*)id; + OSTRACE3( "SYNC %d lock=%d\n", pFile->h, pFile->locktype ); +#ifdef SQLITE_TEST + if( flags & SQLITE_SYNC_FULL){ + sqlite3_fullsync_count++; + } + sqlite3_sync_count++; +#endif + return DosResetBuffer( pFile->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; +} + +/* +** Determine the current size of a file in bytes +*/ +int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){ + APIRET rc = NO_ERROR; + FILESTATUS3 fsts3FileInfo; + memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo)); + assert( id!=0 ); + SimulateIOError( return SQLITE_IOERR ); + rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) ); + if( rc == NO_ERROR ){ + *pSize = fsts3FileInfo.cbFile; + return SQLITE_OK; + }else{ + return SQLITE_IOERR; + } +} + +/* +** Acquire a reader lock. +*/ +static int getReadLock( os2File *pFile ){ + FILELOCK LockArea, + UnlockArea; + APIRET res; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + LockArea.lOffset = SHARED_FIRST; + LockArea.lRange = SHARED_SIZE; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L ); + OSTRACE3( "GETREADLOCK %d res=%d\n", pFile->h, res ); + return res; +} + +/* +** Undo a readlock +*/ +static int unlockReadLock( os2File *id ){ + FILELOCK LockArea, + UnlockArea; + APIRET res; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = SHARED_FIRST; + UnlockArea.lRange = SHARED_SIZE; + res = DosSetFileLocks( id->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L ); + OSTRACE3( "UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res ); + return res; +} + +/* +** Lock the file with the lock specified by parameter locktype - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. The os2Unlock() routine +** erases all locks at once and returns us immediately to locking level 0. +** It is not possible to lower the locking level one step at a time. You +** must go straight to locking level 0. +*/ +int os2Lock( sqlite3_file *id, int locktype ){ + int rc = SQLITE_OK; /* Return code from subroutines */ + APIRET res = NO_ERROR; /* Result of an OS/2 lock call */ + int newLocktype; /* Set pFile->locktype to this value before exiting */ + int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */ + FILELOCK LockArea, + UnlockArea; + os2File *pFile = (os2File*)id; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + assert( pFile!=0 ); + OSTRACE4( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype ); + + /* If there is already a lock of this type or more restrictive on the + ** os2File, do nothing. Don't use the end_lock: exit path, as + ** sqlite3_mutex_enter() hasn't been called yet. + */ + if( pFile->locktype>=locktype ){ + OSTRACE3( "LOCK %d %d ok (already held)\n", pFile->h, locktype ); + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct + */ + assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); + assert( locktype!=PENDING_LOCK ); + assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); + + /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or + ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of + ** the PENDING_LOCK byte is temporary. + */ + newLocktype = pFile->locktype; + if( pFile->locktype==NO_LOCK + || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK) + ){ + LockArea.lOffset = PENDING_BYTE; + LockArea.lRange = 1L; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + + /* wait longer than LOCK_TIMEOUT here not to have to try multiple times */ + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 100L, 0L ); + if( res == NO_ERROR ){ + gotPendingLock = 1; + OSTRACE3( "LOCK %d pending lock boolean set. res=%d\n", pFile->h, res ); + } + } + + /* Acquire a shared lock + */ + if( locktype==SHARED_LOCK && res == NO_ERROR ){ + assert( pFile->locktype==NO_LOCK ); + res = getReadLock(pFile); + if( res == NO_ERROR ){ + newLocktype = SHARED_LOCK; + } + OSTRACE3( "LOCK %d acquire shared lock. res=%d\n", pFile->h, res ); + } + + /* Acquire a RESERVED lock + */ + if( locktype==RESERVED_LOCK && res == NO_ERROR ){ + assert( pFile->locktype==SHARED_LOCK ); + LockArea.lOffset = RESERVED_BYTE; + LockArea.lRange = 1L; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + if( res == NO_ERROR ){ + newLocktype = RESERVED_LOCK; + } + OSTRACE3( "LOCK %d acquire reserved lock. res=%d\n", pFile->h, res ); + } + + /* Acquire a PENDING lock + */ + if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){ + newLocktype = PENDING_LOCK; + gotPendingLock = 0; + OSTRACE2( "LOCK %d acquire pending lock. pending lock boolean unset.\n", pFile->h ); + } + + /* Acquire an EXCLUSIVE lock + */ + if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){ + assert( pFile->locktype>=SHARED_LOCK ); + res = unlockReadLock(pFile); + OSTRACE2( "unreadlock = %d\n", res ); + LockArea.lOffset = SHARED_FIRST; + LockArea.lRange = SHARED_SIZE; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + if( res == NO_ERROR ){ + newLocktype = EXCLUSIVE_LOCK; + }else{ + OSTRACE2( "OS/2 error-code = %d\n", res ); + getReadLock(pFile); + } + OSTRACE3( "LOCK %d acquire exclusive lock. res=%d\n", pFile->h, res ); + } + + /* If we are holding a PENDING lock that ought to be released, then + ** release it now. + */ + if( gotPendingLock && locktype==SHARED_LOCK ){ + int r; + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = PENDING_BYTE; + UnlockArea.lRange = 1L; + r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE3( "LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r ); + } + + /* Update the state of the lock has held in the file descriptor then + ** return the appropriate result code. + */ + if( res == NO_ERROR ){ + rc = SQLITE_OK; + }else{ + OSTRACE4( "LOCK FAILED %d trying for %d but got %d\n", pFile->h, + locktype, newLocktype ); + rc = SQLITE_BUSY; + } + pFile->locktype = newLocktype; + OSTRACE3( "LOCK %d now %d\n", pFile->h, pFile->locktype ); + return rc; +} + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, return +** non-zero, otherwise zero. +*/ +int os2CheckReservedLock( sqlite3_file *id ){ + int r = 0; + os2File *pFile = (os2File*)id; + assert( pFile!=0 ); + if( pFile->locktype>=RESERVED_LOCK ){ + r = 1; + OSTRACE3( "TEST WR-LOCK %d %d (local)\n", pFile->h, r ); + }else{ + FILELOCK LockArea, + UnlockArea; + APIRET rc = NO_ERROR; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + LockArea.lOffset = RESERVED_BYTE; + LockArea.lRange = 1L; + UnlockArea.lOffset = 0L; + UnlockArea.lRange = 0L; + rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE3( "TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc ); + if( rc == NO_ERROR ){ + APIRET rcu = NO_ERROR; /* return code for unlocking */ + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = RESERVED_BYTE; + UnlockArea.lRange = 1L; + rcu = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE3( "TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, rcu ); + } + r = !(rc == NO_ERROR); + OSTRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, r ); + } + return r; +} + +/* +** Lower the locking level on file descriptor id to locktype. locktype +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +** +** It is not possible for this routine to fail if the second argument +** is NO_LOCK. If the second argument is SHARED_LOCK then this routine +** might return SQLITE_IOERR; +*/ +int os2Unlock( sqlite3_file *id, int locktype ){ + int type; + os2File *pFile = (os2File*)id; + APIRET rc = SQLITE_OK; + APIRET res = NO_ERROR; + FILELOCK LockArea, + UnlockArea; + memset(&LockArea, 0, sizeof(LockArea)); + memset(&UnlockArea, 0, sizeof(UnlockArea)); + assert( pFile!=0 ); + assert( locktype<=SHARED_LOCK ); + OSTRACE4( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype ); + type = pFile->locktype; + if( type>=EXCLUSIVE_LOCK ){ + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = SHARED_FIRST; + UnlockArea.lRange = SHARED_SIZE; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE3( "UNLOCK %d exclusive lock res=%d\n", pFile->h, res ); + if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){ + /* This should never happen. We should always be able to + ** reacquire the read lock */ + OSTRACE3( "UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype ); + rc = SQLITE_IOERR_UNLOCK; + } + } + if( type>=RESERVED_LOCK ){ + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = RESERVED_BYTE; + UnlockArea.lRange = 1L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE3( "UNLOCK %d reserved res=%d\n", pFile->h, res ); + } + if( locktype==NO_LOCK && type>=SHARED_LOCK ){ + res = unlockReadLock(pFile); + OSTRACE5( "UNLOCK %d is %d want %d res=%d\n", pFile->h, type, locktype, res ); + } + if( type>=PENDING_LOCK ){ + LockArea.lOffset = 0L; + LockArea.lRange = 0L; + UnlockArea.lOffset = PENDING_BYTE; + UnlockArea.lRange = 1L; + res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L ); + OSTRACE3( "UNLOCK %d pending res=%d\n", pFile->h, res ); + } + pFile->locktype = locktype; + OSTRACE3( "UNLOCK %d now %d\n", pFile->h, pFile->locktype ); + return rc; +} + +/* +** Control and query of the open file handle. +*/ +static int os2FileControl(sqlite3_file *id, int op, void *pArg){ + switch( op ){ + case SQLITE_FCNTL_LOCKSTATE: { + *(int*)pArg = ((os2File*)id)->locktype; + OSTRACE3( "FCNTL_LOCKSTATE %d lock=%d\n", ((os2File*)id)->h, ((os2File*)id)->locktype ); + return SQLITE_OK; + } + } + return SQLITE_ERROR; +} + +/* +** Return the sector size in bytes of the underlying block device for +** the specified file. This is almost always 512 bytes, but may be +** larger for some devices. +** +** SQLite code assumes this function cannot fail. It also assumes that +** if two files are created in the same file-system directory (i.e. +** a database and its journal file) that the sector size will be the +** same for both. +*/ +static int os2SectorSize(sqlite3_file *id){ + return SQLITE_DEFAULT_SECTOR_SIZE; +} + +/* +** Return a vector of device characteristics. +*/ +static int os2DeviceCharacteristics(sqlite3_file *id){ + return 0; +} + +/* +** Helper function to convert UTF-8 filenames to local OS/2 codepage. +** The two-step process: first convert the incoming UTF-8 string +** into UCS-2 and then from UCS-2 to the current codepage. +** The returned char pointer has to be freed. +*/ +char *convertUtf8PathToCp(const char *in) +{ + UconvObject uconv; + UniChar ucsUtf8Cp[12], + tempPath[CCHMAXPATH]; + char *out; + int rc = 0; + + out = (char *)calloc(CCHMAXPATH, 1); + + /* determine string for the conversion of UTF-8 which is CP1208 */ + rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12); + rc = UniCreateUconvObject(ucsUtf8Cp, &uconv); + rc = UniStrToUcs(uconv, tempPath, (char *)in, CCHMAXPATH); + rc = UniFreeUconvObject(uconv); + + /* conversion for current codepage which can be used for paths */ + rc = UniCreateUconvObject((UniChar *)L"@path=yes", &uconv); + rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH); + rc = UniFreeUconvObject(uconv); + + return out; +} + +/* +** Helper function to convert filenames from local codepage to UTF-8. +** The two-step process: first convert the incoming codepage-specific +** string into UCS-2 and then from UCS-2 to the codepage of UTF-8. +** The returned char pointer has to be freed. +*/ +char *convertCpPathToUtf8(const char *in) +{ + UconvObject uconv; + UniChar ucsUtf8Cp[12], + tempPath[CCHMAXPATH]; + char *out; + int rc = 0; + + out = (char *)calloc(CCHMAXPATH, 1); + + /* conversion for current codepage which can be used for paths */ + rc = UniCreateUconvObject((UniChar *)L"@path=yes", &uconv); + rc = UniStrToUcs(uconv, tempPath, (char *)in, CCHMAXPATH); + rc = UniFreeUconvObject(uconv); + + /* determine string for the conversion of UTF-8 which is CP1208 */ + rc = UniMapCpToUcsCp(1208, ucsUtf8Cp, 12); + rc = UniCreateUconvObject(ucsUtf8Cp, &uconv); + rc = UniStrFromUcs(uconv, out, tempPath, CCHMAXPATH); + rc = UniFreeUconvObject(uconv); + + return out; +} + +/* +** This vector defines all the methods that can operate on an +** sqlite3_file for os2. +*/ +static const sqlite3_io_methods os2IoMethod = { + 1, /* iVersion */ + os2Close, + os2Read, + os2Write, + os2Truncate, + os2Sync, + os2FileSize, + os2Lock, + os2Unlock, + os2CheckReservedLock, + os2FileControl, + os2SectorSize, + os2DeviceCharacteristics +}; + +/*************************************************************************** +** Here ends the I/O methods that form the sqlite3_io_methods object. +** +** The next block of code implements the VFS methods. +****************************************************************************/ + +/* +** Open a file. +*/ +static int os2Open( + sqlite3_vfs *pVfs, /* Not used */ + const char *zName, /* Name of the file */ + sqlite3_file *id, /* Write the SQLite file handle here */ + int flags, /* Open mode flags */ + int *pOutFlags /* Status return flags */ +){ + HFILE h; + ULONG ulFileAttribute = 0; + ULONG ulOpenFlags = 0; + ULONG ulOpenMode = 0; + os2File *pFile = (os2File*)id; + APIRET rc = NO_ERROR; + ULONG ulAction; + + memset( pFile, 0, sizeof(*pFile) ); + + OSTRACE2( "OPEN want %d\n", flags ); + + //ulOpenMode = flags & SQLITE_OPEN_READWRITE ? OPEN_ACCESS_READWRITE : OPEN_ACCESS_READONLY; + if( flags & SQLITE_OPEN_READWRITE ){ + ulOpenMode |= OPEN_ACCESS_READWRITE; + OSTRACE1( "OPEN read/write\n" ); + }else{ + ulOpenMode |= OPEN_ACCESS_READONLY; + OSTRACE1( "OPEN read only\n" ); + } + + //ulOpenFlags = flags & SQLITE_OPEN_CREATE ? OPEN_ACTION_CREATE_IF_NEW : OPEN_ACTION_FAIL_IF_NEW; + if( flags & SQLITE_OPEN_CREATE ){ + ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW; + OSTRACE1( "OPEN open new/create\n" ); + }else{ + ulOpenFlags |= OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_FAIL_IF_NEW; + OSTRACE1( "OPEN open existing\n" ); + } + + //ulOpenMode |= flags & SQLITE_OPEN_MAIN_DB ? OPEN_SHARE_DENYNONE : OPEN_SHARE_DENYWRITE; + if( flags & SQLITE_OPEN_MAIN_DB ){ + ulOpenMode |= OPEN_SHARE_DENYNONE; + OSTRACE1( "OPEN share read/write\n" ); + }else{ + ulOpenMode |= OPEN_SHARE_DENYWRITE; + OSTRACE1( "OPEN share read only\n" ); + } + + if( flags & (SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_TEMP_JOURNAL + | SQLITE_OPEN_SUBJOURNAL) ){ + char pathUtf8[CCHMAXPATH]; + //ulFileAttribute = FILE_HIDDEN; //for debugging, we want to make sure it is deleted + ulFileAttribute = FILE_NORMAL; + sqlite3OsFullPathname( pVfs, zName, CCHMAXPATH, pathUtf8 ); + pFile->pathToDel = convertUtf8PathToCp( pathUtf8 ); + OSTRACE1( "OPEN hidden/delete on close file attributes\n" ); + }else{ + ulFileAttribute = FILE_ARCHIVED | FILE_NORMAL; + pFile->pathToDel = NULL; + OSTRACE1( "OPEN normal file attribute\n" ); + } + + /* always open in random access mode for possibly better speed */ + ulOpenMode |= OPEN_FLAGS_RANDOM; + ulOpenMode |= OPEN_FLAGS_FAIL_ON_ERROR; + ulOpenMode |= OPEN_FLAGS_NOINHERIT; + + char *zNameCp = convertUtf8PathToCp( zName ); + rc = DosOpen( (PSZ)zNameCp, + &h, + &ulAction, + 0L, + ulFileAttribute, + ulOpenFlags, + ulOpenMode, + (PEAOP2)NULL ); + free( zNameCp ); + if( rc != NO_ERROR ){ + OSTRACE7( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulAttr=%#lx, ulFlags=%#lx, ulMode=%#lx\n", + rc, zName, ulAction, ulFileAttribute, ulOpenFlags, ulOpenMode ); + free( pFile->pathToDel ); + pFile->pathToDel = NULL; + if( flags & SQLITE_OPEN_READWRITE ){ + OSTRACE2( "OPEN %d Invalid handle\n", ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE) ); + return os2Open( 0, zName, id, + ((flags | SQLITE_OPEN_READONLY) & ~SQLITE_OPEN_READWRITE), + pOutFlags ); + }else{ + return SQLITE_CANTOPEN; + } + } + + if( pOutFlags ){ + *pOutFlags = flags & SQLITE_OPEN_READWRITE ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY; + } + + pFile->pMethod = &os2IoMethod; + pFile->h = h; + OpenCounter(+1); + OSTRACE3( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags ); + return SQLITE_OK; +} + +/* +** Delete the named file. +*/ +int os2Delete( + sqlite3_vfs *pVfs, /* Not used on os2 */ + const char *zFilename, /* Name of file to delete */ + int syncDir /* Not used on os2 */ +){ + APIRET rc = NO_ERROR; + SimulateIOError(return SQLITE_IOERR_DELETE); + char *zFilenameCp = convertUtf8PathToCp( zFilename ); + rc = DosDelete( (PSZ)zFilenameCp ); + free( zFilenameCp ); + OSTRACE2( "DELETE \"%s\"\n", zFilename ); + return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; +} + +/* +** Check the existance and status of a file. +*/ +static int os2Access( + sqlite3_vfs *pVfs, /* Not used on os2 */ + const char *zFilename, /* Name of file to check */ + int flags /* Type of test to make on this file */ +){ + FILESTATUS3 fsts3ConfigInfo; + APIRET rc = NO_ERROR; + + memset( &fsts3ConfigInfo, 0, sizeof(fsts3ConfigInfo) ); + char *zFilenameCp = convertUtf8PathToCp( zFilename ); + rc = DosQueryPathInfo( (PSZ)zFilenameCp, FIL_STANDARD, + &fsts3ConfigInfo, sizeof(FILESTATUS3) ); + free( zFilenameCp ); + OSTRACE4( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n", + fsts3ConfigInfo.attrFile, flags, rc ); + switch( flags ){ + case SQLITE_ACCESS_READ: + case SQLITE_ACCESS_EXISTS: + rc = (rc == NO_ERROR); + OSTRACE3( "ACCESS %s access of read and exists rc=%d\n", zFilename, rc ); + break; + case SQLITE_ACCESS_READWRITE: + rc = (fsts3ConfigInfo.attrFile & FILE_READONLY) == 0; + OSTRACE3( "ACCESS %s access of read/write rc=%d\n", zFilename, rc ); + break; + default: + assert( !"Invalid flags argument" ); + } + return rc; +} + + +/* +** Create a temporary file name in zBuf. zBuf must be big enough to +** hold at pVfs->mxPathname characters. +*/ +static int os2GetTempname( sqlite3_vfs *pVfs, int nBuf, char *zBuf ){ + static const unsigned char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789"; + int i, j; + char zTempPathBuf[3]; + PSZ zTempPath = (PSZ)&zTempPathBuf; + char *zTempPathUTF; + if( DosScanEnv( (PSZ)"TEMP", &zTempPath ) ){ + if( DosScanEnv( (PSZ)"TMP", &zTempPath ) ){ + if( DosScanEnv( (PSZ)"TMPDIR", &zTempPath ) ){ + ULONG ulDriveNum = 0, ulDriveMap = 0; + DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap ); + sprintf( (char*)zTempPath, "%c:", (char)( 'A' + ulDriveNum - 1 ) ); + } + } + } + /* strip off a trailing slashes or backslashes, otherwise we would get * + * multiple (back)slashes which causes DosOpen() to fail */ + j = strlen(zTempPath); + while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' ) ){ + j--; + } + zTempPath[j] = '\0'; + zTempPathUTF = convertCpPathToUtf8( zTempPath ); + sqlite3_snprintf( nBuf-30, zBuf, + "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPathUTF ); + free( zTempPathUTF ); + j = strlen( zBuf ); + sqlite3_randomness( 20, &zBuf[j] ); + for( i = 0; i < 20; i++, j++ ){ + zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; + } + zBuf[j] = 0; + OSTRACE2( "TEMP FILENAME: %s\n", zBuf ); + return SQLITE_OK; +} + + +/* +** Turn a relative pathname into a full pathname. Write the full +** pathname into zFull[]. zFull[] will be at least pVfs->mxPathname +** bytes in size. +*/ +static int os2FullPathname( + sqlite3_vfs *pVfs, /* Pointer to vfs object */ + const char *zRelative, /* Possibly relative input path */ + int nFull, /* Size of output buffer in bytes */ + char *zFull /* Output buffer */ +){ + char *zRelativeCp = convertUtf8PathToCp( zRelative ); + char zFullCp[CCHMAXPATH]; + char *zFullUTF; + APIRET rc = DosQueryPathInfo( zRelativeCp, FIL_QUERYFULLNAME, zFullCp, + CCHMAXPATH ); + free( zRelativeCp ); + zFullUTF = convertCpPathToUtf8( zFullCp ); + sqlite3_snprintf( nFull, zFull, zFullUTF ); + free( zFullUTF ); + return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR; +} + +#ifndef SQLITE_OMIT_LOAD_EXTENSION +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){ + UCHAR loadErr[256]; + HMODULE hmod; + APIRET rc; + char *zFilenameCp = convertUtf8PathToCp(zFilename); + rc = DosLoadModule((PSZ)loadErr, sizeof(loadErr), zFilenameCp, &hmod); + free(zFilenameCp); + return rc != NO_ERROR ? 0 : (void*)hmod; +} +/* +** A no-op since the error code is returned on the DosLoadModule call. +** os2Dlopen returns zero if DosLoadModule is not successful. +*/ +static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ +/* no-op */ +} +void *os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){ + PFN pfn; + APIRET rc; + rc = DosQueryProcAddr((HMODULE)pHandle, 0L, zSymbol, &pfn); + if( rc != NO_ERROR ){ + /* if the symbol itself was not found, search again for the same + * symbol with an extra underscore, that might be needed depending + * on the calling convention */ + char _zSymbol[256] = "_"; + strncat(_zSymbol, zSymbol, 255); + rc = DosQueryProcAddr((HMODULE)pHandle, 0L, _zSymbol, &pfn); + } + return rc != NO_ERROR ? 0 : (void*)pfn; +} +void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){ + DosFreeModule((HMODULE)pHandle); +} +#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ + #define os2DlOpen 0 + #define os2DlError 0 + #define os2DlSym 0 + #define os2DlClose 0 +#endif + + +/* +** Write up to nBuf bytes of randomness into zBuf. +*/ +static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){ + ULONG sizeofULong = sizeof(ULONG); + int n = 0; + if( sizeof(DATETIME) <= nBuf - n ){ + DATETIME x; + DosGetDateTime(&x); + memcpy(&zBuf[n], &x, sizeof(x)); + n += sizeof(x); + } + + if( sizeofULong <= nBuf - n ){ + PPIB ppib; + DosGetInfoBlocks(NULL, &ppib); + memcpy(&zBuf[n], &ppib->pib_ulpid, sizeofULong); + n += sizeofULong; + } + + if( sizeofULong <= nBuf - n ){ + PTIB ptib; + DosGetInfoBlocks(&ptib, NULL); + memcpy(&zBuf[n], &ptib->tib_ptib2->tib2_ultid, sizeofULong); + n += sizeofULong; + } + + /* if we still haven't filled the buffer yet the following will */ + /* grab everything once instead of making several calls for a single item */ + if( sizeofULong <= nBuf - n ){ + ULONG ulSysInfo[QSV_MAX]; + DosQuerySysInfo(1L, QSV_MAX, ulSysInfo, sizeofULong * QSV_MAX); + + memcpy(&zBuf[n], &ulSysInfo[QSV_MS_COUNT - 1], sizeofULong); + n += sizeofULong; + + if( sizeofULong <= nBuf - n ){ + memcpy(&zBuf[n], &ulSysInfo[QSV_TIMER_INTERVAL - 1], sizeofULong); + n += sizeofULong; + } + if( sizeofULong <= nBuf - n ){ + memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_LOW - 1], sizeofULong); + n += sizeofULong; + } + if( sizeofULong <= nBuf - n ){ + memcpy(&zBuf[n], &ulSysInfo[QSV_TIME_HIGH - 1], sizeofULong); + n += sizeofULong; + } + if( sizeofULong <= nBuf - n ){ + memcpy(&zBuf[n], &ulSysInfo[QSV_TOTAVAILMEM - 1], sizeofULong); + n += sizeofULong; + } + } + + return n; +} + +/* +** Sleep for a little while. Return the amount of time slept. +** The argument is the number of microseconds we want to sleep. +** The return value is the number of microseconds of sleep actually +** requested from the underlying operating system, a number which +** might be greater than or equal to the argument, but not less +** than the argument. +*/ +static int os2Sleep( sqlite3_vfs *pVfs, int microsec ){ + DosSleep( (microsec/1000) ); + return microsec; +} + +/* +** The following variable, if set to a non-zero value, becomes the result +** returned from sqlite3OsCurrentTime(). This is used for testing. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_current_time = 0; +#endif + +/* +** Find the current time (in Universal Coordinated Time). Write the +** current time and date as a Julian Day number into *prNow and +** return 0. Return 1 if the time and date cannot be found. +*/ +int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){ + double now; + SHORT minute; /* needs to be able to cope with negative timezone offset */ + USHORT second, hour, + day, month, year; + DATETIME dt; + DosGetDateTime( &dt ); + second = (USHORT)dt.seconds; + minute = (SHORT)dt.minutes + dt.timezone; + hour = (USHORT)dt.hours; + day = (USHORT)dt.day; + month = (USHORT)dt.month; + year = (USHORT)dt.year; + + /* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html + http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c */ + /* Calculate the Julian days */ + now = day - 32076 + + 1461*(year + 4800 + (month - 14)/12)/4 + + 367*(month - 2 - (month - 14)/12*12)/12 - + 3*((year + 4900 + (month - 14)/12)/100)/4; + + /* Add the fractional hours, mins and seconds */ + now += (hour + 12.0)/24.0; + now += minute/1440.0; + now += second/86400.0; + *prNow = now; +#ifdef SQLITE_TEST + if( sqlite3_current_time ){ + *prNow = sqlite3_current_time/86400.0 + 2440587.5; + } +#endif + return 0; +} + +/* +** Return a pointer to the sqlite3DefaultVfs structure. We use +** a function rather than give the structure global scope because +** some compilers (MSVC) do not allow forward declarations of +** initialized structures. +*/ +SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){ + static sqlite3_vfs os2Vfs = { + 1, /* iVersion */ + sizeof(os2File), /* szOsFile */ + CCHMAXPATH, /* mxPathname */ + 0, /* pNext */ + "os2", /* zName */ + 0, /* pAppData */ + + os2Open, /* xOpen */ + os2Delete, /* xDelete */ + os2Access, /* xAccess */ + os2GetTempname, /* xGetTempname */ + os2FullPathname, /* xFullPathname */ + os2DlOpen, /* xDlOpen */ + os2DlError, /* xDlError */ + os2DlSym, /* xDlSym */ + os2DlClose, /* xDlClose */ + os2Randomness, /* xRandomness */ + os2Sleep, /* xSleep */ + os2CurrentTime /* xCurrentTime */ + }; + + return &os2Vfs; +} + +#endif /* OS_OS2 */ + +/************** End of os_os2.c **********************************************/ +/************** Begin file os_unix.c *****************************************/ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains code that is specific to Unix systems. +*/ +#if OS_UNIX /* This file is used on unix only */ + +/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */ + +/* +** These #defines should enable >2GB file support on Posix if the +** underlying operating system supports it. If the OS lacks +** large file support, these should be no-ops. +** +** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch +** on the compiler command line. This is necessary if you are compiling +** on a recent machine (ex: RedHat 7.2) but you want your code to work +** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 +** without this option, LFS is enable. But LFS does not exist in the kernel +** in RedHat 6.0, so the code won't work. Hence, for maximum binary +** portability you should omit LFS. +*/ +#ifndef SQLITE_DISABLE_LFS +# define _LARGE_FILE 1 +# ifndef _FILE_OFFSET_BITS +# define _FILE_OFFSET_BITS 64 +# endif +# define _LARGEFILE_SOURCE 1 +#endif + +/* +** standard include files. +*/ +#include <sys/types.h> +#include <sys/stat.h> +#include <fcntl.h> +#include <unistd.h> +#include <sys/time.h> +#include <errno.h> +#ifdef SQLITE_ENABLE_LOCKING_STYLE +#include <sys/ioctl.h> +#include <sys/param.h> +#include <sys/mount.h> +#endif /* SQLITE_ENABLE_LOCKING_STYLE */ + +/* +** If we are to be thread-safe, include the pthreads header and define +** the SQLITE_UNIX_THREADS macro. +*/ +#if SQLITE_THREADSAFE +# define SQLITE_UNIX_THREADS 1 +#endif + +/* +** Default permissions when creating a new file +*/ +#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS +# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 +#endif + +/* +** Maximum supported path-length. +*/ +#define MAX_PATHNAME 512 + + +/* +** The unixFile structure is subclass of sqlite3_file specific for the unix +** protability layer. +*/ +typedef struct unixFile unixFile; +struct unixFile { + sqlite3_io_methods const *pMethod; /* Always the first entry */ +#ifdef SQLITE_TEST + /* In test mode, increase the size of this structure a bit so that + ** it is larger than the struct CrashFile defined in test6.c. + */ + char aPadding[32]; +#endif + struct openCnt *pOpen; /* Info about all open fd's on this inode */ + struct lockInfo *pLock; /* Info about locks on this inode */ +#ifdef SQLITE_ENABLE_LOCKING_STYLE + void *lockingContext; /* Locking style specific state */ +#endif /* SQLITE_ENABLE_LOCKING_STYLE */ + int h; /* The file descriptor */ + unsigned char locktype; /* The type of lock held on this fd */ + int dirfd; /* File descriptor for the directory */ +#if SQLITE_THREADSAFE + pthread_t tid; /* The thread that "owns" this unixFile */ +#endif +}; + +/* +** Include code that is common to all os_*.c files +*/ +/************** Include os_common.h in the middle of os_unix.c ***************/ +/************** Begin file os_common.h ***************************************/ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains macros and a little bit of code that is common to +** all of the platform-specific files (os_*.c) and is #included into those +** files. +** +** This file should be #included by the os_*.c files only. It is not a +** general purpose header file. +*/ + +/* +** At least two bugs have slipped in because we changed the MEMORY_DEBUG +** macro to SQLITE_DEBUG and some older makefiles have not yet made the +** switch. The following code should catch this problem at compile-time. +*/ +#ifdef MEMORY_DEBUG +# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." +#endif + + +/* + * When testing, this global variable stores the location of the + * pending-byte in the database file. + */ +#ifdef SQLITE_TEST +SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000; +#endif + +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3OSTrace = 0; +#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X) +#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y) +#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z) +#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A) +#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B) +#define OSTRACE6(X,Y,Z,A,B,C) \ + if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C) +#define OSTRACE7(X,Y,Z,A,B,C,D) \ + if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D) +#else +#define OSTRACE1(X) +#define OSTRACE2(X,Y) +#define OSTRACE3(X,Y,Z) +#define OSTRACE4(X,Y,Z,A) +#define OSTRACE5(X,Y,Z,A,B) +#define OSTRACE6(X,Y,Z,A,B,C) +#define OSTRACE7(X,Y,Z,A,B,C,D) +#endif + +/* +** Macros for performance tracing. Normally turned off. Only works +** on i486 hardware. +*/ +#ifdef SQLITE_PERFORMANCE_TRACE +__inline__ unsigned long long int hwtime(void){ + unsigned long long int x; + __asm__("rdtsc\n\t" + "mov %%edx, %%ecx\n\t" + :"=A" (x)); + return x; +} +static unsigned long long int g_start; +static unsigned int elapse; +#define TIMER_START g_start=hwtime() +#define TIMER_END elapse=hwtime()-g_start +#define TIMER_ELAPSED elapse +#else +#define TIMER_START +#define TIMER_END +#define TIMER_ELAPSED 0 +#endif + +/* +** If we compile with the SQLITE_TEST macro set, then the following block +** of code will give us the ability to simulate a disk I/O error. This +** is used for testing the I/O recovery logic. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ +SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ +SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ +SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ +SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */ +SQLITE_API int sqlite3_diskfull_pending = 0; +SQLITE_API int sqlite3_diskfull = 0; +#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X) +#define SimulateIOError(CODE) \ + if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \ + || sqlite3_io_error_pending-- == 1 ) \ + { local_ioerr(); CODE; } +static void local_ioerr(){ + IOTRACE(("IOERR\n")); + sqlite3_io_error_hit++; + if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++; +} +#define SimulateDiskfullError(CODE) \ + if( sqlite3_diskfull_pending ){ \ + if( sqlite3_diskfull_pending == 1 ){ \ + local_ioerr(); \ + sqlite3_diskfull = 1; \ + sqlite3_io_error_hit = 1; \ + CODE; \ + }else{ \ + sqlite3_diskfull_pending--; \ + } \ + } +#else +#define SimulateIOErrorBenign(X) +#define SimulateIOError(A) +#define SimulateDiskfullError(A) +#endif + +/* +** When testing, keep a count of the number of open files. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_open_file_count = 0; +#define OpenCounter(X) sqlite3_open_file_count+=(X) +#else +#define OpenCounter(X) +#endif + +/************** End of os_common.h *******************************************/ +/************** Continuing where we left off in os_unix.c ********************/ + +/* +** Define various macros that are missing from some systems. +*/ +#ifndef O_LARGEFILE +# define O_LARGEFILE 0 +#endif +#ifdef SQLITE_DISABLE_LFS +# undef O_LARGEFILE +# define O_LARGEFILE 0 +#endif +#ifndef O_NOFOLLOW +# define O_NOFOLLOW 0 +#endif +#ifndef O_BINARY +# define O_BINARY 0 +#endif + +/* +** The DJGPP compiler environment looks mostly like Unix, but it +** lacks the fcntl() system call. So redefine fcntl() to be something +** that always succeeds. This means that locking does not occur under +** DJGPP. But it is DOS - what did you expect? +*/ +#ifdef __DJGPP__ +# define fcntl(A,B,C) 0 +#endif + +/* +** The threadid macro resolves to the thread-id or to 0. Used for +** testing and debugging only. +*/ +#if SQLITE_THREADSAFE +#define threadid pthread_self() +#else +#define threadid 0 +#endif + +/* +** Set or check the unixFile.tid field. This field is set when an unixFile +** is first opened. All subsequent uses of the unixFile verify that the +** same thread is operating on the unixFile. Some operating systems do +** not allow locks to be overridden by other threads and that restriction +** means that sqlite3* database handles cannot be moved from one thread +** to another. This logic makes sure a user does not try to do that +** by mistake. +** +** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to +** another as long as we are running on a system that supports threads +** overriding each others locks (which now the most common behavior) +** or if no locks are held. But the unixFile.pLock field needs to be +** recomputed because its key includes the thread-id. See the +** transferOwnership() function below for additional information +*/ +#if SQLITE_THREADSAFE +# define SET_THREADID(X) (X)->tid = pthread_self() +# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \ + !pthread_equal((X)->tid, pthread_self())) +#else +# define SET_THREADID(X) +# define CHECK_THREADID(X) 0 +#endif + +/* +** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996) +** section 6.5.2.2 lines 483 through 490 specify that when a process +** sets or clears a lock, that operation overrides any prior locks set +** by the same process. It does not explicitly say so, but this implies +** that it overrides locks set by the same process using a different +** file descriptor. Consider this test case: +** +** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); +** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); +** +** Suppose ./file1 and ./file2 are really the same file (because +** one is a hard or symbolic link to the other) then if you set +** an exclusive lock on fd1, then try to get an exclusive lock +** on fd2, it works. I would have expected the second lock to +** fail since there was already a lock on the file due to fd1. +** But not so. Since both locks came from the same process, the +** second overrides the first, even though they were on different +** file descriptors opened on different file names. +** +** Bummer. If you ask me, this is broken. Badly broken. It means +** that we cannot use POSIX locks to synchronize file access among +** competing threads of the same process. POSIX locks will work fine +** to synchronize access for threads in separate processes, but not +** threads within the same process. +** +** To work around the problem, SQLite has to manage file locks internally +** on its own. Whenever a new database is opened, we have to find the +** specific inode of the database file (the inode is determined by the +** st_dev and st_ino fields of the stat structure that fstat() fills in) +** and check for locks already existing on that inode. When locks are +** created or removed, we have to look at our own internal record of the +** locks to see if another thread has previously set a lock on that same +** inode. +** +** The sqlite3_file structure for POSIX is no longer just an integer file +** descriptor. It is now a structure that holds the integer file +** descriptor and a pointer to a structure that describes the internal +** locks on the corresponding inode. There is one locking structure +** per inode, so if the same inode is opened twice, both unixFile structures +** point to the same locking structure. The locking structure keeps +** a reference count (so we will know when to delete it) and a "cnt" +** field that tells us its internal lock status. cnt==0 means the +** file is unlocked. cnt==-1 means the file has an exclusive lock. +** cnt>0 means there are cnt shared locks on the file. +** +** Any attempt to lock or unlock a file first checks the locking +** structure. The fcntl() system call is only invoked to set a +** POSIX lock if the internal lock structure transitions between +** a locked and an unlocked state. +** +** 2004-Jan-11: +** More recent discoveries about POSIX advisory locks. (The more +** I discover, the more I realize the a POSIX advisory locks are +** an abomination.) +** +** If you close a file descriptor that points to a file that has locks, +** all locks on that file that are owned by the current process are +** released. To work around this problem, each unixFile structure contains +** a pointer to an openCnt structure. There is one openCnt structure +** per open inode, which means that multiple unixFile can point to a single +** openCnt. When an attempt is made to close an unixFile, if there are +** other unixFile open on the same inode that are holding locks, the call +** to close() the file descriptor is deferred until all of the locks clear. +** The openCnt structure keeps a list of file descriptors that need to +** be closed and that list is walked (and cleared) when the last lock +** clears. +** +** First, under Linux threads, because each thread has a separate +** process ID, lock operations in one thread do not override locks +** to the same file in other threads. Linux threads behave like +** separate processes in this respect. But, if you close a file +** descriptor in linux threads, all locks are cleared, even locks +** on other threads and even though the other threads have different +** process IDs. Linux threads is inconsistent in this respect. +** (I'm beginning to think that linux threads is an abomination too.) +** The consequence of this all is that the hash table for the lockInfo +** structure has to include the process id as part of its key because +** locks in different threads are treated as distinct. But the +** openCnt structure should not include the process id in its +** key because close() clears lock on all threads, not just the current +** thread. Were it not for this goofiness in linux threads, we could +** combine the lockInfo and openCnt structures into a single structure. +** +** 2004-Jun-28: +** On some versions of linux, threads can override each others locks. +** On others not. Sometimes you can change the behavior on the same +** system by setting the LD_ASSUME_KERNEL environment variable. The +** POSIX standard is silent as to which behavior is correct, as far +** as I can tell, so other versions of unix might show the same +** inconsistency. There is no little doubt in my mind that posix +** advisory locks and linux threads are profoundly broken. +** +** To work around the inconsistencies, we have to test at runtime +** whether or not threads can override each others locks. This test +** is run once, the first time any lock is attempted. A static +** variable is set to record the results of this test for future +** use. +*/ + +/* +** An instance of the following structure serves as the key used +** to locate a particular lockInfo structure given its inode. +** +** If threads cannot override each others locks, then we set the +** lockKey.tid field to the thread ID. If threads can override +** each others locks then tid is always set to zero. tid is omitted +** if we compile without threading support. +*/ +struct lockKey { + dev_t dev; /* Device number */ + ino_t ino; /* Inode number */ +#if SQLITE_THREADSAFE + pthread_t tid; /* Thread ID or zero if threads can override each other */ +#endif +}; + +/* +** An instance of the following structure is allocated for each open +** inode on each thread with a different process ID. (Threads have +** different process IDs on linux, but not on most other unixes.) +** +** A single inode can have multiple file descriptors, so each unixFile +** structure contains a pointer to an instance of this object and this +** object keeps a count of the number of unixFile pointing to it. +*/ +struct lockInfo { + struct lockKey key; /* The lookup key */ + int cnt; /* Number of SHARED locks held */ + int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ + int nRef; /* Number of pointers to this structure */ +}; + +/* +** An instance of the following structure serves as the key used +** to locate a particular openCnt structure given its inode. This +** is the same as the lockKey except that the thread ID is omitted. +*/ +struct openKey { + dev_t dev; /* Device number */ + ino_t ino; /* Inode number */ +}; + +/* +** An instance of the following structure is allocated for each open +** inode. This structure keeps track of the number of locks on that +** inode. If a close is attempted against an inode that is holding +** locks, the close is deferred until all locks clear by adding the +** file descriptor to be closed to the pending list. +*/ +struct openCnt { + struct openKey key; /* The lookup key */ + int nRef; /* Number of pointers to this structure */ + int nLock; /* Number of outstanding locks */ + int nPending; /* Number of pending close() operations */ + int *aPending; /* Malloced space holding fd's awaiting a close() */ +}; + +/* +** These hash tables map inodes and file descriptors (really, lockKey and +** openKey structures) into lockInfo and openCnt structures. Access to +** these hash tables must be protected by a mutex. +*/ +static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0}; +static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0, 0, 0}; + +#ifdef SQLITE_ENABLE_LOCKING_STYLE +/* +** The locking styles are associated with the different file locking +** capabilities supported by different file systems. +** +** POSIX locking style fully supports shared and exclusive byte-range locks +** ADP locking only supports exclusive byte-range locks +** FLOCK only supports a single file-global exclusive lock +** DOTLOCK isn't a true locking style, it refers to the use of a special +** file named the same as the database file with a '.lock' extension, this +** can be used on file systems that do not offer any reliable file locking +** NO locking means that no locking will be attempted, this is only used for +** read-only file systems currently +** UNSUPPORTED means that no locking will be attempted, this is only used for +** file systems that are known to be unsupported +*/ +typedef enum { + posixLockingStyle = 0, /* standard posix-advisory locks */ + afpLockingStyle, /* use afp locks */ + flockLockingStyle, /* use flock() */ + dotlockLockingStyle, /* use <file>.lock files */ + noLockingStyle, /* useful for read-only file system */ + unsupportedLockingStyle /* indicates unsupported file system */ +} sqlite3LockingStyle; +#endif /* SQLITE_ENABLE_LOCKING_STYLE */ + +/* +** Helper functions to obtain and relinquish the global mutex. +*/ +static void enterMutex(){ + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); +} +static void leaveMutex(){ + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER)); +} + +#if SQLITE_THREADSAFE +/* +** This variable records whether or not threads can override each others +** locks. +** +** 0: No. Threads cannot override each others locks. +** 1: Yes. Threads can override each others locks. +** -1: We don't know yet. +** +** On some systems, we know at compile-time if threads can override each +** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro +** will be set appropriately. On other systems, we have to check at +** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is +** undefined. +** +** This variable normally has file scope only. But during testing, we make +** it a global so that the test code can change its value in order to verify +** that the right stuff happens in either case. +*/ +#ifndef SQLITE_THREAD_OVERRIDE_LOCK +# define SQLITE_THREAD_OVERRIDE_LOCK -1 +#endif +#ifdef SQLITE_TEST +int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK; +#else +static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK; +#endif + +/* +** This structure holds information passed into individual test +** threads by the testThreadLockingBehavior() routine. +*/ +struct threadTestData { + int fd; /* File to be locked */ + struct flock lock; /* The locking operation */ + int result; /* Result of the locking operation */ +}; + +#ifdef SQLITE_LOCK_TRACE +/* +** Print out information about all locking operations. +** +** This routine is used for troubleshooting locks on multithreaded +** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE +** command-line option on the compiler. This code is normally +** turned off. +*/ +static int lockTrace(int fd, int op, struct flock *p){ + char *zOpName, *zType; + int s; + int savedErrno; + if( op==F_GETLK ){ + zOpName = "GETLK"; + }else if( op==F_SETLK ){ + zOpName = "SETLK"; + }else{ + s = fcntl(fd, op, p); + sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); + return s; + } + if( p->l_type==F_RDLCK ){ + zType = "RDLCK"; + }else if( p->l_type==F_WRLCK ){ + zType = "WRLCK"; + }else if( p->l_type==F_UNLCK ){ + zType = "UNLCK"; + }else{ + assert( 0 ); + } + assert( p->l_whence==SEEK_SET ); + s = fcntl(fd, op, p); + savedErrno = errno; + sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", + threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, + (int)p->l_pid, s); + if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ + struct flock l2; + l2 = *p; + fcntl(fd, F_GETLK, &l2); + if( l2.l_type==F_RDLCK ){ + zType = "RDLCK"; + }else if( l2.l_type==F_WRLCK ){ + zType = "WRLCK"; + }else if( l2.l_type==F_UNLCK ){ + zType = "UNLCK"; + }else{ + assert( 0 ); + } + sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", + zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); + } + errno = savedErrno; + return s; +} +#define fcntl lockTrace +#endif /* SQLITE_LOCK_TRACE */ + +/* +** The testThreadLockingBehavior() routine launches two separate +** threads on this routine. This routine attempts to lock a file +** descriptor then returns. The success or failure of that attempt +** allows the testThreadLockingBehavior() procedure to determine +** whether or not threads can override each others locks. +*/ +static void *threadLockingTest(void *pArg){ + struct threadTestData *pData = (struct threadTestData*)pArg; + pData->result = fcntl(pData->fd, F_SETLK, &pData->lock); + return pArg; +} + +/* +** This procedure attempts to determine whether or not threads +** can override each others locks then sets the +** threadsOverrideEachOthersLocks variable appropriately. +*/ +static void testThreadLockingBehavior(int fd_orig){ + int fd; + struct threadTestData d[2]; + pthread_t t[2]; + + fd = dup(fd_orig); + if( fd<0 ) return; + memset(d, 0, sizeof(d)); + d[0].fd = fd; + d[0].lock.l_type = F_RDLCK; + d[0].lock.l_len = 1; + d[0].lock.l_start = 0; + d[0].lock.l_whence = SEEK_SET; + d[1] = d[0]; + d[1].lock.l_type = F_WRLCK; + pthread_create(&t[0], 0, threadLockingTest, &d[0]); + pthread_create(&t[1], 0, threadLockingTest, &d[1]); + pthread_join(t[0], 0); + pthread_join(t[1], 0); + close(fd); + threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0; +} +#endif /* SQLITE_THREADSAFE */ + +/* +** Release a lockInfo structure previously allocated by findLockInfo(). +*/ +static void releaseLockInfo(struct lockInfo *pLock){ + if (pLock == NULL) + return; + pLock->nRef--; + if( pLock->nRef==0 ){ + sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0); + sqlite3_free(pLock); + } +} + +/* +** Release a openCnt structure previously allocated by findLockInfo(). +*/ +static void releaseOpenCnt(struct openCnt *pOpen){ + if (pOpen == NULL) + return; + pOpen->nRef--; + if( pOpen->nRef==0 ){ + sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0); + free(pOpen->aPending); + sqlite3_free(pOpen); + } +} + +#ifdef SQLITE_ENABLE_LOCKING_STYLE +/* +** Tests a byte-range locking query to see if byte range locks are +** supported, if not we fall back to dotlockLockingStyle. +*/ +static sqlite3LockingStyle sqlite3TestLockingStyle( + const char *filePath, + int fd +){ + /* test byte-range lock using fcntl */ + struct flock lockInfo; + + lockInfo.l_len = 1; + lockInfo.l_start = 0; + lockInfo.l_whence = SEEK_SET; + lockInfo.l_type = F_RDLCK; + + if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) { + return posixLockingStyle; + } + + /* testing for flock can give false positives. So if if the above test + ** fails, then we fall back to using dot-lock style locking. + */ + return dotlockLockingStyle; +} + +/* +** Examines the f_fstypename entry in the statfs structure as returned by +** stat() for the file system hosting the database file, assigns the +** appropriate locking style based on its value. These values and +** assignments are based on Darwin/OSX behavior and have not been tested on +** other systems. +*/ +static sqlite3LockingStyle sqlite3DetectLockingStyle( + const char *filePath, + int fd +){ + +#ifdef SQLITE_FIXED_LOCKING_STYLE + return (sqlite3LockingStyle)SQLITE_FIXED_LOCKING_STYLE; +#else + struct statfs fsInfo; + + if( statfs(filePath, &fsInfo) == -1 ){ + return sqlite3TestLockingStyle(filePath, fd); + } + if( fsInfo.f_flags & MNT_RDONLY ){ + return noLockingStyle; + } + if( strcmp(fsInfo.f_fstypename, "hfs")==0 || + strcmp(fsInfo.f_fstypename, "ufs")==0 ){ + return posixLockingStyle; + } + if( strcmp(fsInfo.f_fstypename, "afpfs")==0 ){ + return afpLockingStyle; + } + if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ + return sqlite3TestLockingStyle(filePath, fd); + } + if( strcmp(fsInfo.f_fstypename, "smbfs")==0 ){ + return flockLockingStyle; + } + if( strcmp(fsInfo.f_fstypename, "msdos")==0 ){ + return dotlockLockingStyle; + } + if( strcmp(fsInfo.f_fstypename, "webdav")==0 ){ + return unsupportedLockingStyle; + } + return sqlite3TestLockingStyle(filePath, fd); +#endif /* SQLITE_FIXED_LOCKING_STYLE */ +} + +#endif /* SQLITE_ENABLE_LOCKING_STYLE */ + +/* +** Given a file descriptor, locate lockInfo and openCnt structures that +** describes that file descriptor. Create new ones if necessary. The +** return values might be uninitialized if an error occurs. +** +** Return an appropriate error code. +*/ +static int findLockInfo( + int fd, /* The file descriptor used in the key */ + struct lockInfo **ppLock, /* Return the lockInfo structure here */ + struct openCnt **ppOpen /* Return the openCnt structure here */ +){ + int rc; + struct lockKey key1; + struct openKey key2; + struct stat statbuf; + struct lockInfo *pLock; + struct openCnt *pOpen; + rc = fstat(fd, &statbuf); + if( rc!=0 ){ +#ifdef EOVERFLOW + if( errno==EOVERFLOW ) return SQLITE_NOLFS; +#endif + return SQLITE_IOERR; + } + + memset(&key1, 0, sizeof(key1)); + key1.dev = statbuf.st_dev; + key1.ino = statbuf.st_ino; +#if SQLITE_THREADSAFE + if( threadsOverrideEachOthersLocks<0 ){ + testThreadLockingBehavior(fd); + } + key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self(); +#endif + memset(&key2, 0, sizeof(key2)); + key2.dev = statbuf.st_dev; + key2.ino = statbuf.st_ino; + pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1)); + if( pLock==0 ){ + struct lockInfo *pOld; + pLock = sqlite3_malloc( sizeof(*pLock) ); + if( pLock==0 ){ + rc = SQLITE_NOMEM; + goto exit_findlockinfo; + } + pLock->key = key1; + pLock->nRef = 1; + pLock->cnt = 0; + pLock->locktype = 0; + pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock); + if( pOld!=0 ){ + assert( pOld==pLock ); + sqlite3_free(pLock); + rc = SQLITE_NOMEM; + goto exit_findlockinfo; + } + }else{ + pLock->nRef++; + } + *ppLock = pLock; + if( ppOpen!=0 ){ + pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2)); + if( pOpen==0 ){ + struct openCnt *pOld; + pOpen = sqlite3_malloc( sizeof(*pOpen) ); + if( pOpen==0 ){ + releaseLockInfo(pLock); + rc = SQLITE_NOMEM; + goto exit_findlockinfo; + } + pOpen->key = key2; + pOpen->nRef = 1; + pOpen->nLock = 0; + pOpen->nPending = 0; + pOpen->aPending = 0; + pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen); + if( pOld!=0 ){ + assert( pOld==pOpen ); + sqlite3_free(pOpen); + releaseLockInfo(pLock); + rc = SQLITE_NOMEM; + goto exit_findlockinfo; + } + }else{ + pOpen->nRef++; + } + *ppOpen = pOpen; + } + +exit_findlockinfo: + return rc; +} + +#ifdef SQLITE_DEBUG +/* +** Helper function for printing out trace information from debugging +** binaries. This returns the string represetation of the supplied +** integer lock-type. +*/ +static const char *locktypeName(int locktype){ + switch( locktype ){ + case NO_LOCK: return "NONE"; + case SHARED_LOCK: return "SHARED"; + case RESERVED_LOCK: return "RESERVED"; + case PENDING_LOCK: return "PENDING"; + case EXCLUSIVE_LOCK: return "EXCLUSIVE"; + } + return "ERROR"; +} +#endif + +/* +** If we are currently in a different thread than the thread that the +** unixFile argument belongs to, then transfer ownership of the unixFile +** over to the current thread. +** +** A unixFile is only owned by a thread on systems where one thread is +** unable to override locks created by a different thread. RedHat9 is +** an example of such a system. +** +** Ownership transfer is only allowed if the unixFile is currently unlocked. +** If the unixFile is locked and an ownership is wrong, then return +** SQLITE_MISUSE. SQLITE_OK is returned if everything works. +*/ +#if SQLITE_THREADSAFE +static int transferOwnership(unixFile *pFile){ + int rc; + pthread_t hSelf; + if( threadsOverrideEachOthersLocks ){ + /* Ownership transfers not needed on this system */ + return SQLITE_OK; + } + hSelf = pthread_self(); + if( pthread_equal(pFile->tid, hSelf) ){ + /* We are still in the same thread */ + OSTRACE1("No-transfer, same thread\n"); + return SQLITE_OK; + } + if( pFile->locktype!=NO_LOCK ){ + /* We cannot change ownership while we are holding a lock! */ + return SQLITE_MISUSE; + } + OSTRACE4("Transfer ownership of %d from %d to %d\n", + pFile->h, pFile->tid, hSelf); + pFile->tid = hSelf; + if (pFile->pLock != NULL) { + releaseLockInfo(pFile->pLock); + rc = findLockInfo(pFile->h, &pFile->pLock, 0); + OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h, + locktypeName(pFile->locktype), + locktypeName(pFile->pLock->locktype), pFile->pLock->cnt); + return rc; + } else { + return SQLITE_OK; + } +} +#else + /* On single-threaded builds, ownership transfer is a no-op */ +# define transferOwnership(X) SQLITE_OK +#endif + +/* +** Seek to the offset passed as the second argument, then read cnt +** bytes into pBuf. Return the number of bytes actually read. +** +** NB: If you define USE_PREAD or USE_PREAD64, then it might also +** be necessary to define _XOPEN_SOURCE to be 500. This varies from +** one system to another. Since SQLite does not define USE_PREAD +** any any form by default, we will not attempt to define _XOPEN_SOURCE. +** See tickets #2741 and #2681. +*/ +static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ + int got; + i64 newOffset; + TIMER_START; +#if defined(USE_PREAD) + got = pread(id->h, pBuf, cnt, offset); + SimulateIOError( got = -1 ); +#elif defined(USE_PREAD64) + got = pread64(id->h, pBuf, cnt, offset); + SimulateIOError( got = -1 ); +#else + newOffset = lseek(id->h, offset, SEEK_SET); + SimulateIOError( newOffset-- ); + if( newOffset!=offset ){ + return -1; + } + got = read(id->h, pBuf, cnt); +#endif + TIMER_END; + OSTRACE5("READ %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED); + return got; +} + +/* +** Read data from a file into a buffer. Return SQLITE_OK if all +** bytes were read successfully and SQLITE_IOERR if anything goes +** wrong. +*/ +static int unixRead( + sqlite3_file *id, + void *pBuf, + int amt, + sqlite3_int64 offset +){ + int got; + assert( id ); + got = seekAndRead((unixFile*)id, offset, pBuf, amt); + if( got==amt ){ + return SQLITE_OK; + }else if( got<0 ){ + return SQLITE_IOERR_READ; + }else{ + memset(&((char*)pBuf)[got], 0, amt-got); + return SQLITE_IOERR_SHORT_READ; + } +} + +/* +** Seek to the offset in id->offset then read cnt bytes into pBuf. +** Return the number of bytes actually read. Update the offset. +*/ +static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ + int got; + i64 newOffset; + TIMER_START; +#if defined(USE_PREAD) + got = pwrite(id->h, pBuf, cnt, offset); +#elif defined(USE_PREAD64) + got = pwrite64(id->h, pBuf, cnt, offset); +#else + newOffset = lseek(id->h, offset, SEEK_SET); + if( newOffset!=offset ){ + return -1; + } + got = write(id->h, pBuf, cnt); +#endif + TIMER_END; + OSTRACE5("WRITE %-3d %5d %7lld %d\n", id->h, got, offset, TIMER_ELAPSED); + return got; +} + + +/* +** Write data from a buffer into a file. Return SQLITE_OK on success +** or some other error code on failure. +*/ +static int unixWrite( + sqlite3_file *id, + const void *pBuf, + int amt, + sqlite3_int64 offset +){ + int wrote = 0; + assert( id ); + assert( amt>0 ); + while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){ + amt -= wrote; + offset += wrote; + pBuf = &((char*)pBuf)[wrote]; + } + SimulateIOError(( wrote=(-1), amt=1 )); + SimulateDiskfullError(( wrote=0, amt=1 )); + if( amt>0 ){ + if( wrote<0 ){ + return SQLITE_IOERR_WRITE; + }else{ + return SQLITE_FULL; + } + } + return SQLITE_OK; +} + +#ifdef SQLITE_TEST +/* +** Count the number of fullsyncs and normal syncs. This is used to test +** that syncs and fullsyncs are occuring at the right times. +*/ +SQLITE_API int sqlite3_sync_count = 0; +SQLITE_API int sqlite3_fullsync_count = 0; +#endif + +/* +** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined. +** Otherwise use fsync() in its place. +*/ +#ifndef HAVE_FDATASYNC +# define fdatasync fsync +#endif + +/* +** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not +** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently +** only available on Mac OS X. But that could change. +*/ +#ifdef F_FULLFSYNC +# define HAVE_FULLFSYNC 1 +#else +# define HAVE_FULLFSYNC 0 +#endif + + +/* +** The fsync() system call does not work as advertised on many +** unix systems. The following procedure is an attempt to make +** it work better. +** +** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful +** for testing when we want to run through the test suite quickly. +** You are strongly advised *not* to deploy with SQLITE_NO_SYNC +** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash +** or power failure will likely corrupt the database file. +*/ +static int full_fsync(int fd, int fullSync, int dataOnly){ + int rc; + + /* Record the number of times that we do a normal fsync() and + ** FULLSYNC. This is used during testing to verify that this procedure + ** gets called with the correct arguments. + */ +#ifdef SQLITE_TEST + if( fullSync ) sqlite3_fullsync_count++; + sqlite3_sync_count++; +#endif + + /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a + ** no-op + */ +#ifdef SQLITE_NO_SYNC + rc = SQLITE_OK; +#else + +#if HAVE_FULLFSYNC + if( fullSync ){ + rc = fcntl(fd, F_FULLFSYNC, 0); + }else{ + rc = 1; + } + /* If the FULLFSYNC failed, fall back to attempting an fsync(). + * It shouldn't be possible for fullfsync to fail on the local + * file system (on OSX), so failure indicates that FULLFSYNC + * isn't supported for this file system. So, attempt an fsync + * and (for now) ignore the overhead of a superfluous fcntl call. + * It'd be better to detect fullfsync support once and avoid + * the fcntl call every time sync is called. + */ + if( rc ) rc = fsync(fd); + +#else + if( dataOnly ){ + rc = fdatasync(fd); + }else{ + rc = fsync(fd); + } +#endif /* HAVE_FULLFSYNC */ +#endif /* defined(SQLITE_NO_SYNC) */ + + return rc; +} + +/* +** Make sure all writes to a particular file are committed to disk. +** +** If dataOnly==0 then both the file itself and its metadata (file +** size, access time, etc) are synced. If dataOnly!=0 then only the +** file data is synced. +** +** Under Unix, also make sure that the directory entry for the file +** has been created by fsync-ing the directory that contains the file. +** If we do not do this and we encounter a power failure, the directory +** entry for the journal might not exist after we reboot. The next +** SQLite to access the file will not know that the journal exists (because +** the directory entry for the journal was never created) and the transaction +** will not roll back - possibly leading to database corruption. +*/ +static int unixSync(sqlite3_file *id, int flags){ + int rc; + unixFile *pFile = (unixFile*)id; + + int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); + int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; + + /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ + assert((flags&0x0F)==SQLITE_SYNC_NORMAL + || (flags&0x0F)==SQLITE_SYNC_FULL + ); + + assert( pFile ); + OSTRACE2("SYNC %-3d\n", pFile->h); + rc = full_fsync(pFile->h, isFullsync, isDataOnly); + SimulateIOError( rc=1 ); + if( rc ){ + return SQLITE_IOERR_FSYNC; + } + if( pFile->dirfd>=0 ){ + OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd, + HAVE_FULLFSYNC, isFullsync); +#ifndef SQLITE_DISABLE_DIRSYNC + /* The directory sync is only attempted if full_fsync is + ** turned off or unavailable. If a full_fsync occurred above, + ** then the directory sync is superfluous. + */ + if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){ + /* + ** We have received multiple reports of fsync() returning + ** errors when applied to directories on certain file systems. + ** A failed directory sync is not a big deal. So it seems + ** better to ignore the error. Ticket #1657 + */ + /* return SQLITE_IOERR; */ + } +#endif + close(pFile->dirfd); /* Only need to sync once, so close the directory */ + pFile->dirfd = -1; /* when we are done. */ + } + return SQLITE_OK; +} + +/* +** Truncate an open file to a specified size +*/ +static int unixTruncate(sqlite3_file *id, i64 nByte){ + int rc; + assert( id ); + SimulateIOError( return SQLITE_IOERR_TRUNCATE ); + rc = ftruncate(((unixFile*)id)->h, (off_t)nByte); + if( rc ){ + return SQLITE_IOERR_TRUNCATE; + }else{ + return SQLITE_OK; + } +} + +/* +** Determine the current size of a file in bytes +*/ +static int unixFileSize(sqlite3_file *id, i64 *pSize){ + int rc; + struct stat buf; + assert( id ); + rc = fstat(((unixFile*)id)->h, &buf); + SimulateIOError( rc=1 ); + if( rc!=0 ){ + return SQLITE_IOERR_FSTAT; + } + *pSize = buf.st_size; + return SQLITE_OK; +} + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, return +** non-zero. If the file is unlocked or holds only SHARED locks, then +** return zero. +*/ +static int unixCheckReservedLock(sqlite3_file *id){ + int r = 0; + unixFile *pFile = (unixFile*)id; + + assert( pFile ); + enterMutex(); /* Because pFile->pLock is shared across threads */ + + /* Check if a thread in this process holds such a lock */ + if( pFile->pLock->locktype>SHARED_LOCK ){ + r = 1; + } + + /* Otherwise see if some other process holds it. + */ + if( !r ){ + struct flock lock; + lock.l_whence = SEEK_SET; + lock.l_start = RESERVED_BYTE; + lock.l_len = 1; + lock.l_type = F_WRLCK; + fcntl(pFile->h, F_GETLK, &lock); + if( lock.l_type!=F_UNLCK ){ + r = 1; + } + } + + leaveMutex(); + OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r); + + return r; +} + +/* +** Lock the file with the lock specified by parameter locktype - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. Use the sqlite3OsUnlock() +** routine to lower a locking level. +*/ +static int unixLock(sqlite3_file *id, int locktype){ + /* The following describes the implementation of the various locks and + ** lock transitions in terms of the POSIX advisory shared and exclusive + ** lock primitives (called read-locks and write-locks below, to avoid + ** confusion with SQLite lock names). The algorithms are complicated + ** slightly in order to be compatible with windows systems simultaneously + ** accessing the same database file, in case that is ever required. + ** + ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved + ** byte', each single bytes at well known offsets, and the 'shared byte + ** range', a range of 510 bytes at a well known offset. + ** + ** To obtain a SHARED lock, a read-lock is obtained on the 'pending + ** byte'. If this is successful, a random byte from the 'shared byte + ** range' is read-locked and the lock on the 'pending byte' released. + ** + ** A process may only obtain a RESERVED lock after it has a SHARED lock. + ** A RESERVED lock is implemented by grabbing a write-lock on the + ** 'reserved byte'. + ** + ** A process may only obtain a PENDING lock after it has obtained a + ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock + ** on the 'pending byte'. This ensures that no new SHARED locks can be + ** obtained, but existing SHARED locks are allowed to persist. A process + ** does not have to obtain a RESERVED lock on the way to a PENDING lock. + ** This property is used by the algorithm for rolling back a journal file + ** after a crash. + ** + ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is + ** implemented by obtaining a write-lock on the entire 'shared byte + ** range'. Since all other locks require a read-lock on one of the bytes + ** within this range, this ensures that no other locks are held on the + ** database. + ** + ** The reason a single byte cannot be used instead of the 'shared byte + ** range' is that some versions of windows do not support read-locks. By + ** locking a random byte from a range, concurrent SHARED locks may exist + ** even if the locking primitive used is always a write-lock. + */ + int rc = SQLITE_OK; + unixFile *pFile = (unixFile*)id; + struct lockInfo *pLock = pFile->pLock; + struct flock lock; + int s; + + assert( pFile ); + OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h, + locktypeName(locktype), locktypeName(pFile->locktype), + locktypeName(pLock->locktype), pLock->cnt , getpid()); + + /* If there is already a lock of this type or more restrictive on the + ** unixFile, do nothing. Don't use the end_lock: exit path, as + ** enterMutex() hasn't been called yet. + */ + if( pFile->locktype>=locktype ){ + OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, + locktypeName(locktype)); + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct + */ + assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); + assert( locktype!=PENDING_LOCK ); + assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); + + /* This mutex is needed because pFile->pLock is shared across threads + */ + enterMutex(); + + /* Make sure the current thread owns the pFile. + */ + rc = transferOwnership(pFile); + if( rc!=SQLITE_OK ){ + leaveMutex(); + return rc; + } + pLock = pFile->pLock; + + /* If some thread using this PID has a lock via a different unixFile* + ** handle that precludes the requested lock, return BUSY. + */ + if( (pFile->locktype!=pLock->locktype && + (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK)) + ){ + rc = SQLITE_BUSY; + goto end_lock; + } + + /* If a SHARED lock is requested, and some thread using this PID already + ** has a SHARED or RESERVED lock, then increment reference counts and + ** return SQLITE_OK. + */ + if( locktype==SHARED_LOCK && + (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){ + assert( locktype==SHARED_LOCK ); + assert( pFile->locktype==0 ); + assert( pLock->cnt>0 ); + pFile->locktype = SHARED_LOCK; + pLock->cnt++; + pFile->pOpen->nLock++; + goto end_lock; + } + + lock.l_len = 1L; + + lock.l_whence = SEEK_SET; + + /* A PENDING lock is needed before acquiring a SHARED lock and before + ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will + ** be released. + */ + if( locktype==SHARED_LOCK + || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK) + ){ + lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK); + lock.l_start = PENDING_BYTE; + s = fcntl(pFile->h, F_SETLK, &lock); + if( s==(-1) ){ + rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; + goto end_lock; + } + } + + + /* If control gets to this point, then actually go ahead and make + ** operating system calls for the specified lock. + */ + if( locktype==SHARED_LOCK ){ + assert( pLock->cnt==0 ); + assert( pLock->locktype==0 ); + + /* Now get the read-lock */ + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + s = fcntl(pFile->h, F_SETLK, &lock); + + /* Drop the temporary PENDING lock */ + lock.l_start = PENDING_BYTE; + lock.l_len = 1L; + lock.l_type = F_UNLCK; + if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){ + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */ + goto end_lock; + } + if( s==(-1) ){ + rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; + }else{ + pFile->locktype = SHARED_LOCK; + pFile->pOpen->nLock++; + pLock->cnt = 1; + } + }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){ + /* We are trying for an exclusive lock but another thread in this + ** same process is still holding a shared lock. */ + rc = SQLITE_BUSY; + }else{ + /* The request was for a RESERVED or EXCLUSIVE lock. It is + ** assumed that there is a SHARED or greater lock on the file + ** already. + */ + assert( 0!=pFile->locktype ); + lock.l_type = F_WRLCK; + switch( locktype ){ + case RESERVED_LOCK: + lock.l_start = RESERVED_BYTE; + break; + case EXCLUSIVE_LOCK: + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + break; + default: + assert(0); + } + s = fcntl(pFile->h, F_SETLK, &lock); + if( s==(-1) ){ + rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; + } + } + + if( rc==SQLITE_OK ){ + pFile->locktype = locktype; + pLock->locktype = locktype; + }else if( locktype==EXCLUSIVE_LOCK ){ + pFile->locktype = PENDING_LOCK; + pLock->locktype = PENDING_LOCK; + } + +end_lock: + leaveMutex(); + OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), + rc==SQLITE_OK ? "ok" : "failed"); + return rc; +} + +/* +** Lower the locking level on file descriptor pFile to locktype. locktype +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +*/ +static int unixUnlock(sqlite3_file *id, int locktype){ + struct lockInfo *pLock; + struct flock lock; + int rc = SQLITE_OK; + unixFile *pFile = (unixFile*)id; + int h; + + assert( pFile ); + OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype, + pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid()); + + assert( locktype<=SHARED_LOCK ); + if( pFile->locktype<=locktype ){ + return SQLITE_OK; + } + if( CHECK_THREADID(pFile) ){ + return SQLITE_MISUSE; + } + enterMutex(); + h = pFile->h; + pLock = pFile->pLock; + assert( pLock->cnt!=0 ); + if( pFile->locktype>SHARED_LOCK ){ + assert( pLock->locktype==pFile->locktype ); + SimulateIOErrorBenign(1); + SimulateIOError( h=(-1) ) + SimulateIOErrorBenign(0); + if( locktype==SHARED_LOCK ){ + lock.l_type = F_RDLCK; + lock.l_whence = SEEK_SET; + lock.l_start = SHARED_FIRST; + lock.l_len = SHARED_SIZE; + if( fcntl(h, F_SETLK, &lock)==(-1) ){ + rc = SQLITE_IOERR_RDLOCK; + } + } + lock.l_type = F_UNLCK; + lock.l_whence = SEEK_SET; + lock.l_start = PENDING_BYTE; + lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); + if( fcntl(h, F_SETLK, &lock)!=(-1) ){ + pLock->locktype = SHARED_LOCK; + }else{ + rc = SQLITE_IOERR_UNLOCK; + } + } + if( locktype==NO_LOCK ){ + struct openCnt *pOpen; + + /* Decrement the shared lock counter. Release the lock using an + ** OS call only when all threads in this same process have released + ** the lock. + */ + pLock->cnt--; + if( pLock->cnt==0 ){ + lock.l_type = F_UNLCK; + lock.l_whence = SEEK_SET; + lock.l_start = lock.l_len = 0L; + SimulateIOErrorBenign(1); + SimulateIOError( h=(-1) ) + SimulateIOErrorBenign(0); + if( fcntl(h, F_SETLK, &lock)!=(-1) ){ + pLock->locktype = NO_LOCK; + }else{ + rc = SQLITE_IOERR_UNLOCK; + pLock->cnt = 1; + } + } + + /* Decrement the count of locks against this same file. When the + ** count reaches zero, close any other file descriptors whose close + ** was deferred because of outstanding locks. + */ + if( rc==SQLITE_OK ){ + pOpen = pFile->pOpen; + pOpen->nLock--; + assert( pOpen->nLock>=0 ); + if( pOpen->nLock==0 && pOpen->nPending>0 ){ + int i; + for(i=0; i<pOpen->nPending; i++){ + close(pOpen->aPending[i]); + } + free(pOpen->aPending); + pOpen->nPending = 0; + pOpen->aPending = 0; + } + } + } + leaveMutex(); + if( rc==SQLITE_OK ) pFile->locktype = locktype; + return rc; +} + +/* +** Close a file. +*/ +static int unixClose(sqlite3_file *id){ + unixFile *pFile = (unixFile *)id; + if( !pFile ) return SQLITE_OK; + unixUnlock(id, NO_LOCK); + if( pFile->dirfd>=0 ) close(pFile->dirfd); + pFile->dirfd = -1; + enterMutex(); + + if( pFile->pOpen->nLock ){ + /* If there are outstanding locks, do not actually close the file just + ** yet because that would clear those locks. Instead, add the file + ** descriptor to pOpen->aPending. It will be automatically closed when + ** the last lock is cleared. + */ + int *aNew; + struct openCnt *pOpen = pFile->pOpen; + aNew = realloc( pOpen->aPending, (pOpen->nPending+1)*sizeof(int) ); + if( aNew==0 ){ + /* If a malloc fails, just leak the file descriptor */ + }else{ + pOpen->aPending = aNew; + pOpen->aPending[pOpen->nPending] = pFile->h; + pOpen->nPending++; + } + }else{ + /* There are no outstanding locks so we can close the file immediately */ + close(pFile->h); + } + releaseLockInfo(pFile->pLock); + releaseOpenCnt(pFile->pOpen); + + leaveMutex(); + OSTRACE2("CLOSE %-3d\n", pFile->h); + OpenCounter(-1); + memset(pFile, 0, sizeof(unixFile)); + return SQLITE_OK; +} + + +#ifdef SQLITE_ENABLE_LOCKING_STYLE +#pragma mark AFP Support + +/* + ** The afpLockingContext structure contains all afp lock specific state + */ +typedef struct afpLockingContext afpLockingContext; +struct afpLockingContext { + unsigned long long sharedLockByte; + const char *filePath; +}; + +struct ByteRangeLockPB2 +{ + unsigned long long offset; /* offset to first byte to lock */ + unsigned long long length; /* nbr of bytes to lock */ + unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ + unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ + unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ + int fd; /* file desc to assoc this lock with */ +}; + +#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) + +/* +** Return 0 on success, 1 on failure. To match the behavior of the +** normal posix file locking (used in unixLock for example), we should +** provide 'richer' return codes - specifically to differentiate between +** 'file busy' and 'file system error' results. +*/ +static int _AFPFSSetLock( + const char *path, + int fd, + unsigned long long offset, + unsigned long long length, + int setLockFlag +){ + struct ByteRangeLockPB2 pb; + int err; + + pb.unLockFlag = setLockFlag ? 0 : 1; + pb.startEndFlag = 0; + pb.offset = offset; + pb.length = length; + pb.fd = fd; + OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n", + (setLockFlag?"ON":"OFF"), fd, offset, length); + err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); + if ( err==-1 ) { + OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, errno, + strerror(errno)); + return 1; /* error */ + } else { + return 0; + } +} + +/* + ** This routine checks if there is a RESERVED lock held on the specified + ** file by this or any other process. If such a lock is held, return + ** non-zero. If the file is unlocked or holds only SHARED locks, then + ** return zero. + */ +static int afpUnixCheckReservedLock(sqlite3_file *id){ + int r = 0; + unixFile *pFile = (unixFile*)id; + + assert( pFile ); + afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; + + /* Check if a thread in this process holds such a lock */ + if( pFile->locktype>SHARED_LOCK ){ + r = 1; + } + + /* Otherwise see if some other process holds it. + */ + if ( !r ) { + /* lock the byte */ + int failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1); + if (failed) { + /* if we failed to get the lock then someone else must have it */ + r = 1; + } else { + /* if we succeeded in taking the reserved lock, unlock it to restore + ** the original state */ + _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0); + } + } + OSTRACE3("TEST WR-LOCK %d %d\n", pFile->h, r); + + return r; +} + +/* AFP-style locking following the behavior of unixLock, see the unixLock +** function comments for details of lock management. */ +static int afpUnixLock(sqlite3_file *id, int locktype){ + int rc = SQLITE_OK; + unixFile *pFile = (unixFile*)id; + afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; + int gotPendingLock = 0; + + assert( pFile ); + OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h, + locktypeName(locktype), locktypeName(pFile->locktype), getpid()); + + /* If there is already a lock of this type or more restrictive on the + ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as + ** enterMutex() hasn't been called yet. + */ + if( pFile->locktype>=locktype ){ + OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, + locktypeName(locktype)); + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct + */ + assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); + assert( locktype!=PENDING_LOCK ); + assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); + + /* This mutex is needed because pFile->pLock is shared across threads + */ + enterMutex(); + + /* Make sure the current thread owns the pFile. + */ + rc = transferOwnership(pFile); + if( rc!=SQLITE_OK ){ + leaveMutex(); + return rc; + } + + /* A PENDING lock is needed before acquiring a SHARED lock and before + ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will + ** be released. + */ + if( locktype==SHARED_LOCK + || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK) + ){ + int failed; + failed = _AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 1); + if (failed) { + rc = SQLITE_BUSY; + goto afp_end_lock; + } + } + + /* If control gets to this point, then actually go ahead and make + ** operating system calls for the specified lock. + */ + if( locktype==SHARED_LOCK ){ + int lk, failed; + int tries = 0; + + /* Now get the read-lock */ + /* note that the quality of the randomness doesn't matter that much */ + lk = random(); + context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1); + failed = _AFPFSSetLock(context->filePath, pFile->h, + SHARED_FIRST+context->sharedLockByte, 1, 1); + + /* Drop the temporary PENDING lock */ + if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)) { + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */ + goto afp_end_lock; + } + + if( failed ){ + rc = SQLITE_BUSY; + } else { + pFile->locktype = SHARED_LOCK; + } + }else{ + /* The request was for a RESERVED or EXCLUSIVE lock. It is + ** assumed that there is a SHARED or greater lock on the file + ** already. + */ + int failed = 0; + assert( 0!=pFile->locktype ); + if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) { + /* Acquire a RESERVED lock */ + failed = _AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1,1); + } + if (!failed && locktype == EXCLUSIVE_LOCK) { + /* Acquire an EXCLUSIVE lock */ + + /* Remove the shared lock before trying the range. we'll need to + ** reestablish the shared lock if we can't get the afpUnixUnlock + */ + if (!_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST + + context->sharedLockByte, 1, 0)) { + /* now attemmpt to get the exclusive lock range */ + failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST, + SHARED_SIZE, 1); + if (failed && _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST + + context->sharedLockByte, 1, 1)) { + rc = SQLITE_IOERR_RDLOCK; /* this should never happen */ + } + } else { + /* */ + rc = SQLITE_IOERR_UNLOCK; /* this should never happen */ + } + } + if( failed && rc == SQLITE_OK){ + rc = SQLITE_BUSY; + } + } + + if( rc==SQLITE_OK ){ + pFile->locktype = locktype; + }else if( locktype==EXCLUSIVE_LOCK ){ + pFile->locktype = PENDING_LOCK; + } + +afp_end_lock: + leaveMutex(); + OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), + rc==SQLITE_OK ? "ok" : "failed"); + return rc; +} + +/* +** Lower the locking level on file descriptor pFile to locktype. locktype +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +*/ +static int afpUnixUnlock(sqlite3_file *id, int locktype) { + struct flock lock; + int rc = SQLITE_OK; + unixFile *pFile = (unixFile*)id; + afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; + + assert( pFile ); + OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype, + pFile->locktype, getpid()); + + assert( locktype<=SHARED_LOCK ); + if( pFile->locktype<=locktype ){ + return SQLITE_OK; + } + if( CHECK_THREADID(pFile) ){ + return SQLITE_MISUSE; + } + enterMutex(); + if( pFile->locktype>SHARED_LOCK ){ + if( locktype==SHARED_LOCK ){ + int failed = 0; + + /* unlock the exclusive range - then re-establish the shared lock */ + if (pFile->locktype==EXCLUSIVE_LOCK) { + failed = _AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST, + SHARED_SIZE, 0); + if (!failed) { + /* successfully removed the exclusive lock */ + if (_AFPFSSetLock(context->filePath, pFile->h, SHARED_FIRST+ + context->sharedLockByte, 1, 1)) { + /* failed to re-establish our shared lock */ + rc = SQLITE_IOERR_RDLOCK; /* This should never happen */ + } + } else { + /* This should never happen - failed to unlock the exclusive range */ + rc = SQLITE_IOERR_UNLOCK; + } + } + } + if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) { + if (_AFPFSSetLock(context->filePath, pFile->h, PENDING_BYTE, 1, 0)){ + /* failed to release the pending lock */ + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */ + } + } + if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) { + if (_AFPFSSetLock(context->filePath, pFile->h, RESERVED_BYTE, 1, 0)) { + /* failed to release the reserved lock */ + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */ + } + } + } + if( locktype==NO_LOCK ){ + int failed = _AFPFSSetLock(context->filePath, pFile->h, + SHARED_FIRST + context->sharedLockByte, 1, 0); + if (failed) { + rc = SQLITE_IOERR_UNLOCK; /* This should never happen */ + } + } + if (rc == SQLITE_OK) + pFile->locktype = locktype; + leaveMutex(); + return rc; +} + +/* +** Close a file & cleanup AFP specific locking context +*/ +static int afpUnixClose(sqlite3_file *id) { + unixFile *pFile = (unixFile*)id; + + if( !pFile ) return SQLITE_OK; + afpUnixUnlock(id, NO_LOCK); + sqlite3_free(pFile->lockingContext); + if( pFile->dirfd>=0 ) close(pFile->dirfd); + pFile->dirfd = -1; + enterMutex(); + close(pFile->h); + leaveMutex(); + OSTRACE2("CLOSE %-3d\n", pFile->h); + OpenCounter(-1); + memset(pFile, 0, sizeof(unixFile)); + return SQLITE_OK; +} + + +#pragma mark flock() style locking + +/* +** The flockLockingContext is not used +*/ +typedef void flockLockingContext; + +static int flockUnixCheckReservedLock(sqlite3_file *id){ + unixFile *pFile = (unixFile*)id; + + if (pFile->locktype == RESERVED_LOCK) { + return 1; /* already have a reserved lock */ + } else { + /* attempt to get the lock */ + int rc = flock(pFile->h, LOCK_EX | LOCK_NB); + if (!rc) { + /* got the lock, unlock it */ + flock(pFile->h, LOCK_UN); + return 0; /* no one has it reserved */ + } + return 1; /* someone else might have it reserved */ + } +} + +static int flockUnixLock(sqlite3_file *id, int locktype) { + unixFile *pFile = (unixFile*)id; + + /* if we already have a lock, it is exclusive. + ** Just adjust level and punt on outta here. */ + if (pFile->locktype > NO_LOCK) { + pFile->locktype = locktype; + return SQLITE_OK; + } + + /* grab an exclusive lock */ + int rc = flock(pFile->h, LOCK_EX | LOCK_NB); + if (rc) { + /* didn't get, must be busy */ + return SQLITE_BUSY; + } else { + /* got it, set the type and return ok */ + pFile->locktype = locktype; + return SQLITE_OK; + } +} + +static int flockUnixUnlock(sqlite3_file *id, int locktype) { + unixFile *pFile = (unixFile*)id; + + assert( locktype<=SHARED_LOCK ); + + /* no-op if possible */ + if( pFile->locktype==locktype ){ + return SQLITE_OK; + } + + /* shared can just be set because we always have an exclusive */ + if (locktype==SHARED_LOCK) { + pFile->locktype = locktype; + return SQLITE_OK; + } + + /* no, really, unlock. */ + int rc = flock(pFile->h, LOCK_UN); + if (rc) + return SQLITE_IOERR_UNLOCK; + else { + pFile->locktype = NO_LOCK; + return SQLITE_OK; + } +} + +/* +** Close a file. +*/ +static int flockUnixClose(sqlite3_file *id) { + unixFile *pFile = (unixFile*)id; + + if( !pFile ) return SQLITE_OK; + flockUnixUnlock(id, NO_LOCK); + + if( pFile->dirfd>=0 ) close(pFile->dirfd); + pFile->dirfd = -1; + + enterMutex(); + close(pFile->h); + leaveMutex(); + OSTRACE2("CLOSE %-3d\n", pFile->h); + OpenCounter(-1); + memset(pFile, 0, sizeof(unixFile)); + return SQLITE_OK; +} + +#pragma mark Old-School .lock file based locking + +/* +** The dotlockLockingContext structure contains all dotlock (.lock) lock +** specific state +*/ +typedef struct dotlockLockingContext dotlockLockingContext; +struct dotlockLockingContext { + char *lockPath; +}; + + +static int dotlockUnixCheckReservedLock(sqlite3_file *id) { + unixFile *pFile = (unixFile*)id; + dotlockLockingContext *context; + + context = (dotlockLockingContext*)pFile->lockingContext; + if (pFile->locktype == RESERVED_LOCK) { + return 1; /* already have a reserved lock */ + } else { + struct stat statBuf; + if (lstat(context->lockPath,&statBuf) == 0){ + /* file exists, someone else has the lock */ + return 1; + }else{ + /* file does not exist, we could have it if we want it */ + return 0; + } + } +} + +static int dotlockUnixLock(sqlite3_file *id, int locktype) { + unixFile *pFile = (unixFile*)id; + dotlockLockingContext *context; + int fd; + + context = (dotlockLockingContext*)pFile->lockingContext; + + /* if we already have a lock, it is exclusive. + ** Just adjust level and punt on outta here. */ + if (pFile->locktype > NO_LOCK) { + pFile->locktype = locktype; + + /* Always update the timestamp on the old file */ + utimes(context->lockPath,NULL); + return SQLITE_OK; + } + + /* check to see if lock file already exists */ + struct stat statBuf; + if (lstat(context->lockPath,&statBuf) == 0){ + return SQLITE_BUSY; /* it does, busy */ + } + + /* grab an exclusive lock */ + fd = open(context->lockPath,O_RDONLY|O_CREAT|O_EXCL,0600); + if( fd<0 ){ + /* failed to open/create the file, someone else may have stolen the lock */ + return SQLITE_BUSY; + } + close(fd); + + /* got it, set the type and return ok */ + pFile->locktype = locktype; + return SQLITE_OK; +} + +static int dotlockUnixUnlock(sqlite3_file *id, int locktype) { + unixFile *pFile = (unixFile*)id; + dotlockLockingContext *context; + + context = (dotlockLockingContext*)pFile->lockingContext; + + assert( locktype<=SHARED_LOCK ); + + /* no-op if possible */ + if( pFile->locktype==locktype ){ + return SQLITE_OK; + } + + /* shared can just be set because we always have an exclusive */ + if (locktype==SHARED_LOCK) { + pFile->locktype = locktype; + return SQLITE_OK; + } + + /* no, really, unlock. */ + unlink(context->lockPath); + pFile->locktype = NO_LOCK; + return SQLITE_OK; +} + +/* + ** Close a file. + */ +static int dotlockUnixClose(sqlite3_file *id) { + unixFile *pFile = (unixFile*)id; + + if( !pFile ) return SQLITE_OK; + dotlockUnixUnlock(id, NO_LOCK); + sqlite3_free(pFile->lockingContext); + if( pFile->dirfd>=0 ) close(pFile->dirfd); + pFile->dirfd = -1; + enterMutex(); + close(pFile->h); + leaveMutex(); + OSTRACE2("CLOSE %-3d\n", pFile->h); + OpenCounter(-1); + memset(pFile, 0, sizeof(unixFile)); + return SQLITE_OK; +} + + +#pragma mark No locking + +/* +** The nolockLockingContext is void +*/ +typedef void nolockLockingContext; + +static int nolockUnixCheckReservedLock(sqlite3_file *id) { + return 0; +} + +static int nolockUnixLock(sqlite3_file *id, int locktype) { + return SQLITE_OK; +} + +static int nolockUnixUnlock(sqlite3_file *id, int locktype) { + return SQLITE_OK; +} + +/* +** Close a file. +*/ +static int nolockUnixClose(sqlite3_file *id) { + unixFile *pFile = (unixFile*)id; + + if( !pFile ) return SQLITE_OK; + if( pFile->dirfd>=0 ) close(pFile->dirfd); + pFile->dirfd = -1; + enterMutex(); + close(pFile->h); + leaveMutex(); + OSTRACE2("CLOSE %-3d\n", pFile->h); + OpenCounter(-1); + memset(pFile, 0, sizeof(unixFile)); + return SQLITE_OK; +} + +#endif /* SQLITE_ENABLE_LOCKING_STYLE */ + + +/* +** Information and control of an open file handle. +*/ +static int unixFileControl(sqlite3_file *id, int op, void *pArg){ + switch( op ){ + case SQLITE_FCNTL_LOCKSTATE: { + *(int*)pArg = ((unixFile*)id)->locktype; + return SQLITE_OK; + } + } + return SQLITE_ERROR; +} + +/* +** Return the sector size in bytes of the underlying block device for +** the specified file. This is almost always 512 bytes, but may be +** larger for some devices. +** +** SQLite code assumes this function cannot fail. It also assumes that +** if two files are created in the same file-system directory (i.e. +** a database and its journal file) that the sector size will be the +** same for both. +*/ +static int unixSectorSize(sqlite3_file *id){ + return SQLITE_DEFAULT_SECTOR_SIZE; +} + +/* +** Return the device characteristics for the file. This is always 0. +*/ +static int unixDeviceCharacteristics(sqlite3_file *id){ + return 0; +} + +/* +** This vector defines all the methods that can operate on an sqlite3_file +** for unix. +*/ +static const sqlite3_io_methods sqlite3UnixIoMethod = { + 1, /* iVersion */ + unixClose, + unixRead, + unixWrite, + unixTruncate, + unixSync, + unixFileSize, + unixLock, + unixUnlock, + unixCheckReservedLock, + unixFileControl, + unixSectorSize, + unixDeviceCharacteristics +}; + +#ifdef SQLITE_ENABLE_LOCKING_STYLE +/* +** This vector defines all the methods that can operate on an sqlite3_file +** for unix with AFP style file locking. +*/ +static const sqlite3_io_methods sqlite3AFPLockingUnixIoMethod = { + 1, /* iVersion */ + afpUnixClose, + unixRead, + unixWrite, + unixTruncate, + unixSync, + unixFileSize, + afpUnixLock, + afpUnixUnlock, + afpUnixCheckReservedLock, + unixFileControl, + unixSectorSize, + unixDeviceCharacteristics +}; + +/* +** This vector defines all the methods that can operate on an sqlite3_file +** for unix with flock() style file locking. +*/ +static const sqlite3_io_methods sqlite3FlockLockingUnixIoMethod = { + 1, /* iVersion */ + flockUnixClose, + unixRead, + unixWrite, + unixTruncate, + unixSync, + unixFileSize, + flockUnixLock, + flockUnixUnlock, + flockUnixCheckReservedLock, + unixFileControl, + unixSectorSize, + unixDeviceCharacteristics +}; + +/* +** This vector defines all the methods that can operate on an sqlite3_file +** for unix with dotlock style file locking. +*/ +static const sqlite3_io_methods sqlite3DotlockLockingUnixIoMethod = { + 1, /* iVersion */ + dotlockUnixClose, + unixRead, + unixWrite, + unixTruncate, + unixSync, + unixFileSize, + dotlockUnixLock, + dotlockUnixUnlock, + dotlockUnixCheckReservedLock, + unixFileControl, + unixSectorSize, + unixDeviceCharacteristics +}; + +/* +** This vector defines all the methods that can operate on an sqlite3_file +** for unix with nolock style file locking. +*/ +static const sqlite3_io_methods sqlite3NolockLockingUnixIoMethod = { + 1, /* iVersion */ + nolockUnixClose, + unixRead, + unixWrite, + unixTruncate, + unixSync, + unixFileSize, + nolockUnixLock, + nolockUnixUnlock, + nolockUnixCheckReservedLock, + unixFileControl, + unixSectorSize, + unixDeviceCharacteristics +}; + +#endif /* SQLITE_ENABLE_LOCKING_STYLE */ + +/* +** Allocate memory for a new unixFile and initialize that unixFile. +** Write a pointer to the new unixFile into *pId. +** If we run out of memory, close the file and return an error. +*/ +#ifdef SQLITE_ENABLE_LOCKING_STYLE +/* +** When locking extensions are enabled, the filepath and locking style +** are needed to determine the unixFile pMethod to use for locking operations. +** The locking-style specific lockingContext data structure is created +** and assigned here also. +*/ +static int fillInUnixFile( + int h, /* Open file descriptor of file being opened */ + int dirfd, /* Directory file descriptor */ + sqlite3_file *pId, /* Write to the unixFile structure here */ + const char *zFilename /* Name of the file being opened */ +){ + sqlite3LockingStyle lockingStyle; + unixFile *pNew = (unixFile *)pId; + int rc; + +#ifdef FD_CLOEXEC + fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC); +#endif + + lockingStyle = sqlite3DetectLockingStyle(zFilename, h); + if ( lockingStyle==posixLockingStyle ){ + enterMutex(); + rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen); + leaveMutex(); + if( rc ){ + if( dirfd>=0 ) close(dirfd); + close(h); + return rc; + } + } else { + /* pLock and pOpen are only used for posix advisory locking */ + pNew->pLock = NULL; + pNew->pOpen = NULL; + } + + OSTRACE3("OPEN %-3d %s\n", h, zFilename); + pNew->dirfd = -1; + pNew->h = h; + pNew->dirfd = dirfd; + SET_THREADID(pNew); + + switch(lockingStyle) { + case afpLockingStyle: { + /* afp locking uses the file path so it needs to be included in + ** the afpLockingContext */ + afpLockingContext *context; + pNew->pMethod = &sqlite3AFPLockingUnixIoMethod; + pNew->lockingContext = context = sqlite3_malloc( sizeof(*context) ); + if( context==0 ){ + close(h); + if( dirfd>=0 ) close(dirfd); + return SQLITE_NOMEM; + } + + /* NB: zFilename exists and remains valid until the file is closed + ** according to requirement F11141. So we do not need to make a + ** copy of the filename. */ + context->filePath = zFilename; + srandomdev(); + break; + } + case flockLockingStyle: + /* flock locking doesn't need additional lockingContext information */ + pNew->pMethod = &sqlite3FlockLockingUnixIoMethod; + break; + case dotlockLockingStyle: { + /* dotlock locking uses the file path so it needs to be included in + ** the dotlockLockingContext */ + dotlockLockingContext *context; + int nFilename; + nFilename = strlen(zFilename); + pNew->pMethod = &sqlite3DotlockLockingUnixIoMethod; + pNew->lockingContext = context = + sqlite3_malloc( sizeof(*context) + nFilename + 6 ); + if( context==0 ){ + close(h); + if( dirfd>=0 ) close(dirfd); + return SQLITE_NOMEM; + } + context->lockPath = (char*)&context[1]; + sqlite3_snprintf(nFilename, context->lockPath, + "%s.lock", zFilename); + break; + } + case posixLockingStyle: + /* posix locking doesn't need additional lockingContext information */ + pNew->pMethod = &sqlite3UnixIoMethod; + break; + case noLockingStyle: + case unsupportedLockingStyle: + default: + pNew->pMethod = &sqlite3NolockLockingUnixIoMethod; + } + OpenCounter(+1); + return SQLITE_OK; +} +#else /* SQLITE_ENABLE_LOCKING_STYLE */ +static int fillInUnixFile( + int h, /* Open file descriptor on file being opened */ + int dirfd, + sqlite3_file *pId, /* Write to the unixFile structure here */ + const char *zFilename /* Name of the file being opened */ +){ + unixFile *pNew = (unixFile *)pId; + int rc; + +#ifdef FD_CLOEXEC + fcntl(h, F_SETFD, fcntl(h, F_GETFD, 0) | FD_CLOEXEC); +#endif + + enterMutex(); + rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen); + leaveMutex(); + if( rc ){ + if( dirfd>=0 ) close(dirfd); + close(h); + return rc; + } + + OSTRACE3("OPEN %-3d %s\n", h, zFilename); + pNew->dirfd = -1; + pNew->h = h; + pNew->dirfd = dirfd; + SET_THREADID(pNew); + + pNew->pMethod = &sqlite3UnixIoMethod; + OpenCounter(+1); + return SQLITE_OK; +} +#endif /* SQLITE_ENABLE_LOCKING_STYLE */ + +/* +** Open a file descriptor to the directory containing file zFilename. +** If successful, *pFd is set to the opened file descriptor and +** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM +** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined +** value. +** +** If SQLITE_OK is returned, the caller is responsible for closing +** the file descriptor *pFd using close(). +*/ +static int openDirectory(const char *zFilename, int *pFd){ + int ii; + int fd = -1; + char zDirname[MAX_PATHNAME+1]; + + sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); + for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--); + if( ii>0 ){ + zDirname[ii] = '\0'; + fd = open(zDirname, O_RDONLY|O_BINARY, 0); + if( fd>=0 ){ +#ifdef FD_CLOEXEC + fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC); +#endif + OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname); + } + } + *pFd = fd; + return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN); +} + +/* +** Open the file zPath. +** +** Previously, the SQLite OS layer used three functions in place of this +** one: +** +** sqlite3OsOpenReadWrite(); +** sqlite3OsOpenReadOnly(); +** sqlite3OsOpenExclusive(); +** +** These calls correspond to the following combinations of flags: +** +** ReadWrite() -> (READWRITE | CREATE) +** ReadOnly() -> (READONLY) +** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) +** +** The old OpenExclusive() accepted a boolean argument - "delFlag". If +** true, the file was configured to be automatically deleted when the +** file handle closed. To achieve the same effect using this new +** interface, add the DELETEONCLOSE flag to those specified above for +** OpenExclusive(). +*/ +static int unixOpen( + sqlite3_vfs *pVfs, + const char *zPath, + sqlite3_file *pFile, + int flags, + int *pOutFlags +){ + int fd = 0; /* File descriptor returned by open() */ + int dirfd = -1; /* Directory file descriptor */ + int oflags = 0; /* Flags to pass to open() */ + int eType = flags&0xFFFFFF00; /* Type of file to open */ + + int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); + int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); + int isCreate = (flags & SQLITE_OPEN_CREATE); + int isReadonly = (flags & SQLITE_OPEN_READONLY); + int isReadWrite = (flags & SQLITE_OPEN_READWRITE); + + /* If creating a master or main-file journal, this function will open + ** a file-descriptor on the directory too. The first time unixSync() + ** is called the directory file descriptor will be fsync()ed and close()d. + */ + int isOpenDirectory = (isCreate && + (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL) + ); + + /* Check the following statements are true: + ** + ** (a) Exactly one of the READWRITE and READONLY flags must be set, and + ** (b) if CREATE is set, then READWRITE must also be set, and + ** (c) if EXCLUSIVE is set, then CREATE must also be set. + ** (d) if DELETEONCLOSE is set, then CREATE must also be set. + */ + assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); + assert(isCreate==0 || isReadWrite); + assert(isExclusive==0 || isCreate); + assert(isDelete==0 || isCreate); + + + /* The main DB, main journal, and master journal are never automatically + ** deleted + */ + assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete ); + assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete ); + assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete ); + + /* Assert that the upper layer has set one of the "file-type" flags. */ + assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB + || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL + || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL + || eType==SQLITE_OPEN_TRANSIENT_DB + ); + + if( isReadonly ) oflags |= O_RDONLY; + if( isReadWrite ) oflags |= O_RDWR; + if( isCreate ) oflags |= O_CREAT; + if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW); + oflags |= (O_LARGEFILE|O_BINARY); + + memset(pFile, 0, sizeof(unixFile)); + fd = open(zPath, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS); + if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ + /* Failed to open the file for read/write access. Try read-only. */ + flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); + flags |= SQLITE_OPEN_READONLY; + return unixOpen(pVfs, zPath, pFile, flags, pOutFlags); + } + if( fd<0 ){ + return SQLITE_CANTOPEN; + } + if( isDelete ){ + unlink(zPath); + } + if( pOutFlags ){ + *pOutFlags = flags; + } + + assert(fd!=0); + if( isOpenDirectory ){ + int rc = openDirectory(zPath, &dirfd); + if( rc!=SQLITE_OK ){ + close(fd); + return rc; + } + } + return fillInUnixFile(fd, dirfd, pFile, zPath); +} + +/* +** Delete the file at zPath. If the dirSync argument is true, fsync() +** the directory after deleting the file. +*/ +static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ + int rc = SQLITE_OK; + SimulateIOError(return SQLITE_IOERR_DELETE); + unlink(zPath); + if( dirSync ){ + int fd; + rc = openDirectory(zPath, &fd); + if( rc==SQLITE_OK ){ + if( fsync(fd) ){ + rc = SQLITE_IOERR_DIR_FSYNC; + } + close(fd); + } + } + return rc; +} + +/* +** Test the existance of or access permissions of file zPath. The +** test performed depends on the value of flags: +** +** SQLITE_ACCESS_EXISTS: Return 1 if the file exists +** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. +** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. +** +** Otherwise return 0. +*/ +static int unixAccess(sqlite3_vfs *pVfs, const char *zPath, int flags){ + int amode = 0; + switch( flags ){ + case SQLITE_ACCESS_EXISTS: + amode = F_OK; + break; + case SQLITE_ACCESS_READWRITE: + amode = W_OK|R_OK; + break; + case SQLITE_ACCESS_READ: + amode = R_OK; + break; + + default: + assert(!"Invalid flags argument"); + } + return (access(zPath, amode)==0); +} + +/* +** Create a temporary file name in zBuf. zBuf must be allocated +** by the calling process and must be big enough to hold at least +** pVfs->mxPathname bytes. +*/ +static int unixGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ + static const char *azDirs[] = { + 0, + "/var/tmp", + "/usr/tmp", + "/tmp", + ".", + }; + static const unsigned char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789"; + int i, j; + struct stat buf; + const char *zDir = "."; + + /* It's odd to simulate an io-error here, but really this is just + ** using the io-error infrastructure to test that SQLite handles this + ** function failing. + */ + SimulateIOError( return SQLITE_ERROR ); + + azDirs[0] = sqlite3_temp_directory; + for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){ + if( azDirs[i]==0 ) continue; + if( stat(azDirs[i], &buf) ) continue; + if( !S_ISDIR(buf.st_mode) ) continue; + if( access(azDirs[i], 07) ) continue; + zDir = azDirs[i]; + break; + } + + /* Check that the output buffer is large enough for the temporary file + ** name. If it is not, return SQLITE_ERROR. + */ + if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){ + return SQLITE_ERROR; + } + + do{ + assert( pVfs->mxPathname==MAX_PATHNAME ); + sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); + j = strlen(zBuf); + sqlite3_randomness(15, &zBuf[j]); + for(i=0; i<15; i++, j++){ + zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; + } + zBuf[j] = 0; + }while( access(zBuf,0)==0 ); + return SQLITE_OK; +} + + +/* +** Turn a relative pathname into a full pathname. The relative path +** is stored as a nul-terminated string in the buffer pointed to by +** zPath. +** +** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes +** (in this case, MAX_PATHNAME bytes). The full-path is written to +** this buffer before returning. +*/ +static int unixFullPathname( + sqlite3_vfs *pVfs, /* Pointer to vfs object */ + const char *zPath, /* Possibly relative input path */ + int nOut, /* Size of output buffer in bytes */ + char *zOut /* Output buffer */ +){ + + /* It's odd to simulate an io-error here, but really this is just + ** using the io-error infrastructure to test that SQLite handles this + ** function failing. This function could fail if, for example, the + ** current working directly has been unlinked. + */ + SimulateIOError( return SQLITE_ERROR ); + + assert( pVfs->mxPathname==MAX_PATHNAME ); + zOut[nOut-1] = '\0'; + if( zPath[0]=='/' ){ + sqlite3_snprintf(nOut, zOut, "%s", zPath); + }else{ + int nCwd; + if( getcwd(zOut, nOut-1)==0 ){ + return SQLITE_CANTOPEN; + } + nCwd = strlen(zOut); + sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); + } + return SQLITE_OK; + +#if 0 + /* + ** Remove "/./" path elements and convert "/A/./" path elements + ** to just "/". + */ + if( zFull ){ + int i, j; + for(i=j=0; zFull[i]; i++){ + if( zFull[i]=='/' ){ + if( zFull[i+1]=='/' ) continue; + if( zFull[i+1]=='.' && zFull[i+2]=='/' ){ + i += 1; + continue; + } + if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){ + while( j>0 && zFull[j-1]!='/' ){ j--; } + i += 3; + continue; + } + } + zFull[j++] = zFull[i]; + } + zFull[j] = 0; + } +#endif +} + + +#ifndef SQLITE_OMIT_LOAD_EXTENSION +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +#include <dlfcn.h> +static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ + return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); +} + +/* +** SQLite calls this function immediately after a call to unixDlSym() or +** unixDlOpen() fails (returns a null pointer). If a more detailed error +** message is available, it is written to zBufOut. If no error message +** is available, zBufOut is left unmodified and SQLite uses a default +** error message. +*/ +static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ + char *zErr; + enterMutex(); + zErr = dlerror(); + if( zErr ){ + sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); + } + leaveMutex(); +} +static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){ + return dlsym(pHandle, zSymbol); +} +static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){ + dlclose(pHandle); +} +#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ + #define unixDlOpen 0 + #define unixDlError 0 + #define unixDlSym 0 + #define unixDlClose 0 +#endif + +/* +** Write nBuf bytes of random data to the supplied buffer zBuf. +*/ +static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ + + assert(nBuf>=(sizeof(time_t)+sizeof(int))); + + /* We have to initialize zBuf to prevent valgrind from reporting + ** errors. The reports issued by valgrind are incorrect - we would + ** prefer that the randomness be increased by making use of the + ** uninitialized space in zBuf - but valgrind errors tend to worry + ** some users. Rather than argue, it seems easier just to initialize + ** the whole array and silence valgrind, even if that means less randomness + ** in the random seed. + ** + ** When testing, initializing zBuf[] to zero is all we do. That means + ** that we always use the same random number sequence. This makes the + ** tests repeatable. + */ + memset(zBuf, 0, nBuf); +#if !defined(SQLITE_TEST) + { + int pid, fd; + fd = open("/dev/urandom", O_RDONLY); + if( fd<0 ){ + time_t t; + time(&t); + memcpy(zBuf, &t, sizeof(t)); + pid = getpid(); + memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid)); + }else{ + read(fd, zBuf, nBuf); + close(fd); + } + } +#endif + return SQLITE_OK; +} + + +/* +** Sleep for a little while. Return the amount of time slept. +** The argument is the number of microseconds we want to sleep. +** The return value is the number of microseconds of sleep actually +** requested from the underlying operating system, a number which +** might be greater than or equal to the argument, but not less +** than the argument. +*/ +static int unixSleep(sqlite3_vfs *pVfs, int microseconds){ +#if defined(HAVE_USLEEP) && HAVE_USLEEP + usleep(microseconds); + return microseconds; +#else + int seconds = (microseconds+999999)/1000000; + sleep(seconds); + return seconds*1000000; +#endif +} + +/* +** The following variable, if set to a non-zero value, becomes the result +** returned from sqlite3OsCurrentTime(). This is used for testing. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_current_time = 0; +#endif + +/* +** Find the current time (in Universal Coordinated Time). Write the +** current time and date as a Julian Day number into *prNow and +** return 0. Return 1 if the time and date cannot be found. +*/ +static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){ +#ifdef NO_GETTOD + time_t t; + time(&t); + *prNow = t/86400.0 + 2440587.5; +#else + struct timeval sNow; + gettimeofday(&sNow, 0); + *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0; +#endif +#ifdef SQLITE_TEST + if( sqlite3_current_time ){ + *prNow = sqlite3_current_time/86400.0 + 2440587.5; + } +#endif + return 0; +} + +/* +** Return a pointer to the sqlite3DefaultVfs structure. We use +** a function rather than give the structure global scope because +** some compilers (MSVC) do not allow forward declarations of +** initialized structures. +*/ +SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){ + static sqlite3_vfs unixVfs = { + 1, /* iVersion */ + sizeof(unixFile), /* szOsFile */ + MAX_PATHNAME, /* mxPathname */ + 0, /* pNext */ + "unix", /* zName */ + 0, /* pAppData */ + + unixOpen, /* xOpen */ + unixDelete, /* xDelete */ + unixAccess, /* xAccess */ + unixGetTempname, /* xGetTempName */ + unixFullPathname, /* xFullPathname */ + unixDlOpen, /* xDlOpen */ + unixDlError, /* xDlError */ + unixDlSym, /* xDlSym */ + unixDlClose, /* xDlClose */ + unixRandomness, /* xRandomness */ + unixSleep, /* xSleep */ + unixCurrentTime /* xCurrentTime */ + }; + + return &unixVfs; +} + +#endif /* OS_UNIX */ + +/************** End of os_unix.c *********************************************/ +/************** Begin file os_win.c ******************************************/ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains code that is specific to windows. +*/ +#if OS_WIN /* This file is used for windows only */ + + +/* +** A Note About Memory Allocation: +** +** This driver uses malloc()/free() directly rather than going through +** the SQLite-wrappers sqlite3_malloc()/sqlite3_free(). Those wrappers +** are designed for use on embedded systems where memory is scarce and +** malloc failures happen frequently. Win32 does not typically run on +** embedded systems, and when it does the developers normally have bigger +** problems to worry about than running out of memory. So there is not +** a compelling need to use the wrappers. +** +** But there is a good reason to not use the wrappers. If we use the +** wrappers then we will get simulated malloc() failures within this +** driver. And that causes all kinds of problems for our tests. We +** could enhance SQLite to deal with simulated malloc failures within +** the OS driver, but the code to deal with those failure would not +** be exercised on Linux (which does not need to malloc() in the driver) +** and so we would have difficulty writing coverage tests for that +** code. Better to leave the code out, we think. +** +** The point of this discussion is as follows: When creating a new +** OS layer for an embedded system, if you use this file as an example, +** avoid the use of malloc()/free(). Those routines work ok on windows +** desktops but not so well in embedded systems. +*/ + +#include <winbase.h> + +#ifdef __CYGWIN__ +# include <sys/cygwin.h> +#endif + +/* +** Macros used to determine whether or not to use threads. +*/ +#if defined(THREADSAFE) && THREADSAFE +# define SQLITE_W32_THREADS 1 +#endif + +/* +** Include code that is common to all os_*.c files +*/ +/************** Include os_common.h in the middle of os_win.c ****************/ +/************** Begin file os_common.h ***************************************/ +/* +** 2004 May 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This file contains macros and a little bit of code that is common to +** all of the platform-specific files (os_*.c) and is #included into those +** files. +** +** This file should be #included by the os_*.c files only. It is not a +** general purpose header file. +*/ + +/* +** At least two bugs have slipped in because we changed the MEMORY_DEBUG +** macro to SQLITE_DEBUG and some older makefiles have not yet made the +** switch. The following code should catch this problem at compile-time. +*/ +#ifdef MEMORY_DEBUG +# error "The MEMORY_DEBUG macro is obsolete. Use SQLITE_DEBUG instead." +#endif + + +/* + * When testing, this global variable stores the location of the + * pending-byte in the database file. + */ +#ifdef SQLITE_TEST +SQLITE_API unsigned int sqlite3_pending_byte = 0x40000000; +#endif + +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3OSTrace = 0; +#define OSTRACE1(X) if( sqlite3OSTrace ) sqlite3DebugPrintf(X) +#define OSTRACE2(X,Y) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y) +#define OSTRACE3(X,Y,Z) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z) +#define OSTRACE4(X,Y,Z,A) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A) +#define OSTRACE5(X,Y,Z,A,B) if( sqlite3OSTrace ) sqlite3DebugPrintf(X,Y,Z,A,B) +#define OSTRACE6(X,Y,Z,A,B,C) \ + if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C) +#define OSTRACE7(X,Y,Z,A,B,C,D) \ + if(sqlite3OSTrace) sqlite3DebugPrintf(X,Y,Z,A,B,C,D) +#else +#define OSTRACE1(X) +#define OSTRACE2(X,Y) +#define OSTRACE3(X,Y,Z) +#define OSTRACE4(X,Y,Z,A) +#define OSTRACE5(X,Y,Z,A,B) +#define OSTRACE6(X,Y,Z,A,B,C) +#define OSTRACE7(X,Y,Z,A,B,C,D) +#endif + +/* +** Macros for performance tracing. Normally turned off. Only works +** on i486 hardware. +*/ +#ifdef SQLITE_PERFORMANCE_TRACE +__inline__ unsigned long long int hwtime(void){ + unsigned long long int x; + __asm__("rdtsc\n\t" + "mov %%edx, %%ecx\n\t" + :"=A" (x)); + return x; +} +static unsigned long long int g_start; +static unsigned int elapse; +#define TIMER_START g_start=hwtime() +#define TIMER_END elapse=hwtime()-g_start +#define TIMER_ELAPSED elapse +#else +#define TIMER_START +#define TIMER_END +#define TIMER_ELAPSED 0 +#endif + +/* +** If we compile with the SQLITE_TEST macro set, then the following block +** of code will give us the ability to simulate a disk I/O error. This +** is used for testing the I/O recovery logic. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ +SQLITE_API int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ +SQLITE_API int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ +SQLITE_API int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ +SQLITE_API int sqlite3_io_error_benign = 0; /* True if errors are benign */ +SQLITE_API int sqlite3_diskfull_pending = 0; +SQLITE_API int sqlite3_diskfull = 0; +#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X) +#define SimulateIOError(CODE) \ + if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \ + || sqlite3_io_error_pending-- == 1 ) \ + { local_ioerr(); CODE; } +static void local_ioerr(){ + IOTRACE(("IOERR\n")); + sqlite3_io_error_hit++; + if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++; +} +#define SimulateDiskfullError(CODE) \ + if( sqlite3_diskfull_pending ){ \ + if( sqlite3_diskfull_pending == 1 ){ \ + local_ioerr(); \ + sqlite3_diskfull = 1; \ + sqlite3_io_error_hit = 1; \ + CODE; \ + }else{ \ + sqlite3_diskfull_pending--; \ + } \ + } +#else +#define SimulateIOErrorBenign(X) +#define SimulateIOError(A) +#define SimulateDiskfullError(A) +#endif + +/* +** When testing, keep a count of the number of open files. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_open_file_count = 0; +#define OpenCounter(X) sqlite3_open_file_count+=(X) +#else +#define OpenCounter(X) +#endif + +/************** End of os_common.h *******************************************/ +/************** Continuing where we left off in os_win.c *********************/ + +/* +** Determine if we are dealing with WindowsCE - which has a much +** reduced API. +*/ +#if defined(_WIN32_WCE) +# define OS_WINCE 1 +# define AreFileApisANSI() 1 +#else +# define OS_WINCE 0 +#endif + +/* +** WinCE lacks native support for file locking so we have to fake it +** with some code of our own. +*/ +#if OS_WINCE +typedef struct winceLock { + int nReaders; /* Number of reader locks obtained */ + BOOL bPending; /* Indicates a pending lock has been obtained */ + BOOL bReserved; /* Indicates a reserved lock has been obtained */ + BOOL bExclusive; /* Indicates an exclusive lock has been obtained */ +} winceLock; +#endif + +/* +** The winFile structure is a subclass of sqlite3_file* specific to the win32 +** portability layer. +*/ +typedef struct winFile winFile; +struct winFile { + const sqlite3_io_methods *pMethod;/* Must be first */ + HANDLE h; /* Handle for accessing the file */ + unsigned char locktype; /* Type of lock currently held on this file */ + short sharedLockByte; /* Randomly chosen byte used as a shared lock */ +#if OS_WINCE + WCHAR *zDeleteOnClose; /* Name of file to delete when closing */ + HANDLE hMutex; /* Mutex used to control access to shared lock */ + HANDLE hShared; /* Shared memory segment used for locking */ + winceLock local; /* Locks obtained by this instance of winFile */ + winceLock *shared; /* Global shared lock memory for the file */ +#endif +}; + + +/* +** The following variable is (normally) set once and never changes +** thereafter. It records whether the operating system is Win95 +** or WinNT. +** +** 0: Operating system unknown. +** 1: Operating system is Win95. +** 2: Operating system is WinNT. +** +** In order to facilitate testing on a WinNT system, the test fixture +** can manually set this value to 1 to emulate Win98 behavior. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_os_type = 0; +#else +static int sqlite3_os_type = 0; +#endif + +/* +** Return true (non-zero) if we are running under WinNT, Win2K, WinXP, +** or WinCE. Return false (zero) for Win95, Win98, or WinME. +** +** Here is an interesting observation: Win95, Win98, and WinME lack +** the LockFileEx() API. But we can still statically link against that +** API as long as we don't call it win running Win95/98/ME. A call to +** this routine is used to determine if the host is Win95/98/ME or +** WinNT/2K/XP so that we will know whether or not we can safely call +** the LockFileEx() API. +*/ +#if OS_WINCE +# define isNT() (1) +#else + static int isNT(void){ + if( sqlite3_os_type==0 ){ + OSVERSIONINFO sInfo; + sInfo.dwOSVersionInfoSize = sizeof(sInfo); + GetVersionEx(&sInfo); + sqlite3_os_type = sInfo.dwPlatformId==VER_PLATFORM_WIN32_NT ? 2 : 1; + } + return sqlite3_os_type==2; + } +#endif /* OS_WINCE */ + +/* +** Convert a UTF-8 string to microsoft unicode (UTF-16?). +** +** Space to hold the returned string is obtained from malloc. +*/ +static WCHAR *utf8ToUnicode(const char *zFilename){ + int nChar; + WCHAR *zWideFilename; + + nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0); + zWideFilename = malloc( nChar*sizeof(zWideFilename[0]) ); + if( zWideFilename==0 ){ + return 0; + } + nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename, nChar); + if( nChar==0 ){ + free(zWideFilename); + zWideFilename = 0; + } + return zWideFilename; +} + +/* +** Convert microsoft unicode to UTF-8. Space to hold the returned string is +** obtained from malloc(). +*/ +static char *unicodeToUtf8(const WCHAR *zWideFilename){ + int nByte; + char *zFilename; + + nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, 0, 0, 0, 0); + zFilename = malloc( nByte ); + if( zFilename==0 ){ + return 0; + } + nByte = WideCharToMultiByte(CP_UTF8, 0, zWideFilename, -1, zFilename, nByte, + 0, 0); + if( nByte == 0 ){ + free(zFilename); + zFilename = 0; + } + return zFilename; +} + +/* +** Convert an ansi string to microsoft unicode, based on the +** current codepage settings for file apis. +** +** Space to hold the returned string is obtained +** from malloc. +*/ +static WCHAR *mbcsToUnicode(const char *zFilename){ + int nByte; + WCHAR *zMbcsFilename; + int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP; + + nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, NULL,0)*sizeof(WCHAR); + zMbcsFilename = malloc( nByte*sizeof(zMbcsFilename[0]) ); + if( zMbcsFilename==0 ){ + return 0; + } + nByte = MultiByteToWideChar(codepage, 0, zFilename, -1, zMbcsFilename, nByte); + if( nByte==0 ){ + free(zMbcsFilename); + zMbcsFilename = 0; + } + return zMbcsFilename; +} + +/* +** Convert microsoft unicode to multibyte character string, based on the +** user's Ansi codepage. +** +** Space to hold the returned string is obtained from +** malloc(). +*/ +static char *unicodeToMbcs(const WCHAR *zWideFilename){ + int nByte; + char *zFilename; + int codepage = AreFileApisANSI() ? CP_ACP : CP_OEMCP; + + nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, 0, 0, 0, 0); + zFilename = malloc( nByte ); + if( zFilename==0 ){ + return 0; + } + nByte = WideCharToMultiByte(codepage, 0, zWideFilename, -1, zFilename, nByte, + 0, 0); + if( nByte == 0 ){ + free(zFilename); + zFilename = 0; + } + return zFilename; +} + +/* +** Convert multibyte character string to UTF-8. Space to hold the +** returned string is obtained from malloc(). +*/ +static char *mbcsToUtf8(const char *zFilename){ + char *zFilenameUtf8; + WCHAR *zTmpWide; + + zTmpWide = mbcsToUnicode(zFilename); + if( zTmpWide==0 ){ + return 0; + } + zFilenameUtf8 = unicodeToUtf8(zTmpWide); + free(zTmpWide); + return zFilenameUtf8; +} + +/* +** Convert UTF-8 to multibyte character string. Space to hold the +** returned string is obtained from malloc(). +*/ +static char *utf8ToMbcs(const char *zFilename){ + char *zFilenameMbcs; + WCHAR *zTmpWide; + + zTmpWide = utf8ToUnicode(zFilename); + if( zTmpWide==0 ){ + return 0; + } + zFilenameMbcs = unicodeToMbcs(zTmpWide); + free(zTmpWide); + return zFilenameMbcs; +} + +#if OS_WINCE +/************************************************************************* +** This section contains code for WinCE only. +*/ +/* +** WindowsCE does not have a localtime() function. So create a +** substitute. +*/ +struct tm *__cdecl localtime(const time_t *t) +{ + static struct tm y; + FILETIME uTm, lTm; + SYSTEMTIME pTm; + sqlite3_int64 t64; + t64 = *t; + t64 = (t64 + 11644473600)*10000000; + uTm.dwLowDateTime = t64 & 0xFFFFFFFF; + uTm.dwHighDateTime= t64 >> 32; + FileTimeToLocalFileTime(&uTm,&lTm); + FileTimeToSystemTime(&lTm,&pTm); + y.tm_year = pTm.wYear - 1900; + y.tm_mon = pTm.wMonth - 1; + y.tm_wday = pTm.wDayOfWeek; + y.tm_mday = pTm.wDay; + y.tm_hour = pTm.wHour; + y.tm_min = pTm.wMinute; + y.tm_sec = pTm.wSecond; + return &y; +} + +/* This will never be called, but defined to make the code compile */ +#define GetTempPathA(a,b) + +#define LockFile(a,b,c,d,e) winceLockFile(&a, b, c, d, e) +#define UnlockFile(a,b,c,d,e) winceUnlockFile(&a, b, c, d, e) +#define LockFileEx(a,b,c,d,e,f) winceLockFileEx(&a, b, c, d, e, f) + +#define HANDLE_TO_WINFILE(a) (winFile*)&((char*)a)[-offsetof(winFile,h)] + +/* +** Acquire a lock on the handle h +*/ +static void winceMutexAcquire(HANDLE h){ + DWORD dwErr; + do { + dwErr = WaitForSingleObject(h, INFINITE); + } while (dwErr != WAIT_OBJECT_0 && dwErr != WAIT_ABANDONED); +} +/* +** Release a lock acquired by winceMutexAcquire() +*/ +#define winceMutexRelease(h) ReleaseMutex(h) + +/* +** Create the mutex and shared memory used for locking in the file +** descriptor pFile +*/ +static BOOL winceCreateLock(const char *zFilename, winFile *pFile){ + WCHAR *zTok; + WCHAR *zName = utf8ToUnicode(zFilename); + BOOL bInit = TRUE; + + /* Initialize the local lockdata */ + ZeroMemory(&pFile->local, sizeof(pFile->local)); + + /* Replace the backslashes from the filename and lowercase it + ** to derive a mutex name. */ + zTok = CharLowerW(zName); + for (;*zTok;zTok++){ + if (*zTok == '\\') *zTok = '_'; + } + + /* Create/open the named mutex */ + pFile->hMutex = CreateMutexW(NULL, FALSE, zName); + if (!pFile->hMutex){ + free(zName); + return FALSE; + } + + /* Acquire the mutex before continuing */ + winceMutexAcquire(pFile->hMutex); + + /* Since the names of named mutexes, semaphores, file mappings etc are + ** case-sensitive, take advantage of that by uppercasing the mutex name + ** and using that as the shared filemapping name. + */ + CharUpperW(zName); + pFile->hShared = CreateFileMappingW(INVALID_HANDLE_VALUE, NULL, + PAGE_READWRITE, 0, sizeof(winceLock), + zName); + + /* Set a flag that indicates we're the first to create the memory so it + ** must be zero-initialized */ + if (GetLastError() == ERROR_ALREADY_EXISTS){ + bInit = FALSE; + } + + free(zName); + + /* If we succeeded in making the shared memory handle, map it. */ + if (pFile->hShared){ + pFile->shared = (winceLock*)MapViewOfFile(pFile->hShared, + FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, sizeof(winceLock)); + /* If mapping failed, close the shared memory handle and erase it */ + if (!pFile->shared){ + CloseHandle(pFile->hShared); + pFile->hShared = NULL; + } + } + + /* If shared memory could not be created, then close the mutex and fail */ + if (pFile->hShared == NULL){ + winceMutexRelease(pFile->hMutex); + CloseHandle(pFile->hMutex); + pFile->hMutex = NULL; + return FALSE; + } + + /* Initialize the shared memory if we're supposed to */ + if (bInit) { + ZeroMemory(pFile->shared, sizeof(winceLock)); + } + + winceMutexRelease(pFile->hMutex); + return TRUE; +} + +/* +** Destroy the part of winFile that deals with wince locks +*/ +static void winceDestroyLock(winFile *pFile){ + if (pFile->hMutex){ + /* Acquire the mutex */ + winceMutexAcquire(pFile->hMutex); + + /* The following blocks should probably assert in debug mode, but they + are to cleanup in case any locks remained open */ + if (pFile->local.nReaders){ + pFile->shared->nReaders --; + } + if (pFile->local.bReserved){ + pFile->shared->bReserved = FALSE; + } + if (pFile->local.bPending){ + pFile->shared->bPending = FALSE; + } + if (pFile->local.bExclusive){ + pFile->shared->bExclusive = FALSE; + } + + /* De-reference and close our copy of the shared memory handle */ + UnmapViewOfFile(pFile->shared); + CloseHandle(pFile->hShared); + + /* Done with the mutex */ + winceMutexRelease(pFile->hMutex); + CloseHandle(pFile->hMutex); + pFile->hMutex = NULL; + } +} + +/* +** An implementation of the LockFile() API of windows for wince +*/ +static BOOL winceLockFile( + HANDLE *phFile, + DWORD dwFileOffsetLow, + DWORD dwFileOffsetHigh, + DWORD nNumberOfBytesToLockLow, + DWORD nNumberOfBytesToLockHigh +){ + winFile *pFile = HANDLE_TO_WINFILE(phFile); + BOOL bReturn = FALSE; + + if (!pFile->hMutex) return TRUE; + winceMutexAcquire(pFile->hMutex); + + /* Wanting an exclusive lock? */ + if (dwFileOffsetLow == SHARED_FIRST + && nNumberOfBytesToLockLow == SHARED_SIZE){ + if (pFile->shared->nReaders == 0 && pFile->shared->bExclusive == 0){ + pFile->shared->bExclusive = TRUE; + pFile->local.bExclusive = TRUE; + bReturn = TRUE; + } + } + + /* Want a read-only lock? */ + else if ((dwFileOffsetLow >= SHARED_FIRST && + dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE) && + nNumberOfBytesToLockLow == 1){ + if (pFile->shared->bExclusive == 0){ + pFile->local.nReaders ++; + if (pFile->local.nReaders == 1){ + pFile->shared->nReaders ++; + } + bReturn = TRUE; + } + } + + /* Want a pending lock? */ + else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToLockLow == 1){ + /* If no pending lock has been acquired, then acquire it */ + if (pFile->shared->bPending == 0) { + pFile->shared->bPending = TRUE; + pFile->local.bPending = TRUE; + bReturn = TRUE; + } + } + /* Want a reserved lock? */ + else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToLockLow == 1){ + if (pFile->shared->bReserved == 0) { + pFile->shared->bReserved = TRUE; + pFile->local.bReserved = TRUE; + bReturn = TRUE; + } + } + + winceMutexRelease(pFile->hMutex); + return bReturn; +} + +/* +** An implementation of the UnlockFile API of windows for wince +*/ +static BOOL winceUnlockFile( + HANDLE *phFile, + DWORD dwFileOffsetLow, + DWORD dwFileOffsetHigh, + DWORD nNumberOfBytesToUnlockLow, + DWORD nNumberOfBytesToUnlockHigh +){ + winFile *pFile = HANDLE_TO_WINFILE(phFile); + BOOL bReturn = FALSE; + + if (!pFile->hMutex) return TRUE; + winceMutexAcquire(pFile->hMutex); + + /* Releasing a reader lock or an exclusive lock */ + if (dwFileOffsetLow >= SHARED_FIRST && + dwFileOffsetLow < SHARED_FIRST + SHARED_SIZE){ + /* Did we have an exclusive lock? */ + if (pFile->local.bExclusive){ + pFile->local.bExclusive = FALSE; + pFile->shared->bExclusive = FALSE; + bReturn = TRUE; + } + + /* Did we just have a reader lock? */ + else if (pFile->local.nReaders){ + pFile->local.nReaders --; + if (pFile->local.nReaders == 0) + { + pFile->shared->nReaders --; + } + bReturn = TRUE; + } + } + + /* Releasing a pending lock */ + else if (dwFileOffsetLow == PENDING_BYTE && nNumberOfBytesToUnlockLow == 1){ + if (pFile->local.bPending){ + pFile->local.bPending = FALSE; + pFile->shared->bPending = FALSE; + bReturn = TRUE; + } + } + /* Releasing a reserved lock */ + else if (dwFileOffsetLow == RESERVED_BYTE && nNumberOfBytesToUnlockLow == 1){ + if (pFile->local.bReserved) { + pFile->local.bReserved = FALSE; + pFile->shared->bReserved = FALSE; + bReturn = TRUE; + } + } + + winceMutexRelease(pFile->hMutex); + return bReturn; +} + +/* +** An implementation of the LockFileEx() API of windows for wince +*/ +static BOOL winceLockFileEx( + HANDLE *phFile, + DWORD dwFlags, + DWORD dwReserved, + DWORD nNumberOfBytesToLockLow, + DWORD nNumberOfBytesToLockHigh, + LPOVERLAPPED lpOverlapped +){ + /* If the caller wants a shared read lock, forward this call + ** to winceLockFile */ + if (lpOverlapped->Offset == SHARED_FIRST && + dwFlags == 1 && + nNumberOfBytesToLockLow == SHARED_SIZE){ + return winceLockFile(phFile, SHARED_FIRST, 0, 1, 0); + } + return FALSE; +} +/* +** End of the special code for wince +*****************************************************************************/ +#endif /* OS_WINCE */ + +/***************************************************************************** +** The next group of routines implement the I/O methods specified +** by the sqlite3_io_methods object. +******************************************************************************/ + +/* +** Close a file. +** +** It is reported that an attempt to close a handle might sometimes +** fail. This is a very unreasonable result, but windows is notorious +** for being unreasonable so I do not doubt that it might happen. If +** the close fails, we pause for 100 milliseconds and try again. As +** many as MX_CLOSE_ATTEMPT attempts to close the handle are made before +** giving up and returning an error. +*/ +#define MX_CLOSE_ATTEMPT 3 +static int winClose(sqlite3_file *id){ + int rc, cnt = 0; + winFile *pFile = (winFile*)id; + OSTRACE2("CLOSE %d\n", pFile->h); + do{ + rc = CloseHandle(pFile->h); + }while( rc==0 && cnt++ < MX_CLOSE_ATTEMPT && (Sleep(100), 1) ); +#if OS_WINCE +#define WINCE_DELETION_ATTEMPTS 3 + winceDestroyLock(pFile); + if( pFile->zDeleteOnClose ){ + int cnt = 0; + while( + DeleteFileW(pFile->zDeleteOnClose)==0 + && GetFileAttributesW(pFile->zDeleteOnClose)!=0xffffffff + && cnt++ < WINCE_DELETION_ATTEMPTS + ){ + Sleep(100); /* Wait a little before trying again */ + } + free(pFile->zDeleteOnClose); + } +#endif + OpenCounter(-1); + return rc ? SQLITE_OK : SQLITE_IOERR; +} + +/* +** Some microsoft compilers lack this definition. +*/ +#ifndef INVALID_SET_FILE_POINTER +# define INVALID_SET_FILE_POINTER ((DWORD)-1) +#endif + +/* +** Read data from a file into a buffer. Return SQLITE_OK if all +** bytes were read successfully and SQLITE_IOERR if anything goes +** wrong. +*/ +static int winRead( + sqlite3_file *id, /* File to read from */ + void *pBuf, /* Write content into this buffer */ + int amt, /* Number of bytes to read */ + sqlite3_int64 offset /* Begin reading at this offset */ +){ + LONG upperBits = (offset>>32) & 0x7fffffff; + LONG lowerBits = offset & 0xffffffff; + DWORD rc; + DWORD got; + winFile *pFile = (winFile*)id; + assert( id!=0 ); + SimulateIOError(return SQLITE_IOERR_READ); + OSTRACE3("READ %d lock=%d\n", pFile->h, pFile->locktype); + rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); + if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){ + return SQLITE_FULL; + } + if( !ReadFile(pFile->h, pBuf, amt, &got, 0) ){ + return SQLITE_IOERR_READ; + } + if( got==(DWORD)amt ){ + return SQLITE_OK; + }else{ + memset(&((char*)pBuf)[got], 0, amt-got); + return SQLITE_IOERR_SHORT_READ; + } +} + +/* +** Write data from a buffer into a file. Return SQLITE_OK on success +** or some other error code on failure. +*/ +static int winWrite( + sqlite3_file *id, /* File to write into */ + const void *pBuf, /* The bytes to be written */ + int amt, /* Number of bytes to write */ + sqlite3_int64 offset /* Offset into the file to begin writing at */ +){ + LONG upperBits = (offset>>32) & 0x7fffffff; + LONG lowerBits = offset & 0xffffffff; + DWORD rc; + DWORD wrote; + winFile *pFile = (winFile*)id; + assert( id!=0 ); + SimulateIOError(return SQLITE_IOERR_WRITE); + SimulateDiskfullError(return SQLITE_FULL); + OSTRACE3("WRITE %d lock=%d\n", pFile->h, pFile->locktype); + rc = SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); + if( rc==INVALID_SET_FILE_POINTER && GetLastError()!=NO_ERROR ){ + return SQLITE_FULL; + } + assert( amt>0 ); + while( + amt>0 + && (rc = WriteFile(pFile->h, pBuf, amt, &wrote, 0))!=0 + && wrote>0 + ){ + amt -= wrote; + pBuf = &((char*)pBuf)[wrote]; + } + if( !rc || amt>(int)wrote ){ + return SQLITE_FULL; + } + return SQLITE_OK; +} + +/* +** Truncate an open file to a specified size +*/ +static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){ + LONG upperBits = (nByte>>32) & 0x7fffffff; + LONG lowerBits = nByte & 0xffffffff; + winFile *pFile = (winFile*)id; + OSTRACE3("TRUNCATE %d %lld\n", pFile->h, nByte); + SimulateIOError(return SQLITE_IOERR_TRUNCATE); + SetFilePointer(pFile->h, lowerBits, &upperBits, FILE_BEGIN); + SetEndOfFile(pFile->h); + return SQLITE_OK; +} + +#ifdef SQLITE_TEST +/* +** Count the number of fullsyncs and normal syncs. This is used to test +** that syncs and fullsyncs are occuring at the right times. +*/ +SQLITE_API int sqlite3_sync_count = 0; +SQLITE_API int sqlite3_fullsync_count = 0; +#endif + +/* +** Make sure all writes to a particular file are committed to disk. +*/ +static int winSync(sqlite3_file *id, int flags){ + winFile *pFile = (winFile*)id; + OSTRACE3("SYNC %d lock=%d\n", pFile->h, pFile->locktype); +#ifdef SQLITE_TEST + if( flags & SQLITE_SYNC_FULL ){ + sqlite3_fullsync_count++; + } + sqlite3_sync_count++; +#endif + if( FlushFileBuffers(pFile->h) ){ + return SQLITE_OK; + }else{ + return SQLITE_IOERR; + } +} + +/* +** Determine the current size of a file in bytes +*/ +static int winFileSize(sqlite3_file *id, sqlite3_int64 *pSize){ + winFile *pFile = (winFile*)id; + DWORD upperBits, lowerBits; + SimulateIOError(return SQLITE_IOERR_FSTAT); + lowerBits = GetFileSize(pFile->h, &upperBits); + *pSize = (((sqlite3_int64)upperBits)<<32) + lowerBits; + return SQLITE_OK; +} + +/* +** LOCKFILE_FAIL_IMMEDIATELY is undefined on some Windows systems. +*/ +#ifndef LOCKFILE_FAIL_IMMEDIATELY +# define LOCKFILE_FAIL_IMMEDIATELY 1 +#endif + +/* +** Acquire a reader lock. +** Different API routines are called depending on whether or not this +** is Win95 or WinNT. +*/ +static int getReadLock(winFile *pFile){ + int res; + if( isNT() ){ + OVERLAPPED ovlp; + ovlp.Offset = SHARED_FIRST; + ovlp.OffsetHigh = 0; + ovlp.hEvent = 0; + res = LockFileEx(pFile->h, LOCKFILE_FAIL_IMMEDIATELY, + 0, SHARED_SIZE, 0, &ovlp); + }else{ + int lk; + sqlite3_randomness(sizeof(lk), &lk); + pFile->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1); + res = LockFile(pFile->h, SHARED_FIRST+pFile->sharedLockByte, 0, 1, 0); + } + return res; +} + +/* +** Undo a readlock +*/ +static int unlockReadLock(winFile *pFile){ + int res; + if( isNT() ){ + res = UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); + }else{ + res = UnlockFile(pFile->h, SHARED_FIRST + pFile->sharedLockByte, 0, 1, 0); + } + return res; +} + +/* +** Lock the file with the lock specified by parameter locktype - one +** of the following: +** +** (1) SHARED_LOCK +** (2) RESERVED_LOCK +** (3) PENDING_LOCK +** (4) EXCLUSIVE_LOCK +** +** Sometimes when requesting one lock state, additional lock states +** are inserted in between. The locking might fail on one of the later +** transitions leaving the lock state different from what it started but +** still short of its goal. The following chart shows the allowed +** transitions and the inserted intermediate states: +** +** UNLOCKED -> SHARED +** SHARED -> RESERVED +** SHARED -> (PENDING) -> EXCLUSIVE +** RESERVED -> (PENDING) -> EXCLUSIVE +** PENDING -> EXCLUSIVE +** +** This routine will only increase a lock. The winUnlock() routine +** erases all locks at once and returns us immediately to locking level 0. +** It is not possible to lower the locking level one step at a time. You +** must go straight to locking level 0. +*/ +static int winLock(sqlite3_file *id, int locktype){ + int rc = SQLITE_OK; /* Return code from subroutines */ + int res = 1; /* Result of a windows lock call */ + int newLocktype; /* Set pFile->locktype to this value before exiting */ + int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */ + winFile *pFile = (winFile*)id; + + assert( pFile!=0 ); + OSTRACE5("LOCK %d %d was %d(%d)\n", + pFile->h, locktype, pFile->locktype, pFile->sharedLockByte); + + /* If there is already a lock of this type or more restrictive on the + ** OsFile, do nothing. Don't use the end_lock: exit path, as + ** sqlite3OsEnterMutex() hasn't been called yet. + */ + if( pFile->locktype>=locktype ){ + return SQLITE_OK; + } + + /* Make sure the locking sequence is correct + */ + assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); + assert( locktype!=PENDING_LOCK ); + assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); + + /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or + ** a SHARED lock. If we are acquiring a SHARED lock, the acquisition of + ** the PENDING_LOCK byte is temporary. + */ + newLocktype = pFile->locktype; + if( pFile->locktype==NO_LOCK + || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK) + ){ + int cnt = 3; + while( cnt-->0 && (res = LockFile(pFile->h, PENDING_BYTE, 0, 1, 0))==0 ){ + /* Try 3 times to get the pending lock. The pending lock might be + ** held by another reader process who will release it momentarily. + */ + OSTRACE2("could not get a PENDING lock. cnt=%d\n", cnt); + Sleep(1); + } + gotPendingLock = res; + } + + /* Acquire a shared lock + */ + if( locktype==SHARED_LOCK && res ){ + assert( pFile->locktype==NO_LOCK ); + res = getReadLock(pFile); + if( res ){ + newLocktype = SHARED_LOCK; + } + } + + /* Acquire a RESERVED lock + */ + if( locktype==RESERVED_LOCK && res ){ + assert( pFile->locktype==SHARED_LOCK ); + res = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0); + if( res ){ + newLocktype = RESERVED_LOCK; + } + } + + /* Acquire a PENDING lock + */ + if( locktype==EXCLUSIVE_LOCK && res ){ + newLocktype = PENDING_LOCK; + gotPendingLock = 0; + } + + /* Acquire an EXCLUSIVE lock + */ + if( locktype==EXCLUSIVE_LOCK && res ){ + assert( pFile->locktype>=SHARED_LOCK ); + res = unlockReadLock(pFile); + OSTRACE2("unreadlock = %d\n", res); + res = LockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); + if( res ){ + newLocktype = EXCLUSIVE_LOCK; + }else{ + OSTRACE2("error-code = %d\n", GetLastError()); + getReadLock(pFile); + } + } + + /* If we are holding a PENDING lock that ought to be released, then + ** release it now. + */ + if( gotPendingLock && locktype==SHARED_LOCK ){ + UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0); + } + + /* Update the state of the lock has held in the file descriptor then + ** return the appropriate result code. + */ + if( res ){ + rc = SQLITE_OK; + }else{ + OSTRACE4("LOCK FAILED %d trying for %d but got %d\n", pFile->h, + locktype, newLocktype); + rc = SQLITE_BUSY; + } + pFile->locktype = newLocktype; + return rc; +} + +/* +** This routine checks if there is a RESERVED lock held on the specified +** file by this or any other process. If such a lock is held, return +** non-zero, otherwise zero. +*/ +static int winCheckReservedLock(sqlite3_file *id){ + int rc; + winFile *pFile = (winFile*)id; + assert( pFile!=0 ); + if( pFile->locktype>=RESERVED_LOCK ){ + rc = 1; + OSTRACE3("TEST WR-LOCK %d %d (local)\n", pFile->h, rc); + }else{ + rc = LockFile(pFile->h, RESERVED_BYTE, 0, 1, 0); + if( rc ){ + UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0); + } + rc = !rc; + OSTRACE3("TEST WR-LOCK %d %d (remote)\n", pFile->h, rc); + } + return rc; +} + +/* +** Lower the locking level on file descriptor id to locktype. locktype +** must be either NO_LOCK or SHARED_LOCK. +** +** If the locking level of the file descriptor is already at or below +** the requested locking level, this routine is a no-op. +** +** It is not possible for this routine to fail if the second argument +** is NO_LOCK. If the second argument is SHARED_LOCK then this routine +** might return SQLITE_IOERR; +*/ +static int winUnlock(sqlite3_file *id, int locktype){ + int type; + winFile *pFile = (winFile*)id; + int rc = SQLITE_OK; + assert( pFile!=0 ); + assert( locktype<=SHARED_LOCK ); + OSTRACE5("UNLOCK %d to %d was %d(%d)\n", pFile->h, locktype, + pFile->locktype, pFile->sharedLockByte); + type = pFile->locktype; + if( type>=EXCLUSIVE_LOCK ){ + UnlockFile(pFile->h, SHARED_FIRST, 0, SHARED_SIZE, 0); + if( locktype==SHARED_LOCK && !getReadLock(pFile) ){ + /* This should never happen. We should always be able to + ** reacquire the read lock */ + rc = SQLITE_IOERR_UNLOCK; + } + } + if( type>=RESERVED_LOCK ){ + UnlockFile(pFile->h, RESERVED_BYTE, 0, 1, 0); + } + if( locktype==NO_LOCK && type>=SHARED_LOCK ){ + unlockReadLock(pFile); + } + if( type>=PENDING_LOCK ){ + UnlockFile(pFile->h, PENDING_BYTE, 0, 1, 0); + } + pFile->locktype = locktype; + return rc; +} + +/* +** Control and query of the open file handle. +*/ +static int winFileControl(sqlite3_file *id, int op, void *pArg){ + switch( op ){ + case SQLITE_FCNTL_LOCKSTATE: { + *(int*)pArg = ((winFile*)id)->locktype; + return SQLITE_OK; + } + } + return SQLITE_ERROR; +} + +/* +** Return the sector size in bytes of the underlying block device for +** the specified file. This is almost always 512 bytes, but may be +** larger for some devices. +** +** SQLite code assumes this function cannot fail. It also assumes that +** if two files are created in the same file-system directory (i.e. +** a database and its journal file) that the sector size will be the +** same for both. +*/ +static int winSectorSize(sqlite3_file *id){ + return SQLITE_DEFAULT_SECTOR_SIZE; +} + +/* +** Return a vector of device characteristics. +*/ +static int winDeviceCharacteristics(sqlite3_file *id){ + return 0; +} + +/* +** This vector defines all the methods that can operate on an +** sqlite3_file for win32. +*/ +static const sqlite3_io_methods winIoMethod = { + 1, /* iVersion */ + winClose, + winRead, + winWrite, + winTruncate, + winSync, + winFileSize, + winLock, + winUnlock, + winCheckReservedLock, + winFileControl, + winSectorSize, + winDeviceCharacteristics +}; + +/*************************************************************************** +** Here ends the I/O methods that form the sqlite3_io_methods object. +** +** The next block of code implements the VFS methods. +****************************************************************************/ + +/* +** Convert a UTF-8 filename into whatever form the underlying +** operating system wants filenames in. Space to hold the result +** is obtained from malloc and must be freed by the calling +** function. +*/ +static void *convertUtf8Filename(const char *zFilename){ + void *zConverted = 0; + if( isNT() ){ + zConverted = utf8ToUnicode(zFilename); + }else{ + zConverted = utf8ToMbcs(zFilename); + } + /* caller will handle out of memory */ + return zConverted; +} + +/* +** Open a file. +*/ +static int winOpen( + sqlite3_vfs *pVfs, /* Not used */ + const char *zName, /* Name of the file (UTF-8) */ + sqlite3_file *id, /* Write the SQLite file handle here */ + int flags, /* Open mode flags */ + int *pOutFlags /* Status return flags */ +){ + HANDLE h; + DWORD dwDesiredAccess; + DWORD dwShareMode; + DWORD dwCreationDisposition; + DWORD dwFlagsAndAttributes = 0; + int isTemp; + winFile *pFile = (winFile*)id; + void *zConverted = convertUtf8Filename(zName); + if( zConverted==0 ){ + return SQLITE_NOMEM; + } + + if( flags & SQLITE_OPEN_READWRITE ){ + dwDesiredAccess = GENERIC_READ | GENERIC_WRITE; + }else{ + dwDesiredAccess = GENERIC_READ; + } + if( flags & SQLITE_OPEN_CREATE ){ + dwCreationDisposition = OPEN_ALWAYS; + }else{ + dwCreationDisposition = OPEN_EXISTING; + } + if( flags & SQLITE_OPEN_MAIN_DB ){ + dwShareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; + }else{ + dwShareMode = 0; + } + if( flags & SQLITE_OPEN_DELETEONCLOSE ){ +#if OS_WINCE + dwFlagsAndAttributes = FILE_ATTRIBUTE_HIDDEN; +#else + dwFlagsAndAttributes = FILE_ATTRIBUTE_TEMPORARY + | FILE_ATTRIBUTE_HIDDEN + | FILE_FLAG_DELETE_ON_CLOSE; +#endif + isTemp = 1; + }else{ + dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL; + isTemp = 0; + } + /* Reports from the internet are that performance is always + ** better if FILE_FLAG_RANDOM_ACCESS is used. Ticket #2699. */ + dwFlagsAndAttributes |= FILE_FLAG_RANDOM_ACCESS; + if( isNT() ){ + h = CreateFileW((WCHAR*)zConverted, + dwDesiredAccess, + dwShareMode, + NULL, + dwCreationDisposition, + dwFlagsAndAttributes, + NULL + ); + }else{ +#if OS_WINCE + return SQLITE_NOMEM; +#else + h = CreateFileA((char*)zConverted, + dwDesiredAccess, + dwShareMode, + NULL, + dwCreationDisposition, + dwFlagsAndAttributes, + NULL + ); +#endif + } + if( h==INVALID_HANDLE_VALUE ){ + free(zConverted); + if( flags & SQLITE_OPEN_READWRITE ){ + return winOpen(0, zName, id, + ((flags|SQLITE_OPEN_READONLY)&~SQLITE_OPEN_READWRITE), pOutFlags); + }else{ + return SQLITE_CANTOPEN; + } + } + if( pOutFlags ){ + if( flags & SQLITE_OPEN_READWRITE ){ + *pOutFlags = SQLITE_OPEN_READWRITE; + }else{ + *pOutFlags = SQLITE_OPEN_READONLY; + } + } + memset(pFile, 0, sizeof(*pFile)); + pFile->pMethod = &winIoMethod; + pFile->h = h; +#if OS_WINCE + if( (flags & (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB)) == + (SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_DB) + && !winceCreateLock(zName, pFile) + ){ + CloseHandle(h); + free(zConverted); + return SQLITE_CANTOPEN; + } + if( isTemp ){ + pFile->zDeleteOnClose = zConverted; + }else +#endif + { + free(zConverted); + } + OpenCounter(+1); + return SQLITE_OK; +} + +/* +** Delete the named file. +** +** Note that windows does not allow a file to be deleted if some other +** process has it open. Sometimes a virus scanner or indexing program +** will open a journal file shortly after it is created in order to do +** whatever does. While this other process is holding the +** file open, we will be unable to delete it. To work around this +** problem, we delay 100 milliseconds and try to delete again. Up +** to MX_DELETION_ATTEMPTs deletion attempts are run before giving +** up and returning an error. +*/ +#define MX_DELETION_ATTEMPTS 5 +static int winDelete( + sqlite3_vfs *pVfs, /* Not used on win32 */ + const char *zFilename, /* Name of file to delete */ + int syncDir /* Not used on win32 */ +){ + int cnt = 0; + int rc; + void *zConverted = convertUtf8Filename(zFilename); + if( zConverted==0 ){ + return SQLITE_NOMEM; + } + SimulateIOError(return SQLITE_IOERR_DELETE); + if( isNT() ){ + do{ + DeleteFileW(zConverted); + }while( (rc = GetFileAttributesW(zConverted))!=0xffffffff + && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) ); + }else{ +#if OS_WINCE + return SQLITE_NOMEM; +#else + do{ + DeleteFileA(zConverted); + }while( (rc = GetFileAttributesA(zConverted))!=0xffffffff + && cnt++ < MX_DELETION_ATTEMPTS && (Sleep(100), 1) ); +#endif + } + free(zConverted); + OSTRACE2("DELETE \"%s\"\n", zFilename); + return rc==0xffffffff ? SQLITE_OK : SQLITE_IOERR_DELETE; +} + +/* +** Check the existance and status of a file. +*/ +static int winAccess( + sqlite3_vfs *pVfs, /* Not used on win32 */ + const char *zFilename, /* Name of file to check */ + int flags /* Type of test to make on this file */ +){ + DWORD attr; + int rc; + void *zConverted = convertUtf8Filename(zFilename); + if( zConverted==0 ){ + return SQLITE_NOMEM; + } + if( isNT() ){ + attr = GetFileAttributesW((WCHAR*)zConverted); + }else{ +#if OS_WINCE + return SQLITE_NOMEM; +#else + attr = GetFileAttributesA((char*)zConverted); +#endif + } + free(zConverted); + switch( flags ){ + case SQLITE_ACCESS_READ: + case SQLITE_ACCESS_EXISTS: + rc = attr!=0xffffffff; + break; + case SQLITE_ACCESS_READWRITE: + rc = (attr & FILE_ATTRIBUTE_READONLY)==0; + break; + default: + assert(!"Invalid flags argument"); + } + return rc; +} + + +/* +** Create a temporary file name in zBuf. zBuf must be big enough to +** hold at pVfs->mxPathname characters. +*/ +static int winGetTempname(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ + static char zChars[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789"; + int i, j; + char zTempPath[MAX_PATH+1]; + if( sqlite3_temp_directory ){ + sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory); + }else if( isNT() ){ + char *zMulti; + WCHAR zWidePath[MAX_PATH]; + GetTempPathW(MAX_PATH-30, zWidePath); + zMulti = unicodeToUtf8(zWidePath); + if( zMulti ){ + sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti); + free(zMulti); + }else{ + return SQLITE_NOMEM; + } + }else{ + char *zUtf8; + char zMbcsPath[MAX_PATH]; + GetTempPathA(MAX_PATH-30, zMbcsPath); + zUtf8 = mbcsToUtf8(zMbcsPath); + if( zUtf8 ){ + sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8); + free(zUtf8); + }else{ + return SQLITE_NOMEM; + } + } + for(i=strlen(zTempPath); i>0 && zTempPath[i-1]=='\\'; i--){} + zTempPath[i] = 0; + sqlite3_snprintf(nBuf-30, zBuf, + "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath); + j = strlen(zBuf); + sqlite3_randomness(20, &zBuf[j]); + for(i=0; i<20; i++, j++){ + zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; + } + zBuf[j] = 0; + OSTRACE2("TEMP FILENAME: %s\n", zBuf); + return SQLITE_OK; +} + +/* +** Turn a relative pathname into a full pathname. Write the full +** pathname into zOut[]. zOut[] will be at least pVfs->mxPathname +** bytes in size. +*/ +static int winFullPathname( + sqlite3_vfs *pVfs, /* Pointer to vfs object */ + const char *zRelative, /* Possibly relative input path */ + int nFull, /* Size of output buffer in bytes */ + char *zFull /* Output buffer */ +){ + +#if defined(__CYGWIN__) + cygwin_conv_to_full_win32_path(zRelative, zFull); + return SQLITE_OK; +#endif + +#if OS_WINCE + /* WinCE has no concept of a relative pathname, or so I am told. */ + sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zRelative); + return SQLITE_OK; +#endif + +#if !OS_WINCE && !defined(__CYGWIN__) + int nByte; + void *zConverted; + char *zOut; + zConverted = convertUtf8Filename(zRelative); + if( isNT() ){ + WCHAR *zTemp; + nByte = GetFullPathNameW((WCHAR*)zConverted, 0, 0, 0) + 3; + zTemp = malloc( nByte*sizeof(zTemp[0]) ); + if( zTemp==0 ){ + free(zConverted); + return SQLITE_NOMEM; + } + GetFullPathNameW((WCHAR*)zConverted, nByte, zTemp, 0); + free(zConverted); + zOut = unicodeToUtf8(zTemp); + free(zTemp); + }else{ + char *zTemp; + nByte = GetFullPathNameA((char*)zConverted, 0, 0, 0) + 3; + zTemp = malloc( nByte*sizeof(zTemp[0]) ); + if( zTemp==0 ){ + free(zConverted); + return SQLITE_NOMEM; + } + GetFullPathNameA((char*)zConverted, nByte, zTemp, 0); + free(zConverted); + zOut = mbcsToUtf8(zTemp); + free(zTemp); + } + if( zOut ){ + sqlite3_snprintf(pVfs->mxPathname, zFull, "%s", zOut); + free(zOut); + return SQLITE_OK; + }else{ + return SQLITE_NOMEM; + } +#endif +} + +#ifndef SQLITE_OMIT_LOAD_EXTENSION +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +/* +** Interfaces for opening a shared library, finding entry points +** within the shared library, and closing the shared library. +*/ +static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ + HANDLE h; + void *zConverted = convertUtf8Filename(zFilename); + if( zConverted==0 ){ + return 0; + } + if( isNT() ){ + h = LoadLibraryW((WCHAR*)zConverted); + }else{ +#if OS_WINCE + return 0; +#else + h = LoadLibraryA((char*)zConverted); +#endif + } + free(zConverted); + return (void*)h; +} +static void winDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ +#if OS_WINCE + int error = GetLastError(); + if( error>0x7FFFFFF ){ + sqlite3_snprintf(nBuf, zBufOut, "OsError 0x%x", error); + }else{ + sqlite3_snprintf(nBuf, zBufOut, "OsError %d", error); + } +#else + FormatMessageA( + FORMAT_MESSAGE_FROM_SYSTEM, + NULL, + GetLastError(), + 0, + zBufOut, + nBuf-1, + 0 + ); +#endif +} +void *winDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){ +#if OS_WINCE + /* The GetProcAddressA() routine is only available on wince. */ + return GetProcAddressA((HANDLE)pHandle, zSymbol); +#else + /* All other windows platforms expect GetProcAddress() to take + ** an Ansi string regardless of the _UNICODE setting */ + return GetProcAddress((HANDLE)pHandle, zSymbol); +#endif +} +void winDlClose(sqlite3_vfs *pVfs, void *pHandle){ + FreeLibrary((HANDLE)pHandle); +} +#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ + #define winDlOpen 0 + #define winDlError 0 + #define winDlSym 0 + #define winDlClose 0 +#endif + + +/* +** Write up to nBuf bytes of randomness into zBuf. +*/ +static int winRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ + int n = 0; + if( sizeof(SYSTEMTIME)<=nBuf-n ){ + SYSTEMTIME x; + GetSystemTime(&x); + memcpy(&zBuf[n], &x, sizeof(x)); + n += sizeof(x); + } + if( sizeof(DWORD)<=nBuf-n ){ + DWORD pid = GetCurrentProcessId(); + memcpy(&zBuf[n], &pid, sizeof(pid)); + n += sizeof(pid); + } + if( sizeof(DWORD)<=nBuf-n ){ + DWORD cnt = GetTickCount(); + memcpy(&zBuf[n], &cnt, sizeof(cnt)); + n += sizeof(cnt); + } + if( sizeof(LARGE_INTEGER)<=nBuf-n ){ + LARGE_INTEGER i; + QueryPerformanceCounter(&i); + memcpy(&zBuf[n], &i, sizeof(i)); + n += sizeof(i); + } + return n; +} + + +/* +** Sleep for a little while. Return the amount of time slept. +*/ +static int winSleep(sqlite3_vfs *pVfs, int microsec){ + Sleep((microsec+999)/1000); + return ((microsec+999)/1000)*1000; +} + +/* +** The following variable, if set to a non-zero value, becomes the result +** returned from sqlite3OsCurrentTime(). This is used for testing. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_current_time = 0; +#endif + +/* +** Find the current time (in Universal Coordinated Time). Write the +** current time and date as a Julian Day number into *prNow and +** return 0. Return 1 if the time and date cannot be found. +*/ +int winCurrentTime(sqlite3_vfs *pVfs, double *prNow){ + FILETIME ft; + /* FILETIME structure is a 64-bit value representing the number of + 100-nanosecond intervals since January 1, 1601 (= JD 2305813.5). + */ + double now; +#if OS_WINCE + SYSTEMTIME time; + GetSystemTime(&time); + SystemTimeToFileTime(&time,&ft); +#else + GetSystemTimeAsFileTime( &ft ); +#endif + now = ((double)ft.dwHighDateTime) * 4294967296.0; + *prNow = (now + ft.dwLowDateTime)/864000000000.0 + 2305813.5; +#ifdef SQLITE_TEST + if( sqlite3_current_time ){ + *prNow = sqlite3_current_time/86400.0 + 2440587.5; + } +#endif + return 0; +} + + +/* +** Return a pointer to the sqlite3DefaultVfs structure. We use +** a function rather than give the structure global scope because +** some compilers (MSVC) do not allow forward declarations of +** initialized structures. +*/ +SQLITE_PRIVATE sqlite3_vfs *sqlite3OsDefaultVfs(void){ + static sqlite3_vfs winVfs = { + 1, /* iVersion */ + sizeof(winFile), /* szOsFile */ + MAX_PATH, /* mxPathname */ + 0, /* pNext */ + "win32", /* zName */ + 0, /* pAppData */ + + winOpen, /* xOpen */ + winDelete, /* xDelete */ + winAccess, /* xAccess */ + winGetTempname, /* xGetTempName */ + winFullPathname, /* xFullPathname */ + winDlOpen, /* xDlOpen */ + winDlError, /* xDlError */ + winDlSym, /* xDlSym */ + winDlClose, /* xDlClose */ + winRandomness, /* xRandomness */ + winSleep, /* xSleep */ + winCurrentTime /* xCurrentTime */ + }; + + return &winVfs; +} + +#endif /* OS_WIN */ + +/************** End of os_win.c **********************************************/ +/************** Begin file bitvec.c ******************************************/ +/* +** 2008 February 16 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file implements an object that represents a fixed-length +** bitmap. Bits are numbered starting with 1. +** +** A bitmap is used to record what pages a database file have been +** journalled during a transaction. Usually only a few pages are +** journalled. So the bitmap is usually sparse and has low cardinality. +** But sometimes (for example when during a DROP of a large table) most +** or all of the pages get journalled. In those cases, the bitmap becomes +** dense. The algorithm needs to handle both cases well. +** +** The size of the bitmap is fixed when the object is created. +** +** All bits are clear when the bitmap is created. Individual bits +** may be set or cleared one at a time. +** +** Test operations are about 100 times more common that set operations. +** Clear operations are exceedingly rare. There are usually between +** 5 and 500 set operations per Bitvec object, though the number of sets can +** sometimes grow into tens of thousands or larger. The size of the +** Bitvec object is the number of pages in the database file at the +** start of a transaction, and is thus usually less than a few thousand, +** but can be as large as 2 billion for a really big database. +** +** @(#) $Id: bitvec.c,v 1.5 2008/05/13 13:27:34 drh Exp $ +*/ + +#define BITVEC_SZ 512 +/* Round the union size down to the nearest pointer boundary, since that's how +** it will be aligned within the Bitvec struct. */ +#define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*)) +#define BITVEC_NCHAR BITVEC_USIZE +#define BITVEC_NBIT (BITVEC_NCHAR*8) +#define BITVEC_NINT (BITVEC_USIZE/4) +#define BITVEC_MXHASH (BITVEC_NINT/2) +#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) + +#define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT) + +/* +** A bitmap is an instance of the following structure. +** +** This bitmap records the existance of zero or more bits +** with values between 1 and iSize, inclusive. +** +** There are three possible representations of the bitmap. +** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight +** bitmap. The least significant bit is bit 1. +** +** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is +** a hash table that will hold up to BITVEC_MXHASH distinct values. +** +** Otherwise, the value i is redirected into one of BITVEC_NPTR +** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap +** handles up to iDivisor separate values of i. apSub[0] holds +** values between 1 and iDivisor. apSub[1] holds values between +** iDivisor+1 and 2*iDivisor. apSub[N] holds values between +** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized +** to hold deal with values between 1 and iDivisor. +*/ +struct Bitvec { + u32 iSize; /* Maximum bit index */ + u32 nSet; /* Number of bits that are set */ + u32 iDivisor; /* Number of bits handled by each apSub[] entry */ + union { + u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */ + u32 aHash[BITVEC_NINT]; /* Hash table representation */ + Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ + } u; +}; + +/* +** Create a new bitmap object able to handle bits between 0 and iSize, +** inclusive. Return a pointer to the new object. Return NULL if +** malloc fails. +*/ +SQLITE_PRIVATE Bitvec *sqlite3BitvecCreate(u32 iSize){ + Bitvec *p; + assert( sizeof(*p)==BITVEC_SZ ); + p = sqlite3MallocZero( sizeof(*p) ); + if( p ){ + p->iSize = iSize; + } + return p; +} + +/* +** Check to see if the i-th bit is set. Return true or false. +** If p is NULL (if the bitmap has not been created) or if +** i is out of range, then return false. +*/ +SQLITE_PRIVATE int sqlite3BitvecTest(Bitvec *p, u32 i){ + if( p==0 ) return 0; + if( i>p->iSize || i==0 ) return 0; + if( p->iSize<=BITVEC_NBIT ){ + i--; + return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0; + } + if( p->iDivisor>0 ){ + u32 bin = (i-1)/p->iDivisor; + i = (i-1)%p->iDivisor + 1; + return sqlite3BitvecTest(p->u.apSub[bin], i); + }else{ + u32 h = BITVEC_HASH(i); + while( p->u.aHash[h] ){ + if( p->u.aHash[h]==i ) return 1; + h++; + if( h>=BITVEC_NINT ) h = 0; + } + return 0; + } +} + +/* +** Set the i-th bit. Return 0 on success and an error code if +** anything goes wrong. +*/ +SQLITE_PRIVATE int sqlite3BitvecSet(Bitvec *p, u32 i){ + u32 h; + assert( p!=0 ); + assert( i>0 ); + assert( i<=p->iSize ); + if( p->iSize<=BITVEC_NBIT ){ + i--; + p->u.aBitmap[i/8] |= 1 << (i&7); + return SQLITE_OK; + } + if( p->iDivisor ){ + u32 bin = (i-1)/p->iDivisor; + i = (i-1)%p->iDivisor + 1; + if( p->u.apSub[bin]==0 ){ + sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC); + p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); + sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC); + if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; + } + return sqlite3BitvecSet(p->u.apSub[bin], i); + } + h = BITVEC_HASH(i); + while( p->u.aHash[h] ){ + if( p->u.aHash[h]==i ) return SQLITE_OK; + h++; + if( h==BITVEC_NINT ) h = 0; + } + p->nSet++; + if( p->nSet>=BITVEC_MXHASH ){ + int j, rc; + u32 aiValues[BITVEC_NINT]; + memcpy(aiValues, p->u.aHash, sizeof(aiValues)); + memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR); + p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; + rc = sqlite3BitvecSet(p, i); + for(j=0; j<BITVEC_NINT; j++){ + if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); + } + return rc; + } + p->u.aHash[h] = i; + return SQLITE_OK; +} + +/* +** Clear the i-th bit. Return 0 on success and an error code if +** anything goes wrong. +*/ +SQLITE_PRIVATE void sqlite3BitvecClear(Bitvec *p, u32 i){ + assert( p!=0 ); + assert( i>0 ); + if( p->iSize<=BITVEC_NBIT ){ + i--; + p->u.aBitmap[i/8] &= ~(1 << (i&7)); + }else if( p->iDivisor ){ + u32 bin = (i-1)/p->iDivisor; + i = (i-1)%p->iDivisor + 1; + if( p->u.apSub[bin] ){ + sqlite3BitvecClear(p->u.apSub[bin], i); + } + }else{ + int j; + u32 aiValues[BITVEC_NINT]; + memcpy(aiValues, p->u.aHash, sizeof(aiValues)); + memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT); + p->nSet = 0; + for(j=0; j<BITVEC_NINT; j++){ + if( aiValues[j] && aiValues[j]!=i ){ + sqlite3BitvecSet(p, aiValues[j]); + } + } + } +} + +/* +** Destroy a bitmap object. Reclaim all memory used. +*/ +SQLITE_PRIVATE void sqlite3BitvecDestroy(Bitvec *p){ + if( p==0 ) return; + if( p->iDivisor ){ + int i; + for(i=0; i<BITVEC_NPTR; i++){ + sqlite3BitvecDestroy(p->u.apSub[i]); + } + } + sqlite3_free(p); +} + +#ifndef SQLITE_OMIT_BUILTIN_TEST +/* +** Let V[] be an array of unsigned characters sufficient to hold +** up to N bits. Let I be an integer between 0 and N. 0<=I<N. +** Then the following macros can be used to set, clear, or test +** individual bits within V. +*/ +#define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) +#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) +#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 + +/* +** This routine runs an extensive test of the Bitvec code. +** +** The input is an array of integers that acts as a program +** to test the Bitvec. The integers are opcodes followed +** by 0, 1, or 3 operands, depending on the opcode. Another +** opcode follows immediately after the last operand. +** +** There are 6 opcodes numbered from 0 through 5. 0 is the +** "halt" opcode and causes the test to end. +** +** 0 Halt and return the number of errors +** 1 N S X Set N bits beginning with S and incrementing by X +** 2 N S X Clear N bits beginning with S and incrementing by X +** 3 N Set N randomly chosen bits +** 4 N Clear N randomly chosen bits +** 5 N S X Set N bits from S increment X in array only, not in bitvec +** +** The opcodes 1 through 4 perform set and clear operations are performed +** on both a Bitvec object and on a linear array of bits obtained from malloc. +** Opcode 5 works on the linear array only, not on the Bitvec. +** Opcode 5 is used to deliberately induce a fault in order to +** confirm that error detection works. +** +** At the conclusion of the test the linear array is compared +** against the Bitvec object. If there are any differences, +** an error is returned. If they are the same, zero is returned. +** +** If a memory allocation error occurs, return -1. +*/ +SQLITE_PRIVATE int sqlite3BitvecBuiltinTest(int sz, int *aOp){ + Bitvec *pBitvec = 0; + unsigned char *pV = 0; + int rc = -1; + int i, nx, pc, op; + + /* Allocate the Bitvec to be tested and a linear array of + ** bits to act as the reference */ + pBitvec = sqlite3BitvecCreate( sz ); + pV = sqlite3_malloc( (sz+7)/8 + 1 ); + if( pBitvec==0 || pV==0 ) goto bitvec_end; + memset(pV, 0, (sz+7)/8 + 1); + + /* Run the program */ + pc = 0; + while( (op = aOp[pc])!=0 ){ + switch( op ){ + case 1: + case 2: + case 5: { + nx = 4; + i = aOp[pc+2] - 1; + aOp[pc+2] += aOp[pc+3]; + break; + } + case 3: + case 4: + default: { + nx = 2; + sqlite3_randomness(sizeof(i), &i); + break; + } + } + if( (--aOp[pc+1]) > 0 ) nx = 0; + pc += nx; + i = (i & 0x7fffffff)%sz; + if( (op & 1)!=0 ){ + SETBIT(pV, (i+1)); + if( op!=5 ){ + if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; + } + }else{ + CLEARBIT(pV, (i+1)); + sqlite3BitvecClear(pBitvec, i+1); + } + } + + /* Test to make sure the linear array exactly matches the + ** Bitvec object. Start with the assumption that they do + ** match (rc==0). Change rc to non-zero if a discrepancy + ** is found. + */ + rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) + + sqlite3BitvecTest(pBitvec, 0); + for(i=1; i<=sz; i++){ + if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ + rc = i; + break; + } + } + + /* Free allocated structure */ +bitvec_end: + sqlite3_free(pV); + sqlite3BitvecDestroy(pBitvec); + return rc; +} +#endif /* SQLITE_OMIT_BUILTIN_TEST */ + +/************** End of bitvec.c **********************************************/ +/************** Begin file pager.c *******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the implementation of the page cache subsystem or "pager". +** +** The pager is used to access a database disk file. It implements +** atomic commit and rollback through the use of a journal file that +** is separate from the database file. The pager also implements file +** locking to prevent two processes from writing the same database +** file simultaneously, or one process from reading the database while +** another is writing. +** +** @(#) $Id: pager.c,v 1.446 2008/05/13 13:27:34 drh Exp $ +*/ +#ifndef SQLITE_OMIT_DISKIO + +/* +** Macros for troubleshooting. Normally turned off +*/ +#if 0 +#define sqlite3DebugPrintf printf +#define PAGERTRACE1(X) sqlite3DebugPrintf(X) +#define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y) +#define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z) +#define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W) +#define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V) +#else +#define PAGERTRACE1(X) +#define PAGERTRACE2(X,Y) +#define PAGERTRACE3(X,Y,Z) +#define PAGERTRACE4(X,Y,Z,W) +#define PAGERTRACE5(X,Y,Z,W,V) +#endif + +/* +** The following two macros are used within the PAGERTRACEX() macros above +** to print out file-descriptors. +** +** PAGERID() takes a pointer to a Pager struct as its argument. The +** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file +** struct as its argument. +*/ +#define PAGERID(p) ((int)(p->fd)) +#define FILEHANDLEID(fd) ((int)fd) + +/* +** The page cache as a whole is always in one of the following +** states: +** +** PAGER_UNLOCK The page cache is not currently reading or +** writing the database file. There is no +** data held in memory. This is the initial +** state. +** +** PAGER_SHARED The page cache is reading the database. +** Writing is not permitted. There can be +** multiple readers accessing the same database +** file at the same time. +** +** PAGER_RESERVED This process has reserved the database for writing +** but has not yet made any changes. Only one process +** at a time can reserve the database. The original +** database file has not been modified so other +** processes may still be reading the on-disk +** database file. +** +** PAGER_EXCLUSIVE The page cache is writing the database. +** Access is exclusive. No other processes or +** threads can be reading or writing while one +** process is writing. +** +** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE +** after all dirty pages have been written to the +** database file and the file has been synced to +** disk. All that remains to do is to remove or +** truncate the journal file and the transaction +** will be committed. +** +** The page cache comes up in PAGER_UNLOCK. The first time a +** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED. +** After all pages have been released using sqlite_page_unref(), +** the state transitions back to PAGER_UNLOCK. The first time +** that sqlite3PagerWrite() is called, the state transitions to +** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be +** called on an outstanding page which means that the pager must +** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) +** PAGER_RESERVED means that there is an open rollback journal. +** The transition to PAGER_EXCLUSIVE occurs before any changes +** are made to the database file, though writes to the rollback +** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback() +** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED, +** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode. +*/ +#define PAGER_UNLOCK 0 +#define PAGER_SHARED 1 /* same as SHARED_LOCK */ +#define PAGER_RESERVED 2 /* same as RESERVED_LOCK */ +#define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */ +#define PAGER_SYNCED 5 + +/* +** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time, +** then failed attempts to get a reserved lock will invoke the busy callback. +** This is off by default. To see why, consider the following scenario: +** +** Suppose thread A already has a shared lock and wants a reserved lock. +** Thread B already has a reserved lock and wants an exclusive lock. If +** both threads are using their busy callbacks, it might be a long time +** be for one of the threads give up and allows the other to proceed. +** But if the thread trying to get the reserved lock gives up quickly +** (if it never invokes its busy callback) then the contention will be +** resolved quickly. +*/ +#ifndef SQLITE_BUSY_RESERVED_LOCK +# define SQLITE_BUSY_RESERVED_LOCK 0 +#endif + +/* +** This macro rounds values up so that if the value is an address it +** is guaranteed to be an address that is aligned to an 8-byte boundary. +*/ +#define FORCE_ALIGNMENT(X) (((X)+7)&~7) + +typedef struct PgHdr PgHdr; + +/* +** Each pager stores all currently unreferenced pages in a list sorted +** in least-recently-used (LRU) order (i.e. the first item on the list has +** not been referenced in a long time, the last item has been recently +** used). An instance of this structure is included as part of each +** pager structure for this purpose (variable Pager.lru). +** +** Additionally, if memory-management is enabled, all unreferenced pages +** are stored in a global LRU list (global variable sqlite3LruPageList). +** +** In both cases, the PagerLruList.pFirstSynced variable points to +** the first page in the corresponding list that does not require an +** fsync() operation before its memory can be reclaimed. If no such +** page exists, PagerLruList.pFirstSynced is set to NULL. +*/ +typedef struct PagerLruList PagerLruList; +struct PagerLruList { + PgHdr *pFirst; /* First page in LRU list */ + PgHdr *pLast; /* Last page in LRU list (the most recently used) */ + PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */ +}; + +/* +** The following structure contains the next and previous pointers used +** to link a PgHdr structure into a PagerLruList linked list. +*/ +typedef struct PagerLruLink PagerLruLink; +struct PagerLruLink { + PgHdr *pNext; + PgHdr *pPrev; +}; + +/* +** Each in-memory image of a page begins with the following header. +** This header is only visible to this pager module. The client +** code that calls pager sees only the data that follows the header. +** +** Client code should call sqlite3PagerWrite() on a page prior to making +** any modifications to that page. The first time sqlite3PagerWrite() +** is called, the original page contents are written into the rollback +** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once +** the journal page has made it onto the disk surface, PgHdr.needSync +** is cleared. The modified page cannot be written back into the original +** database file until the journal pages has been synced to disk and the +** PgHdr.needSync has been cleared. +** +** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and +** is cleared again when the page content is written back to the original +** database file. +** +** Details of important structure elements: +** +** needSync +** +** If this is true, this means that it is not safe to write the page +** content to the database because the original content needed +** for rollback has not by synced to the main rollback journal. +** The original content may have been written to the rollback journal +** but it has not yet been synced. So we cannot write to the database +** file because power failure might cause the page in the journal file +** to never reach the disk. It is as if the write to the journal file +** does not occur until the journal file is synced. +** +** This flag is false if the page content exactly matches what +** currently exists in the database file. The needSync flag is also +** false if the original content has been written to the main rollback +** journal and synced. If the page represents a new page that has +** been added onto the end of the database during the current +** transaction, the needSync flag is true until the original database +** size in the journal header has been synced to disk. +** +** inJournal +** +** This is true if the original page has been written into the main +** rollback journal. This is always false for new pages added to +** the end of the database file during the current transaction. +** And this flag says nothing about whether or not the journal +** has been synced to disk. For pages that are in the original +** database file, the following expression should always be true: +** +** inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno) +** +** The pPager->pInJournal object is only valid for the original +** pages of the database, not new pages that are added to the end +** of the database, so obviously the above expression cannot be +** valid for new pages. For new pages inJournal is always 0. +** +** dirty +** +** When true, this means that the content of the page has been +** modified and needs to be written back to the database file. +** If false, it means that either the content of the page is +** unchanged or else the content is unimportant and we do not +** care whether or not it is preserved. +** +** alwaysRollback +** +** This means that the sqlite3PagerDontRollback() API should be +** ignored for this page. The DontRollback() API attempts to say +** that the content of the page on disk is unimportant (it is an +** unused page on the freelist) so that it is unnecessary to +** rollback changes to this page because the content of the page +** can change without changing the meaning of the database. This +** flag overrides any DontRollback() attempt. This flag is set +** when a page that originally contained valid data is added to +** the freelist. Later in the same transaction, this page might +** be pulled from the freelist and reused for something different +** and at that point the DontRollback() API will be called because +** pages taken from the freelist do not need to be protected by +** the rollback journal. But this flag says that the page was +** not originally part of the freelist so that it still needs to +** be rolled back in spite of any subsequent DontRollback() calls. +** +** needRead +** +** This flag means (when true) that the content of the page has +** not yet been loaded from disk. The in-memory content is just +** garbage. (Actually, we zero the content, but you should not +** make any assumptions about the content nevertheless.) If the +** content is needed in the future, it should be read from the +** original database file. +*/ +struct PgHdr { + Pager *pPager; /* The pager to which this page belongs */ + Pgno pgno; /* The page number for this page */ + PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */ + PagerLruLink free; /* Next and previous free pages */ + PgHdr *pNextAll; /* A list of all pages */ + u8 inJournal; /* TRUE if has been written to journal */ + u8 dirty; /* TRUE if we need to write back changes */ + u8 needSync; /* Sync journal before writing this page */ + u8 alwaysRollback; /* Disable DontRollback() for this page */ + u8 needRead; /* Read content if PagerWrite() is called */ + short int nRef; /* Number of users of this page */ + PgHdr *pDirty, *pPrevDirty; /* Dirty pages */ +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + PagerLruLink gfree; /* Global list of nRef==0 pages */ +#endif +#ifdef SQLITE_CHECK_PAGES + u32 pageHash; +#endif + void *pData; /* Page data */ + /* Pager.nExtra bytes of local data appended to this header */ +}; + +/* +** For an in-memory only database, some extra information is recorded about +** each page so that changes can be rolled back. (Journal files are not +** used for in-memory databases.) The following information is added to +** the end of every EXTRA block for in-memory databases. +** +** This information could have been added directly to the PgHdr structure. +** But then it would take up an extra 8 bytes of storage on every PgHdr +** even for disk-based databases. Splitting it out saves 8 bytes. This +** is only a savings of 0.8% but those percentages add up. +*/ +typedef struct PgHistory PgHistory; +struct PgHistory { + u8 *pOrig; /* Original page text. Restore to this on a full rollback */ + u8 *pStmt; /* Text as it was at the beginning of the current statement */ + PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */ + u8 inStmt; /* TRUE if in the statement subjournal */ +}; + +/* +** A macro used for invoking the codec if there is one +*/ +#ifdef SQLITE_HAS_CODEC +# define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); } +# define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D)) +#else +# define CODEC1(P,D,N,X) /* NO-OP */ +# define CODEC2(P,D,N,X) ((char*)D) +#endif + +/* +** Convert a pointer to a PgHdr into a pointer to its data +** and back again. +*/ +#define PGHDR_TO_DATA(P) ((P)->pData) +#define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1])) +#define PGHDR_TO_HIST(P,PGR) \ + ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra]) + +/* +** A open page cache is an instance of the following structure. +** +** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or +** or SQLITE_FULL. Once one of the first three errors occurs, it persists +** and is returned as the result of every major pager API call. The +** SQLITE_FULL return code is slightly different. It persists only until the +** next successful rollback is performed on the pager cache. Also, +** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup() +** APIs, they may still be used successfully. +*/ +struct Pager { + sqlite3_vfs *pVfs; /* OS functions to use for IO */ + u8 journalOpen; /* True if journal file descriptors is valid */ + u8 journalStarted; /* True if header of journal is synced */ + u8 useJournal; /* Use a rollback journal on this file */ + u8 noReadlock; /* Do not bother to obtain readlocks */ + u8 stmtOpen; /* True if the statement subjournal is open */ + u8 stmtInUse; /* True we are in a statement subtransaction */ + u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ + u8 noSync; /* Do not sync the journal if true */ + u8 fullSync; /* Do extra syncs of the journal for robustness */ + u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */ + u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ + u8 tempFile; /* zFilename is a temporary file */ + u8 readOnly; /* True for a read-only database */ + u8 needSync; /* True if an fsync() is needed on the journal */ + u8 dirtyCache; /* True if cached pages have changed */ + u8 alwaysRollback; /* Disable DontRollback() for all pages */ + u8 memDb; /* True to inhibit all file I/O */ + u8 setMaster; /* True if a m-j name has been written to jrnl */ + u8 doNotSync; /* Boolean. While true, do not spill the cache */ + u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ + u8 journalMode; /* On of the PAGER_JOURNALMODE_* values */ + u8 dbModified; /* True if there are any changes to the Db */ + u8 changeCountDone; /* Set after incrementing the change-counter */ + u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ + int errCode; /* One of several kinds of errors */ + int dbSize; /* Number of pages in the file */ + int origDbSize; /* dbSize before the current change */ + int stmtSize; /* Size of database (in pages) at stmt_begin() */ + int nRec; /* Number of pages written to the journal */ + u32 cksumInit; /* Quasi-random value added to every checksum */ + int stmtNRec; /* Number of records in stmt subjournal */ + int nExtra; /* Add this many bytes to each in-memory page */ + int pageSize; /* Number of bytes in a page */ + int nPage; /* Total number of in-memory pages */ + int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ + int mxPage; /* Maximum number of pages to hold in cache */ + Pgno mxPgno; /* Maximum allowed size of the database */ + Bitvec *pInJournal; /* One bit for each page in the database file */ + Bitvec *pInStmt; /* One bit for each page in the database */ + char *zFilename; /* Name of the database file */ + char *zJournal; /* Name of the journal file */ + char *zDirectory; /* Directory hold database and journal files */ + char *zStmtJrnl; /* Name of the statement journal file */ + sqlite3_file *fd, *jfd; /* File descriptors for database and journal */ + sqlite3_file *stfd; /* File descriptor for the statement subjournal*/ + BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */ + PagerLruList lru; /* LRU list of free pages */ + PgHdr *pAll; /* List of all pages */ + PgHdr *pStmt; /* List of pages in the statement subjournal */ + PgHdr *pDirty; /* List of all dirty pages */ + i64 journalOff; /* Current byte offset in the journal file */ + i64 journalHdr; /* Byte offset to previous journal header */ + i64 stmtHdrOff; /* First journal header written this statement */ + i64 stmtCksum; /* cksumInit when statement was started */ + i64 stmtJSize; /* Size of journal at stmt_begin() */ + int sectorSize; /* Assumed sector size during rollback */ +#ifdef SQLITE_TEST + int nHit, nMiss; /* Cache hits and missing */ + int nRead, nWrite; /* Database pages read/written */ +#endif + void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */ + void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */ +#ifdef SQLITE_HAS_CODEC + void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ + void *pCodecArg; /* First argument to xCodec() */ +#endif + int nHash; /* Size of the pager hash table */ + PgHdr **aHash; /* Hash table to map page number to PgHdr */ +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + Pager *pNext; /* Doubly linked list of pagers on which */ + Pager *pPrev; /* sqlite3_release_memory() will work */ + int iInUseMM; /* Non-zero if unavailable to MM */ + int iInUseDB; /* Non-zero if in sqlite3_release_memory() */ +#endif + char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ + char dbFileVers[16]; /* Changes whenever database file changes */ +}; + +/* +** The following global variables hold counters used for +** testing purposes only. These variables do not exist in +** a non-testing build. These variables are not thread-safe. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ +SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ +SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ +SQLITE_API int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */ +# define PAGER_INCR(v) v++ +#else +# define PAGER_INCR(v) +#endif + +/* +** The following variable points to the head of a double-linked list +** of all pagers that are eligible for page stealing by the +** sqlite3_release_memory() interface. Access to this list is +** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex. +*/ +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +static Pager *sqlite3PagerList = 0; +static PagerLruList sqlite3LruPageList = {0, 0, 0}; +#endif + + +/* +** Journal files begin with the following magic string. The data +** was obtained from /dev/random. It is used only as a sanity check. +** +** Since version 2.8.0, the journal format contains additional sanity +** checking information. If the power fails while the journal is begin +** written, semi-random garbage data might appear in the journal +** file after power is restored. If an attempt is then made +** to roll the journal back, the database could be corrupted. The additional +** sanity checking data is an attempt to discover the garbage in the +** journal and ignore it. +** +** The sanity checking information for the new journal format consists +** of a 32-bit checksum on each page of data. The checksum covers both +** the page number and the pPager->pageSize bytes of data for the page. +** This cksum is initialized to a 32-bit random value that appears in the +** journal file right after the header. The random initializer is important, +** because garbage data that appears at the end of a journal is likely +** data that was once in other files that have now been deleted. If the +** garbage data came from an obsolete journal file, the checksums might +** be correct. But by initializing the checksum to random value which +** is different for every journal, we minimize that risk. +*/ +static const unsigned char aJournalMagic[] = { + 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, +}; + +/* +** The size of the header and of each page in the journal is determined +** by the following macros. +*/ +#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) + +/* +** The journal header size for this pager. In the future, this could be +** set to some value read from the disk controller. The important +** characteristic is that it is the same size as a disk sector. +*/ +#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) + +/* +** The macro MEMDB is true if we are dealing with an in-memory database. +** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, +** the value of MEMDB will be a constant and the compiler will optimize +** out code that would never execute. +*/ +#ifdef SQLITE_OMIT_MEMORYDB +# define MEMDB 0 +#else +# define MEMDB pPager->memDb +#endif + +/* +** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is +** reserved for working around a windows/posix incompatibility). It is +** used in the journal to signify that the remainder of the journal file +** is devoted to storing a master journal name - there are no more pages to +** roll back. See comments for function writeMasterJournal() for details. +*/ +/* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */ +#define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1) + +/* +** The maximum legal page number is (2^31 - 1). +*/ +#define PAGER_MAX_PGNO 2147483647 + +/* +** The pagerEnter() and pagerLeave() routines acquire and release +** a mutex on each pager. The mutex is recursive. +** +** This is a special-purpose mutex. It only provides mutual exclusion +** between the Btree and the Memory Management sqlite3_release_memory() +** function. It does not prevent, for example, two Btrees from accessing +** the same pager at the same time. Other general-purpose mutexes in +** the btree layer handle that chore. +*/ +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + static void pagerEnter(Pager *p){ + p->iInUseDB++; + if( p->iInUseMM && p->iInUseDB==1 ){ +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex; + mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); +#endif + p->iInUseDB = 0; + sqlite3_mutex_enter(mutex); + p->iInUseDB = 1; + sqlite3_mutex_leave(mutex); + } + assert( p->iInUseMM==0 ); + } + static void pagerLeave(Pager *p){ + p->iInUseDB--; + assert( p->iInUseDB>=0 ); + } +#else +# define pagerEnter(X) +# define pagerLeave(X) +#endif + +/* +** Add page pPg to the end of the linked list managed by structure +** pList (pPg becomes the last entry in the list - the most recently +** used). Argument pLink should point to either pPg->free or pPg->gfree, +** depending on whether pPg is being added to the pager-specific or +** global LRU list. +*/ +static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ + pLink->pNext = 0; + pLink->pPrev = pList->pLast; + +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + assert(pLink==&pPg->free || pLink==&pPg->gfree); + assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); +#endif + + if( pList->pLast ){ + int iOff = (char *)pLink - (char *)pPg; + PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]); + pLastLink->pNext = pPg; + }else{ + assert(!pList->pFirst); + pList->pFirst = pPg; + } + + pList->pLast = pPg; + if( !pList->pFirstSynced && pPg->needSync==0 ){ + pList->pFirstSynced = pPg; + } +} + +/* +** Remove pPg from the list managed by the structure pointed to by pList. +** +** Argument pLink should point to either pPg->free or pPg->gfree, depending +** on whether pPg is being added to the pager-specific or global LRU list. +*/ +static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ + int iOff = (char *)pLink - (char *)pPg; + +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + assert(pLink==&pPg->free || pLink==&pPg->gfree); + assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); +#endif + + if( pPg==pList->pFirst ){ + pList->pFirst = pLink->pNext; + } + if( pPg==pList->pLast ){ + pList->pLast = pLink->pPrev; + } + if( pLink->pPrev ){ + PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]); + pPrevLink->pNext = pLink->pNext; + } + if( pLink->pNext ){ + PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]); + pNextLink->pPrev = pLink->pPrev; + } + if( pPg==pList->pFirstSynced ){ + PgHdr *p = pLink->pNext; + while( p && p->needSync ){ + PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]); + p = pL->pNext; + } + pList->pFirstSynced = p; + } + + pLink->pNext = pLink->pPrev = 0; +} + +/* +** Add page pPg to the list of free pages for the pager. If +** memory-management is enabled, also add the page to the global +** list of free pages. +*/ +static void lruListAdd(PgHdr *pPg){ + listAdd(&pPg->pPager->lru, &pPg->free, pPg); +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + if( !pPg->pPager->memDb ){ + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); + listAdd(&sqlite3LruPageList, &pPg->gfree, pPg); + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); + } +#endif +} + +/* +** Remove page pPg from the list of free pages for the associated pager. +** If memory-management is enabled, also remove pPg from the global list +** of free pages. +*/ +static void lruListRemove(PgHdr *pPg){ + listRemove(&pPg->pPager->lru, &pPg->free, pPg); +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + if( !pPg->pPager->memDb ){ + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); + listRemove(&sqlite3LruPageList, &pPg->gfree, pPg); + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); + } +#endif +} + +/* +** This function is called just after the needSync flag has been cleared +** from all pages managed by pPager (usually because the journal file +** has just been synced). It updates the pPager->lru.pFirstSynced variable +** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced +** variable also. +*/ +static void lruListSetFirstSynced(Pager *pPager){ + pPager->lru.pFirstSynced = pPager->lru.pFirst; +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + if( !pPager->memDb ){ + PgHdr *p; + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); + for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext); + assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced); + sqlite3LruPageList.pFirstSynced = p; + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); + } +#endif +} + +/* +** Return true if page *pPg has already been written to the statement +** journal (or statement snapshot has been created, if *pPg is part +** of an in-memory database). +*/ +static int pageInStatement(PgHdr *pPg){ + Pager *pPager = pPg->pPager; + if( MEMDB ){ + return PGHDR_TO_HIST(pPg, pPager)->inStmt; + }else{ + return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno); + } +} + +/* +** Change the size of the pager hash table to N. N must be a power +** of two. +*/ +static void pager_resize_hash_table(Pager *pPager, int N){ + PgHdr **aHash, *pPg; + assert( N>0 && (N&(N-1))==0 ); +#ifdef SQLITE_MALLOC_SOFT_LIMIT + if( N*sizeof(aHash[0])>SQLITE_MALLOC_SOFT_LIMIT ){ + N = SQLITE_MALLOC_SOFT_LIMIT/sizeof(aHash[0]); + } + if( N==pPager->nHash ) return; +#endif + pagerLeave(pPager); + if( pPager->aHash!=0 ) sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC); + aHash = sqlite3MallocZero( sizeof(aHash[0])*N ); + if( pPager->aHash!=0 ) sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC); + pagerEnter(pPager); + if( aHash==0 ){ + /* Failure to rehash is not an error. It is only a performance hit. */ + return; + } + sqlite3_free(pPager->aHash); + pPager->nHash = N; + pPager->aHash = aHash; + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + int h; + if( pPg->pgno==0 ){ + assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); + continue; + } + h = pPg->pgno & (N-1); + pPg->pNextHash = aHash[h]; + if( aHash[h] ){ + aHash[h]->pPrevHash = pPg; + } + aHash[h] = pPg; + pPg->pPrevHash = 0; + } +} + +/* +** Read a 32-bit integer from the given file descriptor. Store the integer +** that is read in *pRes. Return SQLITE_OK if everything worked, or an +** error code is something goes wrong. +** +** All values are stored on disk as big-endian. +*/ +static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ + unsigned char ac[4]; + int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); + if( rc==SQLITE_OK ){ + *pRes = sqlite3Get4byte(ac); + } + return rc; +} + +/* +** Write a 32-bit integer into a string buffer in big-endian byte order. +*/ +#define put32bits(A,B) sqlite3Put4byte((u8*)A,B) + +/* +** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK +** on success or an error code is something goes wrong. +*/ +static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ + char ac[4]; + put32bits(ac, val); + return sqlite3OsWrite(fd, ac, 4, offset); +} + +/* +** If file pFd is open, call sqlite3OsUnlock() on it. +*/ +static int osUnlock(sqlite3_file *pFd, int eLock){ + if( !pFd->pMethods ){ + return SQLITE_OK; + } + return sqlite3OsUnlock(pFd, eLock); +} + +/* +** This function determines whether or not the atomic-write optimization +** can be used with this pager. The optimization can be used if: +** +** (a) the value returned by OsDeviceCharacteristics() indicates that +** a database page may be written atomically, and +** (b) the value returned by OsSectorSize() is less than or equal +** to the page size. +** +** If the optimization cannot be used, 0 is returned. If it can be used, +** then the value returned is the size of the journal file when it +** contains rollback data for exactly one page. +*/ +#ifdef SQLITE_ENABLE_ATOMIC_WRITE +static int jrnlBufferSize(Pager *pPager){ + int dc; /* Device characteristics */ + int nSector; /* Sector size */ + int nPage; /* Page size */ + sqlite3_file *fd = pPager->fd; + + if( fd->pMethods ){ + dc = sqlite3OsDeviceCharacteristics(fd); + nSector = sqlite3OsSectorSize(fd); + nPage = pPager->pageSize; + } + + assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); + assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); + + if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){ + return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); + } + return 0; +} +#endif + +/* +** This function should be called when an error occurs within the pager +** code. The first argument is a pointer to the pager structure, the +** second the error-code about to be returned by a pager API function. +** The value returned is a copy of the second argument to this function. +** +** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL +** the error becomes persistent. Until the persisten error is cleared, +** subsequent API calls on this Pager will immediately return the same +** error code. +** +** A persistent error indicates that the contents of the pager-cache +** cannot be trusted. This state can be cleared by completely discarding +** the contents of the pager-cache. If a transaction was active when +** the persistent error occured, then the rollback journal may need +** to be replayed. +*/ +static void pager_unlock(Pager *pPager); +static int pager_error(Pager *pPager, int rc){ + int rc2 = rc & 0xff; + assert( + pPager->errCode==SQLITE_FULL || + pPager->errCode==SQLITE_OK || + (pPager->errCode & 0xff)==SQLITE_IOERR + ); + if( + rc2==SQLITE_FULL || + rc2==SQLITE_IOERR || + rc2==SQLITE_CORRUPT + ){ + pPager->errCode = rc; + if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){ + /* If the pager is already unlocked, call pager_unlock() now to + ** clear the error state and ensure that the pager-cache is + ** completely empty. + */ + pager_unlock(pPager); + } + } + return rc; +} + +/* +** If SQLITE_CHECK_PAGES is defined then we do some sanity checking +** on the cache using a hash function. This is used for testing +** and debugging only. +*/ +#ifdef SQLITE_CHECK_PAGES +/* +** Return a 32-bit hash of the page data for pPage. +*/ +static u32 pager_datahash(int nByte, unsigned char *pData){ + u32 hash = 0; + int i; + for(i=0; i<nByte; i++){ + hash = (hash*1039) + pData[i]; + } + return hash; +} +static u32 pager_pagehash(PgHdr *pPage){ + return pager_datahash(pPage->pPager->pageSize, + (unsigned char *)PGHDR_TO_DATA(pPage)); +} + +/* +** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES +** is defined, and NDEBUG is not defined, an assert() statement checks +** that the page is either dirty or still matches the calculated page-hash. +*/ +#define CHECK_PAGE(x) checkPage(x) +static void checkPage(PgHdr *pPg){ + Pager *pPager = pPg->pPager; + assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty || + pPg->pageHash==pager_pagehash(pPg) ); +} + +#else +#define pager_datahash(X,Y) 0 +#define pager_pagehash(X) 0 +#define CHECK_PAGE(x) +#endif + +/* +** When this is called the journal file for pager pPager must be open. +** The master journal file name is read from the end of the file and +** written into memory supplied by the caller. +** +** zMaster must point to a buffer of at least nMaster bytes allocated by +** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is +** enough space to write the master journal name). If the master journal +** name in the journal is longer than nMaster bytes (including a +** nul-terminator), then this is handled as if no master journal name +** were present in the journal. +** +** If no master journal file name is present zMaster[0] is set to 0 and +** SQLITE_OK returned. +*/ +static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){ + int rc; + u32 len; + i64 szJ; + u32 cksum; + int i; + unsigned char aMagic[8]; /* A buffer to hold the magic header */ + + zMaster[0] = '\0'; + + rc = sqlite3OsFileSize(pJrnl, &szJ); + if( rc!=SQLITE_OK || szJ<16 ) return rc; + + rc = read32bits(pJrnl, szJ-16, &len); + if( rc!=SQLITE_OK ) return rc; + + if( len>=nMaster ){ + return SQLITE_OK; + } + + rc = read32bits(pJrnl, szJ-12, &cksum); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8); + if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc; + + rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len); + if( rc!=SQLITE_OK ){ + return rc; + } + zMaster[len] = '\0'; + + /* See if the checksum matches the master journal name */ + for(i=0; i<len; i++){ + cksum -= zMaster[i]; + } + if( cksum ){ + /* If the checksum doesn't add up, then one or more of the disk sectors + ** containing the master journal filename is corrupted. This means + ** definitely roll back, so just return SQLITE_OK and report a (nul) + ** master-journal filename. + */ + zMaster[0] = '\0'; + } + + return SQLITE_OK; +} + +/* +** Seek the journal file descriptor to the next sector boundary where a +** journal header may be read or written. Pager.journalOff is updated with +** the new seek offset. +** +** i.e for a sector size of 512: +** +** Input Offset Output Offset +** --------------------------------------- +** 0 0 +** 512 512 +** 100 512 +** 2000 2048 +** +*/ +static void seekJournalHdr(Pager *pPager){ + i64 offset = 0; + i64 c = pPager->journalOff; + if( c ){ + offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); + } + assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); + assert( offset>=c ); + assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); + pPager->journalOff = offset; +} + +/* +** Write zeros over the header of the journal file. This has the +** effect of invalidating the journal file and committing the +** transaction. +*/ +static int zeroJournalHdr(Pager *pPager, int doTruncate){ + int rc = SQLITE_OK; + static const char zeroHdr[28]; + + if( pPager->journalOff ){ + IOTRACE(("JZEROHDR %p\n", pPager)) + if( doTruncate ){ + rc = sqlite3OsTruncate(pPager->jfd, 0); + }else{ + rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); + } + if( rc==SQLITE_OK ){ + rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->sync_flags); + } + } + return rc; +} + +/* +** The journal file must be open when this routine is called. A journal +** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the +** current location. +** +** The format for the journal header is as follows: +** - 8 bytes: Magic identifying journal format. +** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. +** - 4 bytes: Random number used for page hash. +** - 4 bytes: Initial database page count. +** - 4 bytes: Sector size used by the process that wrote this journal. +** - 4 bytes: Database page size. +** +** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. +*/ +static int writeJournalHdr(Pager *pPager){ + int rc = SQLITE_OK; + char *zHeader = pPager->pTmpSpace; + int nHeader = pPager->pageSize; + int nWrite; + + if( nHeader>JOURNAL_HDR_SZ(pPager) ){ + nHeader = JOURNAL_HDR_SZ(pPager); + } + + if( pPager->stmtHdrOff==0 ){ + pPager->stmtHdrOff = pPager->journalOff; + } + + seekJournalHdr(pPager); + pPager->journalHdr = pPager->journalOff; + + memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); + + /* + ** Write the nRec Field - the number of page records that follow this + ** journal header. Normally, zero is written to this value at this time. + ** After the records are added to the journal (and the journal synced, + ** if in full-sync mode), the zero is overwritten with the true number + ** of records (see syncJournal()). + ** + ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When + ** reading the journal this value tells SQLite to assume that the + ** rest of the journal file contains valid page records. This assumption + ** is dangerous, as if a failure occured whilst writing to the journal + ** file it may contain some garbage data. There are two scenarios + ** where this risk can be ignored: + ** + ** * When the pager is in no-sync mode. Corruption can follow a + ** power failure in this case anyway. + ** + ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees + ** that garbage data is never appended to the journal file. + */ + assert(pPager->fd->pMethods||pPager->noSync); + if( (pPager->noSync) + || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) + ){ + put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); + }else{ + put32bits(&zHeader[sizeof(aJournalMagic)], 0); + } + + /* The random check-hash initialiser */ + sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); + put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); + /* The initial database size */ + put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize); + /* The assumed sector size for this process */ + put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); + if( pPager->journalHdr==0 ){ + /* The page size */ + put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); + } + + for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ + IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) + rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); + pPager->journalOff += nHeader; + } + + return rc; +} + +/* +** The journal file must be open when this is called. A journal header file +** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal +** file. See comments above function writeJournalHdr() for a description of +** the journal header format. +** +** If the header is read successfully, *nRec is set to the number of +** page records following this header and *dbSize is set to the size of the +** database before the transaction began, in pages. Also, pPager->cksumInit +** is set to the value read from the journal header. SQLITE_OK is returned +** in this case. +** +** If the journal header file appears to be corrupted, SQLITE_DONE is +** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes +** cannot be read from the journal file an error code is returned. +*/ +static int readJournalHdr( + Pager *pPager, + i64 journalSize, + u32 *pNRec, + u32 *pDbSize +){ + int rc; + unsigned char aMagic[8]; /* A buffer to hold the magic header */ + i64 jrnlOff; + int iPageSize; + + seekJournalHdr(pPager); + if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ + return SQLITE_DONE; + } + jrnlOff = pPager->journalOff; + + rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff); + if( rc ) return rc; + jrnlOff += sizeof(aMagic); + + if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ + return SQLITE_DONE; + } + + rc = read32bits(pPager->jfd, jrnlOff, pNRec); + if( rc ) return rc; + + rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit); + if( rc ) return rc; + + rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize); + if( rc ) return rc; + + rc = read32bits(pPager->jfd, jrnlOff+16, (u32 *)&iPageSize); + if( rc==SQLITE_OK + && iPageSize>=512 + && iPageSize<=SQLITE_MAX_PAGE_SIZE + && ((iPageSize-1)&iPageSize)==0 + ){ + u16 pagesize = iPageSize; + rc = sqlite3PagerSetPagesize(pPager, &pagesize); + } + if( rc ) return rc; + + /* Update the assumed sector-size to match the value used by + ** the process that created this journal. If this journal was + ** created by a process other than this one, then this routine + ** is being called from within pager_playback(). The local value + ** of Pager.sectorSize is restored at the end of that routine. + */ + rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize); + if( rc ) return rc; + + pPager->journalOff += JOURNAL_HDR_SZ(pPager); + return SQLITE_OK; +} + + +/* +** Write the supplied master journal name into the journal file for pager +** pPager at the current location. The master journal name must be the last +** thing written to a journal file. If the pager is in full-sync mode, the +** journal file descriptor is advanced to the next sector boundary before +** anything is written. The format is: +** +** + 4 bytes: PAGER_MJ_PGNO. +** + N bytes: length of master journal name. +** + 4 bytes: N +** + 4 bytes: Master journal name checksum. +** + 8 bytes: aJournalMagic[]. +** +** The master journal page checksum is the sum of the bytes in the master +** journal name. +** +** If zMaster is a NULL pointer (occurs for a single database transaction), +** this call is a no-op. +*/ +static int writeMasterJournal(Pager *pPager, const char *zMaster){ + int rc; + int len; + int i; + i64 jrnlOff; + i64 jrnlSize; + u32 cksum = 0; + char zBuf[sizeof(aJournalMagic)+2*4]; + + if( !zMaster || pPager->setMaster) return SQLITE_OK; + pPager->setMaster = 1; + + len = strlen(zMaster); + for(i=0; i<len; i++){ + cksum += zMaster[i]; + } + + /* If in full-sync mode, advance to the next disk sector before writing + ** the master journal name. This is in case the previous page written to + ** the journal has already been synced. + */ + if( pPager->fullSync ){ + seekJournalHdr(pPager); + } + jrnlOff = pPager->journalOff; + pPager->journalOff += (len+20); + + rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager)); + if( rc!=SQLITE_OK ) return rc; + jrnlOff += 4; + + rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff); + if( rc!=SQLITE_OK ) return rc; + jrnlOff += len; + + put32bits(zBuf, len); + put32bits(&zBuf[4], cksum); + memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic)); + rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff); + jrnlOff += 8+sizeof(aJournalMagic); + pPager->needSync = !pPager->noSync; + + /* If the pager is in peristent-journal mode, then the physical + ** journal-file may extend past the end of the master-journal name + ** and 8 bytes of magic data just written to the file. This is + ** dangerous because the code to rollback a hot-journal file + ** will not be able to find the master-journal name to determine + ** whether or not the journal is hot. + ** + ** Easiest thing to do in this scenario is to truncate the journal + ** file to the required size. + */ + if( (rc==SQLITE_OK) + && (rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))==SQLITE_OK + && jrnlSize>jrnlOff + ){ + rc = sqlite3OsTruncate(pPager->jfd, jrnlOff); + } + return rc; +} + +/* +** Add or remove a page from the list of all pages that are in the +** statement journal. +** +** The Pager keeps a separate list of pages that are currently in +** the statement journal. This helps the sqlite3PagerStmtCommit() +** routine run MUCH faster for the common case where there are many +** pages in memory but only a few are in the statement journal. +*/ +static void page_add_to_stmt_list(PgHdr *pPg){ + Pager *pPager = pPg->pPager; + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + assert( MEMDB ); + if( !pHist->inStmt ){ + assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 ); + if( pPager->pStmt ){ + PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg; + } + pHist->pNextStmt = pPager->pStmt; + pPager->pStmt = pPg; + pHist->inStmt = 1; + } +} + +/* +** Find a page in the hash table given its page number. Return +** a pointer to the page or NULL if not found. +*/ +static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ + PgHdr *p; + if( pPager->aHash==0 ) return 0; + p = pPager->aHash[pgno & (pPager->nHash-1)]; + while( p && p->pgno!=pgno ){ + p = p->pNextHash; + } + return p; +} + +/* +** Clear the in-memory cache. This routine +** sets the state of the pager back to what it was when it was first +** opened. Any outstanding pages are invalidated and subsequent attempts +** to access those pages will likely result in a coredump. +*/ +static void pager_reset(Pager *pPager){ + PgHdr *pPg, *pNext; + if( pPager->errCode ) return; + for(pPg=pPager->pAll; pPg; pPg=pNext){ + IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); + PAGER_INCR(sqlite3_pager_pgfree_count); + pNext = pPg->pNextAll; + lruListRemove(pPg); + sqlite3_free(pPg->pData); + sqlite3_free(pPg); + } + assert(pPager->lru.pFirst==0); + assert(pPager->lru.pFirstSynced==0); + assert(pPager->lru.pLast==0); + pPager->pStmt = 0; + pPager->pAll = 0; + pPager->pDirty = 0; + pPager->nHash = 0; + sqlite3_free(pPager->aHash); + pPager->nPage = 0; + pPager->aHash = 0; + pPager->nRef = 0; +} + +/* +** Unlock the database file. +** +** If the pager is currently in error state, discard the contents of +** the cache and reset the Pager structure internal state. If there is +** an open journal-file, then the next time a shared-lock is obtained +** on the pager file (by this or any other process), it will be +** treated as a hot-journal and rolled back. +*/ +static void pager_unlock(Pager *pPager){ + if( !pPager->exclusiveMode ){ + if( !MEMDB ){ + int rc = osUnlock(pPager->fd, NO_LOCK); + if( rc ) pPager->errCode = rc; + pPager->dbSize = -1; + IOTRACE(("UNLOCK %p\n", pPager)) + + /* Always close the journal file when dropping the database lock. + ** Otherwise, another connection with journal_mode=delete might + ** delete the file out from under us. + */ + if( pPager->journalOpen ){ + sqlite3OsClose(pPager->jfd); + pPager->journalOpen = 0; + sqlite3BitvecDestroy(pPager->pInJournal); + pPager->pInJournal = 0; + } + + /* If Pager.errCode is set, the contents of the pager cache cannot be + ** trusted. Now that the pager file is unlocked, the contents of the + ** cache can be discarded and the error code safely cleared. + */ + if( pPager->errCode ){ + if( rc==SQLITE_OK ) pPager->errCode = SQLITE_OK; + pager_reset(pPager); + if( pPager->stmtOpen ){ + sqlite3OsClose(pPager->stfd); + sqlite3BitvecDestroy(pPager->pInStmt); + pPager->pInStmt = 0; + } + pPager->stmtOpen = 0; + pPager->stmtInUse = 0; + pPager->journalOff = 0; + pPager->journalStarted = 0; + pPager->stmtAutoopen = 0; + pPager->origDbSize = 0; + } + } + + if( !MEMDB || pPager->errCode==SQLITE_OK ){ + pPager->state = PAGER_UNLOCK; + pPager->changeCountDone = 0; + } + } +} + +/* +** Execute a rollback if a transaction is active and unlock the +** database file. If the pager has already entered the error state, +** do not attempt the rollback. +*/ +static void pagerUnlockAndRollback(Pager *p){ + /* assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); */ + if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){ + sqlite3FaultBeginBenign(-1); + sqlite3PagerRollback(p); + sqlite3FaultEndBenign(-1); + } + pager_unlock(p); +#if 0 + assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) ); + assert( p->errCode || !p->stmtOpen || p->exclusiveMode ); +#endif +} + +/* +** This routine ends a transaction. A transaction is ended by either +** a COMMIT or a ROLLBACK. +** +** When this routine is called, the pager has the journal file open and +** a RESERVED or EXCLUSIVE lock on the database. This routine will release +** the database lock and acquires a SHARED lock in its place if that is +** the appropriate thing to do. Release locks usually is appropriate, +** unless we are in exclusive access mode or unless this is a +** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation. +** +** The journal file is either deleted or truncated. +** +** TODO: Consider keeping the journal file open for temporary databases. +** This might give a performance improvement on windows where opening +** a file is an expensive operation. +*/ +static int pager_end_transaction(Pager *pPager, int hasMaster){ + PgHdr *pPg; + int rc = SQLITE_OK; + int rc2 = SQLITE_OK; + assert( !MEMDB ); + if( pPager->state<PAGER_RESERVED ){ + return SQLITE_OK; + } + sqlite3PagerStmtCommit(pPager); + if( pPager->stmtOpen && !pPager->exclusiveMode ){ + sqlite3OsClose(pPager->stfd); + pPager->stmtOpen = 0; + } + if( pPager->journalOpen ){ + if( pPager->exclusiveMode + || pPager->journalMode==PAGER_JOURNALMODE_PERSIST + ){ + rc = zeroJournalHdr(pPager, hasMaster); + pager_error(pPager, rc); + pPager->journalOff = 0; + pPager->journalStarted = 0; + }else{ + sqlite3OsClose(pPager->jfd); + pPager->journalOpen = 0; + if( rc==SQLITE_OK ){ + rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); + } + } + sqlite3BitvecDestroy(pPager->pInJournal); + pPager->pInJournal = 0; + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + pPg->inJournal = 0; + pPg->dirty = 0; + pPg->needSync = 0; + pPg->alwaysRollback = 0; +#ifdef SQLITE_CHECK_PAGES + pPg->pageHash = pager_pagehash(pPg); +#endif + } + pPager->pDirty = 0; + pPager->dirtyCache = 0; + pPager->nRec = 0; + }else{ + assert( pPager->pInJournal==0 ); + } + + if( !pPager->exclusiveMode ){ + rc2 = osUnlock(pPager->fd, SHARED_LOCK); + pPager->state = PAGER_SHARED; + }else if( pPager->state==PAGER_SYNCED ){ + pPager->state = PAGER_EXCLUSIVE; + } + pPager->origDbSize = 0; + pPager->setMaster = 0; + pPager->needSync = 0; + lruListSetFirstSynced(pPager); + pPager->dbSize = -1; + pPager->dbModified = 0; + + return (rc==SQLITE_OK?rc2:rc); +} + +/* +** Compute and return a checksum for the page of data. +** +** This is not a real checksum. It is really just the sum of the +** random initial value and the page number. We experimented with +** a checksum of the entire data, but that was found to be too slow. +** +** Note that the page number is stored at the beginning of data and +** the checksum is stored at the end. This is important. If journal +** corruption occurs due to a power failure, the most likely scenario +** is that one end or the other of the record will be changed. It is +** much less likely that the two ends of the journal record will be +** correct and the middle be corrupt. Thus, this "checksum" scheme, +** though fast and simple, catches the mostly likely kind of corruption. +** +** FIX ME: Consider adding every 200th (or so) byte of the data to the +** checksum. That way if a single page spans 3 or more disk sectors and +** only the middle sector is corrupt, we will still have a reasonable +** chance of failing the checksum and thus detecting the problem. +*/ +static u32 pager_cksum(Pager *pPager, const u8 *aData){ + u32 cksum = pPager->cksumInit; + int i = pPager->pageSize-200; + while( i>0 ){ + cksum += aData[i]; + i -= 200; + } + return cksum; +} + +/* Forward declaration */ +static void makeClean(PgHdr*); + +/* +** Read a single page from the journal file opened on file descriptor +** jfd. Playback this one page. +** +** If useCksum==0 it means this journal does not use checksums. Checksums +** are not used in statement journals because statement journals do not +** need to survive power failures. +*/ +static int pager_playback_one_page( + Pager *pPager, + sqlite3_file *jfd, + i64 offset, + int useCksum +){ + int rc; + PgHdr *pPg; /* An existing page in the cache */ + Pgno pgno; /* The page number of a page in journal */ + u32 cksum; /* Checksum used for sanity checking */ + u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */ + + /* useCksum should be true for the main journal and false for + ** statement journals. Verify that this is always the case + */ + assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) ); + assert( aData ); + + rc = read32bits(jfd, offset, &pgno); + if( rc!=SQLITE_OK ) return rc; + rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4); + if( rc!=SQLITE_OK ) return rc; + pPager->journalOff += pPager->pageSize + 4; + + /* Sanity checking on the page. This is more important that I originally + ** thought. If a power failure occurs while the journal is being written, + ** it could cause invalid data to be written into the journal. We need to + ** detect this invalid data (with high probability) and ignore it. + */ + if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ + return SQLITE_DONE; + } + if( pgno>(unsigned)pPager->dbSize ){ + return SQLITE_OK; + } + if( useCksum ){ + rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum); + if( rc ) return rc; + pPager->journalOff += 4; + if( pager_cksum(pPager, aData)!=cksum ){ + return SQLITE_DONE; + } + } + + assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE ); + + /* If the pager is in RESERVED state, then there must be a copy of this + ** page in the pager cache. In this case just update the pager cache, + ** not the database file. The page is left marked dirty in this case. + ** + ** An exception to the above rule: If the database is in no-sync mode + ** and a page is moved during an incremental vacuum then the page may + ** not be in the pager cache. Later: if a malloc() or IO error occurs + ** during a Movepage() call, then the page may not be in the cache + ** either. So the condition described in the above paragraph is not + ** assert()able. + ** + ** If in EXCLUSIVE state, then we update the pager cache if it exists + ** and the main file. The page is then marked not dirty. + ** + ** Ticket #1171: The statement journal might contain page content that is + ** different from the page content at the start of the transaction. + ** This occurs when a page is changed prior to the start of a statement + ** then changed again within the statement. When rolling back such a + ** statement we must not write to the original database unless we know + ** for certain that original page contents are synced into the main rollback + ** journal. Otherwise, a power loss might leave modified data in the + ** database file without an entry in the rollback journal that can + ** restore the database to its original form. Two conditions must be + ** met before writing to the database files. (1) the database must be + ** locked. (2) we know that the original page content is fully synced + ** in the main journal either because the page is not in cache or else + ** the page is marked as needSync==0. + ** + ** 2008-04-14: When attempting to vacuum a corrupt database file, it + ** is possible to fail a statement on a database that does not yet exist. + ** Do not attempt to write if database file has never been opened. + */ + pPg = pager_lookup(pPager, pgno); + PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n", + PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData)); + if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) + && pPager->fd->pMethods ){ + i64 offset = (pgno-1)*(i64)pPager->pageSize; + rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset); + if( pPg ){ + makeClean(pPg); + } + } + if( pPg ){ + /* No page should ever be explicitly rolled back that is in use, except + ** for page 1 which is held in use in order to keep the lock on the + ** database active. However such a page may be rolled back as a result + ** of an internal error resulting in an automatic call to + ** sqlite3PagerRollback(). + */ + void *pData; + /* assert( pPg->nRef==0 || pPg->pgno==1 ); */ + pData = PGHDR_TO_DATA(pPg); + memcpy(pData, aData, pPager->pageSize); + if( pPager->xReiniter ){ + pPager->xReiniter(pPg, pPager->pageSize); + } +#ifdef SQLITE_CHECK_PAGES + pPg->pageHash = pager_pagehash(pPg); +#endif + /* If this was page 1, then restore the value of Pager.dbFileVers. + ** Do this before any decoding. */ + if( pgno==1 ){ + memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); + } + + /* Decode the page just read from disk */ + CODEC1(pPager, pData, pPg->pgno, 3); + } + return rc; +} + +/* +** Parameter zMaster is the name of a master journal file. A single journal +** file that referred to the master journal file has just been rolled back. +** This routine checks if it is possible to delete the master journal file, +** and does so if it is. +** +** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not +** available for use within this function. +** +** +** The master journal file contains the names of all child journals. +** To tell if a master journal can be deleted, check to each of the +** children. If all children are either missing or do not refer to +** a different master journal, then this master journal can be deleted. +*/ +static int pager_delmaster(Pager *pPager, const char *zMaster){ + sqlite3_vfs *pVfs = pPager->pVfs; + int rc; + int master_open = 0; + sqlite3_file *pMaster; + sqlite3_file *pJournal; + char *zMasterJournal = 0; /* Contents of master journal file */ + i64 nMasterJournal; /* Size of master journal file */ + + /* Open the master journal file exclusively in case some other process + ** is running this routine also. Not that it makes too much difference. + */ + pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2); + pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); + if( !pMaster ){ + rc = SQLITE_NOMEM; + }else{ + int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); + rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); + } + if( rc!=SQLITE_OK ) goto delmaster_out; + master_open = 1; + + rc = sqlite3OsFileSize(pMaster, &nMasterJournal); + if( rc!=SQLITE_OK ) goto delmaster_out; + + if( nMasterJournal>0 ){ + char *zJournal; + char *zMasterPtr = 0; + int nMasterPtr = pPager->pVfs->mxPathname+1; + + /* Load the entire master journal file into space obtained from + ** sqlite3_malloc() and pointed to by zMasterJournal. + */ + zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr); + if( !zMasterJournal ){ + rc = SQLITE_NOMEM; + goto delmaster_out; + } + zMasterPtr = &zMasterJournal[nMasterJournal]; + rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0); + if( rc!=SQLITE_OK ) goto delmaster_out; + + zJournal = zMasterJournal; + while( (zJournal-zMasterJournal)<nMasterJournal ){ + rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS); + if( rc!=0 && rc!=1 ){ + rc = SQLITE_IOERR_NOMEM; + goto delmaster_out; + } + if( rc==1 ){ + /* One of the journals pointed to by the master journal exists. + ** Open it and check if it points at the master journal. If + ** so, return without deleting the master journal file. + */ + int c; + int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); + rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); + if( rc!=SQLITE_OK ){ + goto delmaster_out; + } + + rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); + sqlite3OsClose(pJournal); + if( rc!=SQLITE_OK ){ + goto delmaster_out; + } + + c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; + if( c ){ + /* We have a match. Do not delete the master journal file. */ + goto delmaster_out; + } + } + zJournal += (strlen(zJournal)+1); + } + } + + rc = sqlite3OsDelete(pVfs, zMaster, 0); + +delmaster_out: + if( zMasterJournal ){ + sqlite3_free(zMasterJournal); + } + if( master_open ){ + sqlite3OsClose(pMaster); + } + sqlite3_free(pMaster); + return rc; +} + + +static void pager_truncate_cache(Pager *pPager); + +/* +** Truncate the main file of the given pager to the number of pages +** indicated. Also truncate the cached representation of the file. +** +** Might might be the case that the file on disk is smaller than nPage. +** This can happen, for example, if we are in the middle of a transaction +** which has extended the file size and the new pages are still all held +** in cache, then an INSERT or UPDATE does a statement rollback. Some +** operating system implementations can get confused if you try to +** truncate a file to some size that is larger than it currently is, +** so detect this case and write a single zero byte to the end of the new +** file instead. +*/ +static int pager_truncate(Pager *pPager, int nPage){ + int rc = SQLITE_OK; + if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){ + i64 currentSize, newSize; + rc = sqlite3OsFileSize(pPager->fd, ¤tSize); + newSize = pPager->pageSize*(i64)nPage; + if( rc==SQLITE_OK && currentSize!=newSize ){ + if( currentSize>newSize ){ + rc = sqlite3OsTruncate(pPager->fd, newSize); + }else{ + rc = sqlite3OsWrite(pPager->fd, "", 1, newSize-1); + } + } + } + if( rc==SQLITE_OK ){ + pPager->dbSize = nPage; + pager_truncate_cache(pPager); + } + return rc; +} + +/* +** Set the sectorSize for the given pager. +** +** The sector size is at least as big as the sector size reported +** by sqlite3OsSectorSize(). The minimum sector size is 512. +*/ +static void setSectorSize(Pager *pPager){ + assert(pPager->fd->pMethods||pPager->tempFile); + if( !pPager->tempFile ){ + /* Sector size doesn't matter for temporary files. Also, the file + ** may not have been opened yet, in whcih case the OsSectorSize() + ** call will segfault. + */ + pPager->sectorSize = sqlite3OsSectorSize(pPager->fd); + } + if( pPager->sectorSize<512 ){ + pPager->sectorSize = 512; + } +} + +/* +** Playback the journal and thus restore the database file to +** the state it was in before we started making changes. +** +** The journal file format is as follows: +** +** (1) 8 byte prefix. A copy of aJournalMagic[]. +** (2) 4 byte big-endian integer which is the number of valid page records +** in the journal. If this value is 0xffffffff, then compute the +** number of page records from the journal size. +** (3) 4 byte big-endian integer which is the initial value for the +** sanity checksum. +** (4) 4 byte integer which is the number of pages to truncate the +** database to during a rollback. +** (5) 4 byte big-endian integer which is the sector size. The header +** is this many bytes in size. +** (6) 4 byte big-endian integer which is the page case. +** (7) 4 byte integer which is the number of bytes in the master journal +** name. The value may be zero (indicate that there is no master +** journal.) +** (8) N bytes of the master journal name. The name will be nul-terminated +** and might be shorter than the value read from (5). If the first byte +** of the name is \000 then there is no master journal. The master +** journal name is stored in UTF-8. +** (9) Zero or more pages instances, each as follows: +** + 4 byte page number. +** + pPager->pageSize bytes of data. +** + 4 byte checksum +** +** When we speak of the journal header, we mean the first 8 items above. +** Each entry in the journal is an instance of the 9th item. +** +** Call the value from the second bullet "nRec". nRec is the number of +** valid page entries in the journal. In most cases, you can compute the +** value of nRec from the size of the journal file. But if a power +** failure occurred while the journal was being written, it could be the +** case that the size of the journal file had already been increased but +** the extra entries had not yet made it safely to disk. In such a case, +** the value of nRec computed from the file size would be too large. For +** that reason, we always use the nRec value in the header. +** +** If the nRec value is 0xffffffff it means that nRec should be computed +** from the file size. This value is used when the user selects the +** no-sync option for the journal. A power failure could lead to corruption +** in this case. But for things like temporary table (which will be +** deleted when the power is restored) we don't care. +** +** If the file opened as the journal file is not a well-formed +** journal file then all pages up to the first corrupted page are rolled +** back (or no pages if the journal header is corrupted). The journal file +** is then deleted and SQLITE_OK returned, just as if no corruption had +** been encountered. +** +** If an I/O or malloc() error occurs, the journal-file is not deleted +** and an error code is returned. +*/ +static int pager_playback(Pager *pPager, int isHot){ + sqlite3_vfs *pVfs = pPager->pVfs; + i64 szJ; /* Size of the journal file in bytes */ + u32 nRec; /* Number of Records in the journal */ + int i; /* Loop counter */ + Pgno mxPg = 0; /* Size of the original file in pages */ + int rc; /* Result code of a subroutine */ + int res = 0; /* Value returned by sqlite3OsAccess() */ + char *zMaster = 0; /* Name of master journal file if any */ + + /* Figure out how many records are in the journal. Abort early if + ** the journal is empty. + */ + assert( pPager->journalOpen ); + rc = sqlite3OsFileSize(pPager->jfd, &szJ); + if( rc!=SQLITE_OK || szJ==0 ){ + goto end_playback; + } + + /* Read the master journal name from the journal, if it is present. + ** If a master journal file name is specified, but the file is not + ** present on disk, then the journal is not hot and does not need to be + ** played back. + */ + zMaster = pPager->pTmpSpace; + rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); + if( rc!=SQLITE_OK || (zMaster[0] + && (res=sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS))==0 ) + ){ + zMaster = 0; + goto end_playback; + } + zMaster = 0; + if( res<0 ){ + rc = SQLITE_IOERR_NOMEM; + goto end_playback; + } + pPager->journalOff = 0; + + /* This loop terminates either when the readJournalHdr() call returns + ** SQLITE_DONE or an IO error occurs. */ + while( 1 ){ + + /* Read the next journal header from the journal file. If there are + ** not enough bytes left in the journal file for a complete header, or + ** it is corrupted, then a process must of failed while writing it. + ** This indicates nothing more needs to be rolled back. + */ + rc = readJournalHdr(pPager, szJ, &nRec, &mxPg); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_DONE ){ + rc = SQLITE_OK; + } + goto end_playback; + } + + /* If nRec is 0xffffffff, then this journal was created by a process + ** working in no-sync mode. This means that the rest of the journal + ** file consists of pages, there are no more journal headers. Compute + ** the value of nRec based on this assumption. + */ + if( nRec==0xffffffff ){ + assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); + nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager); + } + + /* If nRec is 0 and this rollback is of a transaction created by this + ** process and if this is the final header in the journal, then it means + ** that this part of the journal was being filled but has not yet been + ** synced to disk. Compute the number of pages based on the remaining + ** size of the file. + ** + ** The third term of the test was added to fix ticket #2565. + */ + if( nRec==0 && !isHot && + pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ + nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager); + } + + /* If this is the first header read from the journal, truncate the + ** database file back to its original size. + */ + if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ + rc = pager_truncate(pPager, mxPg); + if( rc!=SQLITE_OK ){ + goto end_playback; + } + } + + /* Copy original pages out of the journal and back into the database file. + */ + for(i=0; i<nRec; i++){ + rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_DONE ){ + rc = SQLITE_OK; + pPager->journalOff = szJ; + break; + }else{ + goto end_playback; + } + } + } + } + /*NOTREACHED*/ + assert( 0 ); + +end_playback: + if( rc==SQLITE_OK ){ + zMaster = pPager->pTmpSpace; + rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); + } + if( rc==SQLITE_OK ){ + rc = pager_end_transaction(pPager, zMaster[0]!='\0'); + } + if( rc==SQLITE_OK && zMaster[0] ){ + /* If there was a master journal and this routine will return success, + ** see if it is possible to delete the master journal. + */ + rc = pager_delmaster(pPager, zMaster); + } + + /* The Pager.sectorSize variable may have been updated while rolling + ** back a journal created by a process with a different sector size + ** value. Reset it to the correct value for this process. + */ + setSectorSize(pPager); + return rc; +} + +/* +** Playback the statement journal. +** +** This is similar to playing back the transaction journal but with +** a few extra twists. +** +** (1) The number of pages in the database file at the start of +** the statement is stored in pPager->stmtSize, not in the +** journal file itself. +** +** (2) In addition to playing back the statement journal, also +** playback all pages of the transaction journal beginning +** at offset pPager->stmtJSize. +*/ +static int pager_stmt_playback(Pager *pPager){ + i64 szJ; /* Size of the full journal */ + i64 hdrOff; + int nRec; /* Number of Records */ + int i; /* Loop counter */ + int rc; + + szJ = pPager->journalOff; + + /* Set hdrOff to be the offset just after the end of the last journal + ** page written before the first journal-header for this statement + ** transaction was written, or the end of the file if no journal + ** header was written. + */ + hdrOff = pPager->stmtHdrOff; + assert( pPager->fullSync || !hdrOff ); + if( !hdrOff ){ + hdrOff = szJ; + } + + /* Truncate the database back to its original size. + */ + rc = pager_truncate(pPager, pPager->stmtSize); + assert( pPager->state>=PAGER_SHARED ); + + /* Figure out how many records are in the statement journal. + */ + assert( pPager->stmtInUse && pPager->journalOpen ); + nRec = pPager->stmtNRec; + + /* Copy original pages out of the statement journal and back into the + ** database file. Note that the statement journal omits checksums from + ** each record since power-failure recovery is not important to statement + ** journals. + */ + for(i=0; i<nRec; i++){ + i64 offset = i*(4+pPager->pageSize); + rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0); + assert( rc!=SQLITE_DONE ); + if( rc!=SQLITE_OK ) goto end_stmt_playback; + } + + /* Now roll some pages back from the transaction journal. Pager.stmtJSize + ** was the size of the journal file when this statement was started, so + ** everything after that needs to be rolled back, either into the + ** database, the memory cache, or both. + ** + ** If it is not zero, then Pager.stmtHdrOff is the offset to the start + ** of the first journal header written during this statement transaction. + */ + pPager->journalOff = pPager->stmtJSize; + pPager->cksumInit = pPager->stmtCksum; + while( pPager->journalOff < hdrOff ){ + rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); + assert( rc!=SQLITE_DONE ); + if( rc!=SQLITE_OK ) goto end_stmt_playback; + } + + while( pPager->journalOff < szJ ){ + u32 nJRec; /* Number of Journal Records */ + u32 dummy; + rc = readJournalHdr(pPager, szJ, &nJRec, &dummy); + if( rc!=SQLITE_OK ){ + assert( rc!=SQLITE_DONE ); + goto end_stmt_playback; + } + if( nJRec==0 ){ + nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8); + } + for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){ + rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); + assert( rc!=SQLITE_DONE ); + if( rc!=SQLITE_OK ) goto end_stmt_playback; + } + } + + pPager->journalOff = szJ; + +end_stmt_playback: + if( rc==SQLITE_OK) { + pPager->journalOff = szJ; + /* pager_reload_cache(pPager); */ + } + return rc; +} + +/* +** Change the maximum number of in-memory pages that are allowed. +*/ +SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ + if( mxPage>10 ){ + pPager->mxPage = mxPage; + }else{ + pPager->mxPage = 10; + } +} + +/* +** Adjust the robustness of the database to damage due to OS crashes +** or power failures by changing the number of syncs()s when writing +** the rollback journal. There are three levels: +** +** OFF sqlite3OsSync() is never called. This is the default +** for temporary and transient files. +** +** NORMAL The journal is synced once before writes begin on the +** database. This is normally adequate protection, but +** it is theoretically possible, though very unlikely, +** that an inopertune power failure could leave the journal +** in a state which would cause damage to the database +** when it is rolled back. +** +** FULL The journal is synced twice before writes begin on the +** database (with some additional information - the nRec field +** of the journal header - being written in between the two +** syncs). If we assume that writing a +** single disk sector is atomic, then this mode provides +** assurance that the journal will not be corrupted to the +** point of causing damage to the database during rollback. +** +** Numeric values associated with these states are OFF==1, NORMAL=2, +** and FULL=3. +*/ +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){ + pPager->noSync = level==1 || pPager->tempFile; + pPager->fullSync = level==3 && !pPager->tempFile; + pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL); + if( pPager->noSync ) pPager->needSync = 0; +} +#endif + +/* +** The following global variable is incremented whenever the library +** attempts to open a temporary file. This information is used for +** testing and analysis only. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_opentemp_count = 0; +#endif + +/* +** Open a temporary file. +** +** Write the file descriptor into *fd. Return SQLITE_OK on success or some +** other error code if we fail. The OS will automatically delete the temporary +** file when it is closed. +*/ +static int sqlite3PagerOpentemp( + sqlite3_vfs *pVfs, /* The virtual file system layer */ + sqlite3_file *pFile, /* Write the file descriptor here */ + char *zFilename, /* Name of the file. Might be NULL */ + int vfsFlags /* Flags passed through to the VFS */ +){ + int rc; + assert( zFilename!=0 ); + +#ifdef SQLITE_TEST + sqlite3_opentemp_count++; /* Used for testing and analysis only */ +#endif + + vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | + SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; + rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0); + assert( rc!=SQLITE_OK || pFile->pMethods ); + return rc; +} + +/* +** Create a new page cache and put a pointer to the page cache in *ppPager. +** The file to be cached need not exist. The file is not locked until +** the first call to sqlite3PagerGet() and is only held open until the +** last page is released using sqlite3PagerUnref(). +** +** If zFilename is NULL then a randomly-named temporary file is created +** and used as the file to be cached. The file will be deleted +** automatically when it is closed. +** +** If zFilename is ":memory:" then all information is held in cache. +** It is never written to disk. This can be used to implement an +** in-memory database. +*/ +SQLITE_PRIVATE int sqlite3PagerOpen( + sqlite3_vfs *pVfs, /* The virtual file system to use */ + Pager **ppPager, /* Return the Pager structure here */ + const char *zFilename, /* Name of the database file to open */ + int nExtra, /* Extra bytes append to each in-memory page */ + int flags, /* flags controlling this file */ + int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */ +){ + u8 *pPtr; + Pager *pPager = 0; + int rc = SQLITE_OK; + int i; + int tempFile = 0; + int memDb = 0; + int readOnly = 0; + int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; + int noReadlock = (flags & PAGER_NO_READLOCK)!=0; + int journalFileSize = sqlite3JournalSize(pVfs); + int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE; + char *zPathname; + int nPathname; + char *zStmtJrnl; + int nStmtJrnl; + + /* The default return is a NULL pointer */ + *ppPager = 0; + + /* Compute the full pathname */ + nPathname = pVfs->mxPathname+1; + zPathname = sqlite3_malloc(nPathname*2); + if( zPathname==0 ){ + return SQLITE_NOMEM; + } + if( zFilename && zFilename[0] ){ +#ifndef SQLITE_OMIT_MEMORYDB + if( strcmp(zFilename,":memory:")==0 ){ + memDb = 1; + zPathname[0] = 0; + }else +#endif + { + rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); + } + }else{ + rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname); + } + if( rc!=SQLITE_OK ){ + sqlite3_free(zPathname); + return rc; + } + nPathname = strlen(zPathname); + + /* Put the statement journal in temporary disk space since this is + ** sometimes RAM disk or other optimized storage. Unlikely the main + ** main journal file, the statement journal does not need to be + ** colocated with the database nor does it need to be persistent. + */ + zStmtJrnl = &zPathname[nPathname+1]; + rc = sqlite3OsGetTempname(pVfs, pVfs->mxPathname+1, zStmtJrnl); + if( rc!=SQLITE_OK ){ + sqlite3_free(zPathname); + return rc; + } + nStmtJrnl = strlen(zStmtJrnl); + + /* Allocate memory for the pager structure */ + pPager = sqlite3MallocZero( + sizeof(*pPager) + /* Pager structure */ + journalFileSize + /* The journal file structure */ + pVfs->szOsFile * 3 + /* The main db and two journal files */ + 3*nPathname + 40 + /* zFilename, zDirectory, zJournal */ + nStmtJrnl /* zStmtJrnl */ + ); + if( !pPager ){ + sqlite3_free(zPathname); + return SQLITE_NOMEM; + } + pPtr = (u8 *)&pPager[1]; + pPager->vfsFlags = vfsFlags; + pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0]; + pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1]; + pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2]; + pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize]; + pPager->zDirectory = &pPager->zFilename[nPathname+1]; + pPager->zJournal = &pPager->zDirectory[nPathname+1]; + pPager->zStmtJrnl = &pPager->zJournal[nPathname+10]; + pPager->pVfs = pVfs; + memcpy(pPager->zFilename, zPathname, nPathname+1); + memcpy(pPager->zStmtJrnl, zStmtJrnl, nStmtJrnl+1); + sqlite3_free(zPathname); + + /* Open the pager file. + */ + if( zFilename && zFilename[0] && !memDb ){ + if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){ + rc = SQLITE_CANTOPEN; + }else{ + int fout = 0; + rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, + pPager->vfsFlags, &fout); + readOnly = (fout&SQLITE_OPEN_READONLY); + + /* If the file was successfully opened for read/write access, + ** choose a default page size in case we have to create the + ** database file. The default page size is the maximum of: + ** + ** + SQLITE_DEFAULT_PAGE_SIZE, + ** + The value returned by sqlite3OsSectorSize() + ** + The largest page size that can be written atomically. + */ + if( rc==SQLITE_OK && !readOnly ){ + int iSectorSize = sqlite3OsSectorSize(pPager->fd); + if( nDefaultPage<iSectorSize ){ + nDefaultPage = iSectorSize; + } +#ifdef SQLITE_ENABLE_ATOMIC_WRITE + { + int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); + int ii; + assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); + assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); + assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); + for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ + if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii; + } + } +#endif + if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ + nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE; + } + } + } + }else if( !memDb ){ + /* If a temporary file is requested, it is not opened immediately. + ** In this case we accept the default page size and delay actually + ** opening the file until the first call to OsWrite(). + */ + tempFile = 1; + pPager->state = PAGER_EXCLUSIVE; + } + + if( pPager && rc==SQLITE_OK ){ + pPager->pTmpSpace = sqlite3MallocZero(nDefaultPage); + } + + /* If an error occured in either of the blocks above. + ** Free the Pager structure and close the file. + ** Since the pager is not allocated there is no need to set + ** any Pager.errMask variables. + */ + if( !pPager || !pPager->pTmpSpace ){ + sqlite3OsClose(pPager->fd); + sqlite3_free(pPager); + return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc); + } + + PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename); + IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) + + /* Fill in Pager.zDirectory[] */ + memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1); + for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){} + if( i>0 ) pPager->zDirectory[i-1] = 0; + + /* Fill in Pager.zJournal[] */ + memcpy(pPager->zJournal, pPager->zFilename, nPathname); + memcpy(&pPager->zJournal[nPathname], "-journal", 9); + + /* pPager->journalOpen = 0; */ + pPager->useJournal = useJournal && !memDb; + pPager->noReadlock = noReadlock && readOnly; + /* pPager->stmtOpen = 0; */ + /* pPager->stmtInUse = 0; */ + /* pPager->nRef = 0; */ + pPager->dbSize = memDb-1; + pPager->pageSize = nDefaultPage; + /* pPager->stmtSize = 0; */ + /* pPager->stmtJSize = 0; */ + /* pPager->nPage = 0; */ + pPager->mxPage = 100; + pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; + /* pPager->state = PAGER_UNLOCK; */ + assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); + /* pPager->errMask = 0; */ + pPager->tempFile = tempFile; + assert( tempFile==PAGER_LOCKINGMODE_NORMAL + || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); + assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); + pPager->exclusiveMode = tempFile; + pPager->memDb = memDb; + pPager->readOnly = readOnly; + /* pPager->needSync = 0; */ + pPager->noSync = pPager->tempFile || !useJournal; + pPager->fullSync = (pPager->noSync?0:1); + pPager->sync_flags = SQLITE_SYNC_NORMAL; + /* pPager->pFirst = 0; */ + /* pPager->pFirstSynced = 0; */ + /* pPager->pLast = 0; */ + pPager->nExtra = FORCE_ALIGNMENT(nExtra); + assert(pPager->fd->pMethods||memDb||tempFile); + if( !memDb ){ + setSectorSize(pPager); + } + /* pPager->pBusyHandler = 0; */ + /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ + *ppPager = pPager; +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + pPager->iInUseMM = 0; + pPager->iInUseDB = 0; + if( !memDb ){ +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); +#endif + sqlite3_mutex_enter(mutex); + pPager->pNext = sqlite3PagerList; + if( sqlite3PagerList ){ + assert( sqlite3PagerList->pPrev==0 ); + sqlite3PagerList->pPrev = pPager; + } + pPager->pPrev = 0; + sqlite3PagerList = pPager; + sqlite3_mutex_leave(mutex); + } +#endif + return SQLITE_OK; +} + +/* +** Set the busy handler function. +*/ +SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){ + pPager->pBusyHandler = pBusyHandler; +} + +/* +** Set the destructor for this pager. If not NULL, the destructor is called +** when the reference count on each page reaches zero. The destructor can +** be used to clean up information in the extra segment appended to each page. +** +** The destructor is not called as a result sqlite3PagerClose(). +** Destructors are only called by sqlite3PagerUnref(). +*/ +SQLITE_PRIVATE void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){ + pPager->xDestructor = xDesc; +} + +/* +** Set the reinitializer for this pager. If not NULL, the reinitializer +** is called when the content of a page in cache is restored to its original +** value as a result of a rollback. The callback gives higher-level code +** an opportunity to restore the EXTRA section to agree with the restored +** page data. +*/ +SQLITE_PRIVATE void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){ + pPager->xReiniter = xReinit; +} + +/* +** Set the page size to *pPageSize. If the suggest new page size is +** inappropriate, then an alternative page size is set to that +** value before returning. +*/ +SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){ + int rc = SQLITE_OK; + u16 pageSize = *pPageSize; + assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); + if( pageSize && pageSize!=pPager->pageSize + && !pPager->memDb && pPager->nRef==0 + ){ + char *pNew = (char *)sqlite3_malloc(pageSize); + if( !pNew ){ + rc = SQLITE_NOMEM; + }else{ + pagerEnter(pPager); + pager_reset(pPager); + pPager->pageSize = pageSize; + setSectorSize(pPager); + sqlite3_free(pPager->pTmpSpace); + pPager->pTmpSpace = pNew; + pagerLeave(pPager); + } + } + *pPageSize = pPager->pageSize; + return rc; +} + +/* +** Return a pointer to the "temporary page" buffer held internally +** by the pager. This is a buffer that is big enough to hold the +** entire content of a database page. This buffer is used internally +** during rollback and will be overwritten whenever a rollback +** occurs. But other modules are free to use it too, as long as +** no rollbacks are happening. +*/ +SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){ + return pPager->pTmpSpace; +} + +/* +** Attempt to set the maximum database page count if mxPage is positive. +** Make no changes if mxPage is zero or negative. And never reduce the +** maximum page count below the current size of the database. +** +** Regardless of mxPage, return the current maximum page count. +*/ +SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ + if( mxPage>0 ){ + pPager->mxPgno = mxPage; + } + sqlite3PagerPagecount(pPager); + return pPager->mxPgno; +} + +/* +** The following set of routines are used to disable the simulated +** I/O error mechanism. These routines are used to avoid simulated +** errors in places where we do not care about errors. +** +** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops +** and generate no code. +*/ +#ifdef SQLITE_TEST +SQLITE_API extern int sqlite3_io_error_pending; +SQLITE_API extern int sqlite3_io_error_hit; +static int saved_cnt; +void disable_simulated_io_errors(void){ + saved_cnt = sqlite3_io_error_pending; + sqlite3_io_error_pending = -1; +} +void enable_simulated_io_errors(void){ + sqlite3_io_error_pending = saved_cnt; +} +#else +# define disable_simulated_io_errors() +# define enable_simulated_io_errors() +#endif + +/* +** Read the first N bytes from the beginning of the file into memory +** that pDest points to. +** +** No error checking is done. The rational for this is that this function +** may be called even if the file does not exist or contain a header. In +** these cases sqlite3OsRead() will return an error, to which the correct +** response is to zero the memory at pDest and continue. A real IO error +** will presumably recur and be picked up later (Todo: Think about this). +*/ +SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ + int rc = SQLITE_OK; + memset(pDest, 0, N); + assert(MEMDB||pPager->fd->pMethods||pPager->tempFile); + if( pPager->fd->pMethods ){ + IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) + rc = sqlite3OsRead(pPager->fd, pDest, N, 0); + if( rc==SQLITE_IOERR_SHORT_READ ){ + rc = SQLITE_OK; + } + } + return rc; +} + +/* +** Return the total number of pages in the disk file associated with +** pPager. +** +** If the PENDING_BYTE lies on the page directly after the end of the +** file, then consider this page part of the file too. For example, if +** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the +** file is 4096 bytes, 5 is returned instead of 4. +*/ +SQLITE_PRIVATE int sqlite3PagerPagecount(Pager *pPager){ + i64 n = 0; + int rc; + assert( pPager!=0 ); + if( pPager->errCode ){ + return -1; + } + if( pPager->dbSize>=0 ){ + n = pPager->dbSize; + } else { + assert(pPager->fd->pMethods||pPager->tempFile); + if( (pPager->fd->pMethods) + && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){ + pPager->nRef++; + pager_error(pPager, rc); + pPager->nRef--; + return -1; + } + if( n>0 && n<pPager->pageSize ){ + n = 1; + }else{ + n /= pPager->pageSize; + } + if( pPager->state!=PAGER_UNLOCK ){ + pPager->dbSize = n; + } + } + if( n==(PENDING_BYTE/pPager->pageSize) ){ + n++; + } + if( n>pPager->mxPgno ){ + pPager->mxPgno = n; + } + return n; +} + + +#ifndef SQLITE_OMIT_MEMORYDB +/* +** Clear a PgHistory block +*/ +static void clearHistory(PgHistory *pHist){ + sqlite3_free(pHist->pOrig); + sqlite3_free(pHist->pStmt); + pHist->pOrig = 0; + pHist->pStmt = 0; +} +#else +#define clearHistory(x) +#endif + +/* +** Forward declaration +*/ +static int syncJournal(Pager*); + +/* +** Unlink pPg from its hash chain. Also set the page number to 0 to indicate +** that the page is not part of any hash chain. This is required because the +** sqlite3PagerMovepage() routine can leave a page in the +** pNextFree/pPrevFree list that is not a part of any hash-chain. +*/ +static void unlinkHashChain(Pager *pPager, PgHdr *pPg){ + if( pPg->pgno==0 ){ + assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); + return; + } + if( pPg->pNextHash ){ + pPg->pNextHash->pPrevHash = pPg->pPrevHash; + } + if( pPg->pPrevHash ){ + assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg ); + pPg->pPrevHash->pNextHash = pPg->pNextHash; + }else{ + int h = pPg->pgno & (pPager->nHash-1); + pPager->aHash[h] = pPg->pNextHash; + } + if( MEMDB ){ + clearHistory(PGHDR_TO_HIST(pPg, pPager)); + } + pPg->pgno = 0; + pPg->pNextHash = pPg->pPrevHash = 0; +} + +/* +** Unlink a page from the free list (the list of all pages where nRef==0) +** and from its hash collision chain. +*/ +static void unlinkPage(PgHdr *pPg){ + Pager *pPager = pPg->pPager; + + /* Unlink from free page list */ + lruListRemove(pPg); + + /* Unlink from the pgno hash table */ + unlinkHashChain(pPager, pPg); +} + +/* +** This routine is used to truncate the cache when a database +** is truncated. Drop from the cache all pages whose pgno is +** larger than pPager->dbSize and is unreferenced. +** +** Referenced pages larger than pPager->dbSize are zeroed. +** +** Actually, at the point this routine is called, it would be +** an error to have a referenced page. But rather than delete +** that page and guarantee a subsequent segfault, it seems better +** to zero it and hope that we error out sanely. +*/ +static void pager_truncate_cache(Pager *pPager){ + PgHdr *pPg; + PgHdr **ppPg; + int dbSize = pPager->dbSize; + + ppPg = &pPager->pAll; + while( (pPg = *ppPg)!=0 ){ + if( pPg->pgno<=dbSize ){ + ppPg = &pPg->pNextAll; + }else if( pPg->nRef>0 ){ + memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); + ppPg = &pPg->pNextAll; + }else{ + *ppPg = pPg->pNextAll; + IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); + PAGER_INCR(sqlite3_pager_pgfree_count); + unlinkPage(pPg); + makeClean(pPg); + sqlite3_free(pPg->pData); + sqlite3_free(pPg); + pPager->nPage--; + } + } +} + +/* +** Try to obtain a lock on a file. Invoke the busy callback if the lock +** is currently not available. Repeat until the busy callback returns +** false or until the lock succeeds. +** +** Return SQLITE_OK on success and an error code if we cannot obtain +** the lock. +*/ +static int pager_wait_on_lock(Pager *pPager, int locktype){ + int rc; + + /* The OS lock values must be the same as the Pager lock values */ + assert( PAGER_SHARED==SHARED_LOCK ); + assert( PAGER_RESERVED==RESERVED_LOCK ); + assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK ); + + /* If the file is currently unlocked then the size must be unknown */ + assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB ); + + if( pPager->state>=locktype ){ + rc = SQLITE_OK; + }else{ + if( pPager->pBusyHandler ) pPager->pBusyHandler->nBusy = 0; + do { + rc = sqlite3OsLock(pPager->fd, locktype); + }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) ); + if( rc==SQLITE_OK ){ + pPager->state = locktype; + IOTRACE(("LOCK %p %d\n", pPager, locktype)) + } + } + return rc; +} + +/* +** Truncate the file to the number of pages specified. +*/ +SQLITE_PRIVATE int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){ + int rc; + assert( pPager->state>=PAGER_SHARED || MEMDB ); + sqlite3PagerPagecount(pPager); + if( pPager->errCode ){ + rc = pPager->errCode; + return rc; + } + if( nPage>=(unsigned)pPager->dbSize ){ + return SQLITE_OK; + } + if( MEMDB ){ + pPager->dbSize = nPage; + pager_truncate_cache(pPager); + return SQLITE_OK; + } + pagerEnter(pPager); + rc = syncJournal(pPager); + pagerLeave(pPager); + if( rc!=SQLITE_OK ){ + return rc; + } + + /* Get an exclusive lock on the database before truncating. */ + pagerEnter(pPager); + rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); + pagerLeave(pPager); + if( rc!=SQLITE_OK ){ + return rc; + } + + rc = pager_truncate(pPager, nPage); + return rc; +} + +/* +** Shutdown the page cache. Free all memory and close all files. +** +** If a transaction was in progress when this routine is called, that +** transaction is rolled back. All outstanding pages are invalidated +** and their memory is freed. Any attempt to use a page associated +** with this page cache after this function returns will likely +** result in a coredump. +** +** This function always succeeds. If a transaction is active an attempt +** is made to roll it back. If an error occurs during the rollback +** a hot journal may be left in the filesystem but no error is returned +** to the caller. +*/ +SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager){ +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT + if( !MEMDB ){ +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); +#endif + sqlite3_mutex_enter(mutex); + if( pPager->pPrev ){ + pPager->pPrev->pNext = pPager->pNext; + }else{ + sqlite3PagerList = pPager->pNext; + } + if( pPager->pNext ){ + pPager->pNext->pPrev = pPager->pPrev; + } + sqlite3_mutex_leave(mutex); + } +#endif + + disable_simulated_io_errors(); + sqlite3FaultBeginBenign(-1); + pPager->errCode = 0; + pPager->exclusiveMode = 0; + pager_reset(pPager); + pagerUnlockAndRollback(pPager); + enable_simulated_io_errors(); + sqlite3FaultEndBenign(-1); + PAGERTRACE2("CLOSE %d\n", PAGERID(pPager)); + IOTRACE(("CLOSE %p\n", pPager)) + if( pPager->journalOpen ){ + sqlite3OsClose(pPager->jfd); + } + sqlite3BitvecDestroy(pPager->pInJournal); + if( pPager->stmtOpen ){ + sqlite3OsClose(pPager->stfd); + } + sqlite3OsClose(pPager->fd); + /* Temp files are automatically deleted by the OS + ** if( pPager->tempFile ){ + ** sqlite3OsDelete(pPager->zFilename); + ** } + */ + + sqlite3_free(pPager->aHash); + sqlite3_free(pPager->pTmpSpace); + sqlite3_free(pPager); + return SQLITE_OK; +} + +#if !defined(NDEBUG) || defined(SQLITE_TEST) +/* +** Return the page number for the given page data. +*/ +SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *p){ + return p->pgno; +} +#endif + +/* +** The page_ref() function increments the reference count for a page. +** If the page is currently on the freelist (the reference count is zero) then +** remove it from the freelist. +** +** For non-test systems, page_ref() is a macro that calls _page_ref() +** online of the reference count is zero. For test systems, page_ref() +** is a real function so that we can set breakpoints and trace it. +*/ +static void _page_ref(PgHdr *pPg){ + if( pPg->nRef==0 ){ + /* The page is currently on the freelist. Remove it. */ + lruListRemove(pPg); + pPg->pPager->nRef++; + } + pPg->nRef++; +} +#ifdef SQLITE_DEBUG + static void page_ref(PgHdr *pPg){ + if( pPg->nRef==0 ){ + _page_ref(pPg); + }else{ + pPg->nRef++; + } + } +#else +# define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++) +#endif + +/* +** Increment the reference count for a page. The input pointer is +** a reference to the page data. +*/ +SQLITE_PRIVATE int sqlite3PagerRef(DbPage *pPg){ + pagerEnter(pPg->pPager); + page_ref(pPg); + pagerLeave(pPg->pPager); + return SQLITE_OK; +} + +/* +** Sync the journal. In other words, make sure all the pages that have +** been written to the journal have actually reached the surface of the +** disk. It is not safe to modify the original database file until after +** the journal has been synced. If the original database is modified before +** the journal is synced and a power failure occurs, the unsynced journal +** data would be lost and we would be unable to completely rollback the +** database changes. Database corruption would occur. +** +** This routine also updates the nRec field in the header of the journal. +** (See comments on the pager_playback() routine for additional information.) +** If the sync mode is FULL, two syncs will occur. First the whole journal +** is synced, then the nRec field is updated, then a second sync occurs. +** +** For temporary databases, we do not care if we are able to rollback +** after a power failure, so no sync occurs. +** +** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which +** the database is stored, then OsSync() is never called on the journal +** file. In this case all that is required is to update the nRec field in +** the journal header. +** +** This routine clears the needSync field of every page current held in +** memory. +*/ +static int syncJournal(Pager *pPager){ + PgHdr *pPg; + int rc = SQLITE_OK; + + + /* Sync the journal before modifying the main database + ** (assuming there is a journal and it needs to be synced.) + */ + if( pPager->needSync ){ + if( !pPager->tempFile ){ + int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); + assert( pPager->journalOpen ); + + if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ + /* Write the nRec value into the journal file header. If in + ** full-synchronous mode, sync the journal first. This ensures that + ** all data has really hit the disk before nRec is updated to mark + ** it as a candidate for rollback. + ** + ** This is not required if the persistent media supports the + ** SAFE_APPEND property. Because in this case it is not possible + ** for garbage data to be appended to the file, the nRec field + ** is populated with 0xFFFFFFFF when the journal header is written + ** and never needs to be updated. + */ + i64 jrnlOff; + if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ + PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); + IOTRACE(("JSYNC %p\n", pPager)) + rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags); + if( rc!=0 ) return rc; + } + + jrnlOff = pPager->journalHdr + sizeof(aJournalMagic); + IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4)); + rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec); + if( rc ) return rc; + } + if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ + PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); + IOTRACE(("JSYNC %p\n", pPager)) + rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| + (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) + ); + if( rc!=0 ) return rc; + } + pPager->journalStarted = 1; + } + pPager->needSync = 0; + + /* Erase the needSync flag from every page. + */ + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + pPg->needSync = 0; + } + lruListSetFirstSynced(pPager); + } + +#ifndef NDEBUG + /* If the Pager.needSync flag is clear then the PgHdr.needSync + ** flag must also be clear for all pages. Verify that this + ** invariant is true. + */ + else{ + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + assert( pPg->needSync==0 ); + } + assert( pPager->lru.pFirstSynced==pPager->lru.pFirst ); + } +#endif + + return rc; +} + +/* +** Merge two lists of pages connected by pDirty and in pgno order. +** Do not both fixing the pPrevDirty pointers. +*/ +static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){ + PgHdr result, *pTail; + pTail = &result; + while( pA && pB ){ + if( pA->pgno<pB->pgno ){ + pTail->pDirty = pA; + pTail = pA; + pA = pA->pDirty; + }else{ + pTail->pDirty = pB; + pTail = pB; + pB = pB->pDirty; + } + } + if( pA ){ + pTail->pDirty = pA; + }else if( pB ){ + pTail->pDirty = pB; + }else{ + pTail->pDirty = 0; + } + return result.pDirty; +} + +/* +** Sort the list of pages in accending order by pgno. Pages are +** connected by pDirty pointers. The pPrevDirty pointers are +** corrupted by this sort. +*/ +#define N_SORT_BUCKET_ALLOC 25 +#define N_SORT_BUCKET 25 +#ifdef SQLITE_TEST + int sqlite3_pager_n_sort_bucket = 0; + #undef N_SORT_BUCKET + #define N_SORT_BUCKET \ + (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC) +#endif +static PgHdr *sort_pagelist(PgHdr *pIn){ + PgHdr *a[N_SORT_BUCKET_ALLOC], *p; + int i; + memset(a, 0, sizeof(a)); + while( pIn ){ + p = pIn; + pIn = p->pDirty; + p->pDirty = 0; + for(i=0; i<N_SORT_BUCKET-1; i++){ + if( a[i]==0 ){ + a[i] = p; + break; + }else{ + p = merge_pagelist(a[i], p); + a[i] = 0; + } + } + if( i==N_SORT_BUCKET-1 ){ + /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET) + ** elements in the input list. This is possible, but impractical. + ** Testing this line is the point of global variable + ** sqlite3_pager_n_sort_bucket. + */ + a[i] = merge_pagelist(a[i], p); + } + } + p = a[0]; + for(i=1; i<N_SORT_BUCKET; i++){ + p = merge_pagelist(p, a[i]); + } + return p; +} + +/* +** Given a list of pages (connected by the PgHdr.pDirty pointer) write +** every one of those pages out to the database file and mark them all +** as clean. +*/ +static int pager_write_pagelist(PgHdr *pList){ + Pager *pPager; + PgHdr *p; + int rc; + + if( pList==0 ) return SQLITE_OK; + pPager = pList->pPager; + + /* At this point there may be either a RESERVED or EXCLUSIVE lock on the + ** database file. If there is already an EXCLUSIVE lock, the following + ** calls to sqlite3OsLock() are no-ops. + ** + ** Moving the lock from RESERVED to EXCLUSIVE actually involves going + ** through an intermediate state PENDING. A PENDING lock prevents new + ** readers from attaching to the database but is unsufficient for us to + ** write. The idea of a PENDING lock is to prevent new readers from + ** coming in while we wait for existing readers to clear. + ** + ** While the pager is in the RESERVED state, the original database file + ** is unchanged and we can rollback without having to playback the + ** journal into the original database file. Once we transition to + ** EXCLUSIVE, it means the database file has been changed and any rollback + ** will require a journal playback. + */ + rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); + if( rc!=SQLITE_OK ){ + return rc; + } + + pList = sort_pagelist(pList); + for(p=pList; p; p=p->pDirty){ + assert( p->dirty ); + p->dirty = 0; + } + while( pList ){ + + /* If the file has not yet been opened, open it now. */ + if( !pPager->fd->pMethods ){ + assert(pPager->tempFile); + rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename, + pPager->vfsFlags); + if( rc ) return rc; + } + + /* If there are dirty pages in the page cache with page numbers greater + ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to + ** make the file smaller (presumably by auto-vacuum code). Do not write + ** any such pages to the file. + */ + if( pList->pgno<=pPager->dbSize ){ + i64 offset = (pList->pgno-1)*(i64)pPager->pageSize; + char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6); + PAGERTRACE4("STORE %d page %d hash(%08x)\n", + PAGERID(pPager), pList->pgno, pager_pagehash(pList)); + IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno)); + rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); + PAGER_INCR(sqlite3_pager_writedb_count); + PAGER_INCR(pPager->nWrite); + if( pList->pgno==1 ){ + memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); + } + } +#ifndef NDEBUG + else{ + PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno); + } +#endif + if( rc ) return rc; +#ifdef SQLITE_CHECK_PAGES + pList->pageHash = pager_pagehash(pList); +#endif + pList = pList->pDirty; + } + return SQLITE_OK; +} + +/* +** Collect every dirty page into a dirty list and +** return a pointer to the head of that list. All pages are +** collected even if they are still in use. +*/ +static PgHdr *pager_get_all_dirty_pages(Pager *pPager){ + +#ifndef NDEBUG + /* Verify the sanity of the dirty list when we are running + ** in debugging mode. This is expensive, so do not + ** do this on a normal build. */ + int n1 = 0; + int n2 = 0; + PgHdr *p; + for(p=pPager->pAll; p; p=p->pNextAll){ if( p->dirty ) n1++; } + for(p=pPager->pDirty; p; p=p->pDirty){ n2++; } + assert( n1==n2 ); +#endif + + return pPager->pDirty; +} + +/* +** Return 1 if there is a hot journal on the given pager. +** A hot journal is one that needs to be played back. +** +** If the current size of the database file is 0 but a journal file +** exists, that is probably an old journal left over from a prior +** database with the same name. Just delete the journal. +** +** Return negative if unable to determine the status of the journal. +** +** This routine does not open the journal file to examine its +** content. Hence, the journal might contain the name of a master +** journal file that has been deleted, and hence not be hot. Or +** the header of the journal might be zeroed out. This routine +** does not discover these cases of a non-hot journal - if the +** journal file exists and is not empty this routine assumes it +** is hot. The pager_playback() routine will discover that the +** journal file is not really hot and will no-op. +*/ +static int hasHotJournal(Pager *pPager){ + sqlite3_vfs *pVfs = pPager->pVfs; + int rc; + if( !pPager->useJournal ) return 0; + if( !pPager->fd->pMethods ) return 0; + rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS); + if( rc<=0 ){ + return rc; + } + if( sqlite3OsCheckReservedLock(pPager->fd) ){ + return 0; + } + if( sqlite3PagerPagecount(pPager)==0 ){ + sqlite3OsDelete(pVfs, pPager->zJournal, 0); + return 0; + }else{ + return 1; + } +} + +/* +** Try to find a page in the cache that can be recycled. +** +** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It +** does not set the pPager->errCode variable. +*/ +static int pager_recycle(Pager *pPager, PgHdr **ppPg){ + PgHdr *pPg; + *ppPg = 0; + + /* It is illegal to call this function unless the pager object + ** pointed to by pPager has at least one free page (page with nRef==0). + */ + assert(!MEMDB); + assert(pPager->lru.pFirst); + + /* Find a page to recycle. Try to locate a page that does not + ** require us to do an fsync() on the journal. + */ + pPg = pPager->lru.pFirstSynced; + + /* If we could not find a page that does not require an fsync() + ** on the journal file then fsync the journal file. This is a + ** very slow operation, so we work hard to avoid it. But sometimes + ** it can't be helped. + */ + if( pPg==0 && pPager->lru.pFirst){ + int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); + int rc = syncJournal(pPager); + if( rc!=0 ){ + return rc; + } + if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ + /* If in full-sync mode, write a new journal header into the + ** journal file. This is done to avoid ever modifying a journal + ** header that is involved in the rollback of pages that have + ** already been written to the database (in case the header is + ** trashed when the nRec field is updated). + */ + pPager->nRec = 0; + assert( pPager->journalOff > 0 ); + assert( pPager->doNotSync==0 ); + rc = writeJournalHdr(pPager); + if( rc!=0 ){ + return rc; + } + } + pPg = pPager->lru.pFirst; + } + + assert( pPg->nRef==0 ); + + /* Write the page to the database file if it is dirty. + */ + if( pPg->dirty ){ + int rc; + assert( pPg->needSync==0 ); + makeClean(pPg); + pPg->dirty = 1; + pPg->pDirty = 0; + rc = pager_write_pagelist( pPg ); + pPg->dirty = 0; + if( rc!=SQLITE_OK ){ + return rc; + } + } + assert( pPg->dirty==0 ); + + /* If the page we are recycling is marked as alwaysRollback, then + ** set the global alwaysRollback flag, thus disabling the + ** sqlite3PagerDontRollback() optimization for the rest of this transaction. + ** It is necessary to do this because the page marked alwaysRollback + ** might be reloaded at a later time but at that point we won't remember + ** that is was marked alwaysRollback. This means that all pages must + ** be marked as alwaysRollback from here on out. + */ + if( pPg->alwaysRollback ){ + IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager)) + pPager->alwaysRollback = 1; + } + + /* Unlink the old page from the free list and the hash table + */ + unlinkPage(pPg); + assert( pPg->pgno==0 ); + + *ppPg = pPg; + return SQLITE_OK; +} + +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +/* +** This function is called to free superfluous dynamically allocated memory +** held by the pager system. Memory in use by any SQLite pager allocated +** by the current thread may be sqlite3_free()ed. +** +** nReq is the number of bytes of memory required. Once this much has +** been released, the function returns. The return value is the total number +** of bytes of memory released. +*/ +SQLITE_PRIVATE int sqlite3PagerReleaseMemory(int nReq){ + int nReleased = 0; /* Bytes of memory released so far */ + Pager *pPager; /* For looping over pagers */ + BusyHandler *savedBusy; /* Saved copy of the busy handler */ + int rc = SQLITE_OK; + + /* Acquire the memory-management mutex + */ +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex; /* The MEM2 mutex */ + mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); +#endif + sqlite3_mutex_enter(mutex); + + /* Signal all database connections that memory management wants + ** to have access to the pagers. + */ + for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ + pPager->iInUseMM = 1; + } + + while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){ + PgHdr *pPg; + PgHdr *pRecycled; + + /* Try to find a page to recycle that does not require a sync(). If + ** this is not possible, find one that does require a sync(). + */ + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); + pPg = sqlite3LruPageList.pFirstSynced; + while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){ + pPg = pPg->gfree.pNext; + } + if( !pPg ){ + pPg = sqlite3LruPageList.pFirst; + while( pPg && pPg->pPager->iInUseDB ){ + pPg = pPg->gfree.pNext; + } + } + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); + + /* If pPg==0, then the block above has failed to find a page to + ** recycle. In this case return early - no further memory will + ** be released. + */ + if( !pPg ) break; + + pPager = pPg->pPager; + assert(!pPg->needSync || pPg==pPager->lru.pFirst); + assert(pPg->needSync || pPg==pPager->lru.pFirstSynced); + + savedBusy = pPager->pBusyHandler; + pPager->pBusyHandler = 0; + rc = pager_recycle(pPager, &pRecycled); + pPager->pBusyHandler = savedBusy; + assert(pRecycled==pPg || rc!=SQLITE_OK); + if( rc==SQLITE_OK ){ + /* We've found a page to free. At this point the page has been + ** removed from the page hash-table, free-list and synced-list + ** (pFirstSynced). It is still in the all pages (pAll) list. + ** Remove it from this list before freeing. + ** + ** Todo: Check the Pager.pStmt list to make sure this is Ok. It + ** probably is though. + */ + PgHdr *pTmp; + assert( pPg ); + if( pPg==pPager->pAll ){ + pPager->pAll = pPg->pNextAll; + }else{ + for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){} + pTmp->pNextAll = pPg->pNextAll; + } + nReleased += ( + sizeof(*pPg) + pPager->pageSize + + sizeof(u32) + pPager->nExtra + + MEMDB*sizeof(PgHistory) + ); + IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno)); + PAGER_INCR(sqlite3_pager_pgfree_count); + sqlite3_free(pPg->pData); + sqlite3_free(pPg); + pPager->nPage--; + }else{ + /* An error occured whilst writing to the database file or + ** journal in pager_recycle(). The error is not returned to the + ** caller of this function. Instead, set the Pager.errCode variable. + ** The error will be returned to the user (or users, in the case + ** of a shared pager cache) of the pager for which the error occured. + */ + assert( + (rc&0xff)==SQLITE_IOERR || + rc==SQLITE_FULL || + rc==SQLITE_BUSY + ); + assert( pPager->state>=PAGER_RESERVED ); + pager_error(pPager, rc); + } + } + + /* Clear the memory management flags and release the mutex + */ + for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ + pPager->iInUseMM = 0; + } + sqlite3_mutex_leave(mutex); + + /* Return the number of bytes released + */ + return nReleased; +} +#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ + +/* +** Read the content of page pPg out of the database file. +*/ +static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){ + int rc; + i64 offset; + assert( MEMDB==0 ); + assert(pPager->fd->pMethods||pPager->tempFile); + if( !pPager->fd->pMethods ){ + return SQLITE_IOERR_SHORT_READ; + } + offset = (pgno-1)*(i64)pPager->pageSize; + rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset); + PAGER_INCR(sqlite3_pager_readdb_count); + PAGER_INCR(pPager->nRead); + IOTRACE(("PGIN %p %d\n", pPager, pgno)); + if( pgno==1 ){ + memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24], + sizeof(pPager->dbFileVers)); + } + CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); + PAGERTRACE4("FETCH %d page %d hash(%08x)\n", + PAGERID(pPager), pPg->pgno, pager_pagehash(pPg)); + return rc; +} + + +/* +** This function is called to obtain the shared lock required before +** data may be read from the pager cache. If the shared lock has already +** been obtained, this function is a no-op. +** +** Immediately after obtaining the shared lock (if required), this function +** checks for a hot-journal file. If one is found, an emergency rollback +** is performed immediately. +*/ +static int pagerSharedLock(Pager *pPager){ + int rc = SQLITE_OK; + int isHot = 0; + + /* If this database is opened for exclusive access, has no outstanding + ** page references and is in an error-state, now is the chance to clear + ** the error. Discard the contents of the pager-cache and treat any + ** open journal file as a hot-journal. + */ + if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){ + if( pPager->journalOpen ){ + isHot = 1; + } + pPager->errCode = SQLITE_OK; + pager_reset(pPager); + } + + /* If the pager is still in an error state, do not proceed. The error + ** state will be cleared at some point in the future when all page + ** references are dropped and the cache can be discarded. + */ + if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ + return pPager->errCode; + } + + if( pPager->state==PAGER_UNLOCK || isHot ){ + sqlite3_vfs *pVfs = pPager->pVfs; + if( !MEMDB ){ + assert( pPager->nRef==0 ); + if( !pPager->noReadlock ){ + rc = pager_wait_on_lock(pPager, SHARED_LOCK); + if( rc!=SQLITE_OK ){ + assert( pPager->state==PAGER_UNLOCK ); + return pager_error(pPager, rc); + } + assert( pPager->state>=SHARED_LOCK ); + } + + /* If a journal file exists, and there is no RESERVED lock on the + ** database file, then it either needs to be played back or deleted. + */ + rc = hasHotJournal(pPager); + if( rc<0 ){ + rc = SQLITE_IOERR_NOMEM; + goto failed; + } + if( rc==1 || isHot ){ + /* Get an EXCLUSIVE lock on the database file. At this point it is + ** important that a RESERVED lock is not obtained on the way to the + ** EXCLUSIVE lock. If it were, another process might open the + ** database file, detect the RESERVED lock, and conclude that the + ** database is safe to read while this process is still rolling it + ** back. + ** + ** Because the intermediate RESERVED lock is not requested, the + ** second process will get to this point in the code and fail to + ** obtain its own EXCLUSIVE lock on the database file. + */ + if( pPager->state<EXCLUSIVE_LOCK ){ + rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK); + if( rc!=SQLITE_OK ){ + rc = pager_error(pPager, rc); + goto failed; + } + pPager->state = PAGER_EXCLUSIVE; + } + + /* Open the journal for read/write access. This is because in + ** exclusive-access mode the file descriptor will be kept open and + ** possibly used for a transaction later on. On some systems, the + ** OsTruncate() call used in exclusive-access mode also requires + ** a read/write file handle. + */ + if( !isHot && pPager->journalOpen==0 ){ + int res = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS); + if( res==1 ){ + int fout = 0; + int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; + assert( !pPager->tempFile ); + rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); + assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); + if( fout&SQLITE_OPEN_READONLY ){ + rc = SQLITE_BUSY; + sqlite3OsClose(pPager->jfd); + } + }else if( res==0 ){ + /* If the journal does not exist, that means some other process + ** has already rolled it back */ + rc = SQLITE_BUSY; + }else{ + /* If sqlite3OsAccess() returns a negative value, that means it + ** failed a memory allocation */ + rc = SQLITE_IOERR_NOMEM; + } + } + if( rc!=SQLITE_OK ){ + if( rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_UNLOCK + && rc!=SQLITE_IOERR_NOMEM + ){ + rc = SQLITE_BUSY; + } + goto failed; + } + pPager->journalOpen = 1; + pPager->journalStarted = 0; + pPager->journalOff = 0; + pPager->setMaster = 0; + pPager->journalHdr = 0; + + /* Playback and delete the journal. Drop the database write + ** lock and reacquire the read lock. + */ + rc = pager_playback(pPager, 1); + if( rc!=SQLITE_OK ){ + rc = pager_error(pPager, rc); + goto failed; + } + assert(pPager->state==PAGER_SHARED || + (pPager->exclusiveMode && pPager->state>PAGER_SHARED) + ); + } + + if( pPager->pAll ){ + /* The shared-lock has just been acquired on the database file + ** and there are already pages in the cache (from a previous + ** read or write transaction). Check to see if the database + ** has been modified. If the database has changed, flush the + ** cache. + ** + ** Database changes is detected by looking at 15 bytes beginning + ** at offset 24 into the file. The first 4 of these 16 bytes are + ** a 32-bit counter that is incremented with each change. The + ** other bytes change randomly with each file change when + ** a codec is in use. + ** + ** There is a vanishingly small chance that a change will not be + ** detected. The chance of an undetected change is so small that + ** it can be neglected. + */ + char dbFileVers[sizeof(pPager->dbFileVers)]; + sqlite3PagerPagecount(pPager); + + if( pPager->errCode ){ + rc = pPager->errCode; + goto failed; + } + + if( pPager->dbSize>0 ){ + IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); + rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); + if( rc!=SQLITE_OK ){ + goto failed; + } + }else{ + memset(dbFileVers, 0, sizeof(dbFileVers)); + } + + if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ + pager_reset(pPager); + } + } + } + assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED ); + if( pPager->state==PAGER_UNLOCK ){ + pPager->state = PAGER_SHARED; + } + } + + failed: + if( rc!=SQLITE_OK ){ + /* pager_unlock() is a no-op for exclusive mode and in-memory databases. */ + pager_unlock(pPager); + } + return rc; +} + +/* +** Allocate a PgHdr object. Either create a new one or reuse +** an existing one that is not otherwise in use. +** +** A new PgHdr structure is created if any of the following are +** true: +** +** (1) We have not exceeded our maximum allocated cache size +** as set by the "PRAGMA cache_size" command. +** +** (2) There are no unused PgHdr objects available at this time. +** +** (3) This is an in-memory database. +** +** (4) There are no PgHdr objects that do not require a journal +** file sync and a sync of the journal file is currently +** prohibited. +** +** Otherwise, reuse an existing PgHdr. In other words, reuse an +** existing PgHdr if all of the following are true: +** +** (1) We have reached or exceeded the maximum cache size +** allowed by "PRAGMA cache_size". +** +** (2) There is a PgHdr available with PgHdr->nRef==0 +** +** (3) We are not in an in-memory database +** +** (4) Either there is an available PgHdr that does not need +** to be synced to disk or else disk syncing is currently +** allowed. +*/ +static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){ + int rc = SQLITE_OK; + PgHdr *pPg; + int nByteHdr; + + /* Create a new PgHdr if any of the four conditions defined + ** above are met: */ + if( pPager->nPage<pPager->mxPage + || pPager->lru.pFirst==0 + || MEMDB + || (pPager->lru.pFirstSynced==0 && pPager->doNotSync) + ){ + void *pData; + if( pPager->nPage>=pPager->nHash ){ + pager_resize_hash_table(pPager, + pPager->nHash<256 ? 256 : pPager->nHash*2); + if( pPager->nHash==0 ){ + rc = SQLITE_NOMEM; + goto pager_allocate_out; + } + } + pagerLeave(pPager); + nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra + + MEMDB*sizeof(PgHistory); + pPg = sqlite3_malloc( nByteHdr ); + if( pPg ){ + pData = sqlite3_malloc( pPager->pageSize ); + if( pData==0 ){ + sqlite3_free(pPg); + pPg = 0; + } + } + pagerEnter(pPager); + if( pPg==0 ){ + rc = SQLITE_NOMEM; + goto pager_allocate_out; + } + memset(pPg, 0, nByteHdr); + pPg->pData = pData; + pPg->pPager = pPager; + pPg->pNextAll = pPager->pAll; + pPager->pAll = pPg; + pPager->nPage++; + }else{ + /* Recycle an existing page with a zero ref-count. */ + rc = pager_recycle(pPager, &pPg); + if( rc==SQLITE_BUSY ){ + rc = SQLITE_IOERR_BLOCKED; + } + if( rc!=SQLITE_OK ){ + goto pager_allocate_out; + } + assert( pPager->state>=SHARED_LOCK ); + assert(pPg); + } + *ppPg = pPg; + +pager_allocate_out: + return rc; +} + +/* +** Make sure we have the content for a page. If the page was +** previously acquired with noContent==1, then the content was +** just initialized to zeros instead of being read from disk. +** But now we need the real data off of disk. So make sure we +** have it. Read it in if we do not have it already. +*/ +static int pager_get_content(PgHdr *pPg){ + if( pPg->needRead ){ + int rc = readDbPage(pPg->pPager, pPg, pPg->pgno); + if( rc==SQLITE_OK ){ + pPg->needRead = 0; + }else{ + return rc; + } + } + return SQLITE_OK; +} + +/* +** Acquire a page. +** +** A read lock on the disk file is obtained when the first page is acquired. +** This read lock is dropped when the last page is released. +** +** This routine works for any page number greater than 0. If the database +** file is smaller than the requested page, then no actual disk +** read occurs and the memory image of the page is initialized to +** all zeros. The extra data appended to a page is always initialized +** to zeros the first time a page is loaded into memory. +** +** The acquisition might fail for several reasons. In all cases, +** an appropriate error code is returned and *ppPage is set to NULL. +** +** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt +** to find a page in the in-memory cache first. If the page is not already +** in memory, this routine goes to disk to read it in whereas Lookup() +** just returns 0. This routine acquires a read-lock the first time it +** has to go to disk, and could also playback an old journal if necessary. +** Since Lookup() never goes to disk, it never has to deal with locks +** or journal files. +** +** If noContent is false, the page contents are actually read from disk. +** If noContent is true, it means that we do not care about the contents +** of the page at this time, so do not do a disk read. Just fill in the +** page content with zeros. But mark the fact that we have not read the +** content by setting the PgHdr.needRead flag. Later on, if +** sqlite3PagerWrite() is called on this page or if this routine is +** called again with noContent==0, that means that the content is needed +** and the disk read should occur at that point. +*/ +static int pagerAcquire( + Pager *pPager, /* The pager open on the database file */ + Pgno pgno, /* Page number to fetch */ + DbPage **ppPage, /* Write a pointer to the page here */ + int noContent /* Do not bother reading content from disk if true */ +){ + PgHdr *pPg; + int rc; + + assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 ); + + /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page + ** number greater than this, or zero, is requested. + */ + if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ + return SQLITE_CORRUPT_BKPT; + } + + /* Make sure we have not hit any critical errors. + */ + assert( pPager!=0 ); + *ppPage = 0; + + /* If this is the first page accessed, then get a SHARED lock + ** on the database file. pagerSharedLock() is a no-op if + ** a database lock is already held. + */ + rc = pagerSharedLock(pPager); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( pPager->state!=PAGER_UNLOCK ); + + pPg = pager_lookup(pPager, pgno); + if( pPg==0 ){ + /* The requested page is not in the page cache. */ + int nMax; + int h; + PAGER_INCR(pPager->nMiss); + rc = pagerAllocatePage(pPager, &pPg); + if( rc!=SQLITE_OK ){ + return rc; + } + + pPg->pgno = pgno; + assert( !MEMDB || pgno>pPager->stmtSize ); + pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno); + pPg->needSync = 0; + + makeClean(pPg); + pPg->nRef = 1; + + pPager->nRef++; + if( pPager->nExtra>0 ){ + memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); + } + nMax = sqlite3PagerPagecount(pPager); + if( pPager->errCode ){ + rc = pPager->errCode; + sqlite3PagerUnref(pPg); + return rc; + } + + /* Populate the page with data, either by reading from the database + ** file, or by setting the entire page to zero. + */ + if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){ + if( pgno>pPager->mxPgno ){ + sqlite3PagerUnref(pPg); + return SQLITE_FULL; + } + memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); + pPg->needRead = noContent && !pPager->alwaysRollback; + IOTRACE(("ZERO %p %d\n", pPager, pgno)); + }else{ + rc = readDbPage(pPager, pPg, pgno); + if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ + pPg->pgno = 0; + sqlite3PagerUnref(pPg); + return rc; + } + pPg->needRead = 0; + } + + /* Link the page into the page hash table */ + h = pgno & (pPager->nHash-1); + assert( pgno!=0 ); + pPg->pNextHash = pPager->aHash[h]; + pPager->aHash[h] = pPg; + if( pPg->pNextHash ){ + assert( pPg->pNextHash->pPrevHash==0 ); + pPg->pNextHash->pPrevHash = pPg; + } + +#ifdef SQLITE_CHECK_PAGES + pPg->pageHash = pager_pagehash(pPg); +#endif + }else{ + /* The requested page is in the page cache. */ + assert(pPager->nRef>0 || pgno==1); + PAGER_INCR(pPager->nHit); + if( !noContent ){ + rc = pager_get_content(pPg); + if( rc ){ + return rc; + } + } + page_ref(pPg); + } + *ppPage = pPg; + return SQLITE_OK; +} +SQLITE_PRIVATE int sqlite3PagerAcquire( + Pager *pPager, /* The pager open on the database file */ + Pgno pgno, /* Page number to fetch */ + DbPage **ppPage, /* Write a pointer to the page here */ + int noContent /* Do not bother reading content from disk if true */ +){ + int rc; + pagerEnter(pPager); + rc = pagerAcquire(pPager, pgno, ppPage, noContent); + pagerLeave(pPager); + return rc; +} + + +/* +** Acquire a page if it is already in the in-memory cache. Do +** not read the page from disk. Return a pointer to the page, +** or 0 if the page is not in cache. +** +** See also sqlite3PagerGet(). The difference between this routine +** and sqlite3PagerGet() is that _get() will go to the disk and read +** in the page if the page is not already in cache. This routine +** returns NULL if the page is not in cache or if a disk I/O error +** has ever happened. +*/ +SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ + PgHdr *pPg = 0; + + assert( pPager!=0 ); + assert( pgno!=0 ); + + pagerEnter(pPager); + if( pPager->state==PAGER_UNLOCK ){ + assert( !pPager->pAll || pPager->exclusiveMode ); + }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ + /* Do nothing */ + }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){ + page_ref(pPg); + } + pagerLeave(pPager); + return pPg; +} + +/* +** Release a page. +** +** If the number of references to the page drop to zero, then the +** page is added to the LRU list. When all references to all pages +** are released, a rollback occurs and the lock on the database is +** removed. +*/ +SQLITE_PRIVATE int sqlite3PagerUnref(DbPage *pPg){ + Pager *pPager; + + if( pPg==0 ) return SQLITE_OK; + pPager = pPg->pPager; + + /* Decrement the reference count for this page + */ + assert( pPg->nRef>0 ); + pagerEnter(pPg->pPager); + pPg->nRef--; + + CHECK_PAGE(pPg); + + /* When the number of references to a page reach 0, call the + ** destructor and add the page to the freelist. + */ + if( pPg->nRef==0 ){ + + lruListAdd(pPg); + if( pPager->xDestructor ){ + pPager->xDestructor(pPg, pPager->pageSize); + } + + /* When all pages reach the freelist, drop the read lock from + ** the database file. + */ + pPager->nRef--; + assert( pPager->nRef>=0 ); + if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){ + pagerUnlockAndRollback(pPager); + } + } + pagerLeave(pPager); + return SQLITE_OK; +} + +/* +** Create a journal file for pPager. There should already be a RESERVED +** or EXCLUSIVE lock on the database file when this routine is called. +** +** Return SQLITE_OK if everything. Return an error code and release the +** write lock if anything goes wrong. +*/ +static int pager_open_journal(Pager *pPager){ + sqlite3_vfs *pVfs = pPager->pVfs; + int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE); + + int rc; + assert( !MEMDB ); + assert( pPager->state>=PAGER_RESERVED ); + assert( pPager->useJournal ); + assert( pPager->pInJournal==0 ); + sqlite3PagerPagecount(pPager); + pagerLeave(pPager); + pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); + pagerEnter(pPager); + if( pPager->pInJournal==0 ){ + rc = SQLITE_NOMEM; + goto failed_to_open_journal; + } + + if( pPager->journalOpen==0 ){ + if( pPager->tempFile ){ + flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); + }else{ + flags |= (SQLITE_OPEN_MAIN_JOURNAL); + } +#ifdef SQLITE_ENABLE_ATOMIC_WRITE + rc = sqlite3JournalOpen( + pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) + ); +#else + rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); +#endif + assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); + pPager->journalOff = 0; + pPager->setMaster = 0; + pPager->journalHdr = 0; + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_NOMEM ){ + sqlite3OsDelete(pVfs, pPager->zJournal, 0); + } + goto failed_to_open_journal; + } + } + pPager->journalOpen = 1; + pPager->journalStarted = 0; + pPager->needSync = 0; + pPager->alwaysRollback = 0; + pPager->nRec = 0; + if( pPager->errCode ){ + rc = pPager->errCode; + goto failed_to_open_journal; + } + pPager->origDbSize = pPager->dbSize; + + rc = writeJournalHdr(pPager); + + if( pPager->stmtAutoopen && rc==SQLITE_OK ){ + rc = sqlite3PagerStmtBegin(pPager); + } + if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){ + rc = pager_end_transaction(pPager, 0); + if( rc==SQLITE_OK ){ + rc = SQLITE_FULL; + } + } + return rc; + +failed_to_open_journal: + sqlite3BitvecDestroy(pPager->pInJournal); + pPager->pInJournal = 0; + return rc; +} + +/* +** Acquire a write-lock on the database. The lock is removed when +** the any of the following happen: +** +** * sqlite3PagerCommitPhaseTwo() is called. +** * sqlite3PagerRollback() is called. +** * sqlite3PagerClose() is called. +** * sqlite3PagerUnref() is called to on every outstanding page. +** +** The first parameter to this routine is a pointer to any open page of the +** database file. Nothing changes about the page - it is used merely to +** acquire a pointer to the Pager structure and as proof that there is +** already a read-lock on the database. +** +** The second parameter indicates how much space in bytes to reserve for a +** master journal file-name at the start of the journal when it is created. +** +** A journal file is opened if this is not a temporary file. For temporary +** files, the opening of the journal file is deferred until there is an +** actual need to write to the journal. +** +** If the database is already reserved for writing, this routine is a no-op. +** +** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file +** immediately instead of waiting until we try to flush the cache. The +** exFlag is ignored if a transaction is already active. +*/ +SQLITE_PRIVATE int sqlite3PagerBegin(DbPage *pPg, int exFlag){ + Pager *pPager = pPg->pPager; + int rc = SQLITE_OK; + pagerEnter(pPager); + assert( pPg->nRef>0 ); + assert( pPager->state!=PAGER_UNLOCK ); + if( pPager->state==PAGER_SHARED ){ + assert( pPager->pInJournal==0 ); + if( MEMDB ){ + pPager->state = PAGER_EXCLUSIVE; + pPager->origDbSize = pPager->dbSize; + }else{ + rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK); + if( rc==SQLITE_OK ){ + pPager->state = PAGER_RESERVED; + if( exFlag ){ + rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); + } + } + if( rc!=SQLITE_OK ){ + pagerLeave(pPager); + return rc; + } + pPager->dirtyCache = 0; + PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager)); + if( pPager->useJournal && !pPager->tempFile + && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ + rc = pager_open_journal(pPager); + } + } + }else if( pPager->journalOpen && pPager->journalOff==0 ){ + /* This happens when the pager was in exclusive-access mode the last + ** time a (read or write) transaction was successfully concluded + ** by this connection. Instead of deleting the journal file it was + ** kept open and either was truncated to 0 bytes or its header was + ** overwritten with zeros. + */ + assert( pPager->nRec==0 ); + assert( pPager->origDbSize==0 ); + assert( pPager->pInJournal==0 ); + sqlite3PagerPagecount(pPager); + pagerLeave(pPager); + pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize ); + pagerEnter(pPager); + if( !pPager->pInJournal ){ + rc = SQLITE_NOMEM; + }else{ + pPager->origDbSize = pPager->dbSize; + rc = writeJournalHdr(pPager); + } + } + assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK ); + pagerLeave(pPager); + return rc; +} + +/* +** Make a page dirty. Set its dirty flag and add it to the dirty +** page list. +*/ +static void makeDirty(PgHdr *pPg){ + if( pPg->dirty==0 ){ + Pager *pPager = pPg->pPager; + pPg->dirty = 1; + pPg->pDirty = pPager->pDirty; + if( pPager->pDirty ){ + pPager->pDirty->pPrevDirty = pPg; + } + pPg->pPrevDirty = 0; + pPager->pDirty = pPg; + } +} + +/* +** Make a page clean. Clear its dirty bit and remove it from the +** dirty page list. +*/ +static void makeClean(PgHdr *pPg){ + if( pPg->dirty ){ + pPg->dirty = 0; + if( pPg->pDirty ){ + assert( pPg->pDirty->pPrevDirty==pPg ); + pPg->pDirty->pPrevDirty = pPg->pPrevDirty; + } + if( pPg->pPrevDirty ){ + assert( pPg->pPrevDirty->pDirty==pPg ); + pPg->pPrevDirty->pDirty = pPg->pDirty; + }else{ + assert( pPg->pPager->pDirty==pPg ); + pPg->pPager->pDirty = pPg->pDirty; + } + } +} + + +/* +** Mark a data page as writeable. The page is written into the journal +** if it is not there already. This routine must be called before making +** changes to a page. +** +** The first time this routine is called, the pager creates a new +** journal and acquires a RESERVED lock on the database. If the RESERVED +** lock could not be acquired, this routine returns SQLITE_BUSY. The +** calling routine must check for that return value and be careful not to +** change any page data until this routine returns SQLITE_OK. +** +** If the journal file could not be written because the disk is full, +** then this routine returns SQLITE_FULL and does an immediate rollback. +** All subsequent write attempts also return SQLITE_FULL until there +** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to +** reset. +*/ +static int pager_write(PgHdr *pPg){ + void *pData = PGHDR_TO_DATA(pPg); + Pager *pPager = pPg->pPager; + int rc = SQLITE_OK; + + /* Check for errors + */ + if( pPager->errCode ){ + return pPager->errCode; + } + if( pPager->readOnly ){ + return SQLITE_PERM; + } + + assert( !pPager->setMaster ); + + CHECK_PAGE(pPg); + + /* If this page was previously acquired with noContent==1, that means + ** we didn't really read in the content of the page. This can happen + ** (for example) when the page is being moved to the freelist. But + ** now we are (perhaps) moving the page off of the freelist for + ** reuse and we need to know its original content so that content + ** can be stored in the rollback journal. So do the read at this + ** time. + */ + rc = pager_get_content(pPg); + if( rc ){ + return rc; + } + + /* Mark the page as dirty. If the page has already been written + ** to the journal then we can return right away. + */ + makeDirty(pPg); + if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){ + pPager->dirtyCache = 1; + pPager->dbModified = 1; + }else{ + + /* If we get this far, it means that the page needs to be + ** written to the transaction journal or the ckeckpoint journal + ** or both. + ** + ** First check to see that the transaction journal exists and + ** create it if it does not. + */ + assert( pPager->state!=PAGER_UNLOCK ); + rc = sqlite3PagerBegin(pPg, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( pPager->state>=PAGER_RESERVED ); + if( !pPager->journalOpen && pPager->useJournal + && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ + rc = pager_open_journal(pPager); + if( rc!=SQLITE_OK ) return rc; + } + pPager->dirtyCache = 1; + pPager->dbModified = 1; + + /* The transaction journal now exists and we have a RESERVED or an + ** EXCLUSIVE lock on the main database file. Write the current page to + ** the transaction journal if it is not there already. + */ + if( !pPg->inJournal && (pPager->journalOpen || MEMDB) ){ + if( (int)pPg->pgno <= pPager->origDbSize ){ + if( MEMDB ){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); + assert( pHist->pOrig==0 ); + pHist->pOrig = sqlite3_malloc( pPager->pageSize ); + if( !pHist->pOrig ){ + return SQLITE_NOMEM; + } + memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize); + }else{ + u32 cksum; + char *pData2; + + /* We should never write to the journal file the page that + ** contains the database locks. The following assert verifies + ** that we do not. */ + assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); + pData2 = CODEC2(pPager, pData, pPg->pgno, 7); + cksum = pager_cksum(pPager, (u8*)pData2); + rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno); + if( rc==SQLITE_OK ){ + rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, + pPager->journalOff + 4); + pPager->journalOff += pPager->pageSize+4; + } + if( rc==SQLITE_OK ){ + rc = write32bits(pPager->jfd, pPager->journalOff, cksum); + pPager->journalOff += 4; + } + IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, + pPager->journalOff, pPager->pageSize)); + PAGER_INCR(sqlite3_pager_writej_count); + PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n", + PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg)); + + /* An error has occured writing to the journal file. The + ** transaction will be rolled back by the layer above. + */ + if( rc!=SQLITE_OK ){ + return rc; + } + + pPager->nRec++; + assert( pPager->pInJournal!=0 ); + sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); + pPg->needSync = !pPager->noSync; + if( pPager->stmtInUse ){ + sqlite3BitvecSet(pPager->pInStmt, pPg->pgno); + } + } + }else{ + pPg->needSync = !pPager->journalStarted && !pPager->noSync; + PAGERTRACE4("APPEND %d page %d needSync=%d\n", + PAGERID(pPager), pPg->pgno, pPg->needSync); + } + if( pPg->needSync ){ + pPager->needSync = 1; + } + pPg->inJournal = 1; + } + + /* If the statement journal is open and the page is not in it, + ** then write the current page to the statement journal. Note that + ** the statement journal format differs from the standard journal format + ** in that it omits the checksums and the header. + */ + if( pPager->stmtInUse + && !pageInStatement(pPg) + && (int)pPg->pgno<=pPager->stmtSize + ){ + assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); + if( MEMDB ){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + assert( pHist->pStmt==0 ); + pHist->pStmt = sqlite3_malloc( pPager->pageSize ); + if( pHist->pStmt ){ + memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize); + } + PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); + page_add_to_stmt_list(pPg); + }else{ + i64 offset = pPager->stmtNRec*(4+pPager->pageSize); + char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7); + rc = write32bits(pPager->stfd, offset, pPg->pgno); + if( rc==SQLITE_OK ){ + rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4); + } + PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); + if( rc!=SQLITE_OK ){ + return rc; + } + pPager->stmtNRec++; + assert( pPager->pInStmt!=0 ); + sqlite3BitvecSet(pPager->pInStmt, pPg->pgno); + } + } + } + + /* Update the database size and return. + */ + assert( pPager->state>=PAGER_SHARED ); + if( pPager->dbSize<(int)pPg->pgno ){ + pPager->dbSize = pPg->pgno; + if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){ + pPager->dbSize++; + } + } + return rc; +} + +/* +** This function is used to mark a data-page as writable. It uses +** pager_write() to open a journal file (if it is not already open) +** and write the page *pData to the journal. +** +** The difference between this function and pager_write() is that this +** function also deals with the special case where 2 or more pages +** fit on a single disk sector. In this case all co-resident pages +** must have been written to the journal file before returning. +*/ +SQLITE_PRIVATE int sqlite3PagerWrite(DbPage *pDbPage){ + int rc = SQLITE_OK; + + PgHdr *pPg = pDbPage; + Pager *pPager = pPg->pPager; + Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); + + pagerEnter(pPager); + if( !MEMDB && nPagePerSector>1 ){ + Pgno nPageCount; /* Total number of pages in database file */ + Pgno pg1; /* First page of the sector pPg is located on. */ + int nPage; /* Number of pages starting at pg1 to journal */ + int ii; + int needSync = 0; + + /* Set the doNotSync flag to 1. This is because we cannot allow a journal + ** header to be written between the pages journaled by this function. + */ + assert( pPager->doNotSync==0 ); + pPager->doNotSync = 1; + + /* This trick assumes that both the page-size and sector-size are + ** an integer power of 2. It sets variable pg1 to the identifier + ** of the first page of the sector pPg is located on. + */ + pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; + + nPageCount = sqlite3PagerPagecount(pPager); + if( pPg->pgno>nPageCount ){ + nPage = (pPg->pgno - pg1)+1; + }else if( (pg1+nPagePerSector-1)>nPageCount ){ + nPage = nPageCount+1-pg1; + }else{ + nPage = nPagePerSector; + } + assert(nPage>0); + assert(pg1<=pPg->pgno); + assert((pg1+nPage)>pPg->pgno); + + for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ + Pgno pg = pg1+ii; + PgHdr *pPage; + if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ + if( pg!=PAGER_MJ_PGNO(pPager) ){ + rc = sqlite3PagerGet(pPager, pg, &pPage); + if( rc==SQLITE_OK ){ + rc = pager_write(pPage); + if( pPage->needSync ){ + needSync = 1; + } + sqlite3PagerUnref(pPage); + } + } + }else if( (pPage = pager_lookup(pPager, pg))!=0 ){ + if( pPage->needSync ){ + needSync = 1; + } + } + } + + /* If the PgHdr.needSync flag is set for any of the nPage pages + ** starting at pg1, then it needs to be set for all of them. Because + ** writing to any of these nPage pages may damage the others, the + ** journal file must contain sync()ed copies of all of them + ** before any of them can be written out to the database file. + */ + if( needSync ){ + for(ii=0; ii<nPage && needSync; ii++){ + PgHdr *pPage = pager_lookup(pPager, pg1+ii); + if( pPage ) pPage->needSync = 1; + } + assert(pPager->needSync); + } + + assert( pPager->doNotSync==1 ); + pPager->doNotSync = 0; + }else{ + rc = pager_write(pDbPage); + } + pagerLeave(pPager); + return rc; +} + +/* +** Return TRUE if the page given in the argument was previously passed +** to sqlite3PagerWrite(). In other words, return TRUE if it is ok +** to change the content of the page. +*/ +#ifndef NDEBUG +SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){ + return pPg->dirty; +} +#endif + +/* +** A call to this routine tells the pager that it is not necessary to +** write the information on page pPg back to the disk, even though +** that page might be marked as dirty. +** +** The overlying software layer calls this routine when all of the data +** on the given page is unused. The pager marks the page as clean so +** that it does not get written to disk. +** +** Tests show that this optimization, together with the +** sqlite3PagerDontRollback() below, more than double the speed +** of large INSERT operations and quadruple the speed of large DELETEs. +** +** When this routine is called, set the alwaysRollback flag to true. +** Subsequent calls to sqlite3PagerDontRollback() for the same page +** will thereafter be ignored. This is necessary to avoid a problem +** where a page with data is added to the freelist during one part of +** a transaction then removed from the freelist during a later part +** of the same transaction and reused for some other purpose. When it +** is first added to the freelist, this routine is called. When reused, +** the sqlite3PagerDontRollback() routine is called. But because the +** page contains critical data, we still need to be sure it gets +** rolled back in spite of the sqlite3PagerDontRollback() call. +*/ +SQLITE_PRIVATE void sqlite3PagerDontWrite(DbPage *pDbPage){ + PgHdr *pPg = pDbPage; + Pager *pPager = pPg->pPager; + + if( MEMDB ) return; + pagerEnter(pPager); + pPg->alwaysRollback = 1; + if( pPg->dirty && !pPager->stmtInUse ){ + assert( pPager->state>=PAGER_SHARED ); + if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){ + /* If this pages is the last page in the file and the file has grown + ** during the current transaction, then do NOT mark the page as clean. + ** When the database file grows, we must make sure that the last page + ** gets written at least once so that the disk file will be the correct + ** size. If you do not write this page and the size of the file + ** on the disk ends up being too small, that can lead to database + ** corruption during the next transaction. + */ + }else{ + PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)); + IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) + makeClean(pPg); +#ifdef SQLITE_CHECK_PAGES + pPg->pageHash = pager_pagehash(pPg); +#endif + } + } + pagerLeave(pPager); +} + +/* +** A call to this routine tells the pager that if a rollback occurs, +** it is not necessary to restore the data on the given page. This +** means that the pager does not have to record the given page in the +** rollback journal. +** +** If we have not yet actually read the content of this page (if +** the PgHdr.needRead flag is set) then this routine acts as a promise +** that we will never need to read the page content in the future. +** so the needRead flag can be cleared at this point. +*/ +SQLITE_PRIVATE void sqlite3PagerDontRollback(DbPage *pPg){ + Pager *pPager = pPg->pPager; + + pagerEnter(pPager); + assert( pPager->state>=PAGER_RESERVED ); + + /* If the journal file is not open, or DontWrite() has been called on + ** this page (DontWrite() sets the alwaysRollback flag), then this + ** function is a no-op. + */ + if( pPager->journalOpen==0 || pPg->alwaysRollback || pPager->alwaysRollback ){ + pagerLeave(pPager); + return; + } + assert( !MEMDB ); /* For a memdb, pPager->journalOpen is always 0 */ + +#ifdef SQLITE_SECURE_DELETE + if( pPg->inJournal || (int)pPg->pgno > pPager->origDbSize ){ + return; + } +#endif + + /* If SECURE_DELETE is disabled, then there is no way that this + ** routine can be called on a page for which sqlite3PagerDontWrite() + ** has not been previously called during the same transaction. + ** And if DontWrite() has previously been called, the following + ** conditions must be met. + */ + assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ); + + assert( pPager->pInJournal!=0 ); + sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); + pPg->inJournal = 1; + pPg->needRead = 0; + if( pPager->stmtInUse ){ + assert( pPager->stmtSize >= pPager->origDbSize ); + sqlite3BitvecSet(pPager->pInStmt, pPg->pgno); + } + PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager)); + IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno)) + pagerLeave(pPager); +} + + +/* +** This routine is called to increment the database file change-counter, +** stored at byte 24 of the pager file. +*/ +static int pager_incr_changecounter(Pager *pPager, int isDirect){ + PgHdr *pPgHdr; + u32 change_counter; + int rc = SQLITE_OK; + + if( !pPager->changeCountDone ){ + /* Open page 1 of the file for writing. */ + rc = sqlite3PagerGet(pPager, 1, &pPgHdr); + if( rc!=SQLITE_OK ) return rc; + + if( !isDirect ){ + rc = sqlite3PagerWrite(pPgHdr); + if( rc!=SQLITE_OK ){ + sqlite3PagerUnref(pPgHdr); + return rc; + } + } + + /* Increment the value just read and write it back to byte 24. */ + change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers); + change_counter++; + put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter); + + if( isDirect && pPager->fd->pMethods ){ + const void *zBuf = PGHDR_TO_DATA(pPgHdr); + rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); + } + + /* Release the page reference. */ + sqlite3PagerUnref(pPgHdr); + pPager->changeCountDone = 1; + } + return rc; +} + +/* +** Sync the pager file to disk. +*/ +SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager){ + int rc; + pagerEnter(pPager); + rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); + pagerLeave(pPager); + return rc; +} + +/* +** Sync the database file for the pager pPager. zMaster points to the name +** of a master journal file that should be written into the individual +** journal file. zMaster may be NULL, which is interpreted as no master +** journal (a single database transaction). +** +** This routine ensures that the journal is synced, all dirty pages written +** to the database file and the database file synced. The only thing that +** remains to commit the transaction is to delete the journal file (or +** master journal file if specified). +** +** Note that if zMaster==NULL, this does not overwrite a previous value +** passed to an sqlite3PagerCommitPhaseOne() call. +** +** If parameter nTrunc is non-zero, then the pager file is truncated to +** nTrunc pages (this is used by auto-vacuum databases). +** +** If the final parameter - noSync - is true, then the database file itself +** is not synced. The caller must call sqlite3PagerSync() directly to +** sync the database file before calling CommitPhaseTwo() to delete the +** journal file in this case. +*/ +SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne( + Pager *pPager, + const char *zMaster, + Pgno nTrunc, + int noSync +){ + int rc = SQLITE_OK; + + /* If no changes have been made, we can leave the transaction early. + */ + if( pPager->dbModified==0 && + (pPager->journalMode!=PAGER_JOURNALMODE_DELETE || + pPager->exclusiveMode!=0) ){ + assert( pPager->dirtyCache==0 || pPager->journalOpen==0 ); + return SQLITE_OK; + } + + PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", + pPager->zFilename, zMaster, nTrunc); + pagerEnter(pPager); + + /* If this is an in-memory db, or no pages have been written to, or this + ** function has already been called, it is a no-op. + */ + if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){ + PgHdr *pPg; + +#ifdef SQLITE_ENABLE_ATOMIC_WRITE + /* The atomic-write optimization can be used if all of the + ** following are true: + ** + ** + The file-system supports the atomic-write property for + ** blocks of size page-size, and + ** + This commit is not part of a multi-file transaction, and + ** + Exactly one page has been modified and store in the journal file. + ** + ** If the optimization can be used, then the journal file will never + ** be created for this transaction. + */ + int useAtomicWrite = ( + !zMaster && + pPager->journalOpen && + pPager->journalOff==jrnlBufferSize(pPager) && + nTrunc==0 && + (0==pPager->pDirty || 0==pPager->pDirty->pDirty) + ); + assert( pPager->journalOpen || pPager->journalMode==PAGER_JOURNALMODE_OFF ); + if( useAtomicWrite ){ + /* Update the nRec field in the journal file. */ + int offset = pPager->journalHdr + sizeof(aJournalMagic); + assert(pPager->nRec==1); + rc = write32bits(pPager->jfd, offset, pPager->nRec); + + /* Update the db file change counter. The following call will modify + ** the in-memory representation of page 1 to include the updated + ** change counter and then write page 1 directly to the database + ** file. Because of the atomic-write property of the host file-system, + ** this is safe. + */ + if( rc==SQLITE_OK ){ + rc = pager_incr_changecounter(pPager, 1); + } + }else{ + rc = sqlite3JournalCreate(pPager->jfd); + } + + if( !useAtomicWrite && rc==SQLITE_OK ) +#endif + + /* If a master journal file name has already been written to the + ** journal file, then no sync is required. This happens when it is + ** written, then the process fails to upgrade from a RESERVED to an + ** EXCLUSIVE lock. The next time the process tries to commit the + ** transaction the m-j name will have already been written. + */ + if( !pPager->setMaster ){ + rc = pager_incr_changecounter(pPager, 0); + if( rc!=SQLITE_OK ) goto sync_exit; +#ifndef SQLITE_OMIT_AUTOVACUUM + if( nTrunc!=0 ){ + /* If this transaction has made the database smaller, then all pages + ** being discarded by the truncation must be written to the journal + ** file. + */ + Pgno i; + int iSkip = PAGER_MJ_PGNO(pPager); + for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){ + if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){ + rc = sqlite3PagerGet(pPager, i, &pPg); + if( rc!=SQLITE_OK ) goto sync_exit; + rc = sqlite3PagerWrite(pPg); + sqlite3PagerUnref(pPg); + if( rc!=SQLITE_OK ) goto sync_exit; + } + } + } +#endif + rc = writeMasterJournal(pPager, zMaster); + if( rc!=SQLITE_OK ) goto sync_exit; + rc = syncJournal(pPager); + } + if( rc!=SQLITE_OK ) goto sync_exit; + +#ifndef SQLITE_OMIT_AUTOVACUUM + if( nTrunc!=0 ){ + rc = sqlite3PagerTruncate(pPager, nTrunc); + if( rc!=SQLITE_OK ) goto sync_exit; + } +#endif + + /* Write all dirty pages to the database file */ + pPg = pager_get_all_dirty_pages(pPager); + rc = pager_write_pagelist(pPg); + if( rc!=SQLITE_OK ){ + assert( rc!=SQLITE_IOERR_BLOCKED ); + /* The error might have left the dirty list all fouled up here, + ** but that does not matter because if the if the dirty list did + ** get corrupted, then the transaction will roll back and + ** discard the dirty list. There is an assert in + ** pager_get_all_dirty_pages() that verifies that no attempt + ** is made to use an invalid dirty list. + */ + goto sync_exit; + } + pPager->pDirty = 0; + + /* Sync the database file. */ + if( !pPager->noSync && !noSync ){ + rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); + } + IOTRACE(("DBSYNC %p\n", pPager)) + + pPager->state = PAGER_SYNCED; + }else if( MEMDB && nTrunc!=0 ){ + rc = sqlite3PagerTruncate(pPager, nTrunc); + } + +sync_exit: + if( rc==SQLITE_IOERR_BLOCKED ){ + /* pager_incr_changecounter() may attempt to obtain an exclusive + * lock to spill the cache and return IOERR_BLOCKED. But since + * there is no chance the cache is inconsistent, it is + * better to return SQLITE_BUSY. + */ + rc = SQLITE_BUSY; + } + pagerLeave(pPager); + return rc; +} + + +/* +** Commit all changes to the database and release the write lock. +** +** If the commit fails for any reason, a rollback attempt is made +** and an error code is returned. If the commit worked, SQLITE_OK +** is returned. +*/ +SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){ + int rc; + PgHdr *pPg; + + if( pPager->errCode ){ + return pPager->errCode; + } + if( pPager->state<PAGER_RESERVED ){ + return SQLITE_ERROR; + } + if( pPager->dbModified==0 && + (pPager->journalMode!=PAGER_JOURNALMODE_DELETE || + pPager->exclusiveMode!=0) ){ + assert( pPager->dirtyCache==0 || pPager->journalOpen==0 ); + return SQLITE_OK; + } + pagerEnter(pPager); + PAGERTRACE2("COMMIT %d\n", PAGERID(pPager)); + if( MEMDB ){ + pPg = pager_get_all_dirty_pages(pPager); + while( pPg ){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + clearHistory(pHist); + pPg->dirty = 0; + pPg->inJournal = 0; + pHist->inStmt = 0; + pPg->needSync = 0; + pHist->pPrevStmt = pHist->pNextStmt = 0; + pPg = pPg->pDirty; + } + pPager->pDirty = 0; +#ifndef NDEBUG + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + assert( !pPg->alwaysRollback ); + assert( !pHist->pOrig ); + assert( !pHist->pStmt ); + } +#endif + pPager->pStmt = 0; + pPager->state = PAGER_SHARED; + pagerLeave(pPager); + return SQLITE_OK; + } + assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache ); + rc = pager_end_transaction(pPager, pPager->setMaster); + rc = pager_error(pPager, rc); + pagerLeave(pPager); + return rc; +} + +/* +** Rollback all changes. The database falls back to PAGER_SHARED mode. +** All in-memory cache pages revert to their original data contents. +** The journal is deleted. +** +** This routine cannot fail unless some other process is not following +** the correct locking protocol or unless some other +** process is writing trash into the journal file (SQLITE_CORRUPT) or +** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error +** codes are returned for all these occasions. Otherwise, +** SQLITE_OK is returned. +*/ +SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){ + int rc; + PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager)); + if( MEMDB ){ + PgHdr *p; + for(p=pPager->pAll; p; p=p->pNextAll){ + PgHistory *pHist; + assert( !p->alwaysRollback ); + if( !p->dirty ){ + assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig ); + assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt ); + continue; + } + + pHist = PGHDR_TO_HIST(p, pPager); + if( pHist->pOrig ){ + memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize); + PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager)); + }else{ + PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager)); + } + clearHistory(pHist); + p->dirty = 0; + p->inJournal = 0; + pHist->inStmt = 0; + pHist->pPrevStmt = pHist->pNextStmt = 0; + if( pPager->xReiniter ){ + pPager->xReiniter(p, pPager->pageSize); + } + } + pPager->pDirty = 0; + pPager->pStmt = 0; + pPager->dbSize = pPager->origDbSize; + pager_truncate_cache(pPager); + pPager->stmtInUse = 0; + pPager->state = PAGER_SHARED; + return SQLITE_OK; + } + + pagerEnter(pPager); + if( !pPager->dirtyCache || !pPager->journalOpen ){ + rc = pager_end_transaction(pPager, pPager->setMaster); + pagerLeave(pPager); + return rc; + } + + if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ + if( pPager->state>=PAGER_EXCLUSIVE ){ + pager_playback(pPager, 0); + } + pagerLeave(pPager); + return pPager->errCode; + } + if( pPager->state==PAGER_RESERVED ){ + int rc2; + rc = pager_playback(pPager, 0); + rc2 = pager_end_transaction(pPager, pPager->setMaster); + if( rc==SQLITE_OK ){ + rc = rc2; + } + }else{ + rc = pager_playback(pPager, 0); + } + /* pager_reset(pPager); */ + pPager->dbSize = -1; + + /* If an error occurs during a ROLLBACK, we can no longer trust the pager + ** cache. So call pager_error() on the way out to make any error + ** persistent. + */ + rc = pager_error(pPager, rc); + pagerLeave(pPager); + return rc; +} + +/* +** Return TRUE if the database file is opened read-only. Return FALSE +** if the database is (in theory) writable. +*/ +SQLITE_PRIVATE int sqlite3PagerIsreadonly(Pager *pPager){ + return pPager->readOnly; +} + +/* +** Return the number of references to the pager. +*/ +SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){ + return pPager->nRef; +} + +#ifdef SQLITE_TEST +/* +** This routine is used for testing and analysis only. +*/ +SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){ + static int a[11]; + a[0] = pPager->nRef; + a[1] = pPager->nPage; + a[2] = pPager->mxPage; + a[3] = pPager->dbSize; + a[4] = pPager->state; + a[5] = pPager->errCode; + a[6] = pPager->nHit; + a[7] = pPager->nMiss; + a[8] = 0; /* Used to be pPager->nOvfl */ + a[9] = pPager->nRead; + a[10] = pPager->nWrite; + return a; +} +#endif + +/* +** Set the statement rollback point. +** +** This routine should be called with the transaction journal already +** open. A new statement journal is created that can be used to rollback +** changes of a single SQL command within a larger transaction. +*/ +static int pagerStmtBegin(Pager *pPager){ + int rc; + assert( !pPager->stmtInUse ); + assert( pPager->state>=PAGER_SHARED ); + assert( pPager->dbSize>=0 ); + PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager)); + if( MEMDB ){ + pPager->stmtInUse = 1; + pPager->stmtSize = pPager->dbSize; + return SQLITE_OK; + } + if( !pPager->journalOpen ){ + pPager->stmtAutoopen = 1; + return SQLITE_OK; + } + assert( pPager->journalOpen ); + pagerLeave(pPager); + assert( pPager->pInStmt==0 ); + pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize); + pagerEnter(pPager); + if( pPager->pInStmt==0 ){ + /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */ + return SQLITE_NOMEM; + } + pPager->stmtJSize = pPager->journalOff; + pPager->stmtSize = pPager->dbSize; + pPager->stmtHdrOff = 0; + pPager->stmtCksum = pPager->cksumInit; + if( !pPager->stmtOpen ){ + rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl, + SQLITE_OPEN_SUBJOURNAL); + if( rc ){ + goto stmt_begin_failed; + } + pPager->stmtOpen = 1; + pPager->stmtNRec = 0; + } + pPager->stmtInUse = 1; + return SQLITE_OK; + +stmt_begin_failed: + if( pPager->pInStmt ){ + sqlite3BitvecDestroy(pPager->pInStmt); + pPager->pInStmt = 0; + } + return rc; +} +SQLITE_PRIVATE int sqlite3PagerStmtBegin(Pager *pPager){ + int rc; + pagerEnter(pPager); + rc = pagerStmtBegin(pPager); + pagerLeave(pPager); + return rc; +} + +/* +** Commit a statement. +*/ +SQLITE_PRIVATE int sqlite3PagerStmtCommit(Pager *pPager){ + pagerEnter(pPager); + if( pPager->stmtInUse ){ + PgHdr *pPg, *pNext; + PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager)); + if( !MEMDB ){ + /* sqlite3OsTruncate(pPager->stfd, 0); */ + sqlite3BitvecDestroy(pPager->pInStmt); + pPager->pInStmt = 0; + }else{ + for(pPg=pPager->pStmt; pPg; pPg=pNext){ + PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); + pNext = pHist->pNextStmt; + assert( pHist->inStmt ); + pHist->inStmt = 0; + pHist->pPrevStmt = pHist->pNextStmt = 0; + sqlite3_free(pHist->pStmt); + pHist->pStmt = 0; + } + } + pPager->stmtNRec = 0; + pPager->stmtInUse = 0; + pPager->pStmt = 0; + } + pPager->stmtAutoopen = 0; + pagerLeave(pPager); + return SQLITE_OK; +} + +/* +** Rollback a statement. +*/ +SQLITE_PRIVATE int sqlite3PagerStmtRollback(Pager *pPager){ + int rc; + pagerEnter(pPager); + if( pPager->stmtInUse ){ + PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager)); + if( MEMDB ){ + PgHdr *pPg; + PgHistory *pHist; + for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){ + pHist = PGHDR_TO_HIST(pPg, pPager); + if( pHist->pStmt ){ + memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize); + sqlite3_free(pHist->pStmt); + pHist->pStmt = 0; + } + } + pPager->dbSize = pPager->stmtSize; + pager_truncate_cache(pPager); + rc = SQLITE_OK; + }else{ + rc = pager_stmt_playback(pPager); + } + sqlite3PagerStmtCommit(pPager); + }else{ + rc = SQLITE_OK; + } + pPager->stmtAutoopen = 0; + pagerLeave(pPager); + return rc; +} + +/* +** Return the full pathname of the database file. +*/ +SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager){ + return pPager->zFilename; +} + +/* +** Return the VFS structure for the pager. +*/ +SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ + return pPager->pVfs; +} + +/* +** Return the file handle for the database file associated +** with the pager. This might return NULL if the file has +** not yet been opened. +*/ +SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){ + return pPager->fd; +} + +/* +** Return the directory of the database file. +*/ +SQLITE_PRIVATE const char *sqlite3PagerDirname(Pager *pPager){ + return pPager->zDirectory; +} + +/* +** Return the full pathname of the journal file. +*/ +SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){ + return pPager->zJournal; +} + +/* +** Return true if fsync() calls are disabled for this pager. Return FALSE +** if fsync()s are executed normally. +*/ +SQLITE_PRIVATE int sqlite3PagerNosync(Pager *pPager){ + return pPager->noSync; +} + +#ifdef SQLITE_HAS_CODEC +/* +** Set the codec for this pager +*/ +SQLITE_PRIVATE void sqlite3PagerSetCodec( + Pager *pPager, + void *(*xCodec)(void*,void*,Pgno,int), + void *pCodecArg +){ + pPager->xCodec = xCodec; + pPager->pCodecArg = pCodecArg; +} +#endif + +#ifndef SQLITE_OMIT_AUTOVACUUM +/* +** Move the page pPg to location pgno in the file. +** +** There must be no references to the page previously located at +** pgno (which we call pPgOld) though that page is allowed to be +** in cache. If the page previous located at pgno is not already +** in the rollback journal, it is not put there by by this routine. +** +** References to the page pPg remain valid. Updating any +** meta-data associated with pPg (i.e. data stored in the nExtra bytes +** allocated along with the page) is the responsibility of the caller. +** +** A transaction must be active when this routine is called. It used to be +** required that a statement transaction was not active, but this restriction +** has been removed (CREATE INDEX needs to move a page when a statement +** transaction is active). +*/ +SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){ + PgHdr *pPgOld; /* The page being overwritten. */ + int h; + Pgno needSyncPgno = 0; + + pagerEnter(pPager); + assert( pPg->nRef>0 ); + + PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", + PAGERID(pPager), pPg->pgno, pPg->needSync, pgno); + IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) + + pager_get_content(pPg); + if( pPg->needSync ){ + needSyncPgno = pPg->pgno; + assert( pPg->inJournal || (int)pgno>pPager->origDbSize ); + assert( pPg->dirty ); + assert( pPager->needSync ); + } + + /* Unlink pPg from its hash-chain */ + unlinkHashChain(pPager, pPg); + + /* If the cache contains a page with page-number pgno, remove it + ** from its hash chain. Also, if the PgHdr.needSync was set for + ** page pgno before the 'move' operation, it needs to be retained + ** for the page moved there. + */ + pPg->needSync = 0; + pPgOld = pager_lookup(pPager, pgno); + if( pPgOld ){ + assert( pPgOld->nRef==0 ); + unlinkHashChain(pPager, pPgOld); + makeClean(pPgOld); + pPg->needSync = pPgOld->needSync; + }else{ + pPg->needSync = 0; + } + pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno); + + /* Change the page number for pPg and insert it into the new hash-chain. */ + assert( pgno!=0 ); + pPg->pgno = pgno; + h = pgno & (pPager->nHash-1); + if( pPager->aHash[h] ){ + assert( pPager->aHash[h]->pPrevHash==0 ); + pPager->aHash[h]->pPrevHash = pPg; + } + pPg->pNextHash = pPager->aHash[h]; + pPager->aHash[h] = pPg; + pPg->pPrevHash = 0; + + makeDirty(pPg); + pPager->dirtyCache = 1; + pPager->dbModified = 1; + + if( needSyncPgno ){ + /* If needSyncPgno is non-zero, then the journal file needs to be + ** sync()ed before any data is written to database file page needSyncPgno. + ** Currently, no such page exists in the page-cache and the + ** Pager.pInJournal bit has been set. This needs to be remedied by loading + ** the page into the pager-cache and setting the PgHdr.needSync flag. + ** + ** If the attempt to load the page into the page-cache fails, (due + ** to a malloc() or IO failure), clear the bit in the pInJournal[] + ** array. Otherwise, if the page is loaded and written again in + ** this transaction, it may be written to the database file before + ** it is synced into the journal file. This way, it may end up in + ** the journal file twice, but that is not a problem. + ** + ** The sqlite3PagerGet() call may cause the journal to sync. So make + ** sure the Pager.needSync flag is set too. + */ + int rc; + PgHdr *pPgHdr; + assert( pPager->needSync ); + rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); + if( rc!=SQLITE_OK ){ + if( pPager->pInJournal && (int)needSyncPgno<=pPager->origDbSize ){ + sqlite3BitvecClear(pPager->pInJournal, needSyncPgno); + } + pagerLeave(pPager); + return rc; + } + pPager->needSync = 1; + pPgHdr->needSync = 1; + pPgHdr->inJournal = 1; + makeDirty(pPgHdr); + sqlite3PagerUnref(pPgHdr); + } + + pagerLeave(pPager); + return SQLITE_OK; +} +#endif + +/* +** Return a pointer to the data for the specified page. +*/ +SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){ + return PGHDR_TO_DATA(pPg); +} + +/* +** Return a pointer to the Pager.nExtra bytes of "extra" space +** allocated along with the specified page. +*/ +SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){ + Pager *pPager = pPg->pPager; + return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0); +} + +/* +** Get/set the locking-mode for this pager. Parameter eMode must be one +** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or +** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then +** the locking-mode is set to the value specified. +** +** The returned value is either PAGER_LOCKINGMODE_NORMAL or +** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) +** locking-mode. +*/ +SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){ + assert( eMode==PAGER_LOCKINGMODE_QUERY + || eMode==PAGER_LOCKINGMODE_NORMAL + || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); + assert( PAGER_LOCKINGMODE_QUERY<0 ); + assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); + if( eMode>=0 && !pPager->tempFile ){ + pPager->exclusiveMode = eMode; + } + return (int)pPager->exclusiveMode; +} + +/* +** Get/set the journal-mode for this pager. Parameter eMode must be one +** of PAGER_JOURNALMODE_QUERY, PAGER_JOURNALMODE_DELETE or +** PAGER_JOURNALMODE_PERSIST. If the parameter is not _QUERY, then +** the journal-mode is set to the value specified. +** +** The returned value is either PAGER_JOURNALMODE_DELETE or +** PAGER_JOURNALMODE_PERSIST, indicating the current (possibly updated) +** journal-mode. +*/ +SQLITE_PRIVATE int sqlite3PagerJournalMode(Pager *pPager, int eMode){ + assert( eMode==PAGER_JOURNALMODE_QUERY + || eMode==PAGER_JOURNALMODE_DELETE + || eMode==PAGER_JOURNALMODE_PERSIST + || eMode==PAGER_JOURNALMODE_OFF ); + assert( PAGER_JOURNALMODE_QUERY<0 ); + assert( PAGER_JOURNALMODE_DELETE>=0 && PAGER_JOURNALMODE_PERSIST>=0 ); + if( eMode>=0 ){ + pPager->journalMode = eMode; + } + return (int)pPager->journalMode; +} + +#ifdef SQLITE_TEST +/* +** Print a listing of all referenced pages and their ref count. +*/ +SQLITE_PRIVATE void sqlite3PagerRefdump(Pager *pPager){ + PgHdr *pPg; + for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ + if( pPg->nRef<=0 ) continue; + sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", + pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef); + } +} +#endif + +#endif /* SQLITE_OMIT_DISKIO */ + +/************** End of pager.c ***********************************************/ +/************** Begin file btmutex.c *****************************************/ +/* +** 2007 August 27 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** $Id: btmutex.c,v 1.9 2008/01/23 12:52:41 drh Exp $ +** +** This file contains code used to implement mutexes on Btree objects. +** This code really belongs in btree.c. But btree.c is getting too +** big and we want to break it down some. This packaged seemed like +** a good breakout. +*/ +/************** Include btreeInt.h in the middle of btmutex.c ****************/ +/************** Begin file btreeInt.h ****************************************/ +/* +** 2004 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** $Id: btreeInt.h,v 1.21 2008/04/24 19:15:10 shane Exp $ +** +** This file implements a external (disk-based) database using BTrees. +** For a detailed discussion of BTrees, refer to +** +** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: +** "Sorting And Searching", pages 473-480. Addison-Wesley +** Publishing Company, Reading, Massachusetts. +** +** The basic idea is that each page of the file contains N database +** entries and N+1 pointers to subpages. +** +** ---------------------------------------------------------------- +** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) | +** ---------------------------------------------------------------- +** +** All of the keys on the page that Ptr(0) points to have values less +** than Key(0). All of the keys on page Ptr(1) and its subpages have +** values greater than Key(0) and less than Key(1). All of the keys +** on Ptr(N) and its subpages have values greater than Key(N-1). And +** so forth. +** +** Finding a particular key requires reading O(log(M)) pages from the +** disk where M is the number of entries in the tree. +** +** In this implementation, a single file can hold one or more separate +** BTrees. Each BTree is identified by the index of its root page. The +** key and data for any entry are combined to form the "payload". A +** fixed amount of payload can be carried directly on the database +** page. If the payload is larger than the preset amount then surplus +** bytes are stored on overflow pages. The payload for an entry +** and the preceding pointer are combined to form a "Cell". Each +** page has a small header which contains the Ptr(N) pointer and other +** information such as the size of key and data. +** +** FORMAT DETAILS +** +** The file is divided into pages. The first page is called page 1, +** the second is page 2, and so forth. A page number of zero indicates +** "no such page". The page size can be anything between 512 and 65536. +** Each page can be either a btree page, a freelist page or an overflow +** page. +** +** The first page is always a btree page. The first 100 bytes of the first +** page contain a special header (the "file header") that describes the file. +** The format of the file header is as follows: +** +** OFFSET SIZE DESCRIPTION +** 0 16 Header string: "SQLite format 3\000" +** 16 2 Page size in bytes. +** 18 1 File format write version +** 19 1 File format read version +** 20 1 Bytes of unused space at the end of each page +** 21 1 Max embedded payload fraction +** 22 1 Min embedded payload fraction +** 23 1 Min leaf payload fraction +** 24 4 File change counter +** 28 4 Reserved for future use +** 32 4 First freelist page +** 36 4 Number of freelist pages in the file +** 40 60 15 4-byte meta values passed to higher layers +** +** All of the integer values are big-endian (most significant byte first). +** +** The file change counter is incremented when the database is changed +** This counter allows other processes to know when the file has changed +** and thus when they need to flush their cache. +** +** The max embedded payload fraction is the amount of the total usable +** space in a page that can be consumed by a single cell for standard +** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default +** is to limit the maximum cell size so that at least 4 cells will fit +** on one page. Thus the default max embedded payload fraction is 64. +** +** If the payload for a cell is larger than the max payload, then extra +** payload is spilled to overflow pages. Once an overflow page is allocated, +** as many bytes as possible are moved into the overflow pages without letting +** the cell size drop below the min embedded payload fraction. +** +** The min leaf payload fraction is like the min embedded payload fraction +** except that it applies to leaf nodes in a LEAFDATA tree. The maximum +** payload fraction for a LEAFDATA tree is always 100% (or 255) and it +** not specified in the header. +** +** Each btree pages is divided into three sections: The header, the +** cell pointer array, and the cell content area. Page 1 also has a 100-byte +** file header that occurs before the page header. +** +** |----------------| +** | file header | 100 bytes. Page 1 only. +** |----------------| +** | page header | 8 bytes for leaves. 12 bytes for interior nodes +** |----------------| +** | cell pointer | | 2 bytes per cell. Sorted order. +** | array | | Grows downward +** | | v +** |----------------| +** | unallocated | +** | space | +** |----------------| ^ Grows upwards +** | cell content | | Arbitrary order interspersed with freeblocks. +** | area | | and free space fragments. +** |----------------| +** +** The page headers looks like this: +** +** OFFSET SIZE DESCRIPTION +** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf +** 1 2 byte offset to the first freeblock +** 3 2 number of cells on this page +** 5 2 first byte of the cell content area +** 7 1 number of fragmented free bytes +** 8 4 Right child (the Ptr(N) value). Omitted on leaves. +** +** The flags define the format of this btree page. The leaf flag means that +** this page has no children. The zerodata flag means that this page carries +** only keys and no data. The intkey flag means that the key is a integer +** which is stored in the key size entry of the cell header rather than in +** the payload area. +** +** The cell pointer array begins on the first byte after the page header. +** The cell pointer array contains zero or more 2-byte numbers which are +** offsets from the beginning of the page to the cell content in the cell +** content area. The cell pointers occur in sorted order. The system strives +** to keep free space after the last cell pointer so that new cells can +** be easily added without having to defragment the page. +** +** Cell content is stored at the very end of the page and grows toward the +** beginning of the page. +** +** Unused space within the cell content area is collected into a linked list of +** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset +** to the first freeblock is given in the header. Freeblocks occur in +** increasing order. Because a freeblock must be at least 4 bytes in size, +** any group of 3 or fewer unused bytes in the cell content area cannot +** exist on the freeblock chain. A group of 3 or fewer free bytes is called +** a fragment. The total number of bytes in all fragments is recorded. +** in the page header at offset 7. +** +** SIZE DESCRIPTION +** 2 Byte offset of the next freeblock +** 2 Bytes in this freeblock +** +** Cells are of variable length. Cells are stored in the cell content area at +** the end of the page. Pointers to the cells are in the cell pointer array +** that immediately follows the page header. Cells is not necessarily +** contiguous or in order, but cell pointers are contiguous and in order. +** +** Cell content makes use of variable length integers. A variable +** length integer is 1 to 9 bytes where the lower 7 bits of each +** byte are used. The integer consists of all bytes that have bit 8 set and +** the first byte with bit 8 clear. The most significant byte of the integer +** appears first. A variable-length integer may not be more than 9 bytes long. +** As a special case, all 8 bytes of the 9th byte are used as data. This +** allows a 64-bit integer to be encoded in 9 bytes. +** +** 0x00 becomes 0x00000000 +** 0x7f becomes 0x0000007f +** 0x81 0x00 becomes 0x00000080 +** 0x82 0x00 becomes 0x00000100 +** 0x80 0x7f becomes 0x0000007f +** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 +** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 +** +** Variable length integers are used for rowids and to hold the number of +** bytes of key and data in a btree cell. +** +** The content of a cell looks like this: +** +** SIZE DESCRIPTION +** 4 Page number of the left child. Omitted if leaf flag is set. +** var Number of bytes of data. Omitted if the zerodata flag is set. +** var Number of bytes of key. Or the key itself if intkey flag is set. +** * Payload +** 4 First page of the overflow chain. Omitted if no overflow +** +** Overflow pages form a linked list. Each page except the last is completely +** filled with data (pagesize - 4 bytes). The last page can have as little +** as 1 byte of data. +** +** SIZE DESCRIPTION +** 4 Page number of next overflow page +** * Data +** +** Freelist pages come in two subtypes: trunk pages and leaf pages. The +** file header points to the first in a linked list of trunk page. Each trunk +** page points to multiple leaf pages. The content of a leaf page is +** unspecified. A trunk page looks like this: +** +** SIZE DESCRIPTION +** 4 Page number of next trunk page +** 4 Number of leaf pointers on this page +** * zero or more pages numbers of leaves +*/ + +/* Round up a number to the next larger multiple of 8. This is used +** to force 8-byte alignment on 64-bit architectures. +*/ +#define ROUND8(x) ((x+7)&~7) + + +/* The following value is the maximum cell size assuming a maximum page +** size give above. +*/ +#define MX_CELL_SIZE(pBt) (pBt->pageSize-8) + +/* The maximum number of cells on a single page of the database. This +** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself +** plus 2 bytes for the index to the cell in the page header). Such +** small cells will be rare, but they are possible. +*/ +#define MX_CELL(pBt) ((pBt->pageSize-8)/6) + +/* Forward declarations */ +typedef struct MemPage MemPage; +typedef struct BtLock BtLock; + +/* +** This is a magic string that appears at the beginning of every +** SQLite database in order to identify the file as a real database. +** +** You can change this value at compile-time by specifying a +** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The +** header must be exactly 16 bytes including the zero-terminator so +** the string itself should be 15 characters long. If you change +** the header, then your custom library will not be able to read +** databases generated by the standard tools and the standard tools +** will not be able to read databases created by your custom library. +*/ +#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ +# define SQLITE_FILE_HEADER "SQLite format 3" +#endif + +/* +** Page type flags. An ORed combination of these flags appear as the +** first byte of on-disk image of every BTree page. +*/ +#define PTF_INTKEY 0x01 +#define PTF_ZERODATA 0x02 +#define PTF_LEAFDATA 0x04 +#define PTF_LEAF 0x08 + +/* +** As each page of the file is loaded into memory, an instance of the following +** structure is appended and initialized to zero. This structure stores +** information about the page that is decoded from the raw file page. +** +** The pParent field points back to the parent page. This allows us to +** walk up the BTree from any leaf to the root. Care must be taken to +** unref() the parent page pointer when this page is no longer referenced. +** The pageDestructor() routine handles that chore. +** +** Access to all fields of this structure is controlled by the mutex +** stored in MemPage.pBt->mutex. +*/ +struct MemPage { + u8 isInit; /* True if previously initialized. MUST BE FIRST! */ + u8 idxShift; /* True if Cell indices have changed */ + u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ + u8 intKey; /* True if intkey flag is set */ + u8 leaf; /* True if leaf flag is set */ + u8 zeroData; /* True if table stores keys only */ + u8 leafData; /* True if tables stores data on leaves only */ + u8 hasData; /* True if this page stores data */ + u8 hdrOffset; /* 100 for page 1. 0 otherwise */ + u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ + u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ + u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ + u16 cellOffset; /* Index in aData of first cell pointer */ + u16 idxParent; /* Index in parent of this node */ + u16 nFree; /* Number of free bytes on the page */ + u16 nCell; /* Number of cells on this page, local and ovfl */ + struct _OvflCell { /* Cells that will not fit on aData[] */ + u8 *pCell; /* Pointers to the body of the overflow cell */ + u16 idx; /* Insert this cell before idx-th non-overflow cell */ + } aOvfl[5]; + BtShared *pBt; /* Pointer to BtShared that this page is part of */ + u8 *aData; /* Pointer to disk image of the page data */ + DbPage *pDbPage; /* Pager page handle */ + Pgno pgno; /* Page number for this page */ + MemPage *pParent; /* The parent of this page. NULL for root */ +}; + +/* +** The in-memory image of a disk page has the auxiliary information appended +** to the end. EXTRA_SIZE is the number of bytes of space needed to hold +** that extra information. +*/ +#define EXTRA_SIZE sizeof(MemPage) + +/* A Btree handle +** +** A database connection contains a pointer to an instance of +** this object for every database file that it has open. This structure +** is opaque to the database connection. The database connection cannot +** see the internals of this structure and only deals with pointers to +** this structure. +** +** For some database files, the same underlying database cache might be +** shared between multiple connections. In that case, each contection +** has it own pointer to this object. But each instance of this object +** points to the same BtShared object. The database cache and the +** schema associated with the database file are all contained within +** the BtShared object. +** +** All fields in this structure are accessed under sqlite3.mutex. +** The pBt pointer itself may not be changed while there exists cursors +** in the referenced BtShared that point back to this Btree since those +** cursors have to do go through this Btree to find their BtShared and +** they often do so without holding sqlite3.mutex. +*/ +struct Btree { + sqlite3 *db; /* The database connection holding this btree */ + BtShared *pBt; /* Sharable content of this btree */ + u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ + u8 sharable; /* True if we can share pBt with another db */ + u8 locked; /* True if db currently has pBt locked */ + int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ + Btree *pNext; /* List of other sharable Btrees from the same db */ + Btree *pPrev; /* Back pointer of the same list */ +}; + +/* +** Btree.inTrans may take one of the following values. +** +** If the shared-data extension is enabled, there may be multiple users +** of the Btree structure. At most one of these may open a write transaction, +** but any number may have active read transactions. +*/ +#define TRANS_NONE 0 +#define TRANS_READ 1 +#define TRANS_WRITE 2 + +/* +** An instance of this object represents a single database file. +** +** A single database file can be in use as the same time by two +** or more database connections. When two or more connections are +** sharing the same database file, each connection has it own +** private Btree object for the file and each of those Btrees points +** to this one BtShared object. BtShared.nRef is the number of +** connections currently sharing this database file. +** +** Fields in this structure are accessed under the BtShared.mutex +** mutex, except for nRef and pNext which are accessed under the +** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field +** may not be modified once it is initially set as long as nRef>0. +** The pSchema field may be set once under BtShared.mutex and +** thereafter is unchanged as long as nRef>0. +*/ +struct BtShared { + Pager *pPager; /* The page cache */ + sqlite3 *db; /* Database connection currently using this Btree */ + BtCursor *pCursor; /* A list of all open cursors */ + MemPage *pPage1; /* First page of the database */ + u8 inStmt; /* True if we are in a statement subtransaction */ + u8 readOnly; /* True if the underlying file is readonly */ + u8 maxEmbedFrac; /* Maximum payload as % of total page size */ + u8 minEmbedFrac; /* Minimum payload as % of total page size */ + u8 minLeafFrac; /* Minimum leaf payload as % of total page size */ + u8 pageSizeFixed; /* True if the page size can no longer be changed */ +#ifndef SQLITE_OMIT_AUTOVACUUM + u8 autoVacuum; /* True if auto-vacuum is enabled */ + u8 incrVacuum; /* True if incr-vacuum is enabled */ + Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */ +#endif + u16 pageSize; /* Total number of bytes on a page */ + u16 usableSize; /* Number of usable bytes on each page */ + int maxLocal; /* Maximum local payload in non-LEAFDATA tables */ + int minLocal; /* Minimum local payload in non-LEAFDATA tables */ + int maxLeaf; /* Maximum local payload in a LEAFDATA table */ + int minLeaf; /* Minimum local payload in a LEAFDATA table */ + u8 inTransaction; /* Transaction state */ + int nTransaction; /* Number of open transactions (read + write) */ + void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ + void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ + sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */ + BusyHandler busyHdr; /* The busy handler for this btree */ +#ifndef SQLITE_OMIT_SHARED_CACHE + int nRef; /* Number of references to this structure */ + BtShared *pNext; /* Next on a list of sharable BtShared structs */ + BtLock *pLock; /* List of locks held on this shared-btree struct */ + Btree *pExclusive; /* Btree with an EXCLUSIVE lock on the whole db */ +#endif + u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */ +}; + +/* +** An instance of the following structure is used to hold information +** about a cell. The parseCellPtr() function fills in this structure +** based on information extract from the raw disk page. +*/ +typedef struct CellInfo CellInfo; +struct CellInfo { + u8 *pCell; /* Pointer to the start of cell content */ + i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ + u32 nData; /* Number of bytes of data */ + u32 nPayload; /* Total amount of payload */ + u16 nHeader; /* Size of the cell content header in bytes */ + u16 nLocal; /* Amount of payload held locally */ + u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ + u16 nSize; /* Size of the cell content on the main b-tree page */ +}; + +/* +** A cursor is a pointer to a particular entry within a particular +** b-tree within a database file. +** +** The entry is identified by its MemPage and the index in +** MemPage.aCell[] of the entry. +** +** When a single database file can shared by two more database connections, +** but cursors cannot be shared. Each cursor is associated with a +** particular database connection identified BtCursor.pBtree.db. +** +** Fields in this structure are accessed under the BtShared.mutex +** found at self->pBt->mutex. +*/ +struct BtCursor { + Btree *pBtree; /* The Btree to which this cursor belongs */ + BtShared *pBt; /* The BtShared this cursor points to */ + BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ + struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ + Pgno pgnoRoot; /* The root page of this tree */ + MemPage *pPage; /* Page that contains the entry */ + int idx; /* Index of the entry in pPage->aCell[] */ + CellInfo info; /* A parse of the cell we are pointing at */ + u8 wrFlag; /* True if writable */ + u8 atLast; /* Cursor pointing to the last entry */ + u8 validNKey; /* True if info.nKey is valid */ + u8 eState; /* One of the CURSOR_XXX constants (see below) */ + void *pKey; /* Saved key that was cursor's last known position */ + i64 nKey; /* Size of pKey, or last integer key */ + int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */ +#ifndef SQLITE_OMIT_INCRBLOB + u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */ + Pgno *aOverflow; /* Cache of overflow page locations */ +#endif +}; + +/* +** Potential values for BtCursor.eState. +** +** CURSOR_VALID: +** Cursor points to a valid entry. getPayload() etc. may be called. +** +** CURSOR_INVALID: +** Cursor does not point to a valid entry. This can happen (for example) +** because the table is empty or because BtreeCursorFirst() has not been +** called. +** +** CURSOR_REQUIRESEEK: +** The table that this cursor was opened on still exists, but has been +** modified since the cursor was last used. The cursor position is saved +** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in +** this state, restoreOrClearCursorPosition() can be called to attempt to +** seek the cursor to the saved position. +** +** CURSOR_FAULT: +** A unrecoverable error (an I/O error or a malloc failure) has occurred +** on a different connection that shares the BtShared cache with this +** cursor. The error has left the cache in an inconsistent state. +** Do nothing else with this cursor. Any attempt to use the cursor +** should return the error code stored in BtCursor.skip +*/ +#define CURSOR_INVALID 0 +#define CURSOR_VALID 1 +#define CURSOR_REQUIRESEEK 2 +#define CURSOR_FAULT 3 + +/* +** The TRACE macro will print high-level status information about the +** btree operation when the global variable sqlite3BtreeTrace is +** enabled. +*/ +#if SQLITE_TEST +# define TRACE(X) if( sqlite3BtreeTrace ){ printf X; fflush(stdout); } +#else +# define TRACE(X) +#endif + +/* The database page the PENDING_BYTE occupies. This page is never used. +** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They +** should possibly be consolidated (presumably in pager.h). +** +** If disk I/O is omitted (meaning that the database is stored purely +** in memory) then there is no pending byte. +*/ +#ifdef SQLITE_OMIT_DISKIO +# define PENDING_BYTE_PAGE(pBt) 0x7fffffff +#else +# define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1) +#endif + +/* +** A linked list of the following structures is stored at BtShared.pLock. +** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor +** is opened on the table with root page BtShared.iTable. Locks are removed +** from this list when a transaction is committed or rolled back, or when +** a btree handle is closed. +*/ +struct BtLock { + Btree *pBtree; /* Btree handle holding this lock */ + Pgno iTable; /* Root page of table */ + u8 eLock; /* READ_LOCK or WRITE_LOCK */ + BtLock *pNext; /* Next in BtShared.pLock list */ +}; + +/* Candidate values for BtLock.eLock */ +#define READ_LOCK 1 +#define WRITE_LOCK 2 + +/* +** These macros define the location of the pointer-map entry for a +** database page. The first argument to each is the number of usable +** bytes on each page of the database (often 1024). The second is the +** page number to look up in the pointer map. +** +** PTRMAP_PAGENO returns the database page number of the pointer-map +** page that stores the required pointer. PTRMAP_PTROFFSET returns +** the offset of the requested map entry. +** +** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, +** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be +** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements +** this test. +*/ +#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno) +#define PTRMAP_PTROFFSET(pBt, pgno) (5*(pgno-ptrmapPageno(pBt, pgno)-1)) +#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno)) + +/* +** The pointer map is a lookup table that identifies the parent page for +** each child page in the database file. The parent page is the page that +** contains a pointer to the child. Every page in the database contains +** 0 or 1 parent pages. (In this context 'database page' refers +** to any page that is not part of the pointer map itself.) Each pointer map +** entry consists of a single byte 'type' and a 4 byte parent page number. +** The PTRMAP_XXX identifiers below are the valid types. +** +** The purpose of the pointer map is to facility moving pages from one +** position in the file to another as part of autovacuum. When a page +** is moved, the pointer in its parent must be updated to point to the +** new location. The pointer map is used to locate the parent page quickly. +** +** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not +** used in this case. +** +** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number +** is not used in this case. +** +** PTRMAP_OVERFLOW1: The database page is the first page in a list of +** overflow pages. The page number identifies the page that +** contains the cell with a pointer to this overflow page. +** +** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of +** overflow pages. The page-number identifies the previous +** page in the overflow page list. +** +** PTRMAP_BTREE: The database page is a non-root btree page. The page number +** identifies the parent page in the btree. +*/ +#define PTRMAP_ROOTPAGE 1 +#define PTRMAP_FREEPAGE 2 +#define PTRMAP_OVERFLOW1 3 +#define PTRMAP_OVERFLOW2 4 +#define PTRMAP_BTREE 5 + +/* A bunch of assert() statements to check the transaction state variables +** of handle p (type Btree*) are internally consistent. +*/ +#define btreeIntegrity(p) \ + assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ + assert( p->pBt->inTransaction>=p->inTrans ); + + +/* +** The ISAUTOVACUUM macro is used within balance_nonroot() to determine +** if the database supports auto-vacuum or not. Because it is used +** within an expression that is an argument to another macro +** (sqliteMallocRaw), it is not possible to use conditional compilation. +** So, this macro is defined instead. +*/ +#ifndef SQLITE_OMIT_AUTOVACUUM +#define ISAUTOVACUUM (pBt->autoVacuum) +#else +#define ISAUTOVACUUM 0 +#endif + + +/* +** This structure is passed around through all the sanity checking routines +** in order to keep track of some global state information. +*/ +typedef struct IntegrityCk IntegrityCk; +struct IntegrityCk { + BtShared *pBt; /* The tree being checked out */ + Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ + int nPage; /* Number of pages in the database */ + int *anRef; /* Number of times each page is referenced */ + int mxErr; /* Stop accumulating errors when this reaches zero */ + char *zErrMsg; /* An error message. NULL if no errors seen. */ + int nErr; /* Number of messages written to zErrMsg so far */ +}; + +/* +** Read or write a two- and four-byte big-endian integer values. +*/ +#define get2byte(x) ((x)[0]<<8 | (x)[1]) +#define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v)) +#define get4byte sqlite3Get4byte +#define put4byte sqlite3Put4byte + +/* +** Internal routines that should be accessed by the btree layer only. +*/ +SQLITE_PRIVATE int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int); +SQLITE_PRIVATE int sqlite3BtreeInitPage(MemPage *pPage, MemPage *pParent); +SQLITE_PRIVATE void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*); +SQLITE_PRIVATE void sqlite3BtreeParseCell(MemPage*, int, CellInfo*); +#ifdef SQLITE_TEST +SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell); +#endif +SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur); +SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur); +SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur); +SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage); +SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur); + +/************** End of btreeInt.h ********************************************/ +/************** Continuing where we left off in btmutex.c ********************/ +#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE) + + +/* +** Enter a mutex on the given BTree object. +** +** If the object is not sharable, then no mutex is ever required +** and this routine is a no-op. The underlying mutex is non-recursive. +** But we keep a reference count in Btree.wantToLock so the behavior +** of this interface is recursive. +** +** To avoid deadlocks, multiple Btrees are locked in the same order +** by all database connections. The p->pNext is a list of other +** Btrees belonging to the same database connection as the p Btree +** which need to be locked after p. If we cannot get a lock on +** p, then first unlock all of the others on p->pNext, then wait +** for the lock to become available on p, then relock all of the +** subsequent Btrees that desire a lock. +*/ +SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){ + Btree *pLater; + + /* Some basic sanity checking on the Btree. The list of Btrees + ** connected by pNext and pPrev should be in sorted order by + ** Btree.pBt value. All elements of the list should belong to + ** the same connection. Only shared Btrees are on the list. */ + assert( p->pNext==0 || p->pNext->pBt>p->pBt ); + assert( p->pPrev==0 || p->pPrev->pBt<p->pBt ); + assert( p->pNext==0 || p->pNext->db==p->db ); + assert( p->pPrev==0 || p->pPrev->db==p->db ); + assert( p->sharable || (p->pNext==0 && p->pPrev==0) ); + + /* Check for locking consistency */ + assert( !p->locked || p->wantToLock>0 ); + assert( p->sharable || p->wantToLock==0 ); + + /* We should already hold a lock on the database connection */ + assert( sqlite3_mutex_held(p->db->mutex) ); + + if( !p->sharable ) return; + p->wantToLock++; + if( p->locked ) return; + +#ifndef SQLITE_MUTEX_NOOP + /* In most cases, we should be able to acquire the lock we + ** want without having to go throught the ascending lock + ** procedure that follows. Just be sure not to block. + */ + if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){ + p->locked = 1; + return; + } + + /* To avoid deadlock, first release all locks with a larger + ** BtShared address. Then acquire our lock. Then reacquire + ** the other BtShared locks that we used to hold in ascending + ** order. + */ + for(pLater=p->pNext; pLater; pLater=pLater->pNext){ + assert( pLater->sharable ); + assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt ); + assert( !pLater->locked || pLater->wantToLock>0 ); + if( pLater->locked ){ + sqlite3_mutex_leave(pLater->pBt->mutex); + pLater->locked = 0; + } + } + sqlite3_mutex_enter(p->pBt->mutex); + p->locked = 1; + for(pLater=p->pNext; pLater; pLater=pLater->pNext){ + if( pLater->wantToLock ){ + sqlite3_mutex_enter(pLater->pBt->mutex); + pLater->locked = 1; + } + } +#endif /* SQLITE_MUTEX_NOOP */ +} + +/* +** Exit the recursive mutex on a Btree. +*/ +SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){ + if( p->sharable ){ + assert( p->wantToLock>0 ); + p->wantToLock--; + if( p->wantToLock==0 ){ + assert( p->locked ); + sqlite3_mutex_leave(p->pBt->mutex); + p->locked = 0; + } + } +} + +#ifndef NDEBUG +/* +** Return true if the BtShared mutex is held on the btree. +** +** This routine makes no determination one why or another if the +** database connection mutex is held. +** +** This routine is used only from within assert() statements. +*/ +SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){ + return (p->sharable==0 || + (p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex))); +} +#endif + + +#ifndef SQLITE_OMIT_INCRBLOB +/* +** Enter and leave a mutex on a Btree given a cursor owned by that +** Btree. These entry points are used by incremental I/O and can be +** omitted if that module is not used. +*/ +SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){ + sqlite3BtreeEnter(pCur->pBtree); +} +SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){ + sqlite3BtreeLeave(pCur->pBtree); +} +#endif /* SQLITE_OMIT_INCRBLOB */ + + +/* +** Enter the mutex on every Btree associated with a database +** connection. This is needed (for example) prior to parsing +** a statement since we will be comparing table and column names +** against all schemas and we do not want those schemas being +** reset out from under us. +** +** There is a corresponding leave-all procedures. +** +** Enter the mutexes in accending order by BtShared pointer address +** to avoid the possibility of deadlock when two threads with +** two or more btrees in common both try to lock all their btrees +** at the same instant. +*/ +SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){ + int i; + Btree *p, *pLater; + assert( sqlite3_mutex_held(db->mutex) ); + for(i=0; i<db->nDb; i++){ + p = db->aDb[i].pBt; + if( p && p->sharable ){ + p->wantToLock++; + if( !p->locked ){ + assert( p->wantToLock==1 ); + while( p->pPrev ) p = p->pPrev; + while( p->locked && p->pNext ) p = p->pNext; + for(pLater = p->pNext; pLater; pLater=pLater->pNext){ + if( pLater->locked ){ + sqlite3_mutex_leave(pLater->pBt->mutex); + pLater->locked = 0; + } + } + while( p ){ + sqlite3_mutex_enter(p->pBt->mutex); + p->locked++; + p = p->pNext; + } + } + } + } +} +SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){ + int i; + Btree *p; + assert( sqlite3_mutex_held(db->mutex) ); + for(i=0; i<db->nDb; i++){ + p = db->aDb[i].pBt; + if( p && p->sharable ){ + assert( p->wantToLock>0 ); + p->wantToLock--; + if( p->wantToLock==0 ){ + assert( p->locked ); + sqlite3_mutex_leave(p->pBt->mutex); + p->locked = 0; + } + } + } +} + +#ifndef NDEBUG +/* +** Return true if the current thread holds the database connection +** mutex and all required BtShared mutexes. +** +** This routine is used inside assert() statements only. +*/ +SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){ + int i; + if( !sqlite3_mutex_held(db->mutex) ){ + return 0; + } + for(i=0; i<db->nDb; i++){ + Btree *p; + p = db->aDb[i].pBt; + if( p && p->sharable && + (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){ + return 0; + } + } + return 1; +} +#endif /* NDEBUG */ + +/* +** Potentially dd a new Btree pointer to a BtreeMutexArray. +** Really only add the Btree if it can possibly be shared with +** another database connection. +** +** The Btrees are kept in sorted order by pBtree->pBt. That +** way when we go to enter all the mutexes, we can enter them +** in order without every having to backup and retry and without +** worrying about deadlock. +** +** The number of shared btrees will always be small (usually 0 or 1) +** so an insertion sort is an adequate algorithm here. +*/ +SQLITE_PRIVATE void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){ + int i, j; + BtShared *pBt; + if( pBtree==0 || pBtree->sharable==0 ) return; +#ifndef NDEBUG + { + for(i=0; i<pArray->nMutex; i++){ + assert( pArray->aBtree[i]!=pBtree ); + } + } +#endif + assert( pArray->nMutex>=0 ); + assert( pArray->nMutex<sizeof(pArray->aBtree)/sizeof(pArray->aBtree[0])-1 ); + pBt = pBtree->pBt; + for(i=0; i<pArray->nMutex; i++){ + assert( pArray->aBtree[i]!=pBtree ); + if( pArray->aBtree[i]->pBt>pBt ){ + for(j=pArray->nMutex; j>i; j--){ + pArray->aBtree[j] = pArray->aBtree[j-1]; + } + pArray->aBtree[i] = pBtree; + pArray->nMutex++; + return; + } + } + pArray->aBtree[pArray->nMutex++] = pBtree; +} + +/* +** Enter the mutex of every btree in the array. This routine is +** called at the beginning of sqlite3VdbeExec(). The mutexes are +** exited at the end of the same function. +*/ +SQLITE_PRIVATE void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){ + int i; + for(i=0; i<pArray->nMutex; i++){ + Btree *p = pArray->aBtree[i]; + /* Some basic sanity checking */ + assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt ); + assert( !p->locked || p->wantToLock>0 ); + + /* We should already hold a lock on the database connection */ + assert( sqlite3_mutex_held(p->db->mutex) ); + + p->wantToLock++; + if( !p->locked && p->sharable ){ + sqlite3_mutex_enter(p->pBt->mutex); + p->locked = 1; + } + } +} + +/* +** Leave the mutex of every btree in the group. +*/ +SQLITE_PRIVATE void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){ + int i; + for(i=0; i<pArray->nMutex; i++){ + Btree *p = pArray->aBtree[i]; + /* Some basic sanity checking */ + assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt ); + assert( p->locked || !p->sharable ); + assert( p->wantToLock>0 ); + + /* We should already hold a lock on the database connection */ + assert( sqlite3_mutex_held(p->db->mutex) ); + + p->wantToLock--; + if( p->wantToLock==0 && p->locked ){ + sqlite3_mutex_leave(p->pBt->mutex); + p->locked = 0; + } + } +} + + +#endif /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */ + +/************** End of btmutex.c *********************************************/ +/************** Begin file btree.c *******************************************/ +/* +** 2004 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** $Id: btree.c,v 1.458 2008/05/09 16:57:51 danielk1977 Exp $ +** +** This file implements a external (disk-based) database using BTrees. +** See the header comment on "btreeInt.h" for additional information. +** Including a description of file format and an overview of operation. +*/ + +/* +** The header string that appears at the beginning of every +** SQLite database. +*/ +static const char zMagicHeader[] = SQLITE_FILE_HEADER; + +/* +** Set this global variable to 1 to enable tracing using the TRACE +** macro. +*/ +#if SQLITE_TEST +int sqlite3BtreeTrace=0; /* True to enable tracing */ +#endif + + + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** A flag to indicate whether or not shared cache is enabled. Also, +** a list of BtShared objects that are eligible for participation +** in shared cache. The variables have file scope during normal builds, +** but the test harness needs to access these variables so we make them +** global for test builds. +*/ +#ifdef SQLITE_TEST +SQLITE_PRIVATE BtShared *sqlite3SharedCacheList = 0; +SQLITE_PRIVATE int sqlite3SharedCacheEnabled = 0; +#else +static BtShared *sqlite3SharedCacheList = 0; +static int sqlite3SharedCacheEnabled = 0; +#endif +#endif /* SQLITE_OMIT_SHARED_CACHE */ + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** Enable or disable the shared pager and schema features. +** +** This routine has no effect on existing database connections. +** The shared cache setting effects only future calls to +** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). +*/ +SQLITE_API int sqlite3_enable_shared_cache(int enable){ + sqlite3SharedCacheEnabled = enable; + return SQLITE_OK; +} +#endif + + +/* +** Forward declaration +*/ +static int checkReadLocks(Btree*,Pgno,BtCursor*); + + +#ifdef SQLITE_OMIT_SHARED_CACHE + /* + ** The functions queryTableLock(), lockTable() and unlockAllTables() + ** manipulate entries in the BtShared.pLock linked list used to store + ** shared-cache table level locks. If the library is compiled with the + ** shared-cache feature disabled, then there is only ever one user + ** of each BtShared structure and so this locking is not necessary. + ** So define the lock related functions as no-ops. + */ + #define queryTableLock(a,b,c) SQLITE_OK + #define lockTable(a,b,c) SQLITE_OK + #define unlockAllTables(a) +#endif + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** Query to see if btree handle p may obtain a lock of type eLock +** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return +** SQLITE_OK if the lock may be obtained (by calling lockTable()), or +** SQLITE_LOCKED if not. +*/ +static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){ + BtShared *pBt = p->pBt; + BtLock *pIter; + + assert( sqlite3BtreeHoldsMutex(p) ); + + /* This is a no-op if the shared-cache is not enabled */ + if( !p->sharable ){ + return SQLITE_OK; + } + + /* If some other connection is holding an exclusive lock, the + ** requested lock may not be obtained. + */ + if( pBt->pExclusive && pBt->pExclusive!=p ){ + return SQLITE_LOCKED; + } + + /* This (along with lockTable()) is where the ReadUncommitted flag is + ** dealt with. If the caller is querying for a read-lock and the flag is + ** set, it is unconditionally granted - even if there are write-locks + ** on the table. If a write-lock is requested, the ReadUncommitted flag + ** is not considered. + ** + ** In function lockTable(), if a read-lock is demanded and the + ** ReadUncommitted flag is set, no entry is added to the locks list + ** (BtShared.pLock). + ** + ** To summarize: If the ReadUncommitted flag is set, then read cursors do + ** not create or respect table locks. The locking procedure for a + ** write-cursor does not change. + */ + if( + !p->db || + 0==(p->db->flags&SQLITE_ReadUncommitted) || + eLock==WRITE_LOCK || + iTab==MASTER_ROOT + ){ + for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ + if( pIter->pBtree!=p && pIter->iTable==iTab && + (pIter->eLock!=eLock || eLock!=READ_LOCK) ){ + return SQLITE_LOCKED; + } + } + } + return SQLITE_OK; +} +#endif /* !SQLITE_OMIT_SHARED_CACHE */ + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** Add a lock on the table with root-page iTable to the shared-btree used +** by Btree handle p. Parameter eLock must be either READ_LOCK or +** WRITE_LOCK. +** +** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and +** SQLITE_NOMEM may also be returned. +*/ +static int lockTable(Btree *p, Pgno iTable, u8 eLock){ + BtShared *pBt = p->pBt; + BtLock *pLock = 0; + BtLock *pIter; + + assert( sqlite3BtreeHoldsMutex(p) ); + + /* This is a no-op if the shared-cache is not enabled */ + if( !p->sharable ){ + return SQLITE_OK; + } + + assert( SQLITE_OK==queryTableLock(p, iTable, eLock) ); + + /* If the read-uncommitted flag is set and a read-lock is requested, + ** return early without adding an entry to the BtShared.pLock list. See + ** comment in function queryTableLock() for more info on handling + ** the ReadUncommitted flag. + */ + if( + (p->db) && + (p->db->flags&SQLITE_ReadUncommitted) && + (eLock==READ_LOCK) && + iTable!=MASTER_ROOT + ){ + return SQLITE_OK; + } + + /* First search the list for an existing lock on this table. */ + for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ + if( pIter->iTable==iTable && pIter->pBtree==p ){ + pLock = pIter; + break; + } + } + + /* If the above search did not find a BtLock struct associating Btree p + ** with table iTable, allocate one and link it into the list. + */ + if( !pLock ){ + pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); + if( !pLock ){ + return SQLITE_NOMEM; + } + pLock->iTable = iTable; + pLock->pBtree = p; + pLock->pNext = pBt->pLock; + pBt->pLock = pLock; + } + + /* Set the BtLock.eLock variable to the maximum of the current lock + ** and the requested lock. This means if a write-lock was already held + ** and a read-lock requested, we don't incorrectly downgrade the lock. + */ + assert( WRITE_LOCK>READ_LOCK ); + if( eLock>pLock->eLock ){ + pLock->eLock = eLock; + } + + return SQLITE_OK; +} +#endif /* !SQLITE_OMIT_SHARED_CACHE */ + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** Release all the table locks (locks obtained via calls to the lockTable() +** procedure) held by Btree handle p. +*/ +static void unlockAllTables(Btree *p){ + BtShared *pBt = p->pBt; + BtLock **ppIter = &pBt->pLock; + + assert( sqlite3BtreeHoldsMutex(p) ); + assert( p->sharable || 0==*ppIter ); + + while( *ppIter ){ + BtLock *pLock = *ppIter; + assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree ); + if( pLock->pBtree==p ){ + *ppIter = pLock->pNext; + sqlite3_free(pLock); + }else{ + ppIter = &pLock->pNext; + } + } + + if( pBt->pExclusive==p ){ + pBt->pExclusive = 0; + } +} +#endif /* SQLITE_OMIT_SHARED_CACHE */ + +static void releasePage(MemPage *pPage); /* Forward reference */ + +/* +** Verify that the cursor holds a mutex on the BtShared +*/ +#ifndef NDEBUG +static int cursorHoldsMutex(BtCursor *p){ + return sqlite3_mutex_held(p->pBt->mutex); +} +#endif + + +#ifndef SQLITE_OMIT_INCRBLOB +/* +** Invalidate the overflow page-list cache for cursor pCur, if any. +*/ +static void invalidateOverflowCache(BtCursor *pCur){ + assert( cursorHoldsMutex(pCur) ); + sqlite3_free(pCur->aOverflow); + pCur->aOverflow = 0; +} + +/* +** Invalidate the overflow page-list cache for all cursors opened +** on the shared btree structure pBt. +*/ +static void invalidateAllOverflowCache(BtShared *pBt){ + BtCursor *p; + assert( sqlite3_mutex_held(pBt->mutex) ); + for(p=pBt->pCursor; p; p=p->pNext){ + invalidateOverflowCache(p); + } +} +#else + #define invalidateOverflowCache(x) + #define invalidateAllOverflowCache(x) +#endif + +/* +** Save the current cursor position in the variables BtCursor.nKey +** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. +*/ +static int saveCursorPosition(BtCursor *pCur){ + int rc; + + assert( CURSOR_VALID==pCur->eState ); + assert( 0==pCur->pKey ); + assert( cursorHoldsMutex(pCur) ); + + rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); + + /* If this is an intKey table, then the above call to BtreeKeySize() + ** stores the integer key in pCur->nKey. In this case this value is + ** all that is required. Otherwise, if pCur is not open on an intKey + ** table, then malloc space for and store the pCur->nKey bytes of key + ** data. + */ + if( rc==SQLITE_OK && 0==pCur->pPage->intKey){ + void *pKey = sqlite3_malloc(pCur->nKey); + if( pKey ){ + rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey); + if( rc==SQLITE_OK ){ + pCur->pKey = pKey; + }else{ + sqlite3_free(pKey); + } + }else{ + rc = SQLITE_NOMEM; + } + } + assert( !pCur->pPage->intKey || !pCur->pKey ); + + if( rc==SQLITE_OK ){ + releasePage(pCur->pPage); + pCur->pPage = 0; + pCur->eState = CURSOR_REQUIRESEEK; + } + + invalidateOverflowCache(pCur); + return rc; +} + +/* +** Save the positions of all cursors except pExcept open on the table +** with root-page iRoot. Usually, this is called just before cursor +** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()). +*/ +static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ + BtCursor *p; + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( pExcept==0 || pExcept->pBt==pBt ); + for(p=pBt->pCursor; p; p=p->pNext){ + if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && + p->eState==CURSOR_VALID ){ + int rc = saveCursorPosition(p); + if( SQLITE_OK!=rc ){ + return rc; + } + } + } + return SQLITE_OK; +} + +/* +** Clear the current cursor position. +*/ +static void clearCursorPosition(BtCursor *pCur){ + assert( cursorHoldsMutex(pCur) ); + sqlite3_free(pCur->pKey); + pCur->pKey = 0; + pCur->eState = CURSOR_INVALID; +} + +/* +** Restore the cursor to the position it was in (or as close to as possible) +** when saveCursorPosition() was called. Note that this call deletes the +** saved position info stored by saveCursorPosition(), so there can be +** at most one effective restoreOrClearCursorPosition() call after each +** saveCursorPosition(). +** +** If the second argument argument - doSeek - is false, then instead of +** returning the cursor to its saved position, any saved position is deleted +** and the cursor state set to CURSOR_INVALID. +*/ +SQLITE_PRIVATE int sqlite3BtreeRestoreOrClearCursorPosition(BtCursor *pCur){ + int rc; + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState>=CURSOR_REQUIRESEEK ); + if( pCur->eState==CURSOR_FAULT ){ + return pCur->skip; + } +#ifndef SQLITE_OMIT_INCRBLOB + if( pCur->isIncrblobHandle ){ + return SQLITE_ABORT; + } +#endif + pCur->eState = CURSOR_INVALID; + rc = sqlite3BtreeMoveto(pCur, pCur->pKey, 0, pCur->nKey, 0, &pCur->skip); + if( rc==SQLITE_OK ){ + sqlite3_free(pCur->pKey); + pCur->pKey = 0; + assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); + } + return rc; +} + +#define restoreOrClearCursorPosition(p) \ + (p->eState>=CURSOR_REQUIRESEEK ? \ + sqlite3BtreeRestoreOrClearCursorPosition(p) : \ + SQLITE_OK) + +#ifndef SQLITE_OMIT_AUTOVACUUM +/* +** Given a page number of a regular database page, return the page +** number for the pointer-map page that contains the entry for the +** input page number. +*/ +static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ + int nPagesPerMapPage, iPtrMap, ret; + assert( sqlite3_mutex_held(pBt->mutex) ); + nPagesPerMapPage = (pBt->usableSize/5)+1; + iPtrMap = (pgno-2)/nPagesPerMapPage; + ret = (iPtrMap*nPagesPerMapPage) + 2; + if( ret==PENDING_BYTE_PAGE(pBt) ){ + ret++; + } + return ret; +} + +/* +** Write an entry into the pointer map. +** +** This routine updates the pointer map entry for page number 'key' +** so that it maps to type 'eType' and parent page number 'pgno'. +** An error code is returned if something goes wrong, otherwise SQLITE_OK. +*/ +static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){ + DbPage *pDbPage; /* The pointer map page */ + u8 *pPtrmap; /* The pointer map data */ + Pgno iPtrmap; /* The pointer map page number */ + int offset; /* Offset in pointer map page */ + int rc; + + assert( sqlite3_mutex_held(pBt->mutex) ); + /* The master-journal page number must never be used as a pointer map page */ + assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); + + assert( pBt->autoVacuum ); + if( key==0 ){ + return SQLITE_CORRUPT_BKPT; + } + iPtrmap = PTRMAP_PAGENO(pBt, key); + rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); + if( rc!=SQLITE_OK ){ + return rc; + } + offset = PTRMAP_PTROFFSET(pBt, key); + pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); + + if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ + TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); + rc = sqlite3PagerWrite(pDbPage); + if( rc==SQLITE_OK ){ + pPtrmap[offset] = eType; + put4byte(&pPtrmap[offset+1], parent); + } + } + + sqlite3PagerUnref(pDbPage); + return rc; +} + +/* +** Read an entry from the pointer map. +** +** This routine retrieves the pointer map entry for page 'key', writing +** the type and parent page number to *pEType and *pPgno respectively. +** An error code is returned if something goes wrong, otherwise SQLITE_OK. +*/ +static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ + DbPage *pDbPage; /* The pointer map page */ + int iPtrmap; /* Pointer map page index */ + u8 *pPtrmap; /* Pointer map page data */ + int offset; /* Offset of entry in pointer map */ + int rc; + + assert( sqlite3_mutex_held(pBt->mutex) ); + + iPtrmap = PTRMAP_PAGENO(pBt, key); + rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); + if( rc!=0 ){ + return rc; + } + pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); + + offset = PTRMAP_PTROFFSET(pBt, key); + assert( pEType!=0 ); + *pEType = pPtrmap[offset]; + if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); + + sqlite3PagerUnref(pDbPage); + if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; + return SQLITE_OK; +} + +#endif /* SQLITE_OMIT_AUTOVACUUM */ + +/* +** Given a btree page and a cell index (0 means the first cell on +** the page, 1 means the second cell, and so forth) return a pointer +** to the cell content. +** +** This routine works only for pages that do not contain overflow cells. +*/ +#define findCell(pPage, iCell) \ + ((pPage)->aData + get2byte(&(pPage)->aData[(pPage)->cellOffset+2*(iCell)])) +#ifdef SQLITE_TEST +SQLITE_PRIVATE u8 *sqlite3BtreeFindCell(MemPage *pPage, int iCell){ + assert( iCell>=0 ); + assert( iCell<get2byte(&pPage->aData[pPage->hdrOffset+3]) ); + return findCell(pPage, iCell); +} +#endif + +/* +** This a more complex version of sqlite3BtreeFindCell() that works for +** pages that do contain overflow cells. See insert +*/ +static u8 *findOverflowCell(MemPage *pPage, int iCell){ + int i; + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + for(i=pPage->nOverflow-1; i>=0; i--){ + int k; + struct _OvflCell *pOvfl; + pOvfl = &pPage->aOvfl[i]; + k = pOvfl->idx; + if( k<=iCell ){ + if( k==iCell ){ + return pOvfl->pCell; + } + iCell--; + } + } + return findCell(pPage, iCell); +} + +/* +** Parse a cell content block and fill in the CellInfo structure. There +** are two versions of this function. sqlite3BtreeParseCell() takes a +** cell index as the second argument and sqlite3BtreeParseCellPtr() +** takes a pointer to the body of the cell as its second argument. +** +** Within this file, the parseCell() macro can be called instead of +** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster. +*/ +SQLITE_PRIVATE void sqlite3BtreeParseCellPtr( + MemPage *pPage, /* Page containing the cell */ + u8 *pCell, /* Pointer to the cell text. */ + CellInfo *pInfo /* Fill in this structure */ +){ + int n; /* Number bytes in cell content header */ + u32 nPayload; /* Number of bytes of cell payload */ + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + + pInfo->pCell = pCell; + assert( pPage->leaf==0 || pPage->leaf==1 ); + n = pPage->childPtrSize; + assert( n==4-4*pPage->leaf ); + if( pPage->hasData ){ + n += getVarint32(&pCell[n], nPayload); + }else{ + nPayload = 0; + } + pInfo->nData = nPayload; + if( pPage->intKey ){ + n += getVarint(&pCell[n], (u64 *)&pInfo->nKey); + }else{ + u32 x; + n += getVarint32(&pCell[n], x); + pInfo->nKey = x; + nPayload += x; + } + pInfo->nPayload = nPayload; + pInfo->nHeader = n; + if( nPayload<=pPage->maxLocal ){ + /* This is the (easy) common case where the entire payload fits + ** on the local page. No overflow is required. + */ + int nSize; /* Total size of cell content in bytes */ + pInfo->nLocal = nPayload; + pInfo->iOverflow = 0; + nSize = nPayload + n; + if( nSize<4 ){ + nSize = 4; /* Minimum cell size is 4 */ + } + pInfo->nSize = nSize; + }else{ + /* If the payload will not fit completely on the local page, we have + ** to decide how much to store locally and how much to spill onto + ** overflow pages. The strategy is to minimize the amount of unused + ** space on overflow pages while keeping the amount of local storage + ** in between minLocal and maxLocal. + ** + ** Warning: changing the way overflow payload is distributed in any + ** way will result in an incompatible file format. + */ + int minLocal; /* Minimum amount of payload held locally */ + int maxLocal; /* Maximum amount of payload held locally */ + int surplus; /* Overflow payload available for local storage */ + + minLocal = pPage->minLocal; + maxLocal = pPage->maxLocal; + surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); + if( surplus <= maxLocal ){ + pInfo->nLocal = surplus; + }else{ + pInfo->nLocal = minLocal; + } + pInfo->iOverflow = pInfo->nLocal + n; + pInfo->nSize = pInfo->iOverflow + 4; + } +} +#define parseCell(pPage, iCell, pInfo) \ + sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo)) +SQLITE_PRIVATE void sqlite3BtreeParseCell( + MemPage *pPage, /* Page containing the cell */ + int iCell, /* The cell index. First cell is 0 */ + CellInfo *pInfo /* Fill in this structure */ +){ + parseCell(pPage, iCell, pInfo); +} + +/* +** Compute the total number of bytes that a Cell needs in the cell +** data area of the btree-page. The return number includes the cell +** data header and the local payload, but not any overflow page or +** the space used by the cell pointer. +*/ +#ifndef NDEBUG +static u16 cellSize(MemPage *pPage, int iCell){ + CellInfo info; + sqlite3BtreeParseCell(pPage, iCell, &info); + return info.nSize; +} +#endif +static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ + CellInfo info; + sqlite3BtreeParseCellPtr(pPage, pCell, &info); + return info.nSize; +} + +#ifndef SQLITE_OMIT_AUTOVACUUM +/* +** If the cell pCell, part of page pPage contains a pointer +** to an overflow page, insert an entry into the pointer-map +** for the overflow page. +*/ +static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){ + if( pCell ){ + CellInfo info; + sqlite3BtreeParseCellPtr(pPage, pCell, &info); + assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload ); + if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ + Pgno ovfl = get4byte(&pCell[info.iOverflow]); + return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno); + } + } + return SQLITE_OK; +} +/* +** If the cell with index iCell on page pPage contains a pointer +** to an overflow page, insert an entry into the pointer-map +** for the overflow page. +*/ +static int ptrmapPutOvfl(MemPage *pPage, int iCell){ + u8 *pCell; + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + pCell = findOverflowCell(pPage, iCell); + return ptrmapPutOvflPtr(pPage, pCell); +} +#endif + + +/* +** Defragment the page given. All Cells are moved to the +** end of the page and all free space is collected into one +** big FreeBlk that occurs in between the header and cell +** pointer array and the cell content area. +*/ +static int defragmentPage(MemPage *pPage){ + int i; /* Loop counter */ + int pc; /* Address of a i-th cell */ + int addr; /* Offset of first byte after cell pointer array */ + int hdr; /* Offset to the page header */ + int size; /* Size of a cell */ + int usableSize; /* Number of usable bytes on a page */ + int cellOffset; /* Offset to the cell pointer array */ + int brk; /* Offset to the cell content area */ + int nCell; /* Number of cells on the page */ + unsigned char *data; /* The page data */ + unsigned char *temp; /* Temp area for cell content */ + + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( pPage->pBt!=0 ); + assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); + assert( pPage->nOverflow==0 ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + temp = sqlite3PagerTempSpace(pPage->pBt->pPager); + data = pPage->aData; + hdr = pPage->hdrOffset; + cellOffset = pPage->cellOffset; + nCell = pPage->nCell; + assert( nCell==get2byte(&data[hdr+3]) ); + usableSize = pPage->pBt->usableSize; + brk = get2byte(&data[hdr+5]); + memcpy(&temp[brk], &data[brk], usableSize - brk); + brk = usableSize; + for(i=0; i<nCell; i++){ + u8 *pAddr; /* The i-th cell pointer */ + pAddr = &data[cellOffset + i*2]; + pc = get2byte(pAddr); + assert( pc<pPage->pBt->usableSize ); + size = cellSizePtr(pPage, &temp[pc]); + brk -= size; + memcpy(&data[brk], &temp[pc], size); + put2byte(pAddr, brk); + } + assert( brk>=cellOffset+2*nCell ); + put2byte(&data[hdr+5], brk); + data[hdr+1] = 0; + data[hdr+2] = 0; + data[hdr+7] = 0; + addr = cellOffset+2*nCell; + memset(&data[addr], 0, brk-addr); + return SQLITE_OK; +} + +/* +** Allocate nByte bytes of space on a page. +** +** Return the index into pPage->aData[] of the first byte of +** the new allocation. Or return 0 if there is not enough free +** space on the page to satisfy the allocation request. +** +** If the page contains nBytes of free space but does not contain +** nBytes of contiguous free space, then this routine automatically +** calls defragementPage() to consolidate all free space before +** allocating the new chunk. +*/ +static int allocateSpace(MemPage *pPage, int nByte){ + int addr, pc, hdr; + int size; + int nFrag; + int top; + int nCell; + int cellOffset; + unsigned char *data; + + data = pPage->aData; + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( pPage->pBt ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + if( nByte<4 ) nByte = 4; + if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0; + pPage->nFree -= nByte; + hdr = pPage->hdrOffset; + + nFrag = data[hdr+7]; + if( nFrag<60 ){ + /* Search the freelist looking for a slot big enough to satisfy the + ** space request. */ + addr = hdr+1; + while( (pc = get2byte(&data[addr]))>0 ){ + size = get2byte(&data[pc+2]); + if( size>=nByte ){ + if( size<nByte+4 ){ + memcpy(&data[addr], &data[pc], 2); + data[hdr+7] = nFrag + size - nByte; + return pc; + }else{ + put2byte(&data[pc+2], size-nByte); + return pc + size - nByte; + } + } + addr = pc; + } + } + + /* Allocate memory from the gap in between the cell pointer array + ** and the cell content area. + */ + top = get2byte(&data[hdr+5]); + nCell = get2byte(&data[hdr+3]); + cellOffset = pPage->cellOffset; + if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){ + if( defragmentPage(pPage) ) return 0; + top = get2byte(&data[hdr+5]); + } + top -= nByte; + assert( cellOffset + 2*nCell <= top ); + put2byte(&data[hdr+5], top); + return top; +} + +/* +** Return a section of the pPage->aData to the freelist. +** The first byte of the new free block is pPage->aDisk[start] +** and the size of the block is "size" bytes. +** +** Most of the effort here is involved in coalesing adjacent +** free blocks into a single big free block. +*/ +static void freeSpace(MemPage *pPage, int start, int size){ + int addr, pbegin, hdr; + unsigned char *data = pPage->aData; + + assert( pPage->pBt!=0 ); + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) ); + assert( (start + size)<=pPage->pBt->usableSize ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + if( size<4 ) size = 4; + +#ifdef SQLITE_SECURE_DELETE + /* Overwrite deleted information with zeros when the SECURE_DELETE + ** option is enabled at compile-time */ + memset(&data[start], 0, size); +#endif + + /* Add the space back into the linked list of freeblocks */ + hdr = pPage->hdrOffset; + addr = hdr + 1; + while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ + assert( pbegin<=pPage->pBt->usableSize-4 ); + assert( pbegin>addr ); + addr = pbegin; + } + assert( pbegin<=pPage->pBt->usableSize-4 ); + assert( pbegin>addr || pbegin==0 ); + put2byte(&data[addr], start); + put2byte(&data[start], pbegin); + put2byte(&data[start+2], size); + pPage->nFree += size; + + /* Coalesce adjacent free blocks */ + addr = pPage->hdrOffset + 1; + while( (pbegin = get2byte(&data[addr]))>0 ){ + int pnext, psize; + assert( pbegin>addr ); + assert( pbegin<=pPage->pBt->usableSize-4 ); + pnext = get2byte(&data[pbegin]); + psize = get2byte(&data[pbegin+2]); + if( pbegin + psize + 3 >= pnext && pnext>0 ){ + int frag = pnext - (pbegin+psize); + assert( frag<=data[pPage->hdrOffset+7] ); + data[pPage->hdrOffset+7] -= frag; + put2byte(&data[pbegin], get2byte(&data[pnext])); + put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin); + }else{ + addr = pbegin; + } + } + + /* If the cell content area begins with a freeblock, remove it. */ + if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ + int top; + pbegin = get2byte(&data[hdr+1]); + memcpy(&data[hdr+1], &data[pbegin], 2); + top = get2byte(&data[hdr+5]); + put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2])); + } +} + +/* +** Decode the flags byte (the first byte of the header) for a page +** and initialize fields of the MemPage structure accordingly. +*/ +static void decodeFlags(MemPage *pPage, int flagByte){ + BtShared *pBt; /* A copy of pPage->pBt */ + + assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0; + pPage->zeroData = (flagByte & PTF_ZERODATA)!=0; + pPage->leaf = (flagByte & PTF_LEAF)!=0; + pPage->childPtrSize = 4*(pPage->leaf==0); + pBt = pPage->pBt; + if( flagByte & PTF_LEAFDATA ){ + pPage->leafData = 1; + pPage->maxLocal = pBt->maxLeaf; + pPage->minLocal = pBt->minLeaf; + }else{ + pPage->leafData = 0; + pPage->maxLocal = pBt->maxLocal; + pPage->minLocal = pBt->minLocal; + } + pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); +} + +/* +** Initialize the auxiliary information for a disk block. +** +** The pParent parameter must be a pointer to the MemPage which +** is the parent of the page being initialized. The root of a +** BTree has no parent and so for that page, pParent==NULL. +** +** Return SQLITE_OK on success. If we see that the page does +** not contain a well-formed database page, then return +** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not +** guarantee that the page is well-formed. It only shows that +** we failed to detect any corruption. +*/ +SQLITE_PRIVATE int sqlite3BtreeInitPage( + MemPage *pPage, /* The page to be initialized */ + MemPage *pParent /* The parent. Might be NULL */ +){ + int pc; /* Address of a freeblock within pPage->aData[] */ + int hdr; /* Offset to beginning of page header */ + u8 *data; /* Equal to pPage->aData */ + BtShared *pBt; /* The main btree structure */ + int usableSize; /* Amount of usable space on each page */ + int cellOffset; /* Offset from start of page to first cell pointer */ + int nFree; /* Number of unused bytes on the page */ + int top; /* First byte of the cell content area */ + + pBt = pPage->pBt; + assert( pBt!=0 ); + assert( pParent==0 || pParent->pBt==pBt ); + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); + assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); + assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); + if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){ + /* The parent page should never change unless the file is corrupt */ + return SQLITE_CORRUPT_BKPT; + } + if( pPage->isInit ) return SQLITE_OK; + if( pPage->pParent==0 && pParent!=0 ){ + pPage->pParent = pParent; + sqlite3PagerRef(pParent->pDbPage); + } + hdr = pPage->hdrOffset; + data = pPage->aData; + decodeFlags(pPage, data[hdr]); + pPage->nOverflow = 0; + pPage->idxShift = 0; + usableSize = pBt->usableSize; + pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; + top = get2byte(&data[hdr+5]); + pPage->nCell = get2byte(&data[hdr+3]); + if( pPage->nCell>MX_CELL(pBt) ){ + /* To many cells for a single page. The page must be corrupt */ + return SQLITE_CORRUPT_BKPT; + } + if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){ + /* All pages must have at least one cell, except for root pages */ + return SQLITE_CORRUPT_BKPT; + } + + /* Compute the total free space on the page */ + pc = get2byte(&data[hdr+1]); + nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell); + while( pc>0 ){ + int next, size; + if( pc>usableSize-4 ){ + /* Free block is off the page */ + return SQLITE_CORRUPT_BKPT; + } + next = get2byte(&data[pc]); + size = get2byte(&data[pc+2]); + if( next>0 && next<=pc+size+3 ){ + /* Free blocks must be in accending order */ + return SQLITE_CORRUPT_BKPT; + } + nFree += size; + pc = next; + } + pPage->nFree = nFree; + if( nFree>=usableSize ){ + /* Free space cannot exceed total page size */ + return SQLITE_CORRUPT_BKPT; + } + + pPage->isInit = 1; + return SQLITE_OK; +} + +/* +** Set up a raw page so that it looks like a database page holding +** no entries. +*/ +static void zeroPage(MemPage *pPage, int flags){ + unsigned char *data = pPage->aData; + BtShared *pBt = pPage->pBt; + int hdr = pPage->hdrOffset; + int first; + + assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); + assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); + assert( sqlite3PagerGetData(pPage->pDbPage) == data ); + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( sqlite3_mutex_held(pBt->mutex) ); + memset(&data[hdr], 0, pBt->usableSize - hdr); + data[hdr] = flags; + first = hdr + 8 + 4*((flags&PTF_LEAF)==0); + memset(&data[hdr+1], 0, 4); + data[hdr+7] = 0; + put2byte(&data[hdr+5], pBt->usableSize); + pPage->nFree = pBt->usableSize - first; + decodeFlags(pPage, flags); + pPage->hdrOffset = hdr; + pPage->cellOffset = first; + pPage->nOverflow = 0; + pPage->idxShift = 0; + pPage->nCell = 0; + pPage->isInit = 1; +} + +/* +** Get a page from the pager. Initialize the MemPage.pBt and +** MemPage.aData elements if needed. +** +** If the noContent flag is set, it means that we do not care about +** the content of the page at this time. So do not go to the disk +** to fetch the content. Just fill in the content with zeros for now. +** If in the future we call sqlite3PagerWrite() on this page, that +** means we have started to be concerned about content and the disk +** read should occur at that point. +*/ +SQLITE_PRIVATE int sqlite3BtreeGetPage( + BtShared *pBt, /* The btree */ + Pgno pgno, /* Number of the page to fetch */ + MemPage **ppPage, /* Return the page in this parameter */ + int noContent /* Do not load page content if true */ +){ + int rc; + MemPage *pPage; + DbPage *pDbPage; + + assert( sqlite3_mutex_held(pBt->mutex) ); + rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent); + if( rc ) return rc; + pPage = (MemPage *)sqlite3PagerGetExtra(pDbPage); + pPage->aData = sqlite3PagerGetData(pDbPage); + pPage->pDbPage = pDbPage; + pPage->pBt = pBt; + pPage->pgno = pgno; + pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; + *ppPage = pPage; + return SQLITE_OK; +} + +/* +** Get a page from the pager and initialize it. This routine +** is just a convenience wrapper around separate calls to +** sqlite3BtreeGetPage() and sqlite3BtreeInitPage(). +*/ +static int getAndInitPage( + BtShared *pBt, /* The database file */ + Pgno pgno, /* Number of the page to get */ + MemPage **ppPage, /* Write the page pointer here */ + MemPage *pParent /* Parent of the page */ +){ + int rc; + assert( sqlite3_mutex_held(pBt->mutex) ); + if( pgno==0 ){ + return SQLITE_CORRUPT_BKPT; + } + rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0); + if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){ + rc = sqlite3BtreeInitPage(*ppPage, pParent); + if( rc!=SQLITE_OK ){ + releasePage(*ppPage); + *ppPage = 0; + } + } + return rc; +} + +/* +** Release a MemPage. This should be called once for each prior +** call to sqlite3BtreeGetPage. +*/ +static void releasePage(MemPage *pPage){ + if( pPage ){ + assert( pPage->aData ); + assert( pPage->pBt ); + assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); + assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + sqlite3PagerUnref(pPage->pDbPage); + } +} + +/* +** This routine is called when the reference count for a page +** reaches zero. We need to unref the pParent pointer when that +** happens. +*/ +static void pageDestructor(DbPage *pData, int pageSize){ + MemPage *pPage; + assert( (pageSize & 7)==0 ); + pPage = (MemPage *)sqlite3PagerGetExtra(pData); + assert( pPage->isInit==0 || sqlite3_mutex_held(pPage->pBt->mutex) ); + if( pPage->pParent ){ + MemPage *pParent = pPage->pParent; + assert( pParent->pBt==pPage->pBt ); + pPage->pParent = 0; + releasePage(pParent); + } + pPage->isInit = 0; +} + +/* +** During a rollback, when the pager reloads information into the cache +** so that the cache is restored to its original state at the start of +** the transaction, for each page restored this routine is called. +** +** This routine needs to reset the extra data section at the end of the +** page to agree with the restored data. +*/ +static void pageReinit(DbPage *pData, int pageSize){ + MemPage *pPage; + assert( (pageSize & 7)==0 ); + pPage = (MemPage *)sqlite3PagerGetExtra(pData); + if( pPage->isInit ){ + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + pPage->isInit = 0; + sqlite3BtreeInitPage(pPage, pPage->pParent); + } +} + +/* +** Invoke the busy handler for a btree. +*/ +static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){ + BtShared *pBt = (BtShared*)pArg; + assert( pBt->db ); + assert( sqlite3_mutex_held(pBt->db->mutex) ); + return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); +} + +/* +** Open a database file. +** +** zFilename is the name of the database file. If zFilename is NULL +** a new database with a random name is created. This randomly named +** database file will be deleted when sqlite3BtreeClose() is called. +** If zFilename is ":memory:" then an in-memory database is created +** that is automatically destroyed when it is closed. +*/ +SQLITE_PRIVATE int sqlite3BtreeOpen( + const char *zFilename, /* Name of the file containing the BTree database */ + sqlite3 *db, /* Associated database handle */ + Btree **ppBtree, /* Pointer to new Btree object written here */ + int flags, /* Options */ + int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ +){ + sqlite3_vfs *pVfs; /* The VFS to use for this btree */ + BtShared *pBt = 0; /* Shared part of btree structure */ + Btree *p; /* Handle to return */ + int rc = SQLITE_OK; + int nReserve; + unsigned char zDbHeader[100]; + + /* Set the variable isMemdb to true for an in-memory database, or + ** false for a file-based database. This symbol is only required if + ** either of the shared-data or autovacuum features are compiled + ** into the library. + */ +#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM) + #ifdef SQLITE_OMIT_MEMORYDB + const int isMemdb = 0; + #else + const int isMemdb = zFilename && !strcmp(zFilename, ":memory:"); + #endif +#endif + + assert( db!=0 ); + assert( sqlite3_mutex_held(db->mutex) ); + + pVfs = db->pVfs; + p = sqlite3MallocZero(sizeof(Btree)); + if( !p ){ + return SQLITE_NOMEM; + } + p->inTrans = TRANS_NONE; + p->db = db; + +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) + /* + ** If this Btree is a candidate for shared cache, try to find an + ** existing BtShared object that we can share with + */ + if( (flags & BTREE_PRIVATE)==0 + && isMemdb==0 + && (db->flags & SQLITE_Vtab)==0 + && zFilename && zFilename[0] + ){ + if( sqlite3SharedCacheEnabled ){ + int nFullPathname = pVfs->mxPathname+1; + char *zFullPathname = (char *)sqlite3_malloc(nFullPathname); + sqlite3_mutex *mutexShared; + p->sharable = 1; + if( db ){ + db->flags |= SQLITE_SharedCache; + } + if( !zFullPathname ){ + sqlite3_free(p); + return SQLITE_NOMEM; + } + sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname); + mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); + sqlite3_mutex_enter(mutexShared); + for(pBt=sqlite3SharedCacheList; pBt; pBt=pBt->pNext){ + assert( pBt->nRef>0 ); + if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager)) + && sqlite3PagerVfs(pBt->pPager)==pVfs ){ + p->pBt = pBt; + pBt->nRef++; + break; + } + } + sqlite3_mutex_leave(mutexShared); + sqlite3_free(zFullPathname); + } +#ifdef SQLITE_DEBUG + else{ + /* In debug mode, we mark all persistent databases as sharable + ** even when they are not. This exercises the locking code and + ** gives more opportunity for asserts(sqlite3_mutex_held()) + ** statements to find locking problems. + */ + p->sharable = 1; + } +#endif + } +#endif + if( pBt==0 ){ + /* + ** The following asserts make sure that structures used by the btree are + ** the right size. This is to guard against size changes that result + ** when compiling on a different architecture. + */ + assert( sizeof(i64)==8 || sizeof(i64)==4 ); + assert( sizeof(u64)==8 || sizeof(u64)==4 ); + assert( sizeof(u32)==4 ); + assert( sizeof(u16)==2 ); + assert( sizeof(Pgno)==4 ); + + pBt = sqlite3MallocZero( sizeof(*pBt) ); + if( pBt==0 ){ + rc = SQLITE_NOMEM; + goto btree_open_out; + } + pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler; + pBt->busyHdr.pArg = pBt; + rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, + EXTRA_SIZE, flags, vfsFlags); + if( rc==SQLITE_OK ){ + rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); + } + if( rc!=SQLITE_OK ){ + goto btree_open_out; + } + sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr); + p->pBt = pBt; + + sqlite3PagerSetDestructor(pBt->pPager, pageDestructor); + sqlite3PagerSetReiniter(pBt->pPager, pageReinit); + pBt->pCursor = 0; + pBt->pPage1 = 0; + pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager); + pBt->pageSize = get2byte(&zDbHeader[16]); + if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE + || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ + pBt->pageSize = 0; + sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); + pBt->maxEmbedFrac = 64; /* 25% */ + pBt->minEmbedFrac = 32; /* 12.5% */ + pBt->minLeafFrac = 32; /* 12.5% */ +#ifndef SQLITE_OMIT_AUTOVACUUM + /* If the magic name ":memory:" will create an in-memory database, then + ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if + ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if + ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a + ** regular file-name. In this case the auto-vacuum applies as per normal. + */ + if( zFilename && !isMemdb ){ + pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); + pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); + } +#endif + nReserve = 0; + }else{ + nReserve = zDbHeader[20]; + pBt->maxEmbedFrac = zDbHeader[21]; + pBt->minEmbedFrac = zDbHeader[22]; + pBt->minLeafFrac = zDbHeader[23]; + pBt->pageSizeFixed = 1; +#ifndef SQLITE_OMIT_AUTOVACUUM + pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); + pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); +#endif + } + pBt->usableSize = pBt->pageSize - nReserve; + assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ + sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); + +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) + /* Add the new BtShared object to the linked list sharable BtShareds. + */ + if( p->sharable ){ + sqlite3_mutex *mutexShared; + pBt->nRef = 1; + mutexShared = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); + if( SQLITE_THREADSAFE ){ + pBt->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); + if( pBt->mutex==0 ){ + rc = SQLITE_NOMEM; + db->mallocFailed = 0; + goto btree_open_out; + } + } + sqlite3_mutex_enter(mutexShared); + pBt->pNext = sqlite3SharedCacheList; + sqlite3SharedCacheList = pBt; + sqlite3_mutex_leave(mutexShared); + } +#endif + } + +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) + /* If the new Btree uses a sharable pBtShared, then link the new + ** Btree into the list of all sharable Btrees for the same connection. + ** The list is kept in ascending order by pBt address. + */ + if( p->sharable ){ + int i; + Btree *pSib; + for(i=0; i<db->nDb; i++){ + if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ + while( pSib->pPrev ){ pSib = pSib->pPrev; } + if( p->pBt<pSib->pBt ){ + p->pNext = pSib; + p->pPrev = 0; + pSib->pPrev = p; + }else{ + while( pSib->pNext && pSib->pNext->pBt<p->pBt ){ + pSib = pSib->pNext; + } + p->pNext = pSib->pNext; + p->pPrev = pSib; + if( p->pNext ){ + p->pNext->pPrev = p; + } + pSib->pNext = p; + } + break; + } + } + } +#endif + *ppBtree = p; + +btree_open_out: + if( rc!=SQLITE_OK ){ + if( pBt && pBt->pPager ){ + sqlite3PagerClose(pBt->pPager); + } + sqlite3_free(pBt); + sqlite3_free(p); + *ppBtree = 0; + } + return rc; +} + +/* +** Decrement the BtShared.nRef counter. When it reaches zero, +** remove the BtShared structure from the sharing list. Return +** true if the BtShared.nRef counter reaches zero and return +** false if it is still positive. +*/ +static int removeFromSharingList(BtShared *pBt){ +#ifndef SQLITE_OMIT_SHARED_CACHE + sqlite3_mutex *pMaster; + BtShared *pList; + int removed = 0; + + assert( sqlite3_mutex_notheld(pBt->mutex) ); + pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); + sqlite3_mutex_enter(pMaster); + pBt->nRef--; + if( pBt->nRef<=0 ){ + if( sqlite3SharedCacheList==pBt ){ + sqlite3SharedCacheList = pBt->pNext; + }else{ + pList = sqlite3SharedCacheList; + while( pList && pList->pNext!=pBt ){ + pList=pList->pNext; + } + if( pList ){ + pList->pNext = pBt->pNext; + } + } + if( SQLITE_THREADSAFE ){ + sqlite3_mutex_free(pBt->mutex); + } + removed = 1; + } + sqlite3_mutex_leave(pMaster); + return removed; +#else + return 1; +#endif +} + +/* +** Close an open database and invalidate all cursors. +*/ +SQLITE_PRIVATE int sqlite3BtreeClose(Btree *p){ + BtShared *pBt = p->pBt; + BtCursor *pCur; + + /* Close all cursors opened via this handle. */ + assert( sqlite3_mutex_held(p->db->mutex) ); + sqlite3BtreeEnter(p); + pBt->db = p->db; + pCur = pBt->pCursor; + while( pCur ){ + BtCursor *pTmp = pCur; + pCur = pCur->pNext; + if( pTmp->pBtree==p ){ + sqlite3BtreeCloseCursor(pTmp); + } + } + + /* Rollback any active transaction and free the handle structure. + ** The call to sqlite3BtreeRollback() drops any table-locks held by + ** this handle. + */ + sqlite3BtreeRollback(p); + sqlite3BtreeLeave(p); + + /* If there are still other outstanding references to the shared-btree + ** structure, return now. The remainder of this procedure cleans + ** up the shared-btree. + */ + assert( p->wantToLock==0 && p->locked==0 ); + if( !p->sharable || removeFromSharingList(pBt) ){ + /* The pBt is no longer on the sharing list, so we can access + ** it without having to hold the mutex. + ** + ** Clean out and delete the BtShared object. + */ + assert( !pBt->pCursor ); + sqlite3PagerClose(pBt->pPager); + if( pBt->xFreeSchema && pBt->pSchema ){ + pBt->xFreeSchema(pBt->pSchema); + } + sqlite3_free(pBt->pSchema); + sqlite3_free(pBt->pTmpSpace); + sqlite3_free(pBt); + } + +#ifndef SQLITE_OMIT_SHARED_CACHE + assert( p->wantToLock==0 ); + assert( p->locked==0 ); + if( p->pPrev ) p->pPrev->pNext = p->pNext; + if( p->pNext ) p->pNext->pPrev = p->pPrev; +#endif + + sqlite3_free(p); + return SQLITE_OK; +} + +/* +** Change the limit on the number of pages allowed in the cache. +** +** The maximum number of cache pages is set to the absolute +** value of mxPage. If mxPage is negative, the pager will +** operate asynchronously - it will not stop to do fsync()s +** to insure data is written to the disk surface before +** continuing. Transactions still work if synchronous is off, +** and the database cannot be corrupted if this program +** crashes. But if the operating system crashes or there is +** an abrupt power failure when synchronous is off, the database +** could be left in an inconsistent and unrecoverable state. +** Synchronous is on by default so database corruption is not +** normally a worry. +*/ +SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ + BtShared *pBt = p->pBt; + assert( sqlite3_mutex_held(p->db->mutex) ); + sqlite3BtreeEnter(p); + sqlite3PagerSetCachesize(pBt->pPager, mxPage); + sqlite3BtreeLeave(p); + return SQLITE_OK; +} + +/* +** Change the way data is synced to disk in order to increase or decrease +** how well the database resists damage due to OS crashes and power +** failures. Level 1 is the same as asynchronous (no syncs() occur and +** there is a high probability of damage) Level 2 is the default. There +** is a very low but non-zero probability of damage. Level 3 reduces the +** probability of damage to near zero but with a write performance reduction. +*/ +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){ + BtShared *pBt = p->pBt; + assert( sqlite3_mutex_held(p->db->mutex) ); + sqlite3BtreeEnter(p); + sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync); + sqlite3BtreeLeave(p); + return SQLITE_OK; +} +#endif + +/* +** Return TRUE if the given btree is set to safety level 1. In other +** words, return TRUE if no sync() occurs on the disk files. +*/ +SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree *p){ + BtShared *pBt = p->pBt; + int rc; + assert( sqlite3_mutex_held(p->db->mutex) ); + sqlite3BtreeEnter(p); + assert( pBt && pBt->pPager ); + rc = sqlite3PagerNosync(pBt->pPager); + sqlite3BtreeLeave(p); + return rc; +} + +#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) +/* +** Change the default pages size and the number of reserved bytes per page. +** +** The page size must be a power of 2 between 512 and 65536. If the page +** size supplied does not meet this constraint then the page size is not +** changed. +** +** Page sizes are constrained to be a power of two so that the region +** of the database file used for locking (beginning at PENDING_BYTE, +** the first byte past the 1GB boundary, 0x40000000) needs to occur +** at the beginning of a page. +** +** If parameter nReserve is less than zero, then the number of reserved +** bytes per page is left unchanged. +*/ +SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){ + int rc = SQLITE_OK; + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + if( pBt->pageSizeFixed ){ + sqlite3BtreeLeave(p); + return SQLITE_READONLY; + } + if( nReserve<0 ){ + nReserve = pBt->pageSize - pBt->usableSize; + } + if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && + ((pageSize-1)&pageSize)==0 ){ + assert( (pageSize & 7)==0 ); + assert( !pBt->pPage1 && !pBt->pCursor ); + pBt->pageSize = pageSize; + sqlite3_free(pBt->pTmpSpace); + pBt->pTmpSpace = 0; + rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); + } + pBt->usableSize = pBt->pageSize - nReserve; + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Return the currently defined page size +*/ +SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){ + return p->pBt->pageSize; +} +SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){ + int n; + sqlite3BtreeEnter(p); + n = p->pBt->pageSize - p->pBt->usableSize; + sqlite3BtreeLeave(p); + return n; +} + +/* +** Set the maximum page count for a database if mxPage is positive. +** No changes are made if mxPage is 0 or negative. +** Regardless of the value of mxPage, return the maximum page count. +*/ +SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ + int n; + sqlite3BtreeEnter(p); + n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); + sqlite3BtreeLeave(p); + return n; +} +#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ + +/* +** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' +** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it +** is disabled. The default value for the auto-vacuum property is +** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. +*/ +SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ +#ifdef SQLITE_OMIT_AUTOVACUUM + return SQLITE_READONLY; +#else + BtShared *pBt = p->pBt; + int rc = SQLITE_OK; + int av = (autoVacuum?1:0); + + sqlite3BtreeEnter(p); + if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){ + rc = SQLITE_READONLY; + }else{ + pBt->autoVacuum = av; + } + sqlite3BtreeLeave(p); + return rc; +#endif +} + +/* +** Return the value of the 'auto-vacuum' property. If auto-vacuum is +** enabled 1 is returned. Otherwise 0. +*/ +SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *p){ +#ifdef SQLITE_OMIT_AUTOVACUUM + return BTREE_AUTOVACUUM_NONE; +#else + int rc; + sqlite3BtreeEnter(p); + rc = ( + (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: + (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: + BTREE_AUTOVACUUM_INCR + ); + sqlite3BtreeLeave(p); + return rc; +#endif +} + + +/* +** Get a reference to pPage1 of the database file. This will +** also acquire a readlock on that file. +** +** SQLITE_OK is returned on success. If the file is not a +** well-formed database file, then SQLITE_CORRUPT is returned. +** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM +** is returned if we run out of memory. +*/ +static int lockBtree(BtShared *pBt){ + int rc; + MemPage *pPage1; + int nPage; + + assert( sqlite3_mutex_held(pBt->mutex) ); + if( pBt->pPage1 ) return SQLITE_OK; + rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0); + if( rc!=SQLITE_OK ) return rc; + + /* Do some checking to help insure the file we opened really is + ** a valid database file. + */ + rc = SQLITE_NOTADB; + nPage = sqlite3PagerPagecount(pBt->pPager); + if( nPage<0 ){ + rc = SQLITE_IOERR; + goto page1_init_failed; + }else if( nPage>0 ){ + int pageSize; + int usableSize; + u8 *page1 = pPage1->aData; + if( memcmp(page1, zMagicHeader, 16)!=0 ){ + goto page1_init_failed; + } + if( page1[18]>1 ){ + pBt->readOnly = 1; + } + if( page1[19]>1 ){ + goto page1_init_failed; + } + pageSize = get2byte(&page1[16]); + if( ((pageSize-1)&pageSize)!=0 || pageSize<512 || + (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE) + ){ + goto page1_init_failed; + } + assert( (pageSize & 7)==0 ); + usableSize = pageSize - page1[20]; + if( pageSize!=pBt->pageSize ){ + /* After reading the first page of the database assuming a page size + ** of BtShared.pageSize, we have discovered that the page-size is + ** actually pageSize. Unlock the database, leave pBt->pPage1 at + ** zero and return SQLITE_OK. The caller will call this function + ** again with the correct page-size. + */ + releasePage(pPage1); + pBt->usableSize = usableSize; + pBt->pageSize = pageSize; + sqlite3_free(pBt->pTmpSpace); + pBt->pTmpSpace = 0; + sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); + return SQLITE_OK; + } + if( usableSize<500 ){ + goto page1_init_failed; + } + pBt->pageSize = pageSize; + pBt->usableSize = usableSize; + pBt->maxEmbedFrac = page1[21]; + pBt->minEmbedFrac = page1[22]; + pBt->minLeafFrac = page1[23]; +#ifndef SQLITE_OMIT_AUTOVACUUM + pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); + pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); +#endif + } + + /* maxLocal is the maximum amount of payload to store locally for + ** a cell. Make sure it is small enough so that at least minFanout + ** cells can will fit on one page. We assume a 10-byte page header. + ** Besides the payload, the cell must store: + ** 2-byte pointer to the cell + ** 4-byte child pointer + ** 9-byte nKey value + ** 4-byte nData value + ** 4-byte overflow page pointer + ** So a cell consists of a 2-byte poiner, a header which is as much as + ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow + ** page pointer. + */ + pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23; + pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23; + pBt->maxLeaf = pBt->usableSize - 35; + pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23; + if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){ + goto page1_init_failed; + } + assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); + pBt->pPage1 = pPage1; + return SQLITE_OK; + +page1_init_failed: + releasePage(pPage1); + pBt->pPage1 = 0; + return rc; +} + +/* +** This routine works like lockBtree() except that it also invokes the +** busy callback if there is lock contention. +*/ +static int lockBtreeWithRetry(Btree *pRef){ + int rc = SQLITE_OK; + + assert( sqlite3BtreeHoldsMutex(pRef) ); + if( pRef->inTrans==TRANS_NONE ){ + u8 inTransaction = pRef->pBt->inTransaction; + btreeIntegrity(pRef); + rc = sqlite3BtreeBeginTrans(pRef, 0); + pRef->pBt->inTransaction = inTransaction; + pRef->inTrans = TRANS_NONE; + if( rc==SQLITE_OK ){ + pRef->pBt->nTransaction--; + } + btreeIntegrity(pRef); + } + return rc; +} + + +/* +** If there are no outstanding cursors and we are not in the middle +** of a transaction but there is a read lock on the database, then +** this routine unrefs the first page of the database file which +** has the effect of releasing the read lock. +** +** If there are any outstanding cursors, this routine is a no-op. +** +** If there is a transaction in progress, this routine is a no-op. +*/ +static void unlockBtreeIfUnused(BtShared *pBt){ + assert( sqlite3_mutex_held(pBt->mutex) ); + if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){ + if( sqlite3PagerRefcount(pBt->pPager)>=1 ){ + assert( pBt->pPage1->aData ); +#if 0 + if( pBt->pPage1->aData==0 ){ + MemPage *pPage = pBt->pPage1; + pPage->aData = sqlite3PagerGetData(pPage->pDbPage); + pPage->pBt = pBt; + pPage->pgno = 1; + } +#endif + releasePage(pBt->pPage1); + } + pBt->pPage1 = 0; + pBt->inStmt = 0; + } +} + +/* +** Create a new database by initializing the first page of the +** file. +*/ +static int newDatabase(BtShared *pBt){ + MemPage *pP1; + unsigned char *data; + int rc; + + assert( sqlite3_mutex_held(pBt->mutex) ); + if( sqlite3PagerPagecount(pBt->pPager)>0 ) return SQLITE_OK; + pP1 = pBt->pPage1; + assert( pP1!=0 ); + data = pP1->aData; + rc = sqlite3PagerWrite(pP1->pDbPage); + if( rc ) return rc; + memcpy(data, zMagicHeader, sizeof(zMagicHeader)); + assert( sizeof(zMagicHeader)==16 ); + put2byte(&data[16], pBt->pageSize); + data[18] = 1; + data[19] = 1; + data[20] = pBt->pageSize - pBt->usableSize; + data[21] = pBt->maxEmbedFrac; + data[22] = pBt->minEmbedFrac; + data[23] = pBt->minLeafFrac; + memset(&data[24], 0, 100-24); + zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); + pBt->pageSizeFixed = 1; +#ifndef SQLITE_OMIT_AUTOVACUUM + assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); + assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); + put4byte(&data[36 + 4*4], pBt->autoVacuum); + put4byte(&data[36 + 7*4], pBt->incrVacuum); +#endif + return SQLITE_OK; +} + +/* +** Attempt to start a new transaction. A write-transaction +** is started if the second argument is nonzero, otherwise a read- +** transaction. If the second argument is 2 or more and exclusive +** transaction is started, meaning that no other process is allowed +** to access the database. A preexisting transaction may not be +** upgraded to exclusive by calling this routine a second time - the +** exclusivity flag only works for a new transaction. +** +** A write-transaction must be started before attempting any +** changes to the database. None of the following routines +** will work unless a transaction is started first: +** +** sqlite3BtreeCreateTable() +** sqlite3BtreeCreateIndex() +** sqlite3BtreeClearTable() +** sqlite3BtreeDropTable() +** sqlite3BtreeInsert() +** sqlite3BtreeDelete() +** sqlite3BtreeUpdateMeta() +** +** If an initial attempt to acquire the lock fails because of lock contention +** and the database was previously unlocked, then invoke the busy handler +** if there is one. But if there was previously a read-lock, do not +** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is +** returned when there is already a read-lock in order to avoid a deadlock. +** +** Suppose there are two processes A and B. A has a read lock and B has +** a reserved lock. B tries to promote to exclusive but is blocked because +** of A's read lock. A tries to promote to reserved but is blocked by B. +** One or the other of the two processes must give way or there can be +** no progress. By returning SQLITE_BUSY and not invoking the busy callback +** when A already has a read lock, we encourage A to give up and let B +** proceed. +*/ +SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ + BtShared *pBt = p->pBt; + int rc = SQLITE_OK; + + sqlite3BtreeEnter(p); + pBt->db = p->db; + btreeIntegrity(p); + + /* If the btree is already in a write-transaction, or it + ** is already in a read-transaction and a read-transaction + ** is requested, this is a no-op. + */ + if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ + goto trans_begun; + } + + /* Write transactions are not possible on a read-only database */ + if( pBt->readOnly && wrflag ){ + rc = SQLITE_READONLY; + goto trans_begun; + } + + /* If another database handle has already opened a write transaction + ** on this shared-btree structure and a second write transaction is + ** requested, return SQLITE_BUSY. + */ + if( pBt->inTransaction==TRANS_WRITE && wrflag ){ + rc = SQLITE_BUSY; + goto trans_begun; + } + +#ifndef SQLITE_OMIT_SHARED_CACHE + if( wrflag>1 ){ + BtLock *pIter; + for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ + if( pIter->pBtree!=p ){ + rc = SQLITE_BUSY; + goto trans_begun; + } + } + } +#endif + + do { + if( pBt->pPage1==0 ){ + do{ + rc = lockBtree(pBt); + }while( pBt->pPage1==0 && rc==SQLITE_OK ); + } + + if( rc==SQLITE_OK && wrflag ){ + if( pBt->readOnly ){ + rc = SQLITE_READONLY; + }else{ + rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1); + if( rc==SQLITE_OK ){ + rc = newDatabase(pBt); + } + } + } + + if( rc==SQLITE_OK ){ + if( wrflag ) pBt->inStmt = 0; + }else{ + unlockBtreeIfUnused(pBt); + } + }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && + sqlite3BtreeInvokeBusyHandler(pBt, 0) ); + + if( rc==SQLITE_OK ){ + if( p->inTrans==TRANS_NONE ){ + pBt->nTransaction++; + } + p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); + if( p->inTrans>pBt->inTransaction ){ + pBt->inTransaction = p->inTrans; + } +#ifndef SQLITE_OMIT_SHARED_CACHE + if( wrflag>1 ){ + assert( !pBt->pExclusive ); + pBt->pExclusive = p; + } +#endif + } + + +trans_begun: + btreeIntegrity(p); + sqlite3BtreeLeave(p); + return rc; +} + +#ifndef SQLITE_OMIT_AUTOVACUUM + +/* +** Set the pointer-map entries for all children of page pPage. Also, if +** pPage contains cells that point to overflow pages, set the pointer +** map entries for the overflow pages as well. +*/ +static int setChildPtrmaps(MemPage *pPage){ + int i; /* Counter variable */ + int nCell; /* Number of cells in page pPage */ + int rc; /* Return code */ + BtShared *pBt = pPage->pBt; + int isInitOrig = pPage->isInit; + Pgno pgno = pPage->pgno; + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + rc = sqlite3BtreeInitPage(pPage, pPage->pParent); + if( rc!=SQLITE_OK ){ + goto set_child_ptrmaps_out; + } + nCell = pPage->nCell; + + for(i=0; i<nCell; i++){ + u8 *pCell = findCell(pPage, i); + + rc = ptrmapPutOvflPtr(pPage, pCell); + if( rc!=SQLITE_OK ){ + goto set_child_ptrmaps_out; + } + + if( !pPage->leaf ){ + Pgno childPgno = get4byte(pCell); + rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); + if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out; + } + } + + if( !pPage->leaf ){ + Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); + rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); + } + +set_child_ptrmaps_out: + pPage->isInit = isInitOrig; + return rc; +} + +/* +** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow +** page, is a pointer to page iFrom. Modify this pointer so that it points to +** iTo. Parameter eType describes the type of pointer to be modified, as +** follows: +** +** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child +** page of pPage. +** +** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow +** page pointed to by one of the cells on pPage. +** +** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next +** overflow page in the list. +*/ +static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + if( eType==PTRMAP_OVERFLOW2 ){ + /* The pointer is always the first 4 bytes of the page in this case. */ + if( get4byte(pPage->aData)!=iFrom ){ + return SQLITE_CORRUPT_BKPT; + } + put4byte(pPage->aData, iTo); + }else{ + int isInitOrig = pPage->isInit; + int i; + int nCell; + + sqlite3BtreeInitPage(pPage, 0); + nCell = pPage->nCell; + + for(i=0; i<nCell; i++){ + u8 *pCell = findCell(pPage, i); + if( eType==PTRMAP_OVERFLOW1 ){ + CellInfo info; + sqlite3BtreeParseCellPtr(pPage, pCell, &info); + if( info.iOverflow ){ + if( iFrom==get4byte(&pCell[info.iOverflow]) ){ + put4byte(&pCell[info.iOverflow], iTo); + break; + } + } + }else{ + if( get4byte(pCell)==iFrom ){ + put4byte(pCell, iTo); + break; + } + } + } + + if( i==nCell ){ + if( eType!=PTRMAP_BTREE || + get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ + return SQLITE_CORRUPT_BKPT; + } + put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); + } + + pPage->isInit = isInitOrig; + } + return SQLITE_OK; +} + + +/* +** Move the open database page pDbPage to location iFreePage in the +** database. The pDbPage reference remains valid. +*/ +static int relocatePage( + BtShared *pBt, /* Btree */ + MemPage *pDbPage, /* Open page to move */ + u8 eType, /* Pointer map 'type' entry for pDbPage */ + Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ + Pgno iFreePage /* The location to move pDbPage to */ +){ + MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ + Pgno iDbPage = pDbPage->pgno; + Pager *pPager = pBt->pPager; + int rc; + + assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || + eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( pDbPage->pBt==pBt ); + + /* Move page iDbPage from its current location to page number iFreePage */ + TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", + iDbPage, iFreePage, iPtrPage, eType)); + rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage); + if( rc!=SQLITE_OK ){ + return rc; + } + pDbPage->pgno = iFreePage; + + /* If pDbPage was a btree-page, then it may have child pages and/or cells + ** that point to overflow pages. The pointer map entries for all these + ** pages need to be changed. + ** + ** If pDbPage is an overflow page, then the first 4 bytes may store a + ** pointer to a subsequent overflow page. If this is the case, then + ** the pointer map needs to be updated for the subsequent overflow page. + */ + if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ + rc = setChildPtrmaps(pDbPage); + if( rc!=SQLITE_OK ){ + return rc; + } + }else{ + Pgno nextOvfl = get4byte(pDbPage->aData); + if( nextOvfl!=0 ){ + rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage); + if( rc!=SQLITE_OK ){ + return rc; + } + } + } + + /* Fix the database pointer on page iPtrPage that pointed at iDbPage so + ** that it points at iFreePage. Also fix the pointer map entry for + ** iPtrPage. + */ + if( eType!=PTRMAP_ROOTPAGE ){ + rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = sqlite3PagerWrite(pPtrPage->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(pPtrPage); + return rc; + } + rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); + releasePage(pPtrPage); + if( rc==SQLITE_OK ){ + rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage); + } + } + return rc; +} + +/* Forward declaration required by incrVacuumStep(). */ +static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); + +/* +** Perform a single step of an incremental-vacuum. If successful, +** return SQLITE_OK. If there is no work to do (and therefore no +** point in calling this function again), return SQLITE_DONE. +** +** More specificly, this function attempts to re-organize the +** database so that the last page of the file currently in use +** is no longer in use. +** +** If the nFin parameter is non-zero, the implementation assumes +** that the caller will keep calling incrVacuumStep() until +** it returns SQLITE_DONE or an error, and that nFin is the +** number of pages the database file will contain after this +** process is complete. +*/ +static int incrVacuumStep(BtShared *pBt, Pgno nFin){ + Pgno iLastPg; /* Last page in the database */ + Pgno nFreeList; /* Number of pages still on the free-list */ + + assert( sqlite3_mutex_held(pBt->mutex) ); + iLastPg = pBt->nTrunc; + if( iLastPg==0 ){ + iLastPg = sqlite3PagerPagecount(pBt->pPager); + } + + if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ + int rc; + u8 eType; + Pgno iPtrPage; + + nFreeList = get4byte(&pBt->pPage1->aData[36]); + if( nFreeList==0 || nFin==iLastPg ){ + return SQLITE_DONE; + } + + rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); + if( rc!=SQLITE_OK ){ + return rc; + } + if( eType==PTRMAP_ROOTPAGE ){ + return SQLITE_CORRUPT_BKPT; + } + + if( eType==PTRMAP_FREEPAGE ){ + if( nFin==0 ){ + /* Remove the page from the files free-list. This is not required + ** if nFin is non-zero. In that case, the free-list will be + ** truncated to zero after this function returns, so it doesn't + ** matter if it still contains some garbage entries. + */ + Pgno iFreePg; + MemPage *pFreePg; + rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( iFreePg==iLastPg ); + releasePage(pFreePg); + } + } else { + Pgno iFreePg; /* Index of free page to move pLastPg to */ + MemPage *pLastPg; + + rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + + /* If nFin is zero, this loop runs exactly once and page pLastPg + ** is swapped with the first free page pulled off the free list. + ** + ** On the other hand, if nFin is greater than zero, then keep + ** looping until a free-page located within the first nFin pages + ** of the file is found. + */ + do { + MemPage *pFreePg; + rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0); + if( rc!=SQLITE_OK ){ + releasePage(pLastPg); + return rc; + } + releasePage(pFreePg); + }while( nFin!=0 && iFreePg>nFin ); + assert( iFreePg<iLastPg ); + + rc = sqlite3PagerWrite(pLastPg->pDbPage); + if( rc==SQLITE_OK ){ + rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg); + } + releasePage(pLastPg); + if( rc!=SQLITE_OK ){ + return rc; + } + } + } + + pBt->nTrunc = iLastPg - 1; + while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){ + pBt->nTrunc--; + } + return SQLITE_OK; +} + +/* +** A write-transaction must be opened before calling this function. +** It performs a single unit of work towards an incremental vacuum. +** +** If the incremental vacuum is finished after this function has run, +** SQLITE_DONE is returned. If it is not finished, but no error occured, +** SQLITE_OK is returned. Otherwise an SQLite error code. +*/ +SQLITE_PRIVATE int sqlite3BtreeIncrVacuum(Btree *p){ + int rc; + BtShared *pBt = p->pBt; + + sqlite3BtreeEnter(p); + pBt->db = p->db; + assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); + if( !pBt->autoVacuum ){ + rc = SQLITE_DONE; + }else{ + invalidateAllOverflowCache(pBt); + rc = incrVacuumStep(pBt, 0); + } + sqlite3BtreeLeave(p); + return rc; +} + +/* +** This routine is called prior to sqlite3PagerCommit when a transaction +** is commited for an auto-vacuum database. +** +** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages +** the database file should be truncated to during the commit process. +** i.e. the database has been reorganized so that only the first *pnTrunc +** pages are in use. +*/ +static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){ + int rc = SQLITE_OK; + Pager *pPager = pBt->pPager; +#ifndef NDEBUG + int nRef = sqlite3PagerRefcount(pPager); +#endif + + assert( sqlite3_mutex_held(pBt->mutex) ); + invalidateAllOverflowCache(pBt); + assert(pBt->autoVacuum); + if( !pBt->incrVacuum ){ + Pgno nFin = 0; + + if( pBt->nTrunc==0 ){ + Pgno nFree; + Pgno nPtrmap; + const int pgsz = pBt->pageSize; + Pgno nOrig = sqlite3PagerPagecount(pBt->pPager); + + if( PTRMAP_ISPAGE(pBt, nOrig) ){ + return SQLITE_CORRUPT_BKPT; + } + if( nOrig==PENDING_BYTE_PAGE(pBt) ){ + nOrig--; + } + nFree = get4byte(&pBt->pPage1->aData[36]); + nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5); + nFin = nOrig - nFree - nPtrmap; + if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){ + nFin--; + } + while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ + nFin--; + } + } + + while( rc==SQLITE_OK ){ + rc = incrVacuumStep(pBt, nFin); + } + if( rc==SQLITE_DONE ){ + assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc); + rc = SQLITE_OK; + if( pBt->nTrunc && nFin ){ + rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); + put4byte(&pBt->pPage1->aData[32], 0); + put4byte(&pBt->pPage1->aData[36], 0); + pBt->nTrunc = nFin; + } + } + if( rc!=SQLITE_OK ){ + sqlite3PagerRollback(pPager); + } + } + + if( rc==SQLITE_OK ){ + *pnTrunc = pBt->nTrunc; + pBt->nTrunc = 0; + } + assert( nRef==sqlite3PagerRefcount(pPager) ); + return rc; +} + +#endif + +/* +** This routine does the first phase of a two-phase commit. This routine +** causes a rollback journal to be created (if it does not already exist) +** and populated with enough information so that if a power loss occurs +** the database can be restored to its original state by playing back +** the journal. Then the contents of the journal are flushed out to +** the disk. After the journal is safely on oxide, the changes to the +** database are written into the database file and flushed to oxide. +** At the end of this call, the rollback journal still exists on the +** disk and we are still holding all locks, so the transaction has not +** committed. See sqlite3BtreeCommit() for the second phase of the +** commit process. +** +** This call is a no-op if no write-transaction is currently active on pBt. +** +** Otherwise, sync the database file for the btree pBt. zMaster points to +** the name of a master journal file that should be written into the +** individual journal file, or is NULL, indicating no master journal file +** (single database transaction). +** +** When this is called, the master journal should already have been +** created, populated with this journal pointer and synced to disk. +** +** Once this is routine has returned, the only thing required to commit +** the write-transaction for this database file is to delete the journal. +*/ +SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ + int rc = SQLITE_OK; + if( p->inTrans==TRANS_WRITE ){ + BtShared *pBt = p->pBt; + Pgno nTrunc = 0; + sqlite3BtreeEnter(p); + pBt->db = p->db; +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + rc = autoVacuumCommit(pBt, &nTrunc); + if( rc!=SQLITE_OK ){ + sqlite3BtreeLeave(p); + return rc; + } + } +#endif + rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc, 0); + sqlite3BtreeLeave(p); + } + return rc; +} + +/* +** Commit the transaction currently in progress. +** +** This routine implements the second phase of a 2-phase commit. The +** sqlite3BtreeSync() routine does the first phase and should be invoked +** prior to calling this routine. The sqlite3BtreeSync() routine did +** all the work of writing information out to disk and flushing the +** contents so that they are written onto the disk platter. All this +** routine has to do is delete or truncate the rollback journal +** (which causes the transaction to commit) and drop locks. +** +** This will release the write lock on the database file. If there +** are no active cursors, it also releases the read lock. +*/ +SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree *p){ + BtShared *pBt = p->pBt; + + sqlite3BtreeEnter(p); + pBt->db = p->db; + btreeIntegrity(p); + + /* If the handle has a write-transaction open, commit the shared-btrees + ** transaction and set the shared state to TRANS_READ. + */ + if( p->inTrans==TRANS_WRITE ){ + int rc; + assert( pBt->inTransaction==TRANS_WRITE ); + assert( pBt->nTransaction>0 ); + rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); + if( rc!=SQLITE_OK ){ + sqlite3BtreeLeave(p); + return rc; + } + pBt->inTransaction = TRANS_READ; + pBt->inStmt = 0; + } + unlockAllTables(p); + + /* If the handle has any kind of transaction open, decrement the transaction + ** count of the shared btree. If the transaction count reaches 0, set + ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below + ** will unlock the pager. + */ + if( p->inTrans!=TRANS_NONE ){ + pBt->nTransaction--; + if( 0==pBt->nTransaction ){ + pBt->inTransaction = TRANS_NONE; + } + } + + /* Set the handles current transaction state to TRANS_NONE and unlock + ** the pager if this call closed the only read or write transaction. + */ + p->inTrans = TRANS_NONE; + unlockBtreeIfUnused(pBt); + + btreeIntegrity(p); + sqlite3BtreeLeave(p); + return SQLITE_OK; +} + +/* +** Do both phases of a commit. +*/ +SQLITE_PRIVATE int sqlite3BtreeCommit(Btree *p){ + int rc; + sqlite3BtreeEnter(p); + rc = sqlite3BtreeCommitPhaseOne(p, 0); + if( rc==SQLITE_OK ){ + rc = sqlite3BtreeCommitPhaseTwo(p); + } + sqlite3BtreeLeave(p); + return rc; +} + +#ifndef NDEBUG +/* +** Return the number of write-cursors open on this handle. This is for use +** in assert() expressions, so it is only compiled if NDEBUG is not +** defined. +** +** For the purposes of this routine, a write-cursor is any cursor that +** is capable of writing to the databse. That means the cursor was +** originally opened for writing and the cursor has not be disabled +** by having its state changed to CURSOR_FAULT. +*/ +static int countWriteCursors(BtShared *pBt){ + BtCursor *pCur; + int r = 0; + for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ + if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; + } + return r; +} +#endif + +/* +** This routine sets the state to CURSOR_FAULT and the error +** code to errCode for every cursor on BtShared that pBtree +** references. +** +** Every cursor is tripped, including cursors that belong +** to other database connections that happen to be sharing +** the cache with pBtree. +** +** This routine gets called when a rollback occurs. +** All cursors using the same cache must be tripped +** to prevent them from trying to use the btree after +** the rollback. The rollback may have deleted tables +** or moved root pages, so it is not sufficient to +** save the state of the cursor. The cursor must be +** invalidated. +*/ +SQLITE_PRIVATE void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){ + BtCursor *p; + sqlite3BtreeEnter(pBtree); + for(p=pBtree->pBt->pCursor; p; p=p->pNext){ + clearCursorPosition(p); + p->eState = CURSOR_FAULT; + p->skip = errCode; + } + sqlite3BtreeLeave(pBtree); +} + +/* +** Rollback the transaction in progress. All cursors will be +** invalided by this operation. Any attempt to use a cursor +** that was open at the beginning of this operation will result +** in an error. +** +** This will release the write lock on the database file. If there +** are no active cursors, it also releases the read lock. +*/ +SQLITE_PRIVATE int sqlite3BtreeRollback(Btree *p){ + int rc; + BtShared *pBt = p->pBt; + MemPage *pPage1; + + sqlite3BtreeEnter(p); + pBt->db = p->db; + rc = saveAllCursors(pBt, 0, 0); +#ifndef SQLITE_OMIT_SHARED_CACHE + if( rc!=SQLITE_OK ){ + /* This is a horrible situation. An IO or malloc() error occured whilst + ** trying to save cursor positions. If this is an automatic rollback (as + ** the result of a constraint, malloc() failure or IO error) then + ** the cache may be internally inconsistent (not contain valid trees) so + ** we cannot simply return the error to the caller. Instead, abort + ** all queries that may be using any of the cursors that failed to save. + */ + sqlite3BtreeTripAllCursors(p, rc); + } +#endif + btreeIntegrity(p); + unlockAllTables(p); + + if( p->inTrans==TRANS_WRITE ){ + int rc2; + +#ifndef SQLITE_OMIT_AUTOVACUUM + pBt->nTrunc = 0; +#endif + + assert( TRANS_WRITE==pBt->inTransaction ); + rc2 = sqlite3PagerRollback(pBt->pPager); + if( rc2!=SQLITE_OK ){ + rc = rc2; + } + + /* The rollback may have destroyed the pPage1->aData value. So + ** call sqlite3BtreeGetPage() on page 1 again to make + ** sure pPage1->aData is set correctly. */ + if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ + releasePage(pPage1); + } + assert( countWriteCursors(pBt)==0 ); + pBt->inTransaction = TRANS_READ; + } + + if( p->inTrans!=TRANS_NONE ){ + assert( pBt->nTransaction>0 ); + pBt->nTransaction--; + if( 0==pBt->nTransaction ){ + pBt->inTransaction = TRANS_NONE; + } + } + + p->inTrans = TRANS_NONE; + pBt->inStmt = 0; + unlockBtreeIfUnused(pBt); + + btreeIntegrity(p); + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Start a statement subtransaction. The subtransaction can +** can be rolled back independently of the main transaction. +** You must start a transaction before starting a subtransaction. +** The subtransaction is ended automatically if the main transaction +** commits or rolls back. +** +** Only one subtransaction may be active at a time. It is an error to try +** to start a new subtransaction if another subtransaction is already active. +** +** Statement subtransactions are used around individual SQL statements +** that are contained within a BEGIN...COMMIT block. If a constraint +** error occurs within the statement, the effect of that one statement +** can be rolled back without having to rollback the entire transaction. +*/ +SQLITE_PRIVATE int sqlite3BtreeBeginStmt(Btree *p){ + int rc; + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + pBt->db = p->db; + if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){ + rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + }else{ + assert( pBt->inTransaction==TRANS_WRITE ); + rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager); + pBt->inStmt = 1; + } + sqlite3BtreeLeave(p); + return rc; +} + + +/* +** Commit the statment subtransaction currently in progress. If no +** subtransaction is active, this is a no-op. +*/ +SQLITE_PRIVATE int sqlite3BtreeCommitStmt(Btree *p){ + int rc; + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + pBt->db = p->db; + if( pBt->inStmt && !pBt->readOnly ){ + rc = sqlite3PagerStmtCommit(pBt->pPager); + }else{ + rc = SQLITE_OK; + } + pBt->inStmt = 0; + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Rollback the active statement subtransaction. If no subtransaction +** is active this routine is a no-op. +** +** All cursors will be invalidated by this operation. Any attempt +** to use a cursor that was open at the beginning of this operation +** will result in an error. +*/ +SQLITE_PRIVATE int sqlite3BtreeRollbackStmt(Btree *p){ + int rc = SQLITE_OK; + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + pBt->db = p->db; + if( pBt->inStmt && !pBt->readOnly ){ + rc = sqlite3PagerStmtRollback(pBt->pPager); + assert( countWriteCursors(pBt)==0 ); + pBt->inStmt = 0; + } + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Create a new cursor for the BTree whose root is on the page +** iTable. The act of acquiring a cursor gets a read lock on +** the database file. +** +** If wrFlag==0, then the cursor can only be used for reading. +** If wrFlag==1, then the cursor can be used for reading or for +** writing if other conditions for writing are also met. These +** are the conditions that must be met in order for writing to +** be allowed: +** +** 1: The cursor must have been opened with wrFlag==1 +** +** 2: Other database connections that share the same pager cache +** but which are not in the READ_UNCOMMITTED state may not have +** cursors open with wrFlag==0 on the same table. Otherwise +** the changes made by this write cursor would be visible to +** the read cursors in the other database connection. +** +** 3: The database must be writable (not on read-only media) +** +** 4: There must be an active transaction. +** +** No checking is done to make sure that page iTable really is the +** root page of a b-tree. If it is not, then the cursor acquired +** will not work correctly. +*/ +static int btreeCursor( + Btree *p, /* The btree */ + int iTable, /* Root page of table to open */ + int wrFlag, /* 1 to write. 0 read-only */ + struct KeyInfo *pKeyInfo, /* First arg to comparison function */ + BtCursor *pCur /* Space for new cursor */ +){ + int rc; + BtShared *pBt = p->pBt; + + assert( sqlite3BtreeHoldsMutex(p) ); + if( wrFlag ){ + if( pBt->readOnly ){ + return SQLITE_READONLY; + } + if( checkReadLocks(p, iTable, 0) ){ + return SQLITE_LOCKED; + } + } + + if( pBt->pPage1==0 ){ + rc = lockBtreeWithRetry(p); + if( rc!=SQLITE_OK ){ + return rc; + } + if( pBt->readOnly && wrFlag ){ + return SQLITE_READONLY; + } + } + pCur->pgnoRoot = (Pgno)iTable; + if( iTable==1 && sqlite3PagerPagecount(pBt->pPager)==0 ){ + rc = SQLITE_EMPTY; + goto create_cursor_exception; + } + rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0); + if( rc!=SQLITE_OK ){ + goto create_cursor_exception; + } + + /* Now that no other errors can occur, finish filling in the BtCursor + ** variables, link the cursor into the BtShared list and set *ppCur (the + ** output argument to this function). + */ + pCur->pKeyInfo = pKeyInfo; + pCur->pBtree = p; + pCur->pBt = pBt; + pCur->wrFlag = wrFlag; + pCur->pNext = pBt->pCursor; + if( pCur->pNext ){ + pCur->pNext->pPrev = pCur; + } + pBt->pCursor = pCur; + pCur->eState = CURSOR_INVALID; + + return SQLITE_OK; + +create_cursor_exception: + if( pCur ){ + releasePage(pCur->pPage); + } + unlockBtreeIfUnused(pBt); + return rc; +} +SQLITE_PRIVATE int sqlite3BtreeCursor( + Btree *p, /* The btree */ + int iTable, /* Root page of table to open */ + int wrFlag, /* 1 to write. 0 read-only */ + struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ + BtCursor *pCur /* Write new cursor here */ +){ + int rc; + sqlite3BtreeEnter(p); + p->pBt->db = p->db; + rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); + sqlite3BtreeLeave(p); + return rc; +} +SQLITE_PRIVATE int sqlite3BtreeCursorSize(){ + return sizeof(BtCursor); +} + + + +/* +** Close a cursor. The read lock on the database file is released +** when the last cursor is closed. +*/ +SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor *pCur){ + Btree *pBtree = pCur->pBtree; + if( pBtree ){ + BtShared *pBt = pCur->pBt; + sqlite3BtreeEnter(pBtree); + pBt->db = pBtree->db; + clearCursorPosition(pCur); + if( pCur->pPrev ){ + pCur->pPrev->pNext = pCur->pNext; + }else{ + pBt->pCursor = pCur->pNext; + } + if( pCur->pNext ){ + pCur->pNext->pPrev = pCur->pPrev; + } + releasePage(pCur->pPage); + unlockBtreeIfUnused(pBt); + invalidateOverflowCache(pCur); + /* sqlite3_free(pCur); */ + sqlite3BtreeLeave(pBtree); + } + return SQLITE_OK; +} + +/* +** Make a temporary cursor by filling in the fields of pTempCur. +** The temporary cursor is not on the cursor list for the Btree. +*/ +SQLITE_PRIVATE void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){ + assert( cursorHoldsMutex(pCur) ); + memcpy(pTempCur, pCur, sizeof(*pCur)); + pTempCur->pNext = 0; + pTempCur->pPrev = 0; + if( pTempCur->pPage ){ + sqlite3PagerRef(pTempCur->pPage->pDbPage); + } +} + +/* +** Delete a temporary cursor such as was made by the CreateTemporaryCursor() +** function above. +*/ +SQLITE_PRIVATE void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){ + assert( cursorHoldsMutex(pCur) ); + if( pCur->pPage ){ + sqlite3PagerUnref(pCur->pPage->pDbPage); + } +} + +/* +** Make sure the BtCursor* given in the argument has a valid +** BtCursor.info structure. If it is not already valid, call +** sqlite3BtreeParseCell() to fill it in. +** +** BtCursor.info is a cache of the information in the current cell. +** Using this cache reduces the number of calls to sqlite3BtreeParseCell(). +** +** 2007-06-25: There is a bug in some versions of MSVC that cause the +** compiler to crash when getCellInfo() is implemented as a macro. +** But there is a measureable speed advantage to using the macro on gcc +** (when less compiler optimizations like -Os or -O0 are used and the +** compiler is not doing agressive inlining.) So we use a real function +** for MSVC and a macro for everything else. Ticket #2457. +*/ +#ifndef NDEBUG + static void assertCellInfo(BtCursor *pCur){ + CellInfo info; + memset(&info, 0, sizeof(info)); + sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &info); + assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); + } +#else + #define assertCellInfo(x) +#endif +#ifdef _MSC_VER + /* Use a real function in MSVC to work around bugs in that compiler. */ + static void getCellInfo(BtCursor *pCur){ + if( pCur->info.nSize==0 ){ + sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); + pCur->validNKey = 1; + }else{ + assertCellInfo(pCur); + } + } +#else /* if not _MSC_VER */ + /* Use a macro in all other compilers so that the function is inlined */ +#define getCellInfo(pCur) \ + if( pCur->info.nSize==0 ){ \ + sqlite3BtreeParseCell(pCur->pPage, pCur->idx, &pCur->info); \ + pCur->validNKey = 1; \ + }else{ \ + assertCellInfo(pCur); \ + } +#endif /* _MSC_VER */ + +/* +** Set *pSize to the size of the buffer needed to hold the value of +** the key for the current entry. If the cursor is not pointing +** to a valid entry, *pSize is set to 0. +** +** For a table with the INTKEY flag set, this routine returns the key +** itself, not the number of bytes in the key. +*/ +SQLITE_PRIVATE int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ + int rc; + + assert( cursorHoldsMutex(pCur) ); + rc = restoreOrClearCursorPosition(pCur); + if( rc==SQLITE_OK ){ + assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); + if( pCur->eState==CURSOR_INVALID ){ + *pSize = 0; + }else{ + getCellInfo(pCur); + *pSize = pCur->info.nKey; + } + } + return rc; +} + +/* +** Set *pSize to the number of bytes of data in the entry the +** cursor currently points to. Always return SQLITE_OK. +** Failure is not possible. If the cursor is not currently +** pointing to an entry (which can happen, for example, if +** the database is empty) then *pSize is set to 0. +*/ +SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ + int rc; + + assert( cursorHoldsMutex(pCur) ); + rc = restoreOrClearCursorPosition(pCur); + if( rc==SQLITE_OK ){ + assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); + if( pCur->eState==CURSOR_INVALID ){ + /* Not pointing at a valid entry - set *pSize to 0. */ + *pSize = 0; + }else{ + getCellInfo(pCur); + *pSize = pCur->info.nData; + } + } + return rc; +} + +/* +** Given the page number of an overflow page in the database (parameter +** ovfl), this function finds the page number of the next page in the +** linked list of overflow pages. If possible, it uses the auto-vacuum +** pointer-map data instead of reading the content of page ovfl to do so. +** +** If an error occurs an SQLite error code is returned. Otherwise: +** +** Unless pPgnoNext is NULL, the page number of the next overflow +** page in the linked list is written to *pPgnoNext. If page ovfl +** is the last page in its linked list, *pPgnoNext is set to zero. +** +** If ppPage is not NULL, *ppPage is set to the MemPage* handle +** for page ovfl. The underlying pager page may have been requested +** with the noContent flag set, so the page data accessable via +** this handle may not be trusted. +*/ +static int getOverflowPage( + BtShared *pBt, + Pgno ovfl, /* Overflow page */ + MemPage **ppPage, /* OUT: MemPage handle */ + Pgno *pPgnoNext /* OUT: Next overflow page number */ +){ + Pgno next = 0; + int rc; + + assert( sqlite3_mutex_held(pBt->mutex) ); + /* One of these must not be NULL. Otherwise, why call this function? */ + assert(ppPage || pPgnoNext); + + /* If pPgnoNext is NULL, then this function is being called to obtain + ** a MemPage* reference only. No page-data is required in this case. + */ + if( !pPgnoNext ){ + return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1); + } + +#ifndef SQLITE_OMIT_AUTOVACUUM + /* Try to find the next page in the overflow list using the + ** autovacuum pointer-map pages. Guess that the next page in + ** the overflow list is page number (ovfl+1). If that guess turns + ** out to be wrong, fall back to loading the data of page + ** number ovfl to determine the next page number. + */ + if( pBt->autoVacuum ){ + Pgno pgno; + Pgno iGuess = ovfl+1; + u8 eType; + + while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ + iGuess++; + } + + if( iGuess<=sqlite3PagerPagecount(pBt->pPager) ){ + rc = ptrmapGet(pBt, iGuess, &eType, &pgno); + if( rc!=SQLITE_OK ){ + return rc; + } + if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ + next = iGuess; + } + } + } +#endif + + if( next==0 || ppPage ){ + MemPage *pPage = 0; + + rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0); + assert(rc==SQLITE_OK || pPage==0); + if( next==0 && rc==SQLITE_OK ){ + next = get4byte(pPage->aData); + } + + if( ppPage ){ + *ppPage = pPage; + }else{ + releasePage(pPage); + } + } + *pPgnoNext = next; + + return rc; +} + +/* +** Copy data from a buffer to a page, or from a page to a buffer. +** +** pPayload is a pointer to data stored on database page pDbPage. +** If argument eOp is false, then nByte bytes of data are copied +** from pPayload to the buffer pointed at by pBuf. If eOp is true, +** then sqlite3PagerWrite() is called on pDbPage and nByte bytes +** of data are copied from the buffer pBuf to pPayload. +** +** SQLITE_OK is returned on success, otherwise an error code. +*/ +static int copyPayload( + void *pPayload, /* Pointer to page data */ + void *pBuf, /* Pointer to buffer */ + int nByte, /* Number of bytes to copy */ + int eOp, /* 0 -> copy from page, 1 -> copy to page */ + DbPage *pDbPage /* Page containing pPayload */ +){ + if( eOp ){ + /* Copy data from buffer to page (a write operation) */ + int rc = sqlite3PagerWrite(pDbPage); + if( rc!=SQLITE_OK ){ + return rc; + } + memcpy(pPayload, pBuf, nByte); + }else{ + /* Copy data from page to buffer (a read operation) */ + memcpy(pBuf, pPayload, nByte); + } + return SQLITE_OK; +} + +/* +** This function is used to read or overwrite payload information +** for the entry that the pCur cursor is pointing to. If the eOp +** parameter is 0, this is a read operation (data copied into +** buffer pBuf). If it is non-zero, a write (data copied from +** buffer pBuf). +** +** A total of "amt" bytes are read or written beginning at "offset". +** Data is read to or from the buffer pBuf. +** +** This routine does not make a distinction between key and data. +** It just reads or writes bytes from the payload area. Data might +** appear on the main page or be scattered out on multiple overflow +** pages. +** +** If the BtCursor.isIncrblobHandle flag is set, and the current +** cursor entry uses one or more overflow pages, this function +** allocates space for and lazily popluates the overflow page-list +** cache array (BtCursor.aOverflow). Subsequent calls use this +** cache to make seeking to the supplied offset more efficient. +** +** Once an overflow page-list cache has been allocated, it may be +** invalidated if some other cursor writes to the same table, or if +** the cursor is moved to a different row. Additionally, in auto-vacuum +** mode, the following events may invalidate an overflow page-list cache. +** +** * An incremental vacuum, +** * A commit in auto_vacuum="full" mode, +** * Creating a table (may require moving an overflow page). +*/ +static int accessPayload( + BtCursor *pCur, /* Cursor pointing to entry to read from */ + int offset, /* Begin reading this far into payload */ + int amt, /* Read this many bytes */ + unsigned char *pBuf, /* Write the bytes into this buffer */ + int skipKey, /* offset begins at data if this is true */ + int eOp /* zero to read. non-zero to write. */ +){ + unsigned char *aPayload; + int rc = SQLITE_OK; + u32 nKey; + int iIdx = 0; + MemPage *pPage = pCur->pPage; /* Btree page of current cursor entry */ + BtShared *pBt; /* Btree this cursor belongs to */ + + assert( pPage ); + assert( pCur->eState==CURSOR_VALID ); + assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); + assert( offset>=0 ); + assert( cursorHoldsMutex(pCur) ); + + getCellInfo(pCur); + aPayload = pCur->info.pCell + pCur->info.nHeader; + nKey = (pPage->intKey ? 0 : pCur->info.nKey); + + if( skipKey ){ + offset += nKey; + } + if( offset+amt > nKey+pCur->info.nData ){ + /* Trying to read or write past the end of the data is an error */ + return SQLITE_ERROR; + } + + /* Check if data must be read/written to/from the btree page itself. */ + if( offset<pCur->info.nLocal ){ + int a = amt; + if( a+offset>pCur->info.nLocal ){ + a = pCur->info.nLocal - offset; + } + rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); + offset = 0; + pBuf += a; + amt -= a; + }else{ + offset -= pCur->info.nLocal; + } + + pBt = pCur->pBt; + if( rc==SQLITE_OK && amt>0 ){ + const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ + Pgno nextPage; + + nextPage = get4byte(&aPayload[pCur->info.nLocal]); + +#ifndef SQLITE_OMIT_INCRBLOB + /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[] + ** has not been allocated, allocate it now. The array is sized at + ** one entry for each overflow page in the overflow chain. The + ** page number of the first overflow page is stored in aOverflow[0], + ** etc. A value of 0 in the aOverflow[] array means "not yet known" + ** (the cache is lazily populated). + */ + if( pCur->isIncrblobHandle && !pCur->aOverflow ){ + int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; + pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl); + if( nOvfl && !pCur->aOverflow ){ + rc = SQLITE_NOMEM; + } + } + + /* If the overflow page-list cache has been allocated and the + ** entry for the first required overflow page is valid, skip + ** directly to it. + */ + if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){ + iIdx = (offset/ovflSize); + nextPage = pCur->aOverflow[iIdx]; + offset = (offset%ovflSize); + } +#endif + + for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ + +#ifndef SQLITE_OMIT_INCRBLOB + /* If required, populate the overflow page-list cache. */ + if( pCur->aOverflow ){ + assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); + pCur->aOverflow[iIdx] = nextPage; + } +#endif + + if( offset>=ovflSize ){ + /* The only reason to read this page is to obtain the page + ** number for the next page in the overflow chain. The page + ** data is not required. So first try to lookup the overflow + ** page-list cache, if any, then fall back to the getOverflowPage() + ** function. + */ +#ifndef SQLITE_OMIT_INCRBLOB + if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){ + nextPage = pCur->aOverflow[iIdx+1]; + } else +#endif + rc = getOverflowPage(pBt, nextPage, 0, &nextPage); + offset -= ovflSize; + }else{ + /* Need to read this page properly. It contains some of the + ** range of data that is being read (eOp==0) or written (eOp!=0). + */ + DbPage *pDbPage; + int a = amt; + rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage); + if( rc==SQLITE_OK ){ + aPayload = sqlite3PagerGetData(pDbPage); + nextPage = get4byte(aPayload); + if( a + offset > ovflSize ){ + a = ovflSize - offset; + } + rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); + sqlite3PagerUnref(pDbPage); + offset = 0; + amt -= a; + pBuf += a; + } + } + } + } + + if( rc==SQLITE_OK && amt>0 ){ + return SQLITE_CORRUPT_BKPT; + } + return rc; +} + +/* +** Read part of the key associated with cursor pCur. Exactly +** "amt" bytes will be transfered into pBuf[]. The transfer +** begins at "offset". +** +** Return SQLITE_OK on success or an error code if anything goes +** wrong. An error is returned if "offset+amt" is larger than +** the available payload. +*/ +SQLITE_PRIVATE int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ + int rc; + + assert( cursorHoldsMutex(pCur) ); + rc = restoreOrClearCursorPosition(pCur); + if( rc==SQLITE_OK ){ + assert( pCur->eState==CURSOR_VALID ); + assert( pCur->pPage!=0 ); + if( pCur->pPage->intKey ){ + return SQLITE_CORRUPT_BKPT; + } + assert( pCur->pPage->intKey==0 ); + assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); + rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0); + } + return rc; +} + +/* +** Read part of the data associated with cursor pCur. Exactly +** "amt" bytes will be transfered into pBuf[]. The transfer +** begins at "offset". +** +** Return SQLITE_OK on success or an error code if anything goes +** wrong. An error is returned if "offset+amt" is larger than +** the available payload. +*/ +SQLITE_PRIVATE int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ + int rc; + + assert( cursorHoldsMutex(pCur) ); + rc = restoreOrClearCursorPosition(pCur); + if( rc==SQLITE_OK ){ + assert( pCur->eState==CURSOR_VALID ); + assert( pCur->pPage!=0 ); + assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); + rc = accessPayload(pCur, offset, amt, pBuf, 1, 0); + } + return rc; +} + +/* +** Return a pointer to payload information from the entry that the +** pCur cursor is pointing to. The pointer is to the beginning of +** the key if skipKey==0 and it points to the beginning of data if +** skipKey==1. The number of bytes of available key/data is written +** into *pAmt. If *pAmt==0, then the value returned will not be +** a valid pointer. +** +** This routine is an optimization. It is common for the entire key +** and data to fit on the local page and for there to be no overflow +** pages. When that is so, this routine can be used to access the +** key and data without making a copy. If the key and/or data spills +** onto overflow pages, then accessPayload() must be used to reassembly +** the key/data and copy it into a preallocated buffer. +** +** The pointer returned by this routine looks directly into the cached +** page of the database. The data might change or move the next time +** any btree routine is called. +*/ +static const unsigned char *fetchPayload( + BtCursor *pCur, /* Cursor pointing to entry to read from */ + int *pAmt, /* Write the number of available bytes here */ + int skipKey /* read beginning at data if this is true */ +){ + unsigned char *aPayload; + MemPage *pPage; + u32 nKey; + int nLocal; + + assert( pCur!=0 && pCur->pPage!=0 ); + assert( pCur->eState==CURSOR_VALID ); + assert( cursorHoldsMutex(pCur) ); + pPage = pCur->pPage; + assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); + getCellInfo(pCur); + aPayload = pCur->info.pCell; + aPayload += pCur->info.nHeader; + if( pPage->intKey ){ + nKey = 0; + }else{ + nKey = pCur->info.nKey; + } + if( skipKey ){ + aPayload += nKey; + nLocal = pCur->info.nLocal - nKey; + }else{ + nLocal = pCur->info.nLocal; + if( nLocal>nKey ){ + nLocal = nKey; + } + } + *pAmt = nLocal; + return aPayload; +} + + +/* +** For the entry that cursor pCur is point to, return as +** many bytes of the key or data as are available on the local +** b-tree page. Write the number of available bytes into *pAmt. +** +** The pointer returned is ephemeral. The key/data may move +** or be destroyed on the next call to any Btree routine, +** including calls from other threads against the same cache. +** Hence, a mutex on the BtShared should be held prior to calling +** this routine. +** +** These routines is used to get quick access to key and data +** in the common case where no overflow pages are used. +*/ +SQLITE_PRIVATE const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ + assert( cursorHoldsMutex(pCur) ); + if( pCur->eState==CURSOR_VALID ){ + return (const void*)fetchPayload(pCur, pAmt, 0); + } + return 0; +} +SQLITE_PRIVATE const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ + assert( cursorHoldsMutex(pCur) ); + if( pCur->eState==CURSOR_VALID ){ + return (const void*)fetchPayload(pCur, pAmt, 1); + } + return 0; +} + + +/* +** Move the cursor down to a new child page. The newPgno argument is the +** page number of the child page to move to. +*/ +static int moveToChild(BtCursor *pCur, u32 newPgno){ + int rc; + MemPage *pNewPage; + MemPage *pOldPage; + BtShared *pBt = pCur->pBt; + + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage); + if( rc ) return rc; + pNewPage->idxParent = pCur->idx; + pOldPage = pCur->pPage; + pOldPage->idxShift = 0; + releasePage(pOldPage); + pCur->pPage = pNewPage; + pCur->idx = 0; + pCur->info.nSize = 0; + pCur->validNKey = 0; + if( pNewPage->nCell<1 ){ + return SQLITE_CORRUPT_BKPT; + } + return SQLITE_OK; +} + +/* +** Return true if the page is the virtual root of its table. +** +** The virtual root page is the root page for most tables. But +** for the table rooted on page 1, sometime the real root page +** is empty except for the right-pointer. In such cases the +** virtual root page is the page that the right-pointer of page +** 1 is pointing to. +*/ +SQLITE_PRIVATE int sqlite3BtreeIsRootPage(MemPage *pPage){ + MemPage *pParent; + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + pParent = pPage->pParent; + if( pParent==0 ) return 1; + if( pParent->pgno>1 ) return 0; + if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1; + return 0; +} + +/* +** Move the cursor up to the parent page. +** +** pCur->idx is set to the cell index that contains the pointer +** to the page we are coming from. If we are coming from the +** right-most child page then pCur->idx is set to one more than +** the largest cell index. +*/ +SQLITE_PRIVATE void sqlite3BtreeMoveToParent(BtCursor *pCur){ + MemPage *pParent; + MemPage *pPage; + int idxParent; + + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + pPage = pCur->pPage; + assert( pPage!=0 ); + assert( !sqlite3BtreeIsRootPage(pPage) ); + pParent = pPage->pParent; + assert( pParent!=0 ); + idxParent = pPage->idxParent; + sqlite3PagerRef(pParent->pDbPage); + releasePage(pPage); + pCur->pPage = pParent; + pCur->info.nSize = 0; + pCur->validNKey = 0; + assert( pParent->idxShift==0 ); + pCur->idx = idxParent; +} + +/* +** Move the cursor to the root page +*/ +static int moveToRoot(BtCursor *pCur){ + MemPage *pRoot; + int rc = SQLITE_OK; + Btree *p = pCur->pBtree; + BtShared *pBt = p->pBt; + + assert( cursorHoldsMutex(pCur) ); + assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); + assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); + assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); + if( pCur->eState>=CURSOR_REQUIRESEEK ){ + if( pCur->eState==CURSOR_FAULT ){ + return pCur->skip; + } + clearCursorPosition(pCur); + } + pRoot = pCur->pPage; + if( pRoot && pRoot->pgno==pCur->pgnoRoot ){ + assert( pRoot->isInit ); + }else{ + if( + SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0)) + ){ + pCur->eState = CURSOR_INVALID; + return rc; + } + releasePage(pCur->pPage); + pCur->pPage = pRoot; + } + pCur->idx = 0; + pCur->info.nSize = 0; + pCur->atLast = 0; + pCur->validNKey = 0; + if( pRoot->nCell==0 && !pRoot->leaf ){ + Pgno subpage; + assert( pRoot->pgno==1 ); + subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); + assert( subpage>0 ); + pCur->eState = CURSOR_VALID; + rc = moveToChild(pCur, subpage); + } + pCur->eState = ((pCur->pPage->nCell>0)?CURSOR_VALID:CURSOR_INVALID); + return rc; +} + +/* +** Move the cursor down to the left-most leaf entry beneath the +** entry to which it is currently pointing. +** +** The left-most leaf is the one with the smallest key - the first +** in ascending order. +*/ +static int moveToLeftmost(BtCursor *pCur){ + Pgno pgno; + int rc = SQLITE_OK; + MemPage *pPage; + + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ + assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); + pgno = get4byte(findCell(pPage, pCur->idx)); + rc = moveToChild(pCur, pgno); + } + return rc; +} + +/* +** Move the cursor down to the right-most leaf entry beneath the +** page to which it is currently pointing. Notice the difference +** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() +** finds the left-most entry beneath the *entry* whereas moveToRightmost() +** finds the right-most entry beneath the *page*. +** +** The right-most entry is the one with the largest key - the last +** key in ascending order. +*/ +static int moveToRightmost(BtCursor *pCur){ + Pgno pgno; + int rc = SQLITE_OK; + MemPage *pPage; + + assert( cursorHoldsMutex(pCur) ); + assert( pCur->eState==CURSOR_VALID ); + while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){ + pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); + pCur->idx = pPage->nCell; + rc = moveToChild(pCur, pgno); + } + if( rc==SQLITE_OK ){ + pCur->idx = pPage->nCell - 1; + pCur->info.nSize = 0; + pCur->validNKey = 0; + } + return SQLITE_OK; +} + +/* Move the cursor to the first entry in the table. Return SQLITE_OK +** on success. Set *pRes to 0 if the cursor actually points to something +** or set *pRes to 1 if the table is empty. +*/ +SQLITE_PRIVATE int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ + int rc; + + assert( cursorHoldsMutex(pCur) ); + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + rc = moveToRoot(pCur); + if( rc==SQLITE_OK ){ + if( pCur->eState==CURSOR_INVALID ){ + assert( pCur->pPage->nCell==0 ); + *pRes = 1; + rc = SQLITE_OK; + }else{ + assert( pCur->pPage->nCell>0 ); + *pRes = 0; + rc = moveToLeftmost(pCur); + } + } + return rc; +} + +/* Move the cursor to the last entry in the table. Return SQLITE_OK +** on success. Set *pRes to 0 if the cursor actually points to something +** or set *pRes to 1 if the table is empty. +*/ +SQLITE_PRIVATE int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ + int rc; + + assert( cursorHoldsMutex(pCur) ); + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + rc = moveToRoot(pCur); + if( rc==SQLITE_OK ){ + if( CURSOR_INVALID==pCur->eState ){ + assert( pCur->pPage->nCell==0 ); + *pRes = 1; + }else{ + assert( pCur->eState==CURSOR_VALID ); + *pRes = 0; + rc = moveToRightmost(pCur); + getCellInfo(pCur); + pCur->atLast = rc==SQLITE_OK; + } + } + return rc; +} + +/* Move the cursor so that it points to an entry near the key +** specified by pKey/nKey/pUnKey. Return a success code. +** +** For INTKEY tables, only the nKey parameter is used. pKey +** and pUnKey must be NULL. For index tables, either pUnKey +** must point to a key that has already been unpacked, or else +** pKey/nKey describes a blob containing the key. +** +** If an exact match is not found, then the cursor is always +** left pointing at a leaf page which would hold the entry if it +** were present. The cursor might point to an entry that comes +** before or after the key. +** +** The result of comparing the key with the entry to which the +** cursor is written to *pRes if pRes!=NULL. The meaning of +** this value is as follows: +** +** *pRes<0 The cursor is left pointing at an entry that +** is smaller than pKey or if the table is empty +** and the cursor is therefore left point to nothing. +** +** *pRes==0 The cursor is left pointing at an entry that +** exactly matches pKey. +** +** *pRes>0 The cursor is left pointing at an entry that +** is larger than pKey. +** +*/ +SQLITE_PRIVATE int sqlite3BtreeMoveto( + BtCursor *pCur, /* The cursor to be moved */ + const void *pKey, /* The key content for indices. Not used by tables */ + UnpackedRecord *pUnKey,/* Unpacked version of pKey */ + i64 nKey, /* Size of pKey. Or the key for tables */ + int biasRight, /* If true, bias the search to the high end */ + int *pRes /* Search result flag */ +){ + int rc; + char aSpace[200]; + + assert( cursorHoldsMutex(pCur) ); + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + + /* If the cursor is already positioned at the point we are trying + ** to move to, then just return without doing any work */ + if( pCur->eState==CURSOR_VALID && pCur->validNKey && pCur->pPage->intKey ){ + if( pCur->info.nKey==nKey ){ + *pRes = 0; + return SQLITE_OK; + } + if( pCur->atLast && pCur->info.nKey<nKey ){ + *pRes = -1; + return SQLITE_OK; + } + } + + + rc = moveToRoot(pCur); + if( rc ){ + return rc; + } + assert( pCur->pPage ); + assert( pCur->pPage->isInit ); + if( pCur->eState==CURSOR_INVALID ){ + *pRes = -1; + assert( pCur->pPage->nCell==0 ); + return SQLITE_OK; + } + if( pCur->pPage->intKey ){ + /* We are given an SQL table to search. The key is the integer + ** rowid contained in nKey. pKey and pUnKey should both be NULL */ + assert( pUnKey==0 ); + assert( pKey==0 ); + }else if( pUnKey==0 ){ + /* We are to search an SQL index using a key encoded as a blob. + ** The blob is found at pKey and is nKey bytes in length. Unpack + ** this key so that we can use it. */ + assert( pKey!=0 ); + pUnKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey, + aSpace, sizeof(aSpace)); + if( pUnKey==0 ) return SQLITE_NOMEM; + }else{ + /* We are to search an SQL index using a key that is already unpacked + ** and handed to us in pUnKey. */ + assert( pKey==0 ); + } + for(;;){ + int lwr, upr; + Pgno chldPg; + MemPage *pPage = pCur->pPage; + int c = -1; /* pRes return if table is empty must be -1 */ + lwr = 0; + upr = pPage->nCell-1; + if( !pPage->intKey && pUnKey==0 ){ + rc = SQLITE_CORRUPT_BKPT; + goto moveto_finish; + } + if( biasRight ){ + pCur->idx = upr; + }else{ + pCur->idx = (upr+lwr)/2; + } + if( lwr<=upr ) for(;;){ + void *pCellKey; + i64 nCellKey; + pCur->info.nSize = 0; + pCur->validNKey = 1; + if( pPage->intKey ){ + u8 *pCell; + pCell = findCell(pPage, pCur->idx) + pPage->childPtrSize; + if( pPage->hasData ){ + u32 dummy; + pCell += getVarint32(pCell, dummy); + } + getVarint(pCell, (u64*)&nCellKey); + if( nCellKey==nKey ){ + c = 0; + }else if( nCellKey<nKey ){ + c = -1; + }else{ + assert( nCellKey>nKey ); + c = +1; + } + }else{ + int available; + pCellKey = (void *)fetchPayload(pCur, &available, 0); + nCellKey = pCur->info.nKey; + if( available>=nCellKey ){ + c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey); + }else{ + pCellKey = sqlite3_malloc( nCellKey ); + if( pCellKey==0 ){ + rc = SQLITE_NOMEM; + goto moveto_finish; + } + rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey); + c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pUnKey); + sqlite3_free(pCellKey); + if( rc ) goto moveto_finish; + } + } + if( c==0 ){ + pCur->info.nKey = nCellKey; + if( pPage->leafData && !pPage->leaf ){ + lwr = pCur->idx; + upr = lwr - 1; + break; + }else{ + if( pRes ) *pRes = 0; + rc = SQLITE_OK; + goto moveto_finish; + } + } + if( c<0 ){ + lwr = pCur->idx+1; + }else{ + upr = pCur->idx-1; + } + if( lwr>upr ){ + pCur->info.nKey = nCellKey; + break; + } + pCur->idx = (lwr+upr)/2; + } + assert( lwr==upr+1 ); + assert( pPage->isInit ); + if( pPage->leaf ){ + chldPg = 0; + }else if( lwr>=pPage->nCell ){ + chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); + }else{ + chldPg = get4byte(findCell(pPage, lwr)); + } + if( chldPg==0 ){ + assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); + if( pRes ) *pRes = c; + rc = SQLITE_OK; + goto moveto_finish; + } + pCur->idx = lwr; + pCur->info.nSize = 0; + pCur->validNKey = 0; + rc = moveToChild(pCur, chldPg); + if( rc ) goto moveto_finish; + } +moveto_finish: + if( pKey ){ + /* If we created our own unpacked key at the top of this + ** procedure, then destroy that key before returning. */ + sqlite3VdbeDeleteUnpackedRecord(pUnKey); + } + return rc; +} + + +/* +** Return TRUE if the cursor is not pointing at an entry of the table. +** +** TRUE will be returned after a call to sqlite3BtreeNext() moves +** past the last entry in the table or sqlite3BtreePrev() moves past +** the first entry. TRUE is also returned if the table is empty. +*/ +SQLITE_PRIVATE int sqlite3BtreeEof(BtCursor *pCur){ + /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries + ** have been deleted? This API will need to change to return an error code + ** as well as the boolean result value. + */ + return (CURSOR_VALID!=pCur->eState); +} + +/* +** Return the database connection handle for a cursor. +*/ +SQLITE_PRIVATE sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){ + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + return pCur->pBtree->db; +} + +/* +** Advance the cursor to the next entry in the database. If +** successful then set *pRes=0. If the cursor +** was already pointing to the last entry in the database before +** this routine was called, then set *pRes=1. +*/ +SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ + int rc; + MemPage *pPage; + + assert( cursorHoldsMutex(pCur) ); + rc = restoreOrClearCursorPosition(pCur); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( pRes!=0 ); + pPage = pCur->pPage; + if( CURSOR_INVALID==pCur->eState ){ + *pRes = 1; + return SQLITE_OK; + } + if( pCur->skip>0 ){ + pCur->skip = 0; + *pRes = 0; + return SQLITE_OK; + } + pCur->skip = 0; + + assert( pPage->isInit ); + assert( pCur->idx<pPage->nCell ); + + pCur->idx++; + pCur->info.nSize = 0; + pCur->validNKey = 0; + if( pCur->idx>=pPage->nCell ){ + if( !pPage->leaf ){ + rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); + if( rc ) return rc; + rc = moveToLeftmost(pCur); + *pRes = 0; + return rc; + } + do{ + if( sqlite3BtreeIsRootPage(pPage) ){ + *pRes = 1; + pCur->eState = CURSOR_INVALID; + return SQLITE_OK; + } + sqlite3BtreeMoveToParent(pCur); + pPage = pCur->pPage; + }while( pCur->idx>=pPage->nCell ); + *pRes = 0; + if( pPage->leafData ){ + rc = sqlite3BtreeNext(pCur, pRes); + }else{ + rc = SQLITE_OK; + } + return rc; + } + *pRes = 0; + if( pPage->leaf ){ + return SQLITE_OK; + } + rc = moveToLeftmost(pCur); + return rc; +} + + +/* +** Step the cursor to the back to the previous entry in the database. If +** successful then set *pRes=0. If the cursor +** was already pointing to the first entry in the database before +** this routine was called, then set *pRes=1. +*/ +SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ + int rc; + Pgno pgno; + MemPage *pPage; + + assert( cursorHoldsMutex(pCur) ); + rc = restoreOrClearCursorPosition(pCur); + if( rc!=SQLITE_OK ){ + return rc; + } + pCur->atLast = 0; + if( CURSOR_INVALID==pCur->eState ){ + *pRes = 1; + return SQLITE_OK; + } + if( pCur->skip<0 ){ + pCur->skip = 0; + *pRes = 0; + return SQLITE_OK; + } + pCur->skip = 0; + + pPage = pCur->pPage; + assert( pPage->isInit ); + assert( pCur->idx>=0 ); + if( !pPage->leaf ){ + pgno = get4byte( findCell(pPage, pCur->idx) ); + rc = moveToChild(pCur, pgno); + if( rc ){ + return rc; + } + rc = moveToRightmost(pCur); + }else{ + while( pCur->idx==0 ){ + if( sqlite3BtreeIsRootPage(pPage) ){ + pCur->eState = CURSOR_INVALID; + *pRes = 1; + return SQLITE_OK; + } + sqlite3BtreeMoveToParent(pCur); + pPage = pCur->pPage; + } + pCur->idx--; + pCur->info.nSize = 0; + pCur->validNKey = 0; + if( pPage->leafData && !pPage->leaf ){ + rc = sqlite3BtreePrevious(pCur, pRes); + }else{ + rc = SQLITE_OK; + } + } + *pRes = 0; + return rc; +} + +/* +** Allocate a new page from the database file. +** +** The new page is marked as dirty. (In other words, sqlite3PagerWrite() +** has already been called on the new page.) The new page has also +** been referenced and the calling routine is responsible for calling +** sqlite3PagerUnref() on the new page when it is done. +** +** SQLITE_OK is returned on success. Any other return value indicates +** an error. *ppPage and *pPgno are undefined in the event of an error. +** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned. +** +** If the "nearby" parameter is not 0, then a (feeble) effort is made to +** locate a page close to the page number "nearby". This can be used in an +** attempt to keep related pages close to each other in the database file, +** which in turn can make database access faster. +** +** If the "exact" parameter is not 0, and the page-number nearby exists +** anywhere on the free-list, then it is guarenteed to be returned. This +** is only used by auto-vacuum databases when allocating a new table. +*/ +static int allocateBtreePage( + BtShared *pBt, + MemPage **ppPage, + Pgno *pPgno, + Pgno nearby, + u8 exact +){ + MemPage *pPage1; + int rc; + int n; /* Number of pages on the freelist */ + int k; /* Number of leaves on the trunk of the freelist */ + MemPage *pTrunk = 0; + MemPage *pPrevTrunk = 0; + + assert( sqlite3_mutex_held(pBt->mutex) ); + pPage1 = pBt->pPage1; + n = get4byte(&pPage1->aData[36]); + if( n>0 ){ + /* There are pages on the freelist. Reuse one of those pages. */ + Pgno iTrunk; + u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ + + /* If the 'exact' parameter was true and a query of the pointer-map + ** shows that the page 'nearby' is somewhere on the free-list, then + ** the entire-list will be searched for that page. + */ +#ifndef SQLITE_OMIT_AUTOVACUUM + if( exact && nearby<=sqlite3PagerPagecount(pBt->pPager) ){ + u8 eType; + assert( nearby>0 ); + assert( pBt->autoVacuum ); + rc = ptrmapGet(pBt, nearby, &eType, 0); + if( rc ) return rc; + if( eType==PTRMAP_FREEPAGE ){ + searchList = 1; + } + *pPgno = nearby; + } +#endif + + /* Decrement the free-list count by 1. Set iTrunk to the index of the + ** first free-list trunk page. iPrevTrunk is initially 1. + */ + rc = sqlite3PagerWrite(pPage1->pDbPage); + if( rc ) return rc; + put4byte(&pPage1->aData[36], n-1); + + /* The code within this loop is run only once if the 'searchList' variable + ** is not true. Otherwise, it runs once for each trunk-page on the + ** free-list until the page 'nearby' is located. + */ + do { + pPrevTrunk = pTrunk; + if( pPrevTrunk ){ + iTrunk = get4byte(&pPrevTrunk->aData[0]); + }else{ + iTrunk = get4byte(&pPage1->aData[32]); + } + rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0); + if( rc ){ + pTrunk = 0; + goto end_allocate_page; + } + + k = get4byte(&pTrunk->aData[4]); + if( k==0 && !searchList ){ + /* The trunk has no leaves and the list is not being searched. + ** So extract the trunk page itself and use it as the newly + ** allocated page */ + assert( pPrevTrunk==0 ); + rc = sqlite3PagerWrite(pTrunk->pDbPage); + if( rc ){ + goto end_allocate_page; + } + *pPgno = iTrunk; + memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); + *ppPage = pTrunk; + pTrunk = 0; + TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); + }else if( k>pBt->usableSize/4 - 8 ){ + /* Value of k is out of range. Database corruption */ + rc = SQLITE_CORRUPT_BKPT; + goto end_allocate_page; +#ifndef SQLITE_OMIT_AUTOVACUUM + }else if( searchList && nearby==iTrunk ){ + /* The list is being searched and this trunk page is the page + ** to allocate, regardless of whether it has leaves. + */ + assert( *pPgno==iTrunk ); + *ppPage = pTrunk; + searchList = 0; + rc = sqlite3PagerWrite(pTrunk->pDbPage); + if( rc ){ + goto end_allocate_page; + } + if( k==0 ){ + if( !pPrevTrunk ){ + memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); + }else{ + memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); + } + }else{ + /* The trunk page is required by the caller but it contains + ** pointers to free-list leaves. The first leaf becomes a trunk + ** page in this case. + */ + MemPage *pNewTrunk; + Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); + rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0); + if( rc!=SQLITE_OK ){ + goto end_allocate_page; + } + rc = sqlite3PagerWrite(pNewTrunk->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(pNewTrunk); + goto end_allocate_page; + } + memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); + put4byte(&pNewTrunk->aData[4], k-1); + memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); + releasePage(pNewTrunk); + if( !pPrevTrunk ){ + put4byte(&pPage1->aData[32], iNewTrunk); + }else{ + rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); + if( rc ){ + goto end_allocate_page; + } + put4byte(&pPrevTrunk->aData[0], iNewTrunk); + } + } + pTrunk = 0; + TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); +#endif + }else{ + /* Extract a leaf from the trunk */ + int closest; + Pgno iPage; + unsigned char *aData = pTrunk->aData; + rc = sqlite3PagerWrite(pTrunk->pDbPage); + if( rc ){ + goto end_allocate_page; + } + if( nearby>0 ){ + int i, dist; + closest = 0; + dist = get4byte(&aData[8]) - nearby; + if( dist<0 ) dist = -dist; + for(i=1; i<k; i++){ + int d2 = get4byte(&aData[8+i*4]) - nearby; + if( d2<0 ) d2 = -d2; + if( d2<dist ){ + closest = i; + dist = d2; + } + } + }else{ + closest = 0; + } + + iPage = get4byte(&aData[8+closest*4]); + if( !searchList || iPage==nearby ){ + *pPgno = iPage; + if( *pPgno>sqlite3PagerPagecount(pBt->pPager) ){ + /* Free page off the end of the file */ + rc = SQLITE_CORRUPT_BKPT; + goto end_allocate_page; + } + TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" + ": %d more free pages\n", + *pPgno, closest+1, k, pTrunk->pgno, n-1)); + if( closest<k-1 ){ + memcpy(&aData[8+closest*4], &aData[4+k*4], 4); + } + put4byte(&aData[4], k-1); + rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1); + if( rc==SQLITE_OK ){ + sqlite3PagerDontRollback((*ppPage)->pDbPage); + rc = sqlite3PagerWrite((*ppPage)->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(*ppPage); + } + } + searchList = 0; + } + } + releasePage(pPrevTrunk); + pPrevTrunk = 0; + }while( searchList ); + }else{ + /* There are no pages on the freelist, so create a new page at the + ** end of the file */ + *pPgno = sqlite3PagerPagecount(pBt->pPager) + 1; + +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->nTrunc ){ + /* An incr-vacuum has already run within this transaction. So the + ** page to allocate is not from the physical end of the file, but + ** at pBt->nTrunc. + */ + *pPgno = pBt->nTrunc+1; + if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ + (*pPgno)++; + } + } + if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){ + /* If *pPgno refers to a pointer-map page, allocate two new pages + ** at the end of the file instead of one. The first allocated page + ** becomes a new pointer-map page, the second is used by the caller. + */ + TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno)); + assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); + (*pPgno)++; + if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; } + } + if( pBt->nTrunc ){ + pBt->nTrunc = *pPgno; + } +#endif + + assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); + rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0); + if( rc ) return rc; + rc = sqlite3PagerWrite((*ppPage)->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(*ppPage); + } + TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); + } + + assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); + +end_allocate_page: + releasePage(pTrunk); + releasePage(pPrevTrunk); + return rc; +} + +/* +** Add a page of the database file to the freelist. +** +** sqlite3PagerUnref() is NOT called for pPage. +*/ +static int freePage(MemPage *pPage){ + BtShared *pBt = pPage->pBt; + MemPage *pPage1 = pBt->pPage1; + int rc, n, k; + + /* Prepare the page for freeing */ + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + assert( pPage->pgno>1 ); + pPage->isInit = 0; + releasePage(pPage->pParent); + pPage->pParent = 0; + + /* Increment the free page count on pPage1 */ + rc = sqlite3PagerWrite(pPage1->pDbPage); + if( rc ) return rc; + n = get4byte(&pPage1->aData[36]); + put4byte(&pPage1->aData[36], n+1); + +#ifdef SQLITE_SECURE_DELETE + /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then + ** always fully overwrite deleted information with zeros. + */ + rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc ) return rc; + memset(pPage->aData, 0, pPage->pBt->pageSize); +#endif + +#ifndef SQLITE_OMIT_AUTOVACUUM + /* If the database supports auto-vacuum, write an entry in the pointer-map + ** to indicate that the page is free. + */ + if( pBt->autoVacuum ){ + rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0); + if( rc ) return rc; + } +#endif + + if( n==0 ){ + /* This is the first free page */ + rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc ) return rc; + memset(pPage->aData, 0, 8); + put4byte(&pPage1->aData[32], pPage->pgno); + TRACE(("FREE-PAGE: %d first\n", pPage->pgno)); + }else{ + /* Other free pages already exist. Retrive the first trunk page + ** of the freelist and find out how many leaves it has. */ + MemPage *pTrunk; + rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0); + if( rc ) return rc; + k = get4byte(&pTrunk->aData[4]); + if( k>=pBt->usableSize/4 - 8 ){ + /* The trunk is full. Turn the page being freed into a new + ** trunk page with no leaves. */ + rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc==SQLITE_OK ){ + put4byte(pPage->aData, pTrunk->pgno); + put4byte(&pPage->aData[4], 0); + put4byte(&pPage1->aData[32], pPage->pgno); + TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", + pPage->pgno, pTrunk->pgno)); + } + }else if( k<0 ){ + rc = SQLITE_CORRUPT; + }else{ + /* Add the newly freed page as a leaf on the current trunk */ + rc = sqlite3PagerWrite(pTrunk->pDbPage); + if( rc==SQLITE_OK ){ + put4byte(&pTrunk->aData[4], k+1); + put4byte(&pTrunk->aData[8+k*4], pPage->pgno); +#ifndef SQLITE_SECURE_DELETE + sqlite3PagerDontWrite(pPage->pDbPage); +#endif + } + TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); + } + releasePage(pTrunk); + } + return rc; +} + +/* +** Free any overflow pages associated with the given Cell. +*/ +static int clearCell(MemPage *pPage, unsigned char *pCell){ + BtShared *pBt = pPage->pBt; + CellInfo info; + Pgno ovflPgno; + int rc; + int nOvfl; + int ovflPageSize; + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + sqlite3BtreeParseCellPtr(pPage, pCell, &info); + if( info.iOverflow==0 ){ + return SQLITE_OK; /* No overflow pages. Return without doing anything */ + } + ovflPgno = get4byte(&pCell[info.iOverflow]); + ovflPageSize = pBt->usableSize - 4; + nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; + assert( ovflPgno==0 || nOvfl>0 ); + while( nOvfl-- ){ + MemPage *pOvfl; + if( ovflPgno==0 || ovflPgno>sqlite3PagerPagecount(pBt->pPager) ){ + return SQLITE_CORRUPT_BKPT; + } + + rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno); + if( rc ) return rc; + rc = freePage(pOvfl); + sqlite3PagerUnref(pOvfl->pDbPage); + if( rc ) return rc; + } + return SQLITE_OK; +} + +/* +** Create the byte sequence used to represent a cell on page pPage +** and write that byte sequence into pCell[]. Overflow pages are +** allocated and filled in as necessary. The calling procedure +** is responsible for making sure sufficient space has been allocated +** for pCell[]. +** +** Note that pCell does not necessary need to point to the pPage->aData +** area. pCell might point to some temporary storage. The cell will +** be constructed in this temporary area then copied into pPage->aData +** later. +*/ +static int fillInCell( + MemPage *pPage, /* The page that contains the cell */ + unsigned char *pCell, /* Complete text of the cell */ + const void *pKey, i64 nKey, /* The key */ + const void *pData,int nData, /* The data */ + int nZero, /* Extra zero bytes to append to pData */ + int *pnSize /* Write cell size here */ +){ + int nPayload; + const u8 *pSrc; + int nSrc, n, rc; + int spaceLeft; + MemPage *pOvfl = 0; + MemPage *pToRelease = 0; + unsigned char *pPrior; + unsigned char *pPayload; + BtShared *pBt = pPage->pBt; + Pgno pgnoOvfl = 0; + int nHeader; + CellInfo info; + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + + /* Fill in the header. */ + nHeader = 0; + if( !pPage->leaf ){ + nHeader += 4; + } + if( pPage->hasData ){ + nHeader += putVarint(&pCell[nHeader], nData+nZero); + }else{ + nData = nZero = 0; + } + nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); + sqlite3BtreeParseCellPtr(pPage, pCell, &info); + assert( info.nHeader==nHeader ); + assert( info.nKey==nKey ); + assert( info.nData==nData+nZero ); + + /* Fill in the payload */ + nPayload = nData + nZero; + if( pPage->intKey ){ + pSrc = pData; + nSrc = nData; + nData = 0; + }else{ + nPayload += nKey; + pSrc = pKey; + nSrc = nKey; + } + *pnSize = info.nSize; + spaceLeft = info.nLocal; + pPayload = &pCell[nHeader]; + pPrior = &pCell[info.iOverflow]; + + while( nPayload>0 ){ + if( spaceLeft==0 ){ + int isExact = 0; +#ifndef SQLITE_OMIT_AUTOVACUUM + Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ + if( pBt->autoVacuum ){ + do{ + pgnoOvfl++; + } while( + PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) + ); + if( pgnoOvfl>1 ){ + /* isExact = 1; */ + } + } +#endif + rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact); +#ifndef SQLITE_OMIT_AUTOVACUUM + /* If the database supports auto-vacuum, and the second or subsequent + ** overflow page is being allocated, add an entry to the pointer-map + ** for that page now. + ** + ** If this is the first overflow page, then write a partial entry + ** to the pointer-map. If we write nothing to this pointer-map slot, + ** then the optimistic overflow chain processing in clearCell() + ** may misinterpret the uninitialised values and delete the + ** wrong pages from the database. + */ + if( pBt->autoVacuum && rc==SQLITE_OK ){ + u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); + rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap); + if( rc ){ + releasePage(pOvfl); + } + } +#endif + if( rc ){ + releasePage(pToRelease); + return rc; + } + put4byte(pPrior, pgnoOvfl); + releasePage(pToRelease); + pToRelease = pOvfl; + pPrior = pOvfl->aData; + put4byte(pPrior, 0); + pPayload = &pOvfl->aData[4]; + spaceLeft = pBt->usableSize - 4; + } + n = nPayload; + if( n>spaceLeft ) n = spaceLeft; + if( nSrc>0 ){ + if( n>nSrc ) n = nSrc; + assert( pSrc ); + memcpy(pPayload, pSrc, n); + }else{ + memset(pPayload, 0, n); + } + nPayload -= n; + pPayload += n; + pSrc += n; + nSrc -= n; + spaceLeft -= n; + if( nSrc==0 ){ + nSrc = nData; + pSrc = pData; + } + } + releasePage(pToRelease); + return SQLITE_OK; +} + +/* +** Change the MemPage.pParent pointer on the page whose number is +** given in the second argument so that MemPage.pParent holds the +** pointer in the third argument. +*/ +static int reparentPage(BtShared *pBt, Pgno pgno, MemPage *pNewParent, int idx){ + MemPage *pThis; + DbPage *pDbPage; + + assert( sqlite3_mutex_held(pBt->mutex) ); + assert( pNewParent!=0 ); + if( pgno==0 ) return SQLITE_OK; + assert( pBt->pPager!=0 ); + pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); + if( pDbPage ){ + pThis = (MemPage *)sqlite3PagerGetExtra(pDbPage); + if( pThis->isInit ){ + assert( pThis->aData==sqlite3PagerGetData(pDbPage) ); + if( pThis->pParent!=pNewParent ){ + if( pThis->pParent ) sqlite3PagerUnref(pThis->pParent->pDbPage); + pThis->pParent = pNewParent; + sqlite3PagerRef(pNewParent->pDbPage); + } + pThis->idxParent = idx; + } + sqlite3PagerUnref(pDbPage); + } + +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + return ptrmapPut(pBt, pgno, PTRMAP_BTREE, pNewParent->pgno); + } +#endif + return SQLITE_OK; +} + + + +/* +** Change the pParent pointer of all children of pPage to point back +** to pPage. +** +** In other words, for every child of pPage, invoke reparentPage() +** to make sure that each child knows that pPage is its parent. +** +** This routine gets called after you memcpy() one page into +** another. +*/ +static int reparentChildPages(MemPage *pPage){ + int i; + BtShared *pBt = pPage->pBt; + int rc = SQLITE_OK; + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + if( pPage->leaf ) return SQLITE_OK; + + for(i=0; i<pPage->nCell; i++){ + u8 *pCell = findCell(pPage, i); + rc = reparentPage(pBt, get4byte(pCell), pPage, i); + if( rc!=SQLITE_OK ) return rc; + } + rc = reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), + pPage, i); + pPage->idxShift = 0; + return rc; +} + +/* +** Remove the i-th cell from pPage. This routine effects pPage only. +** The cell content is not freed or deallocated. It is assumed that +** the cell content has been copied someplace else. This routine just +** removes the reference to the cell from pPage. +** +** "sz" must be the number of bytes in the cell. +*/ +static void dropCell(MemPage *pPage, int idx, int sz){ + int i; /* Loop counter */ + int pc; /* Offset to cell content of cell being deleted */ + u8 *data; /* pPage->aData */ + u8 *ptr; /* Used to move bytes around within data[] */ + + assert( idx>=0 && idx<pPage->nCell ); + assert( sz==cellSize(pPage, idx) ); + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + data = pPage->aData; + ptr = &data[pPage->cellOffset + 2*idx]; + pc = get2byte(ptr); + assert( pc>10 && pc+sz<=pPage->pBt->usableSize ); + freeSpace(pPage, pc, sz); + for(i=idx+1; i<pPage->nCell; i++, ptr+=2){ + ptr[0] = ptr[2]; + ptr[1] = ptr[3]; + } + pPage->nCell--; + put2byte(&data[pPage->hdrOffset+3], pPage->nCell); + pPage->nFree += 2; + pPage->idxShift = 1; +} + +/* +** Insert a new cell on pPage at cell index "i". pCell points to the +** content of the cell. +** +** If the cell content will fit on the page, then put it there. If it +** will not fit, then make a copy of the cell content into pTemp if +** pTemp is not null. Regardless of pTemp, allocate a new entry +** in pPage->aOvfl[] and make it point to the cell content (either +** in pTemp or the original pCell) and also record its index. +** Allocating a new entry in pPage->aCell[] implies that +** pPage->nOverflow is incremented. +** +** If nSkip is non-zero, then do not copy the first nSkip bytes of the +** cell. The caller will overwrite them after this function returns. If +** nSkip is non-zero, then pCell may not point to an invalid memory location +** (but pCell+nSkip is always valid). +*/ +static int insertCell( + MemPage *pPage, /* Page into which we are copying */ + int i, /* New cell becomes the i-th cell of the page */ + u8 *pCell, /* Content of the new cell */ + int sz, /* Bytes of content in pCell */ + u8 *pTemp, /* Temp storage space for pCell, if needed */ + u8 nSkip /* Do not write the first nSkip bytes of the cell */ +){ + int idx; /* Where to write new cell content in data[] */ + int j; /* Loop counter */ + int top; /* First byte of content for any cell in data[] */ + int end; /* First byte past the last cell pointer in data[] */ + int ins; /* Index in data[] where new cell pointer is inserted */ + int hdr; /* Offset into data[] of the page header */ + int cellOffset; /* Address of first cell pointer in data[] */ + u8 *data; /* The content of the whole page */ + u8 *ptr; /* Used for moving information around in data[] */ + + assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); + assert( sz==cellSizePtr(pPage, pCell) ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + if( pPage->nOverflow || sz+2>pPage->nFree ){ + if( pTemp ){ + memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip); + pCell = pTemp; + } + j = pPage->nOverflow++; + assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) ); + pPage->aOvfl[j].pCell = pCell; + pPage->aOvfl[j].idx = i; + pPage->nFree = 0; + }else{ + int rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( sqlite3PagerIswriteable(pPage->pDbPage) ); + data = pPage->aData; + hdr = pPage->hdrOffset; + top = get2byte(&data[hdr+5]); + cellOffset = pPage->cellOffset; + end = cellOffset + 2*pPage->nCell + 2; + ins = cellOffset + 2*i; + if( end > top - sz ){ + rc = defragmentPage(pPage); + if( rc!=SQLITE_OK ) return rc; + top = get2byte(&data[hdr+5]); + assert( end + sz <= top ); + } + idx = allocateSpace(pPage, sz); + assert( idx>0 ); + assert( end <= get2byte(&data[hdr+5]) ); + pPage->nCell++; + pPage->nFree -= 2; + memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); + for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){ + ptr[0] = ptr[-2]; + ptr[1] = ptr[-1]; + } + put2byte(&data[ins], idx); + put2byte(&data[hdr+3], pPage->nCell); + pPage->idxShift = 1; +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pPage->pBt->autoVacuum ){ + /* The cell may contain a pointer to an overflow page. If so, write + ** the entry for the overflow page into the pointer map. + */ + CellInfo info; + sqlite3BtreeParseCellPtr(pPage, pCell, &info); + assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload ); + if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ + Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); + rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno); + if( rc!=SQLITE_OK ) return rc; + } + } +#endif + } + + return SQLITE_OK; +} + +/* +** Add a list of cells to a page. The page should be initially empty. +** The cells are guaranteed to fit on the page. +*/ +static void assemblePage( + MemPage *pPage, /* The page to be assemblied */ + int nCell, /* The number of cells to add to this page */ + u8 **apCell, /* Pointers to cell bodies */ + u16 *aSize /* Sizes of the cells */ +){ + int i; /* Loop counter */ + int totalSize; /* Total size of all cells */ + int hdr; /* Index of page header */ + int cellptr; /* Address of next cell pointer */ + int cellbody; /* Address of next cell body */ + u8 *data; /* Data for the page */ + + assert( pPage->nOverflow==0 ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + totalSize = 0; + for(i=0; i<nCell; i++){ + totalSize += aSize[i]; + } + assert( totalSize+2*nCell<=pPage->nFree ); + assert( pPage->nCell==0 ); + cellptr = pPage->cellOffset; + data = pPage->aData; + hdr = pPage->hdrOffset; + put2byte(&data[hdr+3], nCell); + if( nCell ){ + cellbody = allocateSpace(pPage, totalSize); + assert( cellbody>0 ); + assert( pPage->nFree >= 2*nCell ); + pPage->nFree -= 2*nCell; + for(i=0; i<nCell; i++){ + put2byte(&data[cellptr], cellbody); + memcpy(&data[cellbody], apCell[i], aSize[i]); + cellptr += 2; + cellbody += aSize[i]; + } + assert( cellbody==pPage->pBt->usableSize ); + } + pPage->nCell = nCell; +} + +/* +** The following parameters determine how many adjacent pages get involved +** in a balancing operation. NN is the number of neighbors on either side +** of the page that participate in the balancing operation. NB is the +** total number of pages that participate, including the target page and +** NN neighbors on either side. +** +** The minimum value of NN is 1 (of course). Increasing NN above 1 +** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance +** in exchange for a larger degradation in INSERT and UPDATE performance. +** The value of NN appears to give the best results overall. +*/ +#define NN 1 /* Number of neighbors on either side of pPage */ +#define NB (NN*2+1) /* Total pages involved in the balance */ + +/* Forward reference */ +static int balance(MemPage*, int); + +#ifndef SQLITE_OMIT_QUICKBALANCE +/* +** This version of balance() handles the common special case where +** a new entry is being inserted on the extreme right-end of the +** tree, in other words, when the new entry will become the largest +** entry in the tree. +** +** Instead of trying balance the 3 right-most leaf pages, just add +** a new page to the right-hand side and put the one new entry in +** that page. This leaves the right side of the tree somewhat +** unbalanced. But odds are that we will be inserting new entries +** at the end soon afterwards so the nearly empty page will quickly +** fill up. On average. +** +** pPage is the leaf page which is the right-most page in the tree. +** pParent is its parent. pPage must have a single overflow entry +** which is also the right-most entry on the page. +*/ +static int balance_quick(MemPage *pPage, MemPage *pParent){ + int rc; + MemPage *pNew; + Pgno pgnoNew; + u8 *pCell; + u16 szCell; + CellInfo info; + BtShared *pBt = pPage->pBt; + int parentIdx = pParent->nCell; /* pParent new divider cell index */ + int parentSize; /* Size of new divider cell */ + u8 parentCell[64]; /* Space for the new divider cell */ + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + + /* Allocate a new page. Insert the overflow cell from pPage + ** into it. Then remove the overflow cell from pPage. + */ + rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + pCell = pPage->aOvfl[0].pCell; + szCell = cellSizePtr(pPage, pCell); + zeroPage(pNew, pPage->aData[0]); + assemblePage(pNew, 1, &pCell, &szCell); + pPage->nOverflow = 0; + + /* Set the parent of the newly allocated page to pParent. */ + pNew->pParent = pParent; + sqlite3PagerRef(pParent->pDbPage); + + /* pPage is currently the right-child of pParent. Change this + ** so that the right-child is the new page allocated above and + ** pPage is the next-to-right child. + */ + assert( pPage->nCell>0 ); + pCell = findCell(pPage, pPage->nCell-1); + sqlite3BtreeParseCellPtr(pPage, pCell, &info); + rc = fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize); + if( rc!=SQLITE_OK ){ + return rc; + } + assert( parentSize<64 ); + rc = insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4); + if( rc!=SQLITE_OK ){ + return rc; + } + put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno); + put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); + +#ifndef SQLITE_OMIT_AUTOVACUUM + /* If this is an auto-vacuum database, update the pointer map + ** with entries for the new page, and any pointer from the + ** cell on the page to an overflow page. + */ + if( pBt->autoVacuum ){ + rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno); + if( rc==SQLITE_OK ){ + rc = ptrmapPutOvfl(pNew, 0); + } + if( rc!=SQLITE_OK ){ + releasePage(pNew); + return rc; + } + } +#endif + + /* Release the reference to the new page and balance the parent page, + ** in case the divider cell inserted caused it to become overfull. + */ + releasePage(pNew); + return balance(pParent, 0); +} +#endif /* SQLITE_OMIT_QUICKBALANCE */ + +/* +** This routine redistributes Cells on pPage and up to NN*2 siblings +** of pPage so that all pages have about the same amount of free space. +** Usually NN siblings on either side of pPage is used in the balancing, +** though more siblings might come from one side if pPage is the first +** or last child of its parent. If pPage has fewer than 2*NN siblings +** (something which can only happen if pPage is the root page or a +** child of root) then all available siblings participate in the balancing. +** +** The number of siblings of pPage might be increased or decreased by one or +** two in an effort to keep pages nearly full but not over full. The root page +** is special and is allowed to be nearly empty. If pPage is +** the root page, then the depth of the tree might be increased +** or decreased by one, as necessary, to keep the root page from being +** overfull or completely empty. +** +** Note that when this routine is called, some of the Cells on pPage +** might not actually be stored in pPage->aData[]. This can happen +** if the page is overfull. Part of the job of this routine is to +** make sure all Cells for pPage once again fit in pPage->aData[]. +** +** In the course of balancing the siblings of pPage, the parent of pPage +** might become overfull or underfull. If that happens, then this routine +** is called recursively on the parent. +** +** If this routine fails for any reason, it might leave the database +** in a corrupted state. So if this routine fails, the database should +** be rolled back. +*/ +static int balance_nonroot(MemPage *pPage){ + MemPage *pParent; /* The parent of pPage */ + BtShared *pBt; /* The whole database */ + int nCell = 0; /* Number of cells in apCell[] */ + int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ + int nOld; /* Number of pages in apOld[] */ + int nNew; /* Number of pages in apNew[] */ + int nDiv; /* Number of cells in apDiv[] */ + int i, j, k; /* Loop counters */ + int idx; /* Index of pPage in pParent->aCell[] */ + int nxDiv; /* Next divider slot in pParent->aCell[] */ + int rc; /* The return code */ + int leafCorrection; /* 4 if pPage is a leaf. 0 if not */ + int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ + int usableSpace; /* Bytes in pPage beyond the header */ + int pageFlags; /* Value of pPage->aData[0] */ + int subtotal; /* Subtotal of bytes in cells on one page */ + int iSpace = 0; /* First unused byte of aSpace[] */ + MemPage *apOld[NB]; /* pPage and up to two siblings */ + Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ + MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ + MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ + Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */ + u8 *apDiv[NB]; /* Divider cells in pParent */ + int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ + int szNew[NB+2]; /* Combined size of cells place on i-th page */ + u8 **apCell = 0; /* All cells begin balanced */ + u16 *szCell; /* Local size of all cells in apCell[] */ + u8 *aCopy[NB]; /* Space for holding data of apCopy[] */ + u8 *aSpace; /* Space to hold copies of dividers cells */ +#ifndef SQLITE_OMIT_AUTOVACUUM + u8 *aFrom = 0; +#endif + + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + + /* + ** Find the parent page. + */ + assert( pPage->isInit ); + assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 ); + pBt = pPage->pBt; + pParent = pPage->pParent; + assert( pParent ); + if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){ + return rc; + } + TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); + +#ifndef SQLITE_OMIT_QUICKBALANCE + /* + ** A special case: If a new entry has just been inserted into a + ** table (that is, a btree with integer keys and all data at the leaves) + ** and the new entry is the right-most entry in the tree (it has the + ** largest key) then use the special balance_quick() routine for + ** balancing. balance_quick() is much faster and results in a tighter + ** packing of data in the common case. + */ + if( pPage->leaf && + pPage->intKey && + pPage->leafData && + pPage->nOverflow==1 && + pPage->aOvfl[0].idx==pPage->nCell && + pPage->pParent->pgno!=1 && + get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno + ){ + /* + ** TODO: Check the siblings to the left of pPage. It may be that + ** they are not full and no new page is required. + */ + return balance_quick(pPage, pParent); + } +#endif + + if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){ + return rc; + } + + /* + ** Find the cell in the parent page whose left child points back + ** to pPage. The "idx" variable is the index of that cell. If pPage + ** is the rightmost child of pParent then set idx to pParent->nCell + */ + if( pParent->idxShift ){ + Pgno pgno; + pgno = pPage->pgno; + assert( pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); + for(idx=0; idx<pParent->nCell; idx++){ + if( get4byte(findCell(pParent, idx))==pgno ){ + break; + } + } + assert( idx<pParent->nCell + || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno ); + }else{ + idx = pPage->idxParent; + } + + /* + ** Initialize variables so that it will be safe to jump + ** directly to balance_cleanup at any moment. + */ + nOld = nNew = 0; + sqlite3PagerRef(pParent->pDbPage); + + /* + ** Find sibling pages to pPage and the cells in pParent that divide + ** the siblings. An attempt is made to find NN siblings on either + ** side of pPage. More siblings are taken from one side, however, if + ** pPage there are fewer than NN siblings on the other side. If pParent + ** has NB or fewer children then all children of pParent are taken. + */ + nxDiv = idx - NN; + if( nxDiv + NB > pParent->nCell ){ + nxDiv = pParent->nCell - NB + 1; + } + if( nxDiv<0 ){ + nxDiv = 0; + } + nDiv = 0; + for(i=0, k=nxDiv; i<NB; i++, k++){ + if( k<pParent->nCell ){ + apDiv[i] = findCell(pParent, k); + nDiv++; + assert( !pParent->leaf ); + pgnoOld[i] = get4byte(apDiv[i]); + }else if( k==pParent->nCell ){ + pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]); + }else{ + break; + } + rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent); + if( rc ) goto balance_cleanup; + apOld[i]->idxParent = k; + apCopy[i] = 0; + assert( i==nOld ); + nOld++; + nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; + } + + /* Make nMaxCells a multiple of 4 in order to preserve 8-byte + ** alignment */ + nMaxCells = (nMaxCells + 3)&~3; + + /* + ** Allocate space for memory structures + */ + apCell = sqlite3_malloc( + nMaxCells*sizeof(u8*) /* apCell */ + + nMaxCells*sizeof(u16) /* szCell */ + + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */ + + pBt->pageSize*5 /* aSpace */ + + (ISAUTOVACUUM ? nMaxCells : 0) /* aFrom */ + ); + if( apCell==0 ){ + rc = SQLITE_NOMEM; + goto balance_cleanup; + } + szCell = (u16*)&apCell[nMaxCells]; + aCopy[0] = (u8*)&szCell[nMaxCells]; + assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ + for(i=1; i<NB; i++){ + aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))]; + assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ + } + aSpace = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))]; + assert( ((aSpace - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + aFrom = &aSpace[5*pBt->pageSize]; + } +#endif + + /* + ** Make copies of the content of pPage and its siblings into aOld[]. + ** The rest of this function will use data from the copies rather + ** that the original pages since the original pages will be in the + ** process of being overwritten. + */ + for(i=0; i<nOld; i++){ + MemPage *p = apCopy[i] = (MemPage*)aCopy[i]; + memcpy(p, apOld[i], sizeof(MemPage)); + p->aData = (void*)&p[1]; + memcpy(p->aData, apOld[i]->aData, pBt->pageSize); + } + + /* + ** Load pointers to all cells on sibling pages and the divider cells + ** into the local apCell[] array. Make copies of the divider cells + ** into space obtained form aSpace[] and remove the the divider Cells + ** from pParent. + ** + ** If the siblings are on leaf pages, then the child pointers of the + ** divider cells are stripped from the cells before they are copied + ** into aSpace[]. In this way, all cells in apCell[] are without + ** child pointers. If siblings are not leaves, then all cell in + ** apCell[] include child pointers. Either way, all cells in apCell[] + ** are alike. + ** + ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. + ** leafData: 1 if pPage holds key+data and pParent holds only keys. + */ + nCell = 0; + leafCorrection = pPage->leaf*4; + leafData = pPage->leafData && pPage->leaf; + for(i=0; i<nOld; i++){ + MemPage *pOld = apCopy[i]; + int limit = pOld->nCell+pOld->nOverflow; + for(j=0; j<limit; j++){ + assert( nCell<nMaxCells ); + apCell[nCell] = findOverflowCell(pOld, j); + szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + int a; + aFrom[nCell] = i; + for(a=0; a<pOld->nOverflow; a++){ + if( pOld->aOvfl[a].pCell==apCell[nCell] ){ + aFrom[nCell] = 0xFF; + break; + } + } + } +#endif + nCell++; + } + if( i<nOld-1 ){ + u16 sz = cellSizePtr(pParent, apDiv[i]); + if( leafData ){ + /* With the LEAFDATA flag, pParent cells hold only INTKEYs that + ** are duplicates of keys on the child pages. We need to remove + ** the divider cells from pParent, but the dividers cells are not + ** added to apCell[] because they are duplicates of child cells. + */ + dropCell(pParent, nxDiv, sz); + }else{ + u8 *pTemp; + assert( nCell<nMaxCells ); + szCell[nCell] = sz; + pTemp = &aSpace[iSpace]; + iSpace += sz; + assert( iSpace<=pBt->pageSize*5 ); + memcpy(pTemp, apDiv[i], sz); + apCell[nCell] = pTemp+leafCorrection; +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + aFrom[nCell] = 0xFF; + } +#endif + dropCell(pParent, nxDiv, sz); + szCell[nCell] -= leafCorrection; + assert( get4byte(pTemp)==pgnoOld[i] ); + if( !pOld->leaf ){ + assert( leafCorrection==0 ); + /* The right pointer of the child page pOld becomes the left + ** pointer of the divider cell */ + memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4); + }else{ + assert( leafCorrection==4 ); + if( szCell[nCell]<4 ){ + /* Do not allow any cells smaller than 4 bytes. */ + szCell[nCell] = 4; + } + } + nCell++; + } + } + } + + /* + ** Figure out the number of pages needed to hold all nCell cells. + ** Store this number in "k". Also compute szNew[] which is the total + ** size of all cells on the i-th page and cntNew[] which is the index + ** in apCell[] of the cell that divides page i from page i+1. + ** cntNew[k] should equal nCell. + ** + ** Values computed by this block: + ** + ** k: The total number of sibling pages + ** szNew[i]: Spaced used on the i-th sibling page. + ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to + ** the right of the i-th sibling page. + ** usableSpace: Number of bytes of space available on each sibling. + ** + */ + usableSpace = pBt->usableSize - 12 + leafCorrection; + for(subtotal=k=i=0; i<nCell; i++){ + assert( i<nMaxCells ); + subtotal += szCell[i] + 2; + if( subtotal > usableSpace ){ + szNew[k] = subtotal - szCell[i]; + cntNew[k] = i; + if( leafData ){ i--; } + subtotal = 0; + k++; + } + } + szNew[k] = subtotal; + cntNew[k] = nCell; + k++; + + /* + ** The packing computed by the previous block is biased toward the siblings + ** on the left side. The left siblings are always nearly full, while the + ** right-most sibling might be nearly empty. This block of code attempts + ** to adjust the packing of siblings to get a better balance. + ** + ** This adjustment is more than an optimization. The packing above might + ** be so out of balance as to be illegal. For example, the right-most + ** sibling might be completely empty. This adjustment is not optional. + */ + for(i=k-1; i>0; i--){ + int szRight = szNew[i]; /* Size of sibling on the right */ + int szLeft = szNew[i-1]; /* Size of sibling on the left */ + int r; /* Index of right-most cell in left sibling */ + int d; /* Index of first cell to the left of right sibling */ + + r = cntNew[i-1] - 1; + d = r + 1 - leafData; + assert( d<nMaxCells ); + assert( r<nMaxCells ); + while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){ + szRight += szCell[d] + 2; + szLeft -= szCell[r] + 2; + cntNew[i-1]--; + r = cntNew[i-1] - 1; + d = r + 1 - leafData; + } + szNew[i] = szRight; + szNew[i-1] = szLeft; + } + + /* Either we found one or more cells (cntnew[0])>0) or we are the + ** a virtual root page. A virtual root page is when the real root + ** page is page 1 and we are the only child of that page. + */ + assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); + + /* + ** Allocate k new pages. Reuse old pages where possible. + */ + assert( pPage->pgno>1 ); + pageFlags = pPage->aData[0]; + for(i=0; i<k; i++){ + MemPage *pNew; + if( i<nOld ){ + pNew = apNew[i] = apOld[i]; + pgnoNew[i] = pgnoOld[i]; + apOld[i] = 0; + rc = sqlite3PagerWrite(pNew->pDbPage); + nNew++; + if( rc ) goto balance_cleanup; + }else{ + assert( i>0 ); + rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0); + if( rc ) goto balance_cleanup; + apNew[i] = pNew; + nNew++; + } + zeroPage(pNew, pageFlags); + } + + /* Free any old pages that were not reused as new pages. + */ + while( i<nOld ){ + rc = freePage(apOld[i]); + if( rc ) goto balance_cleanup; + releasePage(apOld[i]); + apOld[i] = 0; + i++; + } + + /* + ** Put the new pages in accending order. This helps to + ** keep entries in the disk file in order so that a scan + ** of the table is a linear scan through the file. That + ** in turn helps the operating system to deliver pages + ** from the disk more rapidly. + ** + ** An O(n^2) insertion sort algorithm is used, but since + ** n is never more than NB (a small constant), that should + ** not be a problem. + ** + ** When NB==3, this one optimization makes the database + ** about 25% faster for large insertions and deletions. + */ + for(i=0; i<k-1; i++){ + int minV = pgnoNew[i]; + int minI = i; + for(j=i+1; j<k; j++){ + if( pgnoNew[j]<(unsigned)minV ){ + minI = j; + minV = pgnoNew[j]; + } + } + if( minI>i ){ + int t; + MemPage *pT; + t = pgnoNew[i]; + pT = apNew[i]; + pgnoNew[i] = pgnoNew[minI]; + apNew[i] = apNew[minI]; + pgnoNew[minI] = t; + apNew[minI] = pT; + } + } + TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", + pgnoOld[0], + nOld>=2 ? pgnoOld[1] : 0, + nOld>=3 ? pgnoOld[2] : 0, + pgnoNew[0], szNew[0], + nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0, + nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0, + nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0, + nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0)); + + /* + ** Evenly distribute the data in apCell[] across the new pages. + ** Insert divider cells into pParent as necessary. + */ + j = 0; + for(i=0; i<nNew; i++){ + /* Assemble the new sibling page. */ + MemPage *pNew = apNew[i]; + assert( j<nMaxCells ); + assert( pNew->pgno==pgnoNew[i] ); + assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); + assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) ); + assert( pNew->nOverflow==0 ); + +#ifndef SQLITE_OMIT_AUTOVACUUM + /* If this is an auto-vacuum database, update the pointer map entries + ** that point to the siblings that were rearranged. These can be: left + ** children of cells, the right-child of the page, or overflow pages + ** pointed to by cells. + */ + if( pBt->autoVacuum ){ + for(k=j; k<cntNew[i]; k++){ + assert( k<nMaxCells ); + if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){ + rc = ptrmapPutOvfl(pNew, k-j); + if( rc!=SQLITE_OK ){ + goto balance_cleanup; + } + } + } + } +#endif + + j = cntNew[i]; + + /* If the sibling page assembled above was not the right-most sibling, + ** insert a divider cell into the parent page. + */ + if( i<nNew-1 && j<nCell ){ + u8 *pCell; + u8 *pTemp; + int sz; + + assert( j<nMaxCells ); + pCell = apCell[j]; + sz = szCell[j] + leafCorrection; + if( !pNew->leaf ){ + memcpy(&pNew->aData[8], pCell, 4); + pTemp = 0; + }else if( leafData ){ + /* If the tree is a leaf-data tree, and the siblings are leaves, + ** then there is no divider cell in apCell[]. Instead, the divider + ** cell consists of the integer key for the right-most cell of + ** the sibling-page assembled above only. + */ + CellInfo info; + j--; + sqlite3BtreeParseCellPtr(pNew, apCell[j], &info); + pCell = &aSpace[iSpace]; + fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz); + iSpace += sz; + assert( iSpace<=pBt->pageSize*5 ); + pTemp = 0; + }else{ + pCell -= 4; + pTemp = &aSpace[iSpace]; + iSpace += sz; + assert( iSpace<=pBt->pageSize*5 ); + /* Obscure case for non-leaf-data trees: If the cell at pCell was + ** previously stored on a leaf node, and its reported size was 4 + ** bytes, then it may actually be smaller than this + ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of + ** any cell). But it is important to pass the correct size to + ** insertCell(), so reparse the cell now. + ** + ** Note that this can never happen in an SQLite data file, as all + ** cells are at least 4 bytes. It only happens in b-trees used + ** to evaluate "IN (SELECT ...)" and similar clauses. + */ + if( szCell[j]==4 ){ + assert(leafCorrection==4); + sz = cellSizePtr(pParent, pCell); + } + } + rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4); + if( rc!=SQLITE_OK ) goto balance_cleanup; + put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno); +#ifndef SQLITE_OMIT_AUTOVACUUM + /* If this is an auto-vacuum database, and not a leaf-data tree, + ** then update the pointer map with an entry for the overflow page + ** that the cell just inserted points to (if any). + */ + if( pBt->autoVacuum && !leafData ){ + rc = ptrmapPutOvfl(pParent, nxDiv); + if( rc!=SQLITE_OK ){ + goto balance_cleanup; + } + } +#endif + j++; + nxDiv++; + } + } + assert( j==nCell ); + assert( nOld>0 ); + assert( nNew>0 ); + if( (pageFlags & PTF_LEAF)==0 ){ + memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4); + } + if( nxDiv==pParent->nCell+pParent->nOverflow ){ + /* Right-most sibling is the right-most child of pParent */ + put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]); + }else{ + /* Right-most sibling is the left child of the first entry in pParent + ** past the right-most divider entry */ + put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]); + } + + /* + ** Reparent children of all cells. + */ + for(i=0; i<nNew; i++){ + rc = reparentChildPages(apNew[i]); + if( rc!=SQLITE_OK ) goto balance_cleanup; + } + rc = reparentChildPages(pParent); + if( rc!=SQLITE_OK ) goto balance_cleanup; + + /* + ** Balance the parent page. Note that the current page (pPage) might + ** have been added to the freelist so it might no longer be initialized. + ** But the parent page will always be initialized. + */ + assert( pParent->isInit ); + rc = balance(pParent, 0); + + /* + ** Cleanup before returning. + */ +balance_cleanup: + sqlite3_free(apCell); + for(i=0; i<nOld; i++){ + releasePage(apOld[i]); + } + for(i=0; i<nNew; i++){ + releasePage(apNew[i]); + } + releasePage(pParent); + TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n", + pPage->pgno, nOld, nNew, nCell)); + return rc; +} + +/* +** This routine is called for the root page of a btree when the root +** page contains no cells. This is an opportunity to make the tree +** shallower by one level. +*/ +static int balance_shallower(MemPage *pPage){ + MemPage *pChild; /* The only child page of pPage */ + Pgno pgnoChild; /* Page number for pChild */ + int rc = SQLITE_OK; /* Return code from subprocedures */ + BtShared *pBt; /* The main BTree structure */ + int mxCellPerPage; /* Maximum number of cells per page */ + u8 **apCell; /* All cells from pages being balanced */ + u16 *szCell; /* Local size of all cells */ + + assert( pPage->pParent==0 ); + assert( pPage->nCell==0 ); + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + pBt = pPage->pBt; + mxCellPerPage = MX_CELL(pBt); + apCell = sqlite3_malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) ); + if( apCell==0 ) return SQLITE_NOMEM; + szCell = (u16*)&apCell[mxCellPerPage]; + if( pPage->leaf ){ + /* The table is completely empty */ + TRACE(("BALANCE: empty table %d\n", pPage->pgno)); + }else{ + /* The root page is empty but has one child. Transfer the + ** information from that one child into the root page if it + ** will fit. This reduces the depth of the tree by one. + ** + ** If the root page is page 1, it has less space available than + ** its child (due to the 100 byte header that occurs at the beginning + ** of the database fle), so it might not be able to hold all of the + ** information currently contained in the child. If this is the + ** case, then do not do the transfer. Leave page 1 empty except + ** for the right-pointer to the child page. The child page becomes + ** the virtual root of the tree. + */ + pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]); + assert( pgnoChild>0 ); + assert( pgnoChild<=sqlite3PagerPagecount(pPage->pBt->pPager) ); + rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0); + if( rc ) goto end_shallow_balance; + if( pPage->pgno==1 ){ + rc = sqlite3BtreeInitPage(pChild, pPage); + if( rc ) goto end_shallow_balance; + assert( pChild->nOverflow==0 ); + if( pChild->nFree>=100 ){ + /* The child information will fit on the root page, so do the + ** copy */ + int i; + zeroPage(pPage, pChild->aData[0]); + for(i=0; i<pChild->nCell; i++){ + apCell[i] = findCell(pChild,i); + szCell[i] = cellSizePtr(pChild, apCell[i]); + } + assemblePage(pPage, pChild->nCell, apCell, szCell); + /* Copy the right-pointer of the child to the parent. */ + put4byte(&pPage->aData[pPage->hdrOffset+8], + get4byte(&pChild->aData[pChild->hdrOffset+8])); + freePage(pChild); + TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno)); + }else{ + /* The child has more information that will fit on the root. + ** The tree is already balanced. Do nothing. */ + TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno)); + } + }else{ + memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize); + pPage->isInit = 0; + pPage->pParent = 0; + rc = sqlite3BtreeInitPage(pPage, 0); + assert( rc==SQLITE_OK ); + freePage(pChild); + TRACE(("BALANCE: transfer child %d into root %d\n", + pChild->pgno, pPage->pgno)); + } + rc = reparentChildPages(pPage); + assert( pPage->nOverflow==0 ); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + int i; + for(i=0; i<pPage->nCell; i++){ + rc = ptrmapPutOvfl(pPage, i); + if( rc!=SQLITE_OK ){ + goto end_shallow_balance; + } + } + } +#endif + releasePage(pChild); + } +end_shallow_balance: + sqlite3_free(apCell); + return rc; +} + + +/* +** The root page is overfull +** +** When this happens, Create a new child page and copy the +** contents of the root into the child. Then make the root +** page an empty page with rightChild pointing to the new +** child. Finally, call balance_internal() on the new child +** to cause it to split. +*/ +static int balance_deeper(MemPage *pPage){ + int rc; /* Return value from subprocedures */ + MemPage *pChild; /* Pointer to a new child page */ + Pgno pgnoChild; /* Page number of the new child page */ + BtShared *pBt; /* The BTree */ + int usableSize; /* Total usable size of a page */ + u8 *data; /* Content of the parent page */ + u8 *cdata; /* Content of the child page */ + int hdr; /* Offset to page header in parent */ + int brk; /* Offset to content of first cell in parent */ + + assert( pPage->pParent==0 ); + assert( pPage->nOverflow>0 ); + pBt = pPage->pBt; + assert( sqlite3_mutex_held(pBt->mutex) ); + rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0); + if( rc ) return rc; + assert( sqlite3PagerIswriteable(pChild->pDbPage) ); + usableSize = pBt->usableSize; + data = pPage->aData; + hdr = pPage->hdrOffset; + brk = get2byte(&data[hdr+5]); + cdata = pChild->aData; + memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr); + memcpy(&cdata[brk], &data[brk], usableSize-brk); + assert( pChild->isInit==0 ); + rc = sqlite3BtreeInitPage(pChild, pPage); + if( rc ) goto balancedeeper_out; + memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0])); + pChild->nOverflow = pPage->nOverflow; + if( pChild->nOverflow ){ + pChild->nFree = 0; + } + assert( pChild->nCell==pPage->nCell ); + zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF); + put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild); + TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno)); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + int i; + rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno); + if( rc ) goto balancedeeper_out; + for(i=0; i<pChild->nCell; i++){ + rc = ptrmapPutOvfl(pChild, i); + if( rc!=SQLITE_OK ){ + return rc; + } + } + } +#endif + rc = balance_nonroot(pChild); + +balancedeeper_out: + releasePage(pChild); + return rc; +} + +/* +** Decide if the page pPage needs to be balanced. If balancing is +** required, call the appropriate balancing routine. +*/ +static int balance(MemPage *pPage, int insert){ + int rc = SQLITE_OK; + assert( sqlite3_mutex_held(pPage->pBt->mutex) ); + if( pPage->pParent==0 ){ + rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc==SQLITE_OK && pPage->nOverflow>0 ){ + rc = balance_deeper(pPage); + } + if( rc==SQLITE_OK && pPage->nCell==0 ){ + rc = balance_shallower(pPage); + } + }else{ + if( pPage->nOverflow>0 || + (!insert && pPage->nFree>pPage->pBt->usableSize*2/3) ){ + rc = balance_nonroot(pPage); + } + } + return rc; +} + +/* +** This routine checks all cursors that point to table pgnoRoot. +** If any of those cursors were opened with wrFlag==0 in a different +** database connection (a database connection that shares the pager +** cache with the current connection) and that other connection +** is not in the ReadUncommmitted state, then this routine returns +** SQLITE_LOCKED. +** +** In addition to checking for read-locks (where a read-lock +** means a cursor opened with wrFlag==0) this routine also moves +** all write cursors so that they are pointing to the +** first Cell on the root page. This is necessary because an insert +** or delete might change the number of cells on a page or delete +** a page entirely and we do not want to leave any cursors +** pointing to non-existant pages or cells. +*/ +static int checkReadLocks(Btree *pBtree, Pgno pgnoRoot, BtCursor *pExclude){ + BtCursor *p; + BtShared *pBt = pBtree->pBt; + sqlite3 *db = pBtree->db; + assert( sqlite3BtreeHoldsMutex(pBtree) ); + for(p=pBt->pCursor; p; p=p->pNext){ + if( p==pExclude ) continue; + if( p->eState!=CURSOR_VALID ) continue; + if( p->pgnoRoot!=pgnoRoot ) continue; + if( p->wrFlag==0 ){ + sqlite3 *dbOther = p->pBtree->db; + if( dbOther==0 || + (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){ + return SQLITE_LOCKED; + } + }else if( p->pPage->pgno!=p->pgnoRoot ){ + moveToRoot(p); + } + } + return SQLITE_OK; +} + +/* +** Make sure pBt->pTmpSpace points to an allocation of +** MX_CELL_SIZE(pBt) bytes. +*/ +static void allocateTempSpace(BtShared *pBt){ + if( !pBt->pTmpSpace ){ + pBt->pTmpSpace = sqlite3_malloc(MX_CELL_SIZE(pBt)); + } +} + +/* +** Insert a new record into the BTree. The key is given by (pKey,nKey) +** and the data is given by (pData,nData). The cursor is used only to +** define what table the record should be inserted into. The cursor +** is left pointing at a random location. +** +** For an INTKEY table, only the nKey value of the key is used. pKey is +** ignored. For a ZERODATA table, the pData and nData are both ignored. +*/ +SQLITE_PRIVATE int sqlite3BtreeInsert( + BtCursor *pCur, /* Insert data into the table of this cursor */ + const void *pKey, i64 nKey, /* The key of the new record */ + const void *pData, int nData, /* The data of the new record */ + int nZero, /* Number of extra 0 bytes to append to data */ + int appendBias /* True if this is likely an append */ +){ + int rc; + int loc; + int szNew; + MemPage *pPage; + Btree *p = pCur->pBtree; + BtShared *pBt = p->pBt; + unsigned char *oldCell; + unsigned char *newCell = 0; + + assert( cursorHoldsMutex(pCur) ); + if( pBt->inTransaction!=TRANS_WRITE ){ + /* Must start a transaction before doing an insert */ + rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + return rc; + } + assert( !pBt->readOnly ); + if( !pCur->wrFlag ){ + return SQLITE_PERM; /* Cursor not open for writing */ + } + if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){ + return SQLITE_LOCKED; /* The table pCur points to has a read lock */ + } + if( pCur->eState==CURSOR_FAULT ){ + return pCur->skip; + } + + /* Save the positions of any other cursors open on this table */ + clearCursorPosition(pCur); + if( + SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || + SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, 0, nKey, appendBias, &loc)) + ){ + return rc; + } + + pPage = pCur->pPage; + assert( pPage->intKey || nKey>=0 ); + assert( pPage->leaf || !pPage->leafData ); + TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", + pCur->pgnoRoot, nKey, nData, pPage->pgno, + loc==0 ? "overwrite" : "new entry")); + assert( pPage->isInit ); + allocateTempSpace(pBt); + newCell = pBt->pTmpSpace; + if( newCell==0 ) return SQLITE_NOMEM; + rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); + if( rc ) goto end_insert; + assert( szNew==cellSizePtr(pPage, newCell) ); + assert( szNew<=MX_CELL_SIZE(pBt) ); + if( loc==0 && CURSOR_VALID==pCur->eState ){ + u16 szOld; + assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); + rc = sqlite3PagerWrite(pPage->pDbPage); + if( rc ){ + goto end_insert; + } + oldCell = findCell(pPage, pCur->idx); + if( !pPage->leaf ){ + memcpy(newCell, oldCell, 4); + } + szOld = cellSizePtr(pPage, oldCell); + rc = clearCell(pPage, oldCell); + if( rc ) goto end_insert; + dropCell(pPage, pCur->idx, szOld); + }else if( loc<0 && pPage->nCell>0 ){ + assert( pPage->leaf ); + pCur->idx++; + pCur->info.nSize = 0; + pCur->validNKey = 0; + }else{ + assert( pPage->leaf ); + } + rc = insertCell(pPage, pCur->idx, newCell, szNew, 0, 0); + if( rc!=SQLITE_OK ) goto end_insert; + rc = balance(pPage, 1); + /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ + /* fflush(stdout); */ + if( rc==SQLITE_OK ){ + moveToRoot(pCur); + } +end_insert: + return rc; +} + +/* +** Delete the entry that the cursor is pointing to. The cursor +** is left pointing at a random location. +*/ +SQLITE_PRIVATE int sqlite3BtreeDelete(BtCursor *pCur){ + MemPage *pPage = pCur->pPage; + unsigned char *pCell; + int rc; + Pgno pgnoChild = 0; + Btree *p = pCur->pBtree; + BtShared *pBt = p->pBt; + + assert( cursorHoldsMutex(pCur) ); + assert( pPage->isInit ); + if( pBt->inTransaction!=TRANS_WRITE ){ + /* Must start a transaction before doing a delete */ + rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + return rc; + } + assert( !pBt->readOnly ); + if( pCur->eState==CURSOR_FAULT ){ + return pCur->skip; + } + if( pCur->idx >= pPage->nCell ){ + return SQLITE_ERROR; /* The cursor is not pointing to anything */ + } + if( !pCur->wrFlag ){ + return SQLITE_PERM; /* Did not open this cursor for writing */ + } + if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur) ){ + return SQLITE_LOCKED; /* The table pCur points to has a read lock */ + } + + /* Restore the current cursor position (a no-op if the cursor is not in + ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors + ** open on the same table. Then call sqlite3PagerWrite() on the page + ** that the entry will be deleted from. + */ + if( + (rc = restoreOrClearCursorPosition(pCur))!=0 || + (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 || + (rc = sqlite3PagerWrite(pPage->pDbPage))!=0 + ){ + return rc; + } + + /* Locate the cell within its page and leave pCell pointing to the + ** data. The clearCell() call frees any overflow pages associated with the + ** cell. The cell itself is still intact. + */ + pCell = findCell(pPage, pCur->idx); + if( !pPage->leaf ){ + pgnoChild = get4byte(pCell); + } + rc = clearCell(pPage, pCell); + if( rc ){ + return rc; + } + + if( !pPage->leaf ){ + /* + ** The entry we are about to delete is not a leaf so if we do not + ** do something we will leave a hole on an internal page. + ** We have to fill the hole by moving in a cell from a leaf. The + ** next Cell after the one to be deleted is guaranteed to exist and + ** to be a leaf so we can use it. + */ + BtCursor leafCur; + unsigned char *pNext; + int notUsed; + unsigned char *tempCell = 0; + assert( !pPage->leafData ); + sqlite3BtreeGetTempCursor(pCur, &leafCur); + rc = sqlite3BtreeNext(&leafCur, ¬Used); + if( rc==SQLITE_OK ){ + rc = sqlite3PagerWrite(leafCur.pPage->pDbPage); + } + if( rc==SQLITE_OK ){ + u16 szNext; + TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n", + pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno)); + dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); + pNext = findCell(leafCur.pPage, leafCur.idx); + szNext = cellSizePtr(leafCur.pPage, pNext); + assert( MX_CELL_SIZE(pBt)>=szNext+4 ); + allocateTempSpace(pBt); + tempCell = pBt->pTmpSpace; + if( tempCell==0 ){ + rc = SQLITE_NOMEM; + } + if( rc==SQLITE_OK ){ + rc = insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell, 0); + } + if( rc==SQLITE_OK ){ + put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild); + rc = balance(pPage, 0); + } + if( rc==SQLITE_OK ){ + dropCell(leafCur.pPage, leafCur.idx, szNext); + rc = balance(leafCur.pPage, 0); + } + } + sqlite3BtreeReleaseTempCursor(&leafCur); + }else{ + TRACE(("DELETE: table=%d delete from leaf %d\n", + pCur->pgnoRoot, pPage->pgno)); + dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); + rc = balance(pPage, 0); + } + if( rc==SQLITE_OK ){ + moveToRoot(pCur); + } + return rc; +} + +/* +** Create a new BTree table. Write into *piTable the page +** number for the root page of the new table. +** +** The type of type is determined by the flags parameter. Only the +** following values of flags are currently in use. Other values for +** flags might not work: +** +** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys +** BTREE_ZERODATA Used for SQL indices +*/ +static int btreeCreateTable(Btree *p, int *piTable, int flags){ + BtShared *pBt = p->pBt; + MemPage *pRoot; + Pgno pgnoRoot; + int rc; + + assert( sqlite3BtreeHoldsMutex(p) ); + if( pBt->inTransaction!=TRANS_WRITE ){ + /* Must start a transaction first */ + rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + return rc; + } + assert( !pBt->readOnly ); + +#ifdef SQLITE_OMIT_AUTOVACUUM + rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); + if( rc ){ + return rc; + } +#else + if( pBt->autoVacuum ){ + Pgno pgnoMove; /* Move a page here to make room for the root-page */ + MemPage *pPageMove; /* The page to move to. */ + + /* Creating a new table may probably require moving an existing database + ** to make room for the new tables root page. In case this page turns + ** out to be an overflow page, delete all overflow page-map caches + ** held by open cursors. + */ + invalidateAllOverflowCache(pBt); + + /* Read the value of meta[3] from the database to determine where the + ** root page of the new table should go. meta[3] is the largest root-page + ** created so far, so the new root-page is (meta[3]+1). + */ + rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot); + if( rc!=SQLITE_OK ){ + return rc; + } + pgnoRoot++; + + /* The new root-page may not be allocated on a pointer-map page, or the + ** PENDING_BYTE page. + */ + while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || + pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ + pgnoRoot++; + } + assert( pgnoRoot>=3 ); + + /* Allocate a page. The page that currently resides at pgnoRoot will + ** be moved to the allocated page (unless the allocated page happens + ** to reside at pgnoRoot). + */ + rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1); + if( rc!=SQLITE_OK ){ + return rc; + } + + if( pgnoMove!=pgnoRoot ){ + /* pgnoRoot is the page that will be used for the root-page of + ** the new table (assuming an error did not occur). But we were + ** allocated pgnoMove. If required (i.e. if it was not allocated + ** by extending the file), the current page at position pgnoMove + ** is already journaled. + */ + u8 eType; + Pgno iPtrPage; + + releasePage(pPageMove); + + /* Move the page currently at pgnoRoot to pgnoMove. */ + rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); + if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ + releasePage(pRoot); + return rc; + } + assert( eType!=PTRMAP_ROOTPAGE ); + assert( eType!=PTRMAP_FREEPAGE ); + rc = sqlite3PagerWrite(pRoot->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(pRoot); + return rc; + } + rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove); + releasePage(pRoot); + + /* Obtain the page at pgnoRoot */ + if( rc!=SQLITE_OK ){ + return rc; + } + rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = sqlite3PagerWrite(pRoot->pDbPage); + if( rc!=SQLITE_OK ){ + releasePage(pRoot); + return rc; + } + }else{ + pRoot = pPageMove; + } + + /* Update the pointer-map and meta-data with the new root-page number. */ + rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0); + if( rc ){ + releasePage(pRoot); + return rc; + } + rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); + if( rc ){ + releasePage(pRoot); + return rc; + } + + }else{ + rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); + if( rc ) return rc; + } +#endif + assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); + zeroPage(pRoot, flags | PTF_LEAF); + sqlite3PagerUnref(pRoot->pDbPage); + *piTable = (int)pgnoRoot; + return SQLITE_OK; +} +SQLITE_PRIVATE int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ + int rc; + sqlite3BtreeEnter(p); + p->pBt->db = p->db; + rc = btreeCreateTable(p, piTable, flags); + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Erase the given database page and all its children. Return +** the page to the freelist. +*/ +static int clearDatabasePage( + BtShared *pBt, /* The BTree that contains the table */ + Pgno pgno, /* Page number to clear */ + MemPage *pParent, /* Parent page. NULL for the root */ + int freePageFlag /* Deallocate page if true */ +){ + MemPage *pPage = 0; + int rc; + unsigned char *pCell; + int i; + + assert( sqlite3_mutex_held(pBt->mutex) ); + if( pgno>sqlite3PagerPagecount(pBt->pPager) ){ + return SQLITE_CORRUPT_BKPT; + } + + rc = getAndInitPage(pBt, pgno, &pPage, pParent); + if( rc ) goto cleardatabasepage_out; + for(i=0; i<pPage->nCell; i++){ + pCell = findCell(pPage, i); + if( !pPage->leaf ){ + rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1); + if( rc ) goto cleardatabasepage_out; + } + rc = clearCell(pPage, pCell); + if( rc ) goto cleardatabasepage_out; + } + if( !pPage->leaf ){ + rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1); + if( rc ) goto cleardatabasepage_out; + } + if( freePageFlag ){ + rc = freePage(pPage); + }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ + zeroPage(pPage, pPage->aData[0] | PTF_LEAF); + } + +cleardatabasepage_out: + releasePage(pPage); + return rc; +} + +/* +** Delete all information from a single table in the database. iTable is +** the page number of the root of the table. After this routine returns, +** the root page is empty, but still exists. +** +** This routine will fail with SQLITE_LOCKED if there are any open +** read cursors on the table. Open write cursors are moved to the +** root of the table. +*/ +SQLITE_PRIVATE int sqlite3BtreeClearTable(Btree *p, int iTable){ + int rc; + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + pBt->db = p->db; + if( p->inTrans!=TRANS_WRITE ){ + rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + }else if( (rc = checkReadLocks(p, iTable, 0))!=SQLITE_OK ){ + /* nothing to do */ + }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){ + /* nothing to do */ + }else{ + rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0); + } + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Erase all information in a table and add the root of the table to +** the freelist. Except, the root of the principle table (the one on +** page 1) is never added to the freelist. +** +** This routine will fail with SQLITE_LOCKED if there are any open +** cursors on the table. +** +** If AUTOVACUUM is enabled and the page at iTable is not the last +** root page in the database file, then the last root page +** in the database file is moved into the slot formerly occupied by +** iTable and that last slot formerly occupied by the last root page +** is added to the freelist instead of iTable. In this say, all +** root pages are kept at the beginning of the database file, which +** is necessary for AUTOVACUUM to work right. *piMoved is set to the +** page number that used to be the last root page in the file before +** the move. If no page gets moved, *piMoved is set to 0. +** The last root page is recorded in meta[3] and the value of +** meta[3] is updated by this procedure. +*/ +static int btreeDropTable(Btree *p, int iTable, int *piMoved){ + int rc; + MemPage *pPage = 0; + BtShared *pBt = p->pBt; + + assert( sqlite3BtreeHoldsMutex(p) ); + if( p->inTrans!=TRANS_WRITE ){ + return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + } + + /* It is illegal to drop a table if any cursors are open on the + ** database. This is because in auto-vacuum mode the backend may + ** need to move another root-page to fill a gap left by the deleted + ** root page. If an open cursor was using this page a problem would + ** occur. + */ + if( pBt->pCursor ){ + return SQLITE_LOCKED; + } + + rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0); + if( rc ) return rc; + rc = sqlite3BtreeClearTable(p, iTable); + if( rc ){ + releasePage(pPage); + return rc; + } + + *piMoved = 0; + + if( iTable>1 ){ +#ifdef SQLITE_OMIT_AUTOVACUUM + rc = freePage(pPage); + releasePage(pPage); +#else + if( pBt->autoVacuum ){ + Pgno maxRootPgno; + rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno); + if( rc!=SQLITE_OK ){ + releasePage(pPage); + return rc; + } + + if( iTable==maxRootPgno ){ + /* If the table being dropped is the table with the largest root-page + ** number in the database, put the root page on the free list. + */ + rc = freePage(pPage); + releasePage(pPage); + if( rc!=SQLITE_OK ){ + return rc; + } + }else{ + /* The table being dropped does not have the largest root-page + ** number in the database. So move the page that does into the + ** gap left by the deleted root-page. + */ + MemPage *pMove; + releasePage(pPage); + rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable); + releasePage(pMove); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + rc = freePage(pMove); + releasePage(pMove); + if( rc!=SQLITE_OK ){ + return rc; + } + *piMoved = maxRootPgno; + } + + /* Set the new 'max-root-page' value in the database header. This + ** is the old value less one, less one more if that happens to + ** be a root-page number, less one again if that is the + ** PENDING_BYTE_PAGE. + */ + maxRootPgno--; + if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){ + maxRootPgno--; + } + if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){ + maxRootPgno--; + } + assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); + + rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); + }else{ + rc = freePage(pPage); + releasePage(pPage); + } +#endif + }else{ + /* If sqlite3BtreeDropTable was called on page 1. */ + zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); + releasePage(pPage); + } + return rc; +} +SQLITE_PRIVATE int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ + int rc; + sqlite3BtreeEnter(p); + p->pBt->db = p->db; + rc = btreeDropTable(p, iTable, piMoved); + sqlite3BtreeLeave(p); + return rc; +} + + +/* +** Read the meta-information out of a database file. Meta[0] +** is the number of free pages currently in the database. Meta[1] +** through meta[15] are available for use by higher layers. Meta[0] +** is read-only, the others are read/write. +** +** The schema layer numbers meta values differently. At the schema +** layer (and the SetCookie and ReadCookie opcodes) the number of +** free pages is not visible. So Cookie[0] is the same as Meta[1]. +*/ +SQLITE_PRIVATE int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ + DbPage *pDbPage; + int rc; + unsigned char *pP1; + BtShared *pBt = p->pBt; + + sqlite3BtreeEnter(p); + pBt->db = p->db; + + /* Reading a meta-data value requires a read-lock on page 1 (and hence + ** the sqlite_master table. We grab this lock regardless of whether or + ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page + ** 1 is treated as a special case by queryTableLock() and lockTable()). + */ + rc = queryTableLock(p, 1, READ_LOCK); + if( rc!=SQLITE_OK ){ + sqlite3BtreeLeave(p); + return rc; + } + + assert( idx>=0 && idx<=15 ); + rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage); + if( rc ){ + sqlite3BtreeLeave(p); + return rc; + } + pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage); + *pMeta = get4byte(&pP1[36 + idx*4]); + sqlite3PagerUnref(pDbPage); + + /* If autovacuumed is disabled in this build but we are trying to + ** access an autovacuumed database, then make the database readonly. + */ +#ifdef SQLITE_OMIT_AUTOVACUUM + if( idx==4 && *pMeta>0 ) pBt->readOnly = 1; +#endif + + /* Grab the read-lock on page 1. */ + rc = lockTable(p, 1, READ_LOCK); + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Write meta-information back into the database. Meta[0] is +** read-only and may not be written. +*/ +SQLITE_PRIVATE int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ + BtShared *pBt = p->pBt; + unsigned char *pP1; + int rc; + assert( idx>=1 && idx<=15 ); + sqlite3BtreeEnter(p); + pBt->db = p->db; + if( p->inTrans!=TRANS_WRITE ){ + rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; + }else{ + assert( pBt->pPage1!=0 ); + pP1 = pBt->pPage1->aData; + rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); + if( rc==SQLITE_OK ){ + put4byte(&pP1[36 + idx*4], iMeta); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( idx==7 ){ + assert( pBt->autoVacuum || iMeta==0 ); + assert( iMeta==0 || iMeta==1 ); + pBt->incrVacuum = iMeta; + } +#endif + } + } + sqlite3BtreeLeave(p); + return rc; +} + +/* +** Return the flag byte at the beginning of the page that the cursor +** is currently pointing to. +*/ +SQLITE_PRIVATE int sqlite3BtreeFlags(BtCursor *pCur){ + /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call + ** restoreOrClearCursorPosition() here. + */ + MemPage *pPage; + restoreOrClearCursorPosition(pCur); + pPage = pCur->pPage; + assert( cursorHoldsMutex(pCur) ); + assert( pPage->pBt==pCur->pBt ); + return pPage ? pPage->aData[pPage->hdrOffset] : 0; +} + + +/* +** Return the pager associated with a BTree. This routine is used for +** testing and debugging only. +*/ +SQLITE_PRIVATE Pager *sqlite3BtreePager(Btree *p){ + return p->pBt->pPager; +} + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* +** Append a message to the error message string. +*/ +static void checkAppendMsg( + IntegrityCk *pCheck, + char *zMsg1, + const char *zFormat, + ... +){ + va_list ap; + char *zMsg2; + if( !pCheck->mxErr ) return; + pCheck->mxErr--; + pCheck->nErr++; + va_start(ap, zFormat); + zMsg2 = sqlite3VMPrintf(0, zFormat, ap); + va_end(ap); + if( zMsg1==0 ) zMsg1 = ""; + if( pCheck->zErrMsg ){ + char *zOld = pCheck->zErrMsg; + pCheck->zErrMsg = 0; + sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0); + sqlite3_free(zOld); + }else{ + sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0); + } + sqlite3_free(zMsg2); +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* +** Add 1 to the reference count for page iPage. If this is the second +** reference to the page, add an error message to pCheck->zErrMsg. +** Return 1 if there are 2 ore more references to the page and 0 if +** if this is the first reference to the page. +** +** Also check that the page number is in bounds. +*/ +static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){ + if( iPage==0 ) return 1; + if( iPage>pCheck->nPage || iPage<0 ){ + checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); + return 1; + } + if( pCheck->anRef[iPage]==1 ){ + checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); + return 1; + } + return (pCheck->anRef[iPage]++)>1; +} + +#ifndef SQLITE_OMIT_AUTOVACUUM +/* +** Check that the entry in the pointer-map for page iChild maps to +** page iParent, pointer type ptrType. If not, append an error message +** to pCheck. +*/ +static void checkPtrmap( + IntegrityCk *pCheck, /* Integrity check context */ + Pgno iChild, /* Child page number */ + u8 eType, /* Expected pointer map type */ + Pgno iParent, /* Expected pointer map parent page number */ + char *zContext /* Context description (used for error msg) */ +){ + int rc; + u8 ePtrmapType; + Pgno iPtrmapParent; + + rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); + if( rc!=SQLITE_OK ){ + checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild); + return; + } + + if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ + checkAppendMsg(pCheck, zContext, + "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", + iChild, eType, iParent, ePtrmapType, iPtrmapParent); + } +} +#endif + +/* +** Check the integrity of the freelist or of an overflow page list. +** Verify that the number of pages on the list is N. +*/ +static void checkList( + IntegrityCk *pCheck, /* Integrity checking context */ + int isFreeList, /* True for a freelist. False for overflow page list */ + int iPage, /* Page number for first page in the list */ + int N, /* Expected number of pages in the list */ + char *zContext /* Context for error messages */ +){ + int i; + int expected = N; + int iFirst = iPage; + while( N-- > 0 && pCheck->mxErr ){ + DbPage *pOvflPage; + unsigned char *pOvflData; + if( iPage<1 ){ + checkAppendMsg(pCheck, zContext, + "%d of %d pages missing from overflow list starting at %d", + N+1, expected, iFirst); + break; + } + if( checkRef(pCheck, iPage, zContext) ) break; + if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){ + checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); + break; + } + pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); + if( isFreeList ){ + int n = get4byte(&pOvflData[4]); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pCheck->pBt->autoVacuum ){ + checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); + } +#endif + if( n>pCheck->pBt->usableSize/4-8 ){ + checkAppendMsg(pCheck, zContext, + "freelist leaf count too big on page %d", iPage); + N--; + }else{ + for(i=0; i<n; i++){ + Pgno iFreePage = get4byte(&pOvflData[8+i*4]); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pCheck->pBt->autoVacuum ){ + checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext); + } +#endif + checkRef(pCheck, iFreePage, zContext); + } + N -= n; + } + } +#ifndef SQLITE_OMIT_AUTOVACUUM + else{ + /* If this database supports auto-vacuum and iPage is not the last + ** page in this overflow list, check that the pointer-map entry for + ** the following page matches iPage. + */ + if( pCheck->pBt->autoVacuum && N>0 ){ + i = get4byte(pOvflData); + checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext); + } + } +#endif + iPage = get4byte(pOvflData); + sqlite3PagerUnref(pOvflPage); + } +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* +** Do various sanity checks on a single page of a tree. Return +** the tree depth. Root pages return 0. Parents of root pages +** return 1, and so forth. +** +** These checks are done: +** +** 1. Make sure that cells and freeblocks do not overlap +** but combine to completely cover the page. +** NO 2. Make sure cell keys are in order. +** NO 3. Make sure no key is less than or equal to zLowerBound. +** NO 4. Make sure no key is greater than or equal to zUpperBound. +** 5. Check the integrity of overflow pages. +** 6. Recursively call checkTreePage on all children. +** 7. Verify that the depth of all children is the same. +** 8. Make sure this page is at least 33% full or else it is +** the root of the tree. +*/ +static int checkTreePage( + IntegrityCk *pCheck, /* Context for the sanity check */ + int iPage, /* Page number of the page to check */ + MemPage *pParent, /* Parent page */ + char *zParentContext /* Parent context */ +){ + MemPage *pPage; + int i, rc, depth, d2, pgno, cnt; + int hdr, cellStart; + int nCell; + u8 *data; + BtShared *pBt; + int usableSize; + char zContext[100]; + char *hit; + + sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage); + + /* Check that the page exists + */ + pBt = pCheck->pBt; + usableSize = pBt->usableSize; + if( iPage==0 ) return 0; + if( checkRef(pCheck, iPage, zParentContext) ) return 0; + if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ + checkAppendMsg(pCheck, zContext, + "unable to get the page. error code=%d", rc); + return 0; + } + if( (rc = sqlite3BtreeInitPage(pPage, pParent))!=0 ){ + checkAppendMsg(pCheck, zContext, + "sqlite3BtreeInitPage() returns error code %d", rc); + releasePage(pPage); + return 0; + } + + /* Check out all the cells. + */ + depth = 0; + for(i=0; i<pPage->nCell && pCheck->mxErr; i++){ + u8 *pCell; + int sz; + CellInfo info; + + /* Check payload overflow pages + */ + sqlite3_snprintf(sizeof(zContext), zContext, + "On tree page %d cell %d: ", iPage, i); + pCell = findCell(pPage,i); + sqlite3BtreeParseCellPtr(pPage, pCell, &info); + sz = info.nData; + if( !pPage->intKey ) sz += info.nKey; + assert( sz==info.nPayload ); + if( sz>info.nLocal ){ + int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); + Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext); + } +#endif + checkList(pCheck, 0, pgnoOvfl, nPage, zContext); + } + + /* Check sanity of left child page. + */ + if( !pPage->leaf ){ + pgno = get4byte(pCell); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); + } +#endif + d2 = checkTreePage(pCheck,pgno,pPage,zContext); + if( i>0 && d2!=depth ){ + checkAppendMsg(pCheck, zContext, "Child page depth differs"); + } + depth = d2; + } + } + if( !pPage->leaf ){ + pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); + sqlite3_snprintf(sizeof(zContext), zContext, + "On page %d at right child: ", iPage); +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum ){ + checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0); + } +#endif + checkTreePage(pCheck, pgno, pPage, zContext); + } + + /* Check for complete coverage of the page + */ + data = pPage->aData; + hdr = pPage->hdrOffset; + hit = sqlite3MallocZero( usableSize ); + if( hit ){ + memset(hit, 1, get2byte(&data[hdr+5])); + nCell = get2byte(&data[hdr+3]); + cellStart = hdr + 12 - 4*pPage->leaf; + for(i=0; i<nCell; i++){ + int pc = get2byte(&data[cellStart+i*2]); + u16 size = cellSizePtr(pPage, &data[pc]); + int j; + if( (pc+size-1)>=usableSize || pc<0 ){ + checkAppendMsg(pCheck, 0, + "Corruption detected in cell %d on page %d",i,iPage,0); + }else{ + for(j=pc+size-1; j>=pc; j--) hit[j]++; + } + } + for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; + cnt++){ + int size = get2byte(&data[i+2]); + int j; + if( (i+size-1)>=usableSize || i<0 ){ + checkAppendMsg(pCheck, 0, + "Corruption detected in cell %d on page %d",i,iPage,0); + }else{ + for(j=i+size-1; j>=i; j--) hit[j]++; + } + i = get2byte(&data[i]); + } + for(i=cnt=0; i<usableSize; i++){ + if( hit[i]==0 ){ + cnt++; + }else if( hit[i]>1 ){ + checkAppendMsg(pCheck, 0, + "Multiple uses for byte %d of page %d", i, iPage); + break; + } + } + if( cnt!=data[hdr+7] ){ + checkAppendMsg(pCheck, 0, + "Fragmented space is %d byte reported as %d on page %d", + cnt, data[hdr+7], iPage); + } + } + sqlite3_free(hit); + + releasePage(pPage); + return depth+1; +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* +** This routine does a complete check of the given BTree file. aRoot[] is +** an array of pages numbers were each page number is the root page of +** a table. nRoot is the number of entries in aRoot. +** +** If everything checks out, this routine returns NULL. If something is +** amiss, an error message is written into memory obtained from malloc() +** and a pointer to that error message is returned. The calling function +** is responsible for freeing the error message when it is done. +*/ +SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck( + Btree *p, /* The btree to be checked */ + int *aRoot, /* An array of root pages numbers for individual trees */ + int nRoot, /* Number of entries in aRoot[] */ + int mxErr, /* Stop reporting errors after this many */ + int *pnErr /* Write number of errors seen to this variable */ +){ + int i; + int nRef; + IntegrityCk sCheck; + BtShared *pBt = p->pBt; + + sqlite3BtreeEnter(p); + pBt->db = p->db; + nRef = sqlite3PagerRefcount(pBt->pPager); + if( lockBtreeWithRetry(p)!=SQLITE_OK ){ + sqlite3BtreeLeave(p); + return sqlite3StrDup("Unable to acquire a read lock on the database"); + } + sCheck.pBt = pBt; + sCheck.pPager = pBt->pPager; + sCheck.nPage = sqlite3PagerPagecount(sCheck.pPager); + sCheck.mxErr = mxErr; + sCheck.nErr = 0; + *pnErr = 0; +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->nTrunc!=0 ){ + sCheck.nPage = pBt->nTrunc; + } +#endif + if( sCheck.nPage==0 ){ + unlockBtreeIfUnused(pBt); + sqlite3BtreeLeave(p); + return 0; + } + sCheck.anRef = sqlite3_malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); + if( !sCheck.anRef ){ + unlockBtreeIfUnused(pBt); + *pnErr = 1; + sqlite3BtreeLeave(p); + return sqlite3MPrintf(p->db, "Unable to malloc %d bytes", + (sCheck.nPage+1)*sizeof(sCheck.anRef[0])); + } + for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } + i = PENDING_BYTE_PAGE(pBt); + if( i<=sCheck.nPage ){ + sCheck.anRef[i] = 1; + } + sCheck.zErrMsg = 0; + + /* Check the integrity of the freelist + */ + checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), + get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); + + /* Check all the tables. + */ + for(i=0; i<nRoot && sCheck.mxErr; i++){ + if( aRoot[i]==0 ) continue; +#ifndef SQLITE_OMIT_AUTOVACUUM + if( pBt->autoVacuum && aRoot[i]>1 ){ + checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0); + } +#endif + checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: "); + } + + /* Make sure every page in the file is referenced + */ + for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ +#ifdef SQLITE_OMIT_AUTOVACUUM + if( sCheck.anRef[i]==0 ){ + checkAppendMsg(&sCheck, 0, "Page %d is never used", i); + } +#else + /* If the database supports auto-vacuum, make sure no tables contain + ** references to pointer-map pages. + */ + if( sCheck.anRef[i]==0 && + (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ + checkAppendMsg(&sCheck, 0, "Page %d is never used", i); + } + if( sCheck.anRef[i]!=0 && + (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ + checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i); + } +#endif + } + + /* Make sure this analysis did not leave any unref() pages + */ + unlockBtreeIfUnused(pBt); + if( nRef != sqlite3PagerRefcount(pBt->pPager) ){ + checkAppendMsg(&sCheck, 0, + "Outstanding page count goes from %d to %d during this analysis", + nRef, sqlite3PagerRefcount(pBt->pPager) + ); + } + + /* Clean up and report errors. + */ + sqlite3BtreeLeave(p); + sqlite3_free(sCheck.anRef); + *pnErr = sCheck.nErr; + return sCheck.zErrMsg; +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +/* +** Return the full pathname of the underlying database file. +** +** The pager filename is invariant as long as the pager is +** open so it is safe to access without the BtShared mutex. +*/ +SQLITE_PRIVATE const char *sqlite3BtreeGetFilename(Btree *p){ + assert( p->pBt->pPager!=0 ); + return sqlite3PagerFilename(p->pBt->pPager); +} + +/* +** Return the pathname of the directory that contains the database file. +** +** The pager directory name is invariant as long as the pager is +** open so it is safe to access without the BtShared mutex. +*/ +SQLITE_PRIVATE const char *sqlite3BtreeGetDirname(Btree *p){ + assert( p->pBt->pPager!=0 ); + return sqlite3PagerDirname(p->pBt->pPager); +} + +/* +** Return the pathname of the journal file for this database. The return +** value of this routine is the same regardless of whether the journal file +** has been created or not. +** +** The pager journal filename is invariant as long as the pager is +** open so it is safe to access without the BtShared mutex. +*/ +SQLITE_PRIVATE const char *sqlite3BtreeGetJournalname(Btree *p){ + assert( p->pBt->pPager!=0 ); + return sqlite3PagerJournalname(p->pBt->pPager); +} + +#ifndef SQLITE_OMIT_VACUUM +/* +** Copy the complete content of pBtFrom into pBtTo. A transaction +** must be active for both files. +** +** The size of file pTo may be reduced by this operation. +** If anything goes wrong, the transaction on pTo is rolled back. +** +** If successful, CommitPhaseOne() may be called on pTo before returning. +** The caller should finish committing the transaction on pTo by calling +** sqlite3BtreeCommit(). +*/ +static int btreeCopyFile(Btree *pTo, Btree *pFrom){ + int rc = SQLITE_OK; + Pgno i; + + Pgno nFromPage; /* Number of pages in pFrom */ + Pgno nToPage; /* Number of pages in pTo */ + Pgno nNewPage; /* Number of pages in pTo after the copy */ + + Pgno iSkip; /* Pending byte page in pTo */ + int nToPageSize; /* Page size of pTo in bytes */ + int nFromPageSize; /* Page size of pFrom in bytes */ + + BtShared *pBtTo = pTo->pBt; + BtShared *pBtFrom = pFrom->pBt; + pBtTo->db = pTo->db; + pBtFrom->db = pFrom->db; + + nToPageSize = pBtTo->pageSize; + nFromPageSize = pBtFrom->pageSize; + + if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){ + return SQLITE_ERROR; + } + if( pBtTo->pCursor ){ + return SQLITE_BUSY; + } + + nToPage = sqlite3PagerPagecount(pBtTo->pPager); + nFromPage = sqlite3PagerPagecount(pBtFrom->pPager); + iSkip = PENDING_BYTE_PAGE(pBtTo); + + /* Variable nNewPage is the number of pages required to store the + ** contents of pFrom using the current page-size of pTo. + */ + nNewPage = ((i64)nFromPage * (i64)nFromPageSize + (i64)nToPageSize - 1) / + (i64)nToPageSize; + + for(i=1; rc==SQLITE_OK && (i<=nToPage || i<=nNewPage); i++){ + + /* Journal the original page. + ** + ** iSkip is the page number of the locking page (PENDING_BYTE_PAGE) + ** in database *pTo (before the copy). This page is never written + ** into the journal file. Unless i==iSkip or the page was not + ** present in pTo before the copy operation, journal page i from pTo. + */ + if( i!=iSkip && i<=nToPage ){ + DbPage *pDbPage = 0; + rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage); + if( rc==SQLITE_OK ){ + rc = sqlite3PagerWrite(pDbPage); + if( rc==SQLITE_OK && i>nFromPage ){ + /* Yeah. It seems wierd to call DontWrite() right after Write(). But + ** that is because the names of those procedures do not exactly + ** represent what they do. Write() really means "put this page in the + ** rollback journal and mark it as dirty so that it will be written + ** to the database file later." DontWrite() undoes the second part of + ** that and prevents the page from being written to the database. The + ** page is still on the rollback journal, though. And that is the + ** whole point of this block: to put pages on the rollback journal. + */ + sqlite3PagerDontWrite(pDbPage); + } + sqlite3PagerUnref(pDbPage); + } + } + + /* Overwrite the data in page i of the target database */ + if( rc==SQLITE_OK && i!=iSkip && i<=nNewPage ){ + + DbPage *pToPage = 0; + sqlite3_int64 iOff; + + rc = sqlite3PagerGet(pBtTo->pPager, i, &pToPage); + if( rc==SQLITE_OK ){ + rc = sqlite3PagerWrite(pToPage); + } + + for( + iOff=(i-1)*nToPageSize; + rc==SQLITE_OK && iOff<i*nToPageSize; + iOff += nFromPageSize + ){ + DbPage *pFromPage = 0; + Pgno iFrom = (iOff/nFromPageSize)+1; + + if( iFrom==PENDING_BYTE_PAGE(pBtFrom) ){ + continue; + } + + rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage); + if( rc==SQLITE_OK ){ + char *zTo = sqlite3PagerGetData(pToPage); + char *zFrom = sqlite3PagerGetData(pFromPage); + int nCopy; + + if( nFromPageSize>=nToPageSize ){ + zFrom += ((i-1)*nToPageSize - ((iFrom-1)*nFromPageSize)); + nCopy = nToPageSize; + }else{ + zTo += (((iFrom-1)*nFromPageSize) - (i-1)*nToPageSize); + nCopy = nFromPageSize; + } + + memcpy(zTo, zFrom, nCopy); + sqlite3PagerUnref(pFromPage); + } + } + + if( pToPage ) sqlite3PagerUnref(pToPage); + } + } + + /* If things have worked so far, the database file may need to be + ** truncated. The complex part is that it may need to be truncated to + ** a size that is not an integer multiple of nToPageSize - the current + ** page size used by the pager associated with B-Tree pTo. + ** + ** For example, say the page-size of pTo is 2048 bytes and the original + ** number of pages is 5 (10 KB file). If pFrom has a page size of 1024 + ** bytes and 9 pages, then the file needs to be truncated to 9KB. + */ + if( rc==SQLITE_OK ){ + if( nFromPageSize!=nToPageSize ){ + sqlite3_file *pFile = sqlite3PagerFile(pBtTo->pPager); + i64 iSize = (i64)nFromPageSize * (i64)nFromPage; + i64 iNow = (i64)((nToPage>nNewPage)?nToPage:nNewPage) * (i64)nToPageSize; + i64 iPending = ((i64)PENDING_BYTE_PAGE(pBtTo)-1) *(i64)nToPageSize; + + assert( iSize<=iNow ); + + /* Commit phase one syncs the journal file associated with pTo + ** containing the original data. It does not sync the database file + ** itself. After doing this it is safe to use OsTruncate() and other + ** file APIs on the database file directly. + */ + pBtTo->db = pTo->db; + rc = sqlite3PagerCommitPhaseOne(pBtTo->pPager, 0, 0, 1); + if( iSize<iNow && rc==SQLITE_OK ){ + rc = sqlite3OsTruncate(pFile, iSize); + } + + /* The loop that copied data from database pFrom to pTo did not + ** populate the locking page of database pTo. If the page-size of + ** pFrom is smaller than that of pTo, this means some data will + ** not have been copied. + ** + ** This block copies the missing data from database pFrom to pTo + ** using file APIs. This is safe because at this point we know that + ** all of the original data from pTo has been synced into the + ** journal file. At this point it would be safe to do anything at + ** all to the database file except truncate it to zero bytes. + */ + if( rc==SQLITE_OK && nFromPageSize<nToPageSize && iSize>iPending){ + i64 iOff; + for( + iOff=iPending; + rc==SQLITE_OK && iOff<(iPending+nToPageSize); + iOff += nFromPageSize + ){ + DbPage *pFromPage = 0; + Pgno iFrom = (iOff/nFromPageSize)+1; + + if( iFrom==PENDING_BYTE_PAGE(pBtFrom) || iFrom>nFromPage ){ + continue; + } + + rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage); + if( rc==SQLITE_OK ){ + char *zFrom = sqlite3PagerGetData(pFromPage); + rc = sqlite3OsWrite(pFile, zFrom, nFromPageSize, iOff); + sqlite3PagerUnref(pFromPage); + } + } + } + + /* Sync the database file */ + if( rc==SQLITE_OK ){ + rc = sqlite3PagerSync(pBtTo->pPager); + } + }else{ + rc = sqlite3PagerTruncate(pBtTo->pPager, nNewPage); + } + if( rc==SQLITE_OK ){ + pBtTo->pageSizeFixed = 0; + } + } + + if( rc ){ + sqlite3BtreeRollback(pTo); + } + + return rc; +} +SQLITE_PRIVATE int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ + int rc; + sqlite3BtreeEnter(pTo); + sqlite3BtreeEnter(pFrom); + rc = btreeCopyFile(pTo, pFrom); + sqlite3BtreeLeave(pFrom); + sqlite3BtreeLeave(pTo); + return rc; +} + +#endif /* SQLITE_OMIT_VACUUM */ + +/* +** Return non-zero if a transaction is active. +*/ +SQLITE_PRIVATE int sqlite3BtreeIsInTrans(Btree *p){ + assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); + return (p && (p->inTrans==TRANS_WRITE)); +} + +/* +** Return non-zero if a statement transaction is active. +*/ +SQLITE_PRIVATE int sqlite3BtreeIsInStmt(Btree *p){ + assert( sqlite3BtreeHoldsMutex(p) ); + return (p->pBt && p->pBt->inStmt); +} + +/* +** Return non-zero if a read (or write) transaction is active. +*/ +SQLITE_PRIVATE int sqlite3BtreeIsInReadTrans(Btree *p){ + assert( sqlite3_mutex_held(p->db->mutex) ); + return (p && (p->inTrans!=TRANS_NONE)); +} + +/* +** This function returns a pointer to a blob of memory associated with +** a single shared-btree. The memory is used by client code for its own +** purposes (for example, to store a high-level schema associated with +** the shared-btree). The btree layer manages reference counting issues. +** +** The first time this is called on a shared-btree, nBytes bytes of memory +** are allocated, zeroed, and returned to the caller. For each subsequent +** call the nBytes parameter is ignored and a pointer to the same blob +** of memory returned. +** +** Just before the shared-btree is closed, the function passed as the +** xFree argument when the memory allocation was made is invoked on the +** blob of allocated memory. This function should not call sqlite3_free() +** on the memory, the btree layer does that. +*/ +SQLITE_PRIVATE void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ + BtShared *pBt = p->pBt; + sqlite3BtreeEnter(p); + if( !pBt->pSchema ){ + pBt->pSchema = sqlite3MallocZero(nBytes); + pBt->xFreeSchema = xFree; + } + sqlite3BtreeLeave(p); + return pBt->pSchema; +} + +/* +** Return true if another user of the same shared btree as the argument +** handle holds an exclusive lock on the sqlite_master table. +*/ +SQLITE_PRIVATE int sqlite3BtreeSchemaLocked(Btree *p){ + int rc; + assert( sqlite3_mutex_held(p->db->mutex) ); + sqlite3BtreeEnter(p); + rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK); + sqlite3BtreeLeave(p); + return rc; +} + + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** Obtain a lock on the table whose root page is iTab. The +** lock is a write lock if isWritelock is true or a read lock +** if it is false. +*/ +SQLITE_PRIVATE int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ + int rc = SQLITE_OK; + if( p->sharable ){ + u8 lockType = READ_LOCK + isWriteLock; + assert( READ_LOCK+1==WRITE_LOCK ); + assert( isWriteLock==0 || isWriteLock==1 ); + sqlite3BtreeEnter(p); + rc = queryTableLock(p, iTab, lockType); + if( rc==SQLITE_OK ){ + rc = lockTable(p, iTab, lockType); + } + sqlite3BtreeLeave(p); + } + return rc; +} +#endif + +#ifndef SQLITE_OMIT_INCRBLOB +/* +** Argument pCsr must be a cursor opened for writing on an +** INTKEY table currently pointing at a valid table entry. +** This function modifies the data stored as part of that entry. +** Only the data content may only be modified, it is not possible +** to change the length of the data stored. +*/ +SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ + assert( cursorHoldsMutex(pCsr) ); + assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); + assert(pCsr->isIncrblobHandle); + if( pCsr->eState>=CURSOR_REQUIRESEEK ){ + if( pCsr->eState==CURSOR_FAULT ){ + return pCsr->skip; + }else{ + return SQLITE_ABORT; + } + } + + /* Check some preconditions: + ** (a) the cursor is open for writing, + ** (b) there is no read-lock on the table being modified and + ** (c) the cursor points at a valid row of an intKey table. + */ + if( !pCsr->wrFlag ){ + return SQLITE_READONLY; + } + assert( !pCsr->pBt->readOnly + && pCsr->pBt->inTransaction==TRANS_WRITE ); + if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr) ){ + return SQLITE_LOCKED; /* The table pCur points to has a read lock */ + } + if( pCsr->eState==CURSOR_INVALID || !pCsr->pPage->intKey ){ + return SQLITE_ERROR; + } + + return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1); +} + +/* +** Set a flag on this cursor to cache the locations of pages from the +** overflow list for the current row. This is used by cursors opened +** for incremental blob IO only. +** +** This function sets a flag only. The actual page location cache +** (stored in BtCursor.aOverflow[]) is allocated and used by function +** accessPayload() (the worker function for sqlite3BtreeData() and +** sqlite3BtreePutData()). +*/ +SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *pCur){ + assert( cursorHoldsMutex(pCur) ); + assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); + assert(!pCur->isIncrblobHandle); + assert(!pCur->aOverflow); + pCur->isIncrblobHandle = 1; +} +#endif + +/************** End of btree.c ***********************************************/ +/************** Begin file vdbefifo.c ****************************************/ +/* +** 2005 June 16 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file implements a FIFO queue of rowids used for processing +** UPDATE and DELETE statements. +*/ + +/* +** Constants FIFOSIZE_FIRST and FIFOSIZE_MAX are the initial +** number of entries in a fifo page and the maximum number of +** entries in a fifo page. +*/ +#define FIFOSIZE_FIRST (((128-sizeof(FifoPage))/8)+1) +#ifdef SQLITE_MALLOC_SOFT_LIMIT +# define FIFOSIZE_MAX (((SQLITE_MALLOC_SOFT_LIMIT-sizeof(FifoPage))/8)+1) +#else +# define FIFOSIZE_MAX (((262144-sizeof(FifoPage))/8)+1) +#endif + +/* +** Allocate a new FifoPage and return a pointer to it. Return NULL if +** we run out of memory. Leave space on the page for nEntry entries. +*/ +static FifoPage *allocateFifoPage(int nEntry){ + FifoPage *pPage; + if( nEntry>FIFOSIZE_MAX ){ + nEntry = FIFOSIZE_MAX; + } + pPage = sqlite3_malloc( sizeof(FifoPage) + sizeof(i64)*(nEntry-1) ); + if( pPage ){ + pPage->nSlot = nEntry; + pPage->iWrite = 0; + pPage->iRead = 0; + pPage->pNext = 0; + } + return pPage; +} + +/* +** Initialize a Fifo structure. +*/ +SQLITE_PRIVATE void sqlite3VdbeFifoInit(Fifo *pFifo){ + memset(pFifo, 0, sizeof(*pFifo)); +} + +/* +** Push a single 64-bit integer value into the Fifo. Return SQLITE_OK +** normally. SQLITE_NOMEM is returned if we are unable to allocate +** memory. +*/ +SQLITE_PRIVATE int sqlite3VdbeFifoPush(Fifo *pFifo, i64 val){ + FifoPage *pPage; + pPage = pFifo->pLast; + if( pPage==0 ){ + pPage = pFifo->pLast = pFifo->pFirst = allocateFifoPage(FIFOSIZE_FIRST); + if( pPage==0 ){ + return SQLITE_NOMEM; + } + }else if( pPage->iWrite>=pPage->nSlot ){ + pPage->pNext = allocateFifoPage(pFifo->nEntry); + if( pPage->pNext==0 ){ + return SQLITE_NOMEM; + } + pPage = pFifo->pLast = pPage->pNext; + } + pPage->aSlot[pPage->iWrite++] = val; + pFifo->nEntry++; + return SQLITE_OK; +} + +/* +** Extract a single 64-bit integer value from the Fifo. The integer +** extracted is the one least recently inserted. If the Fifo is empty +** return SQLITE_DONE. +*/ +SQLITE_PRIVATE int sqlite3VdbeFifoPop(Fifo *pFifo, i64 *pVal){ + FifoPage *pPage; + if( pFifo->nEntry==0 ){ + return SQLITE_DONE; + } + assert( pFifo->nEntry>0 ); + pPage = pFifo->pFirst; + assert( pPage!=0 ); + assert( pPage->iWrite>pPage->iRead ); + assert( pPage->iWrite<=pPage->nSlot ); + assert( pPage->iRead<pPage->nSlot ); + assert( pPage->iRead>=0 ); + *pVal = pPage->aSlot[pPage->iRead++]; + pFifo->nEntry--; + if( pPage->iRead>=pPage->iWrite ){ + pFifo->pFirst = pPage->pNext; + sqlite3_free(pPage); + if( pFifo->nEntry==0 ){ + assert( pFifo->pLast==pPage ); + pFifo->pLast = 0; + }else{ + assert( pFifo->pFirst!=0 ); + } + }else{ + assert( pFifo->nEntry>0 ); + } + return SQLITE_OK; +} + +/* +** Delete all information from a Fifo object. Free all memory held +** by the Fifo. +*/ +SQLITE_PRIVATE void sqlite3VdbeFifoClear(Fifo *pFifo){ + FifoPage *pPage, *pNextPage; + for(pPage=pFifo->pFirst; pPage; pPage=pNextPage){ + pNextPage = pPage->pNext; + sqlite3_free(pPage); + } + sqlite3VdbeFifoInit(pFifo); +} + +/************** End of vdbefifo.c ********************************************/ +/************** Begin file vdbemem.c *****************************************/ +/* +** 2004 May 26 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains code use to manipulate "Mem" structure. A "Mem" +** stores a single value in the VDBE. Mem is an opaque structure visible +** only within the VDBE. Interface routines refer to a Mem using the +** name sqlite_value +*/ + +/* +** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) +** P if required. +*/ +#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) + +/* +** If pMem is an object with a valid string representation, this routine +** ensures the internal encoding for the string representation is +** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. +** +** If pMem is not a string object, or the encoding of the string +** representation is already stored using the requested encoding, then this +** routine is a no-op. +** +** SQLITE_OK is returned if the conversion is successful (or not required). +** SQLITE_NOMEM may be returned if a malloc() fails during conversion +** between formats. +*/ +SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ + int rc; + if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ + return SQLITE_OK; + } + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); +#ifdef SQLITE_OMIT_UTF16 + return SQLITE_ERROR; +#else + + /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, + ** then the encoding of the value may not have changed. + */ + rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); + assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); + assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); + assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); + return rc; +#endif +} + +/* +** Make sure pMem->z points to a writable allocation of at least +** n bytes. +** +** If the memory cell currently contains string or blob data +** and the third argument passed to this function is true, the +** current content of the cell is preserved. Otherwise, it may +** be discarded. +** +** This function sets the MEM_Dyn flag and clears any xDel callback. +** It also clears MEM_Ephem and MEM_Static. If the preserve flag is +** not set, Mem.n is zeroed. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ + assert( 1 >= + ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + + (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + + ((pMem->flags&MEM_Ephem) ? 1 : 0) + + ((pMem->flags&MEM_Static) ? 1 : 0) + ); + + if( !pMem->zMalloc || sqlite3MallocSize(pMem->zMalloc)<n ){ + n = (n>32?n:32); + if( preserve && pMem->z==pMem->zMalloc ){ + pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); + if( !pMem->z ){ + pMem->flags = MEM_Null; + } + preserve = 0; + }else{ + sqlite3_free(pMem->zMalloc); + pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); + } + } + + if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ + memcpy(pMem->zMalloc, pMem->z, pMem->n); + } + if( pMem->flags&MEM_Dyn && pMem->xDel ){ + pMem->xDel((void *)(pMem->z)); + } + + pMem->z = pMem->zMalloc; + pMem->flags &= ~(MEM_Ephem|MEM_Static); + pMem->xDel = 0; + return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); +} + +/* +** Make the given Mem object MEM_Dyn. +** +** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemDynamicify(Mem *pMem){ + int f; + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + expandBlob(pMem); + f = pMem->flags; + if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ + if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ + return SQLITE_NOMEM; + } + pMem->z[pMem->n] = 0; + pMem->z[pMem->n+1] = 0; + pMem->flags |= MEM_Term; + } + + return SQLITE_OK; +} + +/* +** If the given Mem* has a zero-filled tail, turn it into an ordinary +** blob stored in dynamically allocated space. +*/ +#ifndef SQLITE_OMIT_INCRBLOB +SQLITE_PRIVATE int sqlite3VdbeMemExpandBlob(Mem *pMem){ + if( pMem->flags & MEM_Zero ){ + int nByte; + assert( pMem->flags&MEM_Blob ); + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + + /* Set nByte to the number of bytes required to store the expanded blob. */ + nByte = pMem->n + pMem->u.i; + if( nByte<=0 ){ + nByte = 1; + } + if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ + return SQLITE_NOMEM; + } + + memset(&pMem->z[pMem->n], 0, pMem->u.i); + pMem->n += pMem->u.i; + pMem->flags &= ~(MEM_Zero|MEM_Term); + } + return SQLITE_OK; +} +#endif + + +/* +** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes +** of the Mem.z[] array can be modified. +** +** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemMakeWriteable(Mem *pMem){ + return sqlite3VdbeMemDynamicify(pMem); +} + +/* +** Make sure the given Mem is \u0000 terminated. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem *pMem){ + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ + return SQLITE_OK; /* Nothing to do */ + } + if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ + return SQLITE_NOMEM; + } + pMem->z[pMem->n] = 0; + pMem->z[pMem->n+1] = 0; + pMem->flags |= MEM_Term; + return SQLITE_OK; +} + +/* +** Add MEM_Str to the set of representations for the given Mem. Numbers +** are converted using sqlite3_snprintf(). Converting a BLOB to a string +** is a no-op. +** +** Existing representations MEM_Int and MEM_Real are *not* invalidated. +** +** A MEM_Null value will never be passed to this function. This function is +** used for converting values to text for returning to the user (i.e. via +** sqlite3_value_text()), or for ensuring that values to be used as btree +** keys are strings. In the former case a NULL pointer is returned the +** user and the later is an internal programming error. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemStringify(Mem *pMem, int enc){ + int rc = SQLITE_OK; + int fg = pMem->flags; + const int nByte = 32; + + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + assert( !(fg&MEM_Zero) ); + assert( !(fg&(MEM_Str|MEM_Blob)) ); + assert( fg&(MEM_Int|MEM_Real) ); + + if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ + return SQLITE_NOMEM; + } + + /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 + ** string representation of the value. Then, if the required encoding + ** is UTF-16le or UTF-16be do a translation. + ** + ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. + */ + if( fg & MEM_Int ){ + sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); + }else{ + assert( fg & MEM_Real ); + sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); + } + pMem->n = strlen(pMem->z); + pMem->enc = SQLITE_UTF8; + pMem->flags |= MEM_Str|MEM_Term; + sqlite3VdbeChangeEncoding(pMem, enc); + return rc; +} + +/* +** Memory cell pMem contains the context of an aggregate function. +** This routine calls the finalize method for that function. The +** result of the aggregate is stored back into pMem. +** +** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK +** otherwise. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ + int rc = SQLITE_OK; + if( pFunc && pFunc->xFinalize ){ + sqlite3_context ctx; + assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + ctx.s.flags = MEM_Null; + ctx.s.db = pMem->db; + ctx.s.zMalloc = 0; + ctx.pMem = pMem; + ctx.pFunc = pFunc; + ctx.isError = 0; + pFunc->xFinalize(&ctx); + assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel ); + sqlite3_free(pMem->zMalloc); + *pMem = ctx.s; + rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK); + } + return rc; +} + +/* +** If the memory cell contains a string value that must be freed by +** invoking an external callback, free it now. Calling this function +** does not free any Mem.zMalloc buffer. +*/ +SQLITE_PRIVATE void sqlite3VdbeMemReleaseExternal(Mem *p){ + assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); + if( p->flags&MEM_Agg ){ + sqlite3VdbeMemFinalize(p, p->u.pDef); + assert( (p->flags & MEM_Agg)==0 ); + sqlite3VdbeMemRelease(p); + }else if( p->flags&MEM_Dyn && p->xDel ){ + p->xDel((void *)p->z); + p->xDel = 0; + } +} + +/* +** Release any memory held by the Mem. This may leave the Mem in an +** inconsistent state, for example with (Mem.z==0) and +** (Mem.type==SQLITE_TEXT). +*/ +SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p){ + sqlite3VdbeMemReleaseExternal(p); + sqlite3_free(p->zMalloc); + p->z = 0; + p->zMalloc = 0; + p->xDel = 0; +} + +/* +** Convert a 64-bit IEEE double into a 64-bit signed integer. +** If the double is too large, return 0x8000000000000000. +** +** Most systems appear to do this simply by assigning +** variables and without the extra range tests. But +** there are reports that windows throws an expection +** if the floating point value is out of range. (See ticket #2880.) +** Because we do not completely understand the problem, we will +** take the conservative approach and always do range tests +** before attempting the conversion. +*/ +static i64 doubleToInt64(double r){ + /* + ** Many compilers we encounter do not define constants for the + ** minimum and maximum 64-bit integers, or they define them + ** inconsistently. And many do not understand the "LL" notation. + ** So we define our own static constants here using nothing + ** larger than a 32-bit integer constant. + */ + static const i64 maxInt = LARGEST_INT64; + static const i64 minInt = SMALLEST_INT64; + + if( r<(double)minInt ){ + return minInt; + }else if( r>(double)maxInt ){ + return minInt; + }else{ + return (i64)r; + } +} + +/* +** Return some kind of integer value which is the best we can do +** at representing the value that *pMem describes as an integer. +** If pMem is an integer, then the value is exact. If pMem is +** a floating-point then the value returned is the integer part. +** If pMem is a string or blob, then we make an attempt to convert +** it into a integer and return that. If pMem is NULL, return 0. +** +** If pMem is a string, its encoding might be changed. +*/ +SQLITE_PRIVATE i64 sqlite3VdbeIntValue(Mem *pMem){ + int flags; + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + flags = pMem->flags; + if( flags & MEM_Int ){ + return pMem->u.i; + }else if( flags & MEM_Real ){ + return doubleToInt64(pMem->r); + }else if( flags & (MEM_Str|MEM_Blob) ){ + i64 value; + pMem->flags |= MEM_Str; + if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) + || sqlite3VdbeMemNulTerminate(pMem) ){ + return 0; + } + assert( pMem->z ); + sqlite3Atoi64(pMem->z, &value); + return value; + }else{ + return 0; + } +} + +/* +** Return the best representation of pMem that we can get into a +** double. If pMem is already a double or an integer, return its +** value. If it is a string or blob, try to convert it to a double. +** If it is a NULL, return 0.0. +*/ +SQLITE_PRIVATE double sqlite3VdbeRealValue(Mem *pMem){ + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + if( pMem->flags & MEM_Real ){ + return pMem->r; + }else if( pMem->flags & MEM_Int ){ + return (double)pMem->u.i; + }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ + double val = 0.0; + pMem->flags |= MEM_Str; + if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) + || sqlite3VdbeMemNulTerminate(pMem) ){ + return 0.0; + } + assert( pMem->z ); + sqlite3AtoF(pMem->z, &val); + return val; + }else{ + return 0.0; + } +} + +/* +** The MEM structure is already a MEM_Real. Try to also make it a +** MEM_Int if we can. +*/ +SQLITE_PRIVATE void sqlite3VdbeIntegerAffinity(Mem *pMem){ + assert( pMem->flags & MEM_Real ); + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + + pMem->u.i = doubleToInt64(pMem->r); + if( pMem->r==(double)pMem->u.i ){ + pMem->flags |= MEM_Int; + } +} + +static void setTypeFlag(Mem *pMem, int f){ + MemSetTypeFlag(pMem, f); +} + +/* +** Convert pMem to type integer. Invalidate any prior representations. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemIntegerify(Mem *pMem){ + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + pMem->u.i = sqlite3VdbeIntValue(pMem); + setTypeFlag(pMem, MEM_Int); + return SQLITE_OK; +} + +/* +** Convert pMem so that it is of type MEM_Real. +** Invalidate any prior representations. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemRealify(Mem *pMem){ + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + pMem->r = sqlite3VdbeRealValue(pMem); + setTypeFlag(pMem, MEM_Real); + return SQLITE_OK; +} + +/* +** Convert pMem so that it has types MEM_Real or MEM_Int or both. +** Invalidate any prior representations. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemNumerify(Mem *pMem){ + double r1, r2; + i64 i; + assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); + assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + r1 = sqlite3VdbeRealValue(pMem); + i = doubleToInt64(r1); + r2 = (double)i; + if( r1==r2 ){ + sqlite3VdbeMemIntegerify(pMem); + }else{ + pMem->r = r1; + setTypeFlag(pMem, MEM_Real); + } + return SQLITE_OK; +} + +/* +** Delete any previous value and set the value stored in *pMem to NULL. +*/ +SQLITE_PRIVATE void sqlite3VdbeMemSetNull(Mem *pMem){ + setTypeFlag(pMem, MEM_Null); + pMem->type = SQLITE_NULL; +} + +/* +** Delete any previous value and set the value to be a BLOB of length +** n containing all zeros. +*/ +SQLITE_PRIVATE void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ + sqlite3VdbeMemRelease(pMem); + setTypeFlag(pMem, MEM_Blob); + pMem->flags = MEM_Blob|MEM_Zero; + pMem->type = SQLITE_BLOB; + pMem->n = 0; + if( n<0 ) n = 0; + pMem->u.i = n; + pMem->enc = SQLITE_UTF8; +} + +/* +** Delete any previous value and set the value stored in *pMem to val, +** manifest type INTEGER. +*/ +SQLITE_PRIVATE void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ + sqlite3VdbeMemRelease(pMem); + pMem->u.i = val; + pMem->flags = MEM_Int; + pMem->type = SQLITE_INTEGER; +} + +/* +** Delete any previous value and set the value stored in *pMem to val, +** manifest type REAL. +*/ +SQLITE_PRIVATE void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ + if( sqlite3IsNaN(val) ){ + sqlite3VdbeMemSetNull(pMem); + }else{ + sqlite3VdbeMemRelease(pMem); + pMem->r = val; + pMem->flags = MEM_Real; + pMem->type = SQLITE_FLOAT; + } +} + +/* +** Return true if the Mem object contains a TEXT or BLOB that is +** too large - whose size exceeds SQLITE_MAX_LENGTH. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem *p){ + assert( p->db!=0 ); + if( p->flags & (MEM_Str|MEM_Blob) ){ + int n = p->n; + if( p->flags & MEM_Zero ){ + n += p->u.i; + } + return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; + } + return 0; +} + +/* +** Size of struct Mem not including the Mem.zMalloc member. +*/ +#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) + +/* +** Make an shallow copy of pFrom into pTo. Prior contents of +** pTo are freed. The pFrom->z field is not duplicated. If +** pFrom->z is used, then pTo->z points to the same thing as pFrom->z +** and flags gets srcType (either MEM_Ephem or MEM_Static). +*/ +SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ + sqlite3VdbeMemReleaseExternal(pTo); + memcpy(pTo, pFrom, MEMCELLSIZE); + pTo->xDel = 0; + if( (pFrom->flags&MEM_Dyn)!=0 || pFrom->z==pFrom->zMalloc ){ + pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); + assert( srcType==MEM_Ephem || srcType==MEM_Static ); + pTo->flags |= srcType; + } +} + +/* +** Make a full copy of pFrom into pTo. Prior contents of pTo are +** freed before the copy is made. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ + int rc = SQLITE_OK; + + sqlite3VdbeMemReleaseExternal(pTo); + memcpy(pTo, pFrom, MEMCELLSIZE); + pTo->flags &= ~MEM_Dyn; + + if( pTo->flags&(MEM_Str|MEM_Blob) ){ + if( 0==(pFrom->flags&MEM_Static) ){ + pTo->flags |= MEM_Ephem; + rc = sqlite3VdbeMemMakeWriteable(pTo); + } + } + + return rc; +} + +/* +** Transfer the contents of pFrom to pTo. Any existing value in pTo is +** freed. If pFrom contains ephemeral data, a copy is made. +** +** pFrom contains an SQL NULL when this routine returns. +*/ +SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ + assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); + assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); + assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); + + sqlite3VdbeMemRelease(pTo); + memcpy(pTo, pFrom, sizeof(Mem)); + pFrom->flags = MEM_Null; + pFrom->xDel = 0; + pFrom->zMalloc = 0; +} + +/* +** Change the value of a Mem to be a string or a BLOB. +** +** The memory management strategy depends on the value of the xDel +** parameter. If the value passed is SQLITE_TRANSIENT, then the +** string is copied into a (possibly existing) buffer managed by the +** Mem structure. Otherwise, any existing buffer is freed and the +** pointer copied. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemSetStr( + Mem *pMem, /* Memory cell to set to string value */ + const char *z, /* String pointer */ + int n, /* Bytes in string, or negative */ + u8 enc, /* Encoding of z. 0 for BLOBs */ + void (*xDel)(void*) /* Destructor function */ +){ + int nByte = n; /* New value for pMem->n */ + int flags = 0; /* New value for pMem->flags */ + + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); + + /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ + if( !z ){ + sqlite3VdbeMemSetNull(pMem); + return SQLITE_OK; + } + + flags = (enc==0?MEM_Blob:MEM_Str); + if( nByte<0 ){ + assert( enc!=0 ); + if( enc==SQLITE_UTF8 ){ + for(nByte=0; z[nByte]; nByte++){} + }else{ + for(nByte=0; z[nByte] | z[nByte+1]; nByte+=2){} + } + flags |= MEM_Term; + } + + /* The following block sets the new values of Mem.z and Mem.xDel. It + ** also sets a flag in local variable "flags" to indicate the memory + ** management (one of MEM_Dyn or MEM_Static). + */ + if( xDel==SQLITE_TRANSIENT ){ + int nAlloc = nByte; + if( flags&MEM_Term ){ + nAlloc += (enc==SQLITE_UTF8?1:2); + } + if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ + return SQLITE_NOMEM; + } + memcpy(pMem->z, z, nAlloc); + }else{ + sqlite3VdbeMemRelease(pMem); + pMem->z = (char *)z; + pMem->xDel = xDel; + flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); + } + + pMem->n = nByte; + pMem->flags = flags; + pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); + pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); + +#ifndef SQLITE_OMIT_UTF16 + if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ + return SQLITE_NOMEM; + } +#endif + + return SQLITE_OK; +} + +/* +** Compare the values contained by the two memory cells, returning +** negative, zero or positive if pMem1 is less than, equal to, or greater +** than pMem2. Sorting order is NULL's first, followed by numbers (integers +** and reals) sorted numerically, followed by text ordered by the collating +** sequence pColl and finally blob's ordered by memcmp(). +** +** Two NULL values are considered equal by this function. +*/ +SQLITE_PRIVATE int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ + int rc; + int f1, f2; + int combined_flags; + + /* Interchange pMem1 and pMem2 if the collating sequence specifies + ** DESC order. + */ + f1 = pMem1->flags; + f2 = pMem2->flags; + combined_flags = f1|f2; + + /* If one value is NULL, it is less than the other. If both values + ** are NULL, return 0. + */ + if( combined_flags&MEM_Null ){ + return (f2&MEM_Null) - (f1&MEM_Null); + } + + /* If one value is a number and the other is not, the number is less. + ** If both are numbers, compare as reals if one is a real, or as integers + ** if both values are integers. + */ + if( combined_flags&(MEM_Int|MEM_Real) ){ + if( !(f1&(MEM_Int|MEM_Real)) ){ + return 1; + } + if( !(f2&(MEM_Int|MEM_Real)) ){ + return -1; + } + if( (f1 & f2 & MEM_Int)==0 ){ + double r1, r2; + if( (f1&MEM_Real)==0 ){ + r1 = pMem1->u.i; + }else{ + r1 = pMem1->r; + } + if( (f2&MEM_Real)==0 ){ + r2 = pMem2->u.i; + }else{ + r2 = pMem2->r; + } + if( r1<r2 ) return -1; + if( r1>r2 ) return 1; + return 0; + }else{ + assert( f1&MEM_Int ); + assert( f2&MEM_Int ); + if( pMem1->u.i < pMem2->u.i ) return -1; + if( pMem1->u.i > pMem2->u.i ) return 1; + return 0; + } + } + + /* If one value is a string and the other is a blob, the string is less. + ** If both are strings, compare using the collating functions. + */ + if( combined_flags&MEM_Str ){ + if( (f1 & MEM_Str)==0 ){ + return 1; + } + if( (f2 & MEM_Str)==0 ){ + return -1; + } + + assert( pMem1->enc==pMem2->enc ); + assert( pMem1->enc==SQLITE_UTF8 || + pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); + + /* The collation sequence must be defined at this point, even if + ** the user deletes the collation sequence after the vdbe program is + ** compiled (this was not always the case). + */ + assert( !pColl || pColl->xCmp ); + + if( pColl ){ + if( pMem1->enc==pColl->enc ){ + /* The strings are already in the correct encoding. Call the + ** comparison function directly */ + return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); + }else{ + u8 origEnc = pMem1->enc; + const void *v1, *v2; + int n1, n2; + /* Convert the strings into the encoding that the comparison + ** function expects */ + v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc); + n1 = v1==0 ? 0 : pMem1->n; + assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) ); + v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc); + n2 = v2==0 ? 0 : pMem2->n; + assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) ); + /* Do the comparison */ + rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); + /* Convert the strings back into the database encoding */ + sqlite3ValueText((sqlite3_value*)pMem1, origEnc); + sqlite3ValueText((sqlite3_value*)pMem2, origEnc); + return rc; + } + } + /* If a NULL pointer was passed as the collate function, fall through + ** to the blob case and use memcmp(). */ + } + + /* Both values must be blobs. Compare using memcmp(). */ + rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); + if( rc==0 ){ + rc = pMem1->n - pMem2->n; + } + return rc; +} + +/* +** Move data out of a btree key or data field and into a Mem structure. +** The data or key is taken from the entry that pCur is currently pointing +** to. offset and amt determine what portion of the data or key to retrieve. +** key is true to get the key or false to get data. The result is written +** into the pMem element. +** +** The pMem structure is assumed to be uninitialized. Any prior content +** is overwritten without being freed. +** +** If this routine fails for any reason (malloc returns NULL or unable +** to read from the disk) then the pMem is left in an inconsistent state. +*/ +SQLITE_PRIVATE int sqlite3VdbeMemFromBtree( + BtCursor *pCur, /* Cursor pointing at record to retrieve. */ + int offset, /* Offset from the start of data to return bytes from. */ + int amt, /* Number of bytes to return. */ + int key, /* If true, retrieve from the btree key, not data. */ + Mem *pMem /* OUT: Return data in this Mem structure. */ +){ + char *zData; /* Data from the btree layer */ + int available = 0; /* Number of bytes available on the local btree page */ + sqlite3 *db; /* Database connection */ + int rc = SQLITE_OK; + + db = sqlite3BtreeCursorDb(pCur); + assert( sqlite3_mutex_held(db->mutex) ); + if( key ){ + zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); + }else{ + zData = (char *)sqlite3BtreeDataFetch(pCur, &available); + } + assert( zData!=0 ); + + if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){ + sqlite3VdbeMemRelease(pMem); + pMem->z = &zData[offset]; + pMem->flags = MEM_Blob|MEM_Ephem; + }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ + pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; + pMem->enc = 0; + pMem->type = SQLITE_BLOB; + if( key ){ + rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); + }else{ + rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); + } + pMem->z[amt] = 0; + pMem->z[amt+1] = 0; + if( rc!=SQLITE_OK ){ + sqlite3VdbeMemRelease(pMem); + } + } + pMem->n = amt; + + return rc; +} + +#if 0 +/* +** Perform various checks on the memory cell pMem. An assert() will +** fail if pMem is internally inconsistent. +*/ +SQLITE_PRIVATE void sqlite3VdbeMemSanity(Mem *pMem){ + int flags = pMem->flags; + assert( flags!=0 ); /* Must define some type */ + if( flags & (MEM_Str|MEM_Blob) ){ + int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); + assert( x!=0 ); /* Strings must define a string subtype */ + assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ + assert( pMem->z!=0 ); /* Strings must have a value */ + /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ + assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort ); + assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort ); + /* No destructor unless there is MEM_Dyn */ + assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 ); + + if( (flags & MEM_Str) ){ + assert( pMem->enc==SQLITE_UTF8 || + pMem->enc==SQLITE_UTF16BE || + pMem->enc==SQLITE_UTF16LE + ); + /* If the string is UTF-8 encoded and nul terminated, then pMem->n + ** must be the length of the string. (Later:) If the database file + ** has been corrupted, '\000' characters might have been inserted + ** into the middle of the string. In that case, the strlen() might + ** be less. + */ + if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ + assert( strlen(pMem->z)<=pMem->n ); + assert( pMem->z[pMem->n]==0 ); + } + } + }else{ + /* Cannot define a string subtype for non-string objects */ + assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); + assert( pMem->xDel==0 ); + } + /* MEM_Null excludes all other types */ + assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 + || (pMem->flags&MEM_Null)==0 ); + /* If the MEM is both real and integer, the values are equal */ + assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) + || pMem->r==pMem->u.i ); +} +#endif + +/* This function is only available internally, it is not part of the +** external API. It works in a similar way to sqlite3_value_text(), +** except the data returned is in the encoding specified by the second +** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or +** SQLITE_UTF8. +** +** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. +** If that is the case, then the result must be aligned on an even byte +** boundary. +*/ +SQLITE_PRIVATE const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ + if( !pVal ) return 0; + + assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); + assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); + + if( pVal->flags&MEM_Null ){ + return 0; + } + assert( (MEM_Blob>>3) == MEM_Str ); + pVal->flags |= (pVal->flags & MEM_Blob)>>3; + expandBlob(pVal); + if( pVal->flags&MEM_Str ){ + sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); + if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&(int)pVal->z) ){ + assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); + if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ + return 0; + } + } + sqlite3VdbeMemNulTerminate(pVal); + }else{ + assert( (pVal->flags&MEM_Blob)==0 ); + sqlite3VdbeMemStringify(pVal, enc); + assert( 0==(1&(int)pVal->z) ); + } + assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 + || pVal->db->mallocFailed ); + if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ + return pVal->z; + }else{ + return 0; + } +} + +/* +** Create a new sqlite3_value object. +*/ +SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *db){ + Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); + if( p ){ + p->flags = MEM_Null; + p->type = SQLITE_NULL; + p->db = db; + } + return p; +} + +/* +** Create a new sqlite3_value object, containing the value of pExpr. +** +** This only works for very simple expressions that consist of one constant +** token (i.e. "5", "5.1", "'a string'"). If the expression can +** be converted directly into a value, then the value is allocated and +** a pointer written to *ppVal. The caller is responsible for deallocating +** the value by passing it to sqlite3ValueFree() later on. If the expression +** cannot be converted to a value, then *ppVal is set to NULL. +*/ +SQLITE_PRIVATE int sqlite3ValueFromExpr( + sqlite3 *db, /* The database connection */ + Expr *pExpr, /* The expression to evaluate */ + u8 enc, /* Encoding to use */ + u8 affinity, /* Affinity to use */ + sqlite3_value **ppVal /* Write the new value here */ +){ + int op; + char *zVal = 0; + sqlite3_value *pVal = 0; + + if( !pExpr ){ + *ppVal = 0; + return SQLITE_OK; + } + op = pExpr->op; + + if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ + zVal = sqlite3StrNDup((char*)pExpr->token.z, pExpr->token.n); + pVal = sqlite3ValueNew(db); + if( !zVal || !pVal ) goto no_mem; + sqlite3Dequote(zVal); + sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, sqlite3_free); + if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ + sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc); + }else{ + sqlite3ValueApplyAffinity(pVal, affinity, enc); + } + }else if( op==TK_UMINUS ) { + if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ + pVal->u.i = -1 * pVal->u.i; + pVal->r = -1.0 * pVal->r; + } + } +#ifndef SQLITE_OMIT_BLOB_LITERAL + else if( op==TK_BLOB ){ + int nVal; + assert( pExpr->token.n>=3 ); + assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); + assert( pExpr->token.z[1]=='\'' ); + assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); + pVal = sqlite3ValueNew(db); + nVal = pExpr->token.n - 3; + zVal = (char*)pExpr->token.z + 2; + sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, + 0, sqlite3_free); + } +#endif + + *ppVal = pVal; + return SQLITE_OK; + +no_mem: + db->mallocFailed = 1; + sqlite3_free(zVal); + sqlite3ValueFree(pVal); + *ppVal = 0; + return SQLITE_NOMEM; +} + +/* +** Change the string value of an sqlite3_value object +*/ +SQLITE_PRIVATE void sqlite3ValueSetStr( + sqlite3_value *v, /* Value to be set */ + int n, /* Length of string z */ + const void *z, /* Text of the new string */ + u8 enc, /* Encoding to use */ + void (*xDel)(void*) /* Destructor for the string */ +){ + if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); +} + +/* +** Free an sqlite3_value object +*/ +SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value *v){ + if( !v ) return; + sqlite3VdbeMemRelease((Mem *)v); + sqlite3_free(v); +} + +/* +** Return the number of bytes in the sqlite3_value object assuming +** that it uses the encoding "enc" +*/ +SQLITE_PRIVATE int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ + Mem *p = (Mem*)pVal; + if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ + if( p->flags & MEM_Zero ){ + return p->n+p->u.i; + }else{ + return p->n; + } + } + return 0; +} + +/************** End of vdbemem.c *********************************************/ +/************** Begin file vdbeaux.c *****************************************/ +/* +** 2003 September 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used for creating, destroying, and populating +** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior +** to version 2.8.7, all this code was combined into the vdbe.c source file. +** But that file was getting too big so this subroutines were split out. +** +** $Id: vdbeaux.c,v 1.383 2008/05/13 13:27:34 drh Exp $ +*/ + + + +/* +** When debugging the code generator in a symbolic debugger, one can +** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed +** as they are added to the instruction stream. +*/ +#ifdef SQLITE_DEBUG +SQLITE_PRIVATE int sqlite3VdbeAddopTrace = 0; +#endif + + +/* +** Create a new virtual database engine. +*/ +SQLITE_PRIVATE Vdbe *sqlite3VdbeCreate(sqlite3 *db){ + Vdbe *p; + p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); + if( p==0 ) return 0; + p->db = db; + if( db->pVdbe ){ + db->pVdbe->pPrev = p; + } + p->pNext = db->pVdbe; + p->pPrev = 0; + db->pVdbe = p; + p->magic = VDBE_MAGIC_INIT; + return p; +} + +/* +** Remember the SQL string for a prepared statement. +*/ +SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){ + if( p==0 ) return; + assert( p->zSql==0 ); + p->zSql = sqlite3DbStrNDup(p->db, z, n); +} + +/* +** Return the SQL associated with a prepared statement +*/ +SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){ + return ((Vdbe *)pStmt)->zSql; +} + +/* +** Swap all content between two VDBE structures. +*/ +SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ + Vdbe tmp, *pTmp; + char *zTmp; + int nTmp; + tmp = *pA; + *pA = *pB; + *pB = tmp; + pTmp = pA->pNext; + pA->pNext = pB->pNext; + pB->pNext = pTmp; + pTmp = pA->pPrev; + pA->pPrev = pB->pPrev; + pB->pPrev = pTmp; + zTmp = pA->zSql; + pA->zSql = pB->zSql; + pB->zSql = zTmp; + nTmp = pA->nSql; + pA->nSql = pB->nSql; + pB->nSql = nTmp; +} + +#ifdef SQLITE_DEBUG +/* +** Turn tracing on or off +*/ +SQLITE_PRIVATE void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ + p->trace = trace; +} +#endif + +/* +** Resize the Vdbe.aOp array so that it contains at least N +** elements. +** +** If an out-of-memory error occurs while resizing the array, +** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that +** any opcodes already allocated can be correctly deallocated +** along with the rest of the Vdbe). +*/ +static void resizeOpArray(Vdbe *p, int N){ + VdbeOp *pNew; + pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op)); + if( pNew ){ + p->nOpAlloc = N; + p->aOp = pNew; + } +} + +/* +** Add a new instruction to the list of instructions current in the +** VDBE. Return the address of the new instruction. +** +** Parameters: +** +** p Pointer to the VDBE +** +** op The opcode for this instruction +** +** p1, p2, p3 Operands +** +** Use the sqlite3VdbeResolveLabel() function to fix an address and +** the sqlite3VdbeChangeP4() function to change the value of the P4 +** operand. +*/ +SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ + int i; + VdbeOp *pOp; + + i = p->nOp; + assert( p->magic==VDBE_MAGIC_INIT ); + if( p->nOpAlloc<=i ){ + resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op)); + if( p->db->mallocFailed ){ + return 0; + } + } + p->nOp++; + pOp = &p->aOp[i]; + pOp->opcode = op; + pOp->p5 = 0; + pOp->p1 = p1; + pOp->p2 = p2; + pOp->p3 = p3; + pOp->p4.p = 0; + pOp->p4type = P4_NOTUSED; + p->expired = 0; +#ifdef SQLITE_DEBUG + pOp->zComment = 0; + if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); +#endif +#ifdef VDBE_PROFILE + pOp->cycles = 0; + pOp->cnt = 0; +#endif + return i; +} +SQLITE_PRIVATE int sqlite3VdbeAddOp0(Vdbe *p, int op){ + return sqlite3VdbeAddOp3(p, op, 0, 0, 0); +} +SQLITE_PRIVATE int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ + return sqlite3VdbeAddOp3(p, op, p1, 0, 0); +} +SQLITE_PRIVATE int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ + return sqlite3VdbeAddOp3(p, op, p1, p2, 0); +} + + +/* +** Add an opcode that includes the p4 value as a pointer. +*/ +SQLITE_PRIVATE int sqlite3VdbeAddOp4( + Vdbe *p, /* Add the opcode to this VM */ + int op, /* The new opcode */ + int p1, /* The P1 operand */ + int p2, /* The P2 operand */ + int p3, /* The P3 operand */ + const char *zP4, /* The P4 operand */ + int p4type /* P4 operand type */ +){ + int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); + sqlite3VdbeChangeP4(p, addr, zP4, p4type); + return addr; +} + +/* +** Create a new symbolic label for an instruction that has yet to be +** coded. The symbolic label is really just a negative number. The +** label can be used as the P2 value of an operation. Later, when +** the label is resolved to a specific address, the VDBE will scan +** through its operation list and change all values of P2 which match +** the label into the resolved address. +** +** The VDBE knows that a P2 value is a label because labels are +** always negative and P2 values are suppose to be non-negative. +** Hence, a negative P2 value is a label that has yet to be resolved. +** +** Zero is returned if a malloc() fails. +*/ +SQLITE_PRIVATE int sqlite3VdbeMakeLabel(Vdbe *p){ + int i; + i = p->nLabel++; + assert( p->magic==VDBE_MAGIC_INIT ); + if( i>=p->nLabelAlloc ){ + p->nLabelAlloc = p->nLabelAlloc*2 + 10; + p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, + p->nLabelAlloc*sizeof(p->aLabel[0])); + } + if( p->aLabel ){ + p->aLabel[i] = -1; + } + return -1-i; +} + +/* +** Resolve label "x" to be the address of the next instruction to +** be inserted. The parameter "x" must have been obtained from +** a prior call to sqlite3VdbeMakeLabel(). +*/ +SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){ + int j = -1-x; + assert( p->magic==VDBE_MAGIC_INIT ); + assert( j>=0 && j<p->nLabel ); + if( p->aLabel ){ + p->aLabel[j] = p->nOp; + } +} + +/* +** Loop through the program looking for P2 values that are negative +** on jump instructions. Each such value is a label. Resolve the +** label by setting the P2 value to its correct non-zero value. +** +** This routine is called once after all opcodes have been inserted. +** +** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument +** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by +** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. +** +** This routine also does the following optimization: It scans for +** instructions that might cause a statement rollback. Such instructions +** are: +** +** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. +** * OP_Destroy +** * OP_VUpdate +** * OP_VRename +** +** If no such instruction is found, then every Statement instruction +** is changed to a Noop. In this way, we avoid creating the statement +** journal file unnecessarily. +*/ +static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ + int i; + int nMaxArgs = 0; + Op *pOp; + int *aLabel = p->aLabel; + int doesStatementRollback = 0; + int hasStatementBegin = 0; + for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ + u8 opcode = pOp->opcode; + + if( opcode==OP_Function ){ + if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; + }else if( opcode==OP_AggStep +#ifndef SQLITE_OMIT_VIRTUALTABLE + || opcode==OP_VUpdate +#endif + ){ + if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; + } + if( opcode==OP_Halt ){ + if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){ + doesStatementRollback = 1; + } + }else if( opcode==OP_Statement ){ + hasStatementBegin = 1; + }else if( opcode==OP_Destroy ){ + doesStatementRollback = 1; +#ifndef SQLITE_OMIT_VIRTUALTABLE + }else if( opcode==OP_VUpdate || opcode==OP_VRename ){ + doesStatementRollback = 1; + }else if( opcode==OP_VFilter ){ + int n; + assert( p->nOp - i >= 3 ); + assert( pOp[-1].opcode==OP_Integer ); + n = pOp[-1].p1; + if( n>nMaxArgs ) nMaxArgs = n; +#endif + } + + if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){ + assert( -1-pOp->p2<p->nLabel ); + pOp->p2 = aLabel[-1-pOp->p2]; + } + } + sqlite3_free(p->aLabel); + p->aLabel = 0; + + *pMaxFuncArgs = nMaxArgs; + + /* If we never rollback a statement transaction, then statement + ** transactions are not needed. So change every OP_Statement + ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive() + ** which can be expensive on some platforms. + */ + if( hasStatementBegin && !doesStatementRollback ){ + for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ + if( pOp->opcode==OP_Statement ){ + pOp->opcode = OP_Noop; + } + } + } +} + +/* +** Return the address of the next instruction to be inserted. +*/ +SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){ + assert( p->magic==VDBE_MAGIC_INIT ); + return p->nOp; +} + +/* +** Add a whole list of operations to the operation stack. Return the +** address of the first operation added. +*/ +SQLITE_PRIVATE int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ + int addr; + assert( p->magic==VDBE_MAGIC_INIT ); + if( p->nOp + nOp > p->nOpAlloc ){ + resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op)); + assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed ); + } + if( p->db->mallocFailed ){ + return 0; + } + addr = p->nOp; + if( nOp>0 ){ + int i; + VdbeOpList const *pIn = aOp; + for(i=0; i<nOp; i++, pIn++){ + int p2 = pIn->p2; + VdbeOp *pOut = &p->aOp[i+addr]; + pOut->opcode = pIn->opcode; + pOut->p1 = pIn->p1; + if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){ + pOut->p2 = addr + ADDR(p2); + }else{ + pOut->p2 = p2; + } + pOut->p3 = pIn->p3; + pOut->p4type = P4_NOTUSED; + pOut->p4.p = 0; + pOut->p5 = 0; +#ifdef SQLITE_DEBUG + pOut->zComment = 0; + if( sqlite3VdbeAddopTrace ){ + sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); + } +#endif + } + p->nOp += nOp; + } + return addr; +} + +/* +** Change the value of the P1 operand for a specific instruction. +** This routine is useful when a large program is loaded from a +** static array using sqlite3VdbeAddOpList but we want to make a +** few minor changes to the program. +*/ +SQLITE_PRIVATE void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ + assert( p==0 || p->magic==VDBE_MAGIC_INIT ); + if( p && addr>=0 && p->nOp>addr && p->aOp ){ + p->aOp[addr].p1 = val; + } +} + +/* +** Change the value of the P2 operand for a specific instruction. +** This routine is useful for setting a jump destination. +*/ +SQLITE_PRIVATE void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ + assert( p==0 || p->magic==VDBE_MAGIC_INIT ); + if( p && addr>=0 && p->nOp>addr && p->aOp ){ + p->aOp[addr].p2 = val; + } +} + +/* +** Change the value of the P3 operand for a specific instruction. +*/ +SQLITE_PRIVATE void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ + assert( p==0 || p->magic==VDBE_MAGIC_INIT ); + if( p && addr>=0 && p->nOp>addr && p->aOp ){ + p->aOp[addr].p3 = val; + } +} + +/* +** Change the value of the P5 operand for the most recently +** added operation. +*/ +SQLITE_PRIVATE void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ + assert( p==0 || p->magic==VDBE_MAGIC_INIT ); + if( p && p->aOp ){ + assert( p->nOp>0 ); + p->aOp[p->nOp-1].p5 = val; + } +} + +/* +** Change the P2 operand of instruction addr so that it points to +** the address of the next instruction to be coded. +*/ +SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){ + sqlite3VdbeChangeP2(p, addr, p->nOp); +} + + +/* +** If the input FuncDef structure is ephemeral, then free it. If +** the FuncDef is not ephermal, then do nothing. +*/ +static void freeEphemeralFunction(FuncDef *pDef){ + if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ + sqlite3_free(pDef); + } +} + +/* +** Delete a P4 value if necessary. +*/ +static void freeP4(int p4type, void *p3){ + if( p3 ){ + switch( p4type ){ + case P4_REAL: + case P4_INT64: + case P4_MPRINTF: + case P4_DYNAMIC: + case P4_KEYINFO: + case P4_KEYINFO_HANDOFF: { + sqlite3_free(p3); + break; + } + case P4_VDBEFUNC: { + VdbeFunc *pVdbeFunc = (VdbeFunc *)p3; + freeEphemeralFunction(pVdbeFunc->pFunc); + sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); + sqlite3_free(pVdbeFunc); + break; + } + case P4_FUNCDEF: { + freeEphemeralFunction((FuncDef*)p3); + break; + } + case P4_MEM: { + sqlite3ValueFree((sqlite3_value*)p3); + break; + } + } + } +} + + +/* +** Change N opcodes starting at addr to No-ops. +*/ +SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ + if( p && p->aOp ){ + VdbeOp *pOp = &p->aOp[addr]; + while( N-- ){ + freeP4(pOp->p4type, pOp->p4.p); + memset(pOp, 0, sizeof(pOp[0])); + pOp->opcode = OP_Noop; + pOp++; + } + } +} + +/* +** Change the value of the P4 operand for a specific instruction. +** This routine is useful when a large program is loaded from a +** static array using sqlite3VdbeAddOpList but we want to make a +** few minor changes to the program. +** +** If n>=0 then the P4 operand is dynamic, meaning that a copy of +** the string is made into memory obtained from sqlite3_malloc(). +** A value of n==0 means copy bytes of zP4 up to and including the +** first null byte. If n>0 then copy n+1 bytes of zP4. +** +** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. +** A copy is made of the KeyInfo structure into memory obtained from +** sqlite3_malloc, to be freed when the Vdbe is finalized. +** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure +** stored in memory that the caller has obtained from sqlite3_malloc. The +** caller should not free the allocation, it will be freed when the Vdbe is +** finalized. +** +** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points +** to a string or structure that is guaranteed to exist for the lifetime of +** the Vdbe. In these cases we can just copy the pointer. +** +** If addr<0 then change P4 on the most recently inserted instruction. +*/ +SQLITE_PRIVATE void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ + Op *pOp; + assert( p!=0 ); + assert( p->magic==VDBE_MAGIC_INIT ); + if( p->aOp==0 || p->db->mallocFailed ){ + if (n != P4_KEYINFO) { + freeP4(n, (void*)*(char**)&zP4); + } + return; + } + assert( addr<p->nOp ); + if( addr<0 ){ + addr = p->nOp - 1; + if( addr<0 ) return; + } + pOp = &p->aOp[addr]; + freeP4(pOp->p4type, pOp->p4.p); + pOp->p4.p = 0; + if( n==P4_INT32 ){ + /* Note: this cast is safe, because the origin data point was an int + ** that was cast to a (const char *). */ + pOp->p4.i = (int)zP4; + pOp->p4type = n; + }else if( zP4==0 ){ + pOp->p4.p = 0; + pOp->p4type = P4_NOTUSED; + }else if( n==P4_KEYINFO ){ + KeyInfo *pKeyInfo; + int nField, nByte; + + nField = ((KeyInfo*)zP4)->nField; + nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; + pKeyInfo = sqlite3_malloc( nByte ); + pOp->p4.pKeyInfo = pKeyInfo; + if( pKeyInfo ){ + memcpy(pKeyInfo, zP4, nByte); + /* In the current implementation, P4_KEYINFO is only ever used on + ** KeyInfo structures that have no aSortOrder component. Elements + ** with an aSortOrder always use P4_KEYINFO_HANDOFF. So we do not + ** need to bother with duplicating the aSortOrder. */ + assert( pKeyInfo->aSortOrder==0 ); +#if 0 + aSortOrder = pKeyInfo->aSortOrder; + if( aSortOrder ){ + pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; + memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); + } +#endif + pOp->p4type = P4_KEYINFO; + }else{ + p->db->mallocFailed = 1; + pOp->p4type = P4_NOTUSED; + } + }else if( n==P4_KEYINFO_HANDOFF ){ + pOp->p4.p = (void*)zP4; + pOp->p4type = P4_KEYINFO; + }else if( n<0 ){ + pOp->p4.p = (void*)zP4; + pOp->p4type = n; + }else{ + if( n==0 ) n = strlen(zP4); + pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); + pOp->p4type = P4_DYNAMIC; + } +} + +#ifndef NDEBUG +/* +** Change the comment on the the most recently coded instruction. +*/ +SQLITE_PRIVATE void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ + va_list ap; + assert( p->nOp>0 || p->aOp==0 ); + assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); + if( p->nOp ){ + char **pz = &p->aOp[p->nOp-1].zComment; + va_start(ap, zFormat); + sqlite3_free(*pz); + *pz = sqlite3VMPrintf(p->db, zFormat, ap); + va_end(ap); + } +} +#endif + +/* +** Return the opcode for a given address. +*/ +SQLITE_PRIVATE VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ + assert( p->magic==VDBE_MAGIC_INIT ); + assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); + return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0); +} + +#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ + || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) +/* +** Compute a string that describes the P4 parameter for an opcode. +** Use zTemp for any required temporary buffer space. +*/ +static char *displayP4(Op *pOp, char *zTemp, int nTemp){ + char *zP4 = zTemp; + assert( nTemp>=20 ); + switch( pOp->p4type ){ + case P4_KEYINFO: { + int i, j; + KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; + sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); + i = strlen(zTemp); + for(j=0; j<pKeyInfo->nField; j++){ + CollSeq *pColl = pKeyInfo->aColl[j]; + if( pColl ){ + int n = strlen(pColl->zName); + if( i+n>nTemp-6 ){ + memcpy(&zTemp[i],",...",4); + break; + } + zTemp[i++] = ','; + if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ + zTemp[i++] = '-'; + } + memcpy(&zTemp[i], pColl->zName,n+1); + i += n; + }else if( i+4<nTemp-6 ){ + memcpy(&zTemp[i],",nil",4); + i += 4; + } + } + zTemp[i++] = ')'; + zTemp[i] = 0; + assert( i<nTemp ); + break; + } + case P4_COLLSEQ: { + CollSeq *pColl = pOp->p4.pColl; + sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); + break; + } + case P4_FUNCDEF: { + FuncDef *pDef = pOp->p4.pFunc; + sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); + break; + } + case P4_INT64: { + sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); + break; + } + case P4_INT32: { + sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); + break; + } + case P4_REAL: { + sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); + break; + } + case P4_MEM: { + Mem *pMem = pOp->p4.pMem; + assert( (pMem->flags & MEM_Null)==0 ); + if( pMem->flags & MEM_Str ){ + zP4 = pMem->z; + }else if( pMem->flags & MEM_Int ){ + sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); + }else if( pMem->flags & MEM_Real ){ + sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); + } + break; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + case P4_VTAB: { + sqlite3_vtab *pVtab = pOp->p4.pVtab; + sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); + break; + } +#endif + default: { + zP4 = pOp->p4.z; + if( zP4==0 ){ + zP4 = zTemp; + zTemp[0] = 0; + } + } + } + assert( zP4!=0 ); + return zP4; +} +#endif + +/* +** Declare to the Vdbe that the BTree object at db->aDb[i] is used. +** +*/ +SQLITE_PRIVATE void sqlite3VdbeUsesBtree(Vdbe *p, int i){ + int mask; + assert( i>=0 && i<p->db->nDb ); + assert( i<sizeof(p->btreeMask)*8 ); + mask = 1<<i; + if( (p->btreeMask & mask)==0 ){ + p->btreeMask |= mask; + sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt); + } +} + + +#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) +/* +** Print a single opcode. This routine is used for debugging only. +*/ +SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ + char *zP4; + char zPtr[50]; + static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; + if( pOut==0 ) pOut = stdout; + zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); + fprintf(pOut, zFormat1, pc, + sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, +#ifdef SQLITE_DEBUG + pOp->zComment ? pOp->zComment : "" +#else + "" +#endif + ); + fflush(pOut); +} +#endif + +/* +** Release an array of N Mem elements +*/ +static void releaseMemArray(Mem *p, int N, int freebuffers){ + if( p && N ){ + sqlite3 *db = p->db; + int malloc_failed = db->mallocFailed; + while( N-->0 ){ + assert( N<2 || p[0].db==p[1].db ); + if( freebuffers ){ + sqlite3VdbeMemRelease(p); + }else{ + sqlite3VdbeMemReleaseExternal(p); + } + p->flags = MEM_Null; + p++; + } + db->mallocFailed = malloc_failed; + } +} + +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +SQLITE_PRIVATE int sqlite3VdbeReleaseBuffers(Vdbe *p){ + int ii; + int nFree = 0; + assert( sqlite3_mutex_held(p->db->mutex) ); + for(ii=1; ii<=p->nMem; ii++){ + Mem *pMem = &p->aMem[ii]; + if( pMem->z && pMem->flags&MEM_Dyn ){ + assert( !pMem->xDel ); + nFree += sqlite3MallocSize(pMem->z); + sqlite3VdbeMemRelease(pMem); + } + } + return nFree; +} +#endif + +#ifndef SQLITE_OMIT_EXPLAIN +/* +** Give a listing of the program in the virtual machine. +** +** The interface is the same as sqlite3VdbeExec(). But instead of +** running the code, it invokes the callback once for each instruction. +** This feature is used to implement "EXPLAIN". +** +** When p->explain==1, each instruction is listed. When +** p->explain==2, only OP_Explain instructions are listed and these +** are shown in a different format. p->explain==2 is used to implement +** EXPLAIN QUERY PLAN. +*/ +SQLITE_PRIVATE int sqlite3VdbeList( + Vdbe *p /* The VDBE */ +){ + sqlite3 *db = p->db; + int i; + int rc = SQLITE_OK; + Mem *pMem = p->pResultSet = &p->aMem[1]; + + assert( p->explain ); + if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; + assert( db->magic==SQLITE_MAGIC_BUSY ); + assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); + + /* Even though this opcode does not use dynamic strings for + ** the result, result columns may become dynamic if the user calls + ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. + */ + releaseMemArray(pMem, p->nMem, 1); + + do{ + i = p->pc++; + }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); + if( i>=p->nOp ){ + p->rc = SQLITE_OK; + rc = SQLITE_DONE; + }else if( db->u1.isInterrupted ){ + p->rc = SQLITE_INTERRUPT; + rc = SQLITE_ERROR; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(p->rc), (char*)0); + }else{ + char *z; + Op *pOp = &p->aOp[i]; + if( p->explain==1 ){ + pMem->flags = MEM_Int; + pMem->type = SQLITE_INTEGER; + pMem->u.i = i; /* Program counter */ + pMem++; + + pMem->flags = MEM_Static|MEM_Str|MEM_Term; + pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ + assert( pMem->z!=0 ); + pMem->n = strlen(pMem->z); + pMem->type = SQLITE_TEXT; + pMem->enc = SQLITE_UTF8; + pMem++; + } + + pMem->flags = MEM_Int; + pMem->u.i = pOp->p1; /* P1 */ + pMem->type = SQLITE_INTEGER; + pMem++; + + pMem->flags = MEM_Int; + pMem->u.i = pOp->p2; /* P2 */ + pMem->type = SQLITE_INTEGER; + pMem++; + + if( p->explain==1 ){ + pMem->flags = MEM_Int; + pMem->u.i = pOp->p3; /* P3 */ + pMem->type = SQLITE_INTEGER; + pMem++; + } + + if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ + p->db->mallocFailed = 1; + return SQLITE_NOMEM; + } + pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; + z = displayP4(pOp, pMem->z, 32); + if( z!=pMem->z ){ + sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); + }else{ + assert( pMem->z!=0 ); + pMem->n = strlen(pMem->z); + pMem->enc = SQLITE_UTF8; + } + pMem->type = SQLITE_TEXT; + pMem++; + + if( p->explain==1 ){ + if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ + p->db->mallocFailed = 1; + return SQLITE_NOMEM; + } + pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; + pMem->n = 2; + sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ + pMem->type = SQLITE_TEXT; + pMem->enc = SQLITE_UTF8; + pMem++; + +#ifdef SQLITE_DEBUG + if( pOp->zComment ){ + pMem->flags = MEM_Str|MEM_Term; + pMem->z = pOp->zComment; + pMem->n = strlen(pMem->z); + pMem->enc = SQLITE_UTF8; + }else +#endif + { + pMem->flags = MEM_Null; /* Comment */ + pMem->type = SQLITE_NULL; + } + } + + p->nResColumn = 8 - 5*(p->explain-1); + p->rc = SQLITE_OK; + rc = SQLITE_ROW; + } + return rc; +} +#endif /* SQLITE_OMIT_EXPLAIN */ + +#ifdef SQLITE_DEBUG +/* +** Print the SQL that was used to generate a VDBE program. +*/ +SQLITE_PRIVATE void sqlite3VdbePrintSql(Vdbe *p){ + int nOp = p->nOp; + VdbeOp *pOp; + if( nOp<1 ) return; + pOp = &p->aOp[0]; + if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ + const char *z = pOp->p4.z; + while( isspace(*(u8*)z) ) z++; + printf("SQL: [%s]\n", z); + } +} +#endif + +#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) +/* +** Print an IOTRACE message showing SQL content. +*/ +SQLITE_PRIVATE void sqlite3VdbeIOTraceSql(Vdbe *p){ + int nOp = p->nOp; + VdbeOp *pOp; + if( sqlite3IoTrace==0 ) return; + if( nOp<1 ) return; + pOp = &p->aOp[0]; + if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ + int i, j; + char z[1000]; + sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); + for(i=0; isspace((unsigned char)z[i]); i++){} + for(j=0; z[i]; i++){ + if( isspace((unsigned char)z[i]) ){ + if( z[i-1]!=' ' ){ + z[j++] = ' '; + } + }else{ + z[j++] = z[i]; + } + } + z[j] = 0; + sqlite3IoTrace("SQL %s\n", z); + } +} +#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ + + +/* +** Prepare a virtual machine for execution. This involves things such +** as allocating stack space and initializing the program counter. +** After the VDBE has be prepped, it can be executed by one or more +** calls to sqlite3VdbeExec(). +** +** This is the only way to move a VDBE from VDBE_MAGIC_INIT to +** VDBE_MAGIC_RUN. +*/ +SQLITE_PRIVATE void sqlite3VdbeMakeReady( + Vdbe *p, /* The VDBE */ + int nVar, /* Number of '?' see in the SQL statement */ + int nMem, /* Number of memory cells to allocate */ + int nCursor, /* Number of cursors to allocate */ + int isExplain /* True if the EXPLAIN keywords is present */ +){ + int n; + sqlite3 *db = p->db; + + assert( p!=0 ); + assert( p->magic==VDBE_MAGIC_INIT ); + + /* There should be at least one opcode. + */ + assert( p->nOp>0 ); + + /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This + * is because the call to resizeOpArray() below may shrink the + * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN + * state. + */ + p->magic = VDBE_MAGIC_RUN; + + /* For each cursor required, also allocate a memory cell. Memory + ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by + ** the vdbe program. Instead they are used to allocate space for + ** Cursor/BtCursor structures. The blob of memory associated with + ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) + ** stores the blob of memory associated with cursor 1, etc. + ** + ** See also: allocateCursor(). + */ + nMem += nCursor; + + /* + ** Allocation space for registers. + */ + if( p->aMem==0 ){ + int nArg; /* Maximum number of args passed to a user function. */ + resolveP2Values(p, &nArg); + /*resizeOpArray(p, p->nOp);*/ + assert( nVar>=0 ); + if( isExplain && nMem<10 ){ + p->nMem = nMem = 10; + } + p->aMem = sqlite3DbMallocZero(db, + nMem*sizeof(Mem) /* aMem */ + + nVar*sizeof(Mem) /* aVar */ + + nArg*sizeof(Mem*) /* apArg */ + + nVar*sizeof(char*) /* azVar */ + + nCursor*sizeof(Cursor*) + 1 /* apCsr */ + ); + if( !db->mallocFailed ){ + p->aMem--; /* aMem[] goes from 1..nMem */ + p->nMem = nMem; /* not from 0..nMem-1 */ + p->aVar = &p->aMem[nMem+1]; + p->nVar = nVar; + p->okVar = 0; + p->apArg = (Mem**)&p->aVar[nVar]; + p->azVar = (char**)&p->apArg[nArg]; + p->apCsr = (Cursor**)&p->azVar[nVar]; + p->nCursor = nCursor; + for(n=0; n<nVar; n++){ + p->aVar[n].flags = MEM_Null; + p->aVar[n].db = db; + } + for(n=1; n<=nMem; n++){ + p->aMem[n].flags = MEM_Null; + p->aMem[n].db = db; + } + } + } +#ifdef SQLITE_DEBUG + for(n=1; n<p->nMem; n++){ + assert( p->aMem[n].db==db ); + } +#endif + + p->pc = -1; + p->rc = SQLITE_OK; + p->uniqueCnt = 0; + p->returnDepth = 0; + p->errorAction = OE_Abort; + p->explain |= isExplain; + p->magic = VDBE_MAGIC_RUN; + p->nChange = 0; + p->cacheCtr = 1; + p->minWriteFileFormat = 255; + p->openedStatement = 0; +#ifdef VDBE_PROFILE + { + int i; + for(i=0; i<p->nOp; i++){ + p->aOp[i].cnt = 0; + p->aOp[i].cycles = 0; + } + } +#endif +} + +/* +** Close a VDBE cursor and release all the resources that cursor +** happens to hold. +*/ +SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){ + if( pCx==0 ){ + return; + } + if( pCx->pCursor ){ + sqlite3BtreeCloseCursor(pCx->pCursor); + } + if( pCx->pBt ){ + sqlite3BtreeClose(pCx->pBt); + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pCx->pVtabCursor ){ + sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; + const sqlite3_module *pModule = pCx->pModule; + p->inVtabMethod = 1; + (void)sqlite3SafetyOff(p->db); + pModule->xClose(pVtabCursor); + (void)sqlite3SafetyOn(p->db); + p->inVtabMethod = 0; + } +#endif + if( !pCx->ephemPseudoTable ){ + sqlite3_free(pCx->pData); + } + /* memset(pCx, 0, sizeof(Cursor)); */ + /* sqlite3_free(pCx->aType); */ + /* sqlite3_free(pCx); */ +} + +/* +** Close all cursors except for VTab cursors that are currently +** in use. +*/ +static void closeAllCursorsExceptActiveVtabs(Vdbe *p){ + int i; + if( p->apCsr==0 ) return; + for(i=0; i<p->nCursor; i++){ + Cursor *pC = p->apCsr[i]; + if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){ + sqlite3VdbeFreeCursor(p, pC); + p->apCsr[i] = 0; + } + } +} + +/* +** Clean up the VM after execution. +** +** This routine will automatically close any cursors, lists, and/or +** sorters that were left open. It also deletes the values of +** variables in the aVar[] array. +*/ +static void Cleanup(Vdbe *p, int freebuffers){ + int i; + closeAllCursorsExceptActiveVtabs(p); + for(i=1; i<=p->nMem; i++){ + MemSetTypeFlag(&p->aMem[i], MEM_Null); + } + releaseMemArray(&p->aMem[1], p->nMem, freebuffers); + sqlite3VdbeFifoClear(&p->sFifo); + if( p->contextStack ){ + for(i=0; i<p->contextStackTop; i++){ + sqlite3VdbeFifoClear(&p->contextStack[i].sFifo); + } + sqlite3_free(p->contextStack); + } + p->contextStack = 0; + p->contextStackDepth = 0; + p->contextStackTop = 0; + sqlite3_free(p->zErrMsg); + p->zErrMsg = 0; + p->pResultSet = 0; +} + +/* +** Set the number of result columns that will be returned by this SQL +** statement. This is now set at compile time, rather than during +** execution of the vdbe program so that sqlite3_column_count() can +** be called on an SQL statement before sqlite3_step(). +*/ +SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ + Mem *pColName; + int n; + + releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1); + sqlite3_free(p->aColName); + n = nResColumn*COLNAME_N; + p->nResColumn = nResColumn; + p->aColName = pColName = (Mem*)sqlite3DbMallocZero(p->db, sizeof(Mem)*n ); + if( p->aColName==0 ) return; + while( n-- > 0 ){ + pColName->flags = MEM_Null; + pColName->db = p->db; + pColName++; + } +} + +/* +** Set the name of the idx'th column to be returned by the SQL statement. +** zName must be a pointer to a nul terminated string. +** +** This call must be made after a call to sqlite3VdbeSetNumCols(). +** +** If N==P4_STATIC it means that zName is a pointer to a constant static +** string and we can just copy the pointer. If it is P4_DYNAMIC, then +** the string is freed using sqlite3_free() when the vdbe is finished with +** it. Otherwise, N bytes of zName are copied. +*/ +SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){ + int rc; + Mem *pColName; + assert( idx<p->nResColumn ); + assert( var<COLNAME_N ); + if( p->db->mallocFailed ) return SQLITE_NOMEM; + assert( p->aColName!=0 ); + pColName = &(p->aColName[idx+var*p->nResColumn]); + if( N==P4_DYNAMIC || N==P4_STATIC ){ + rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC); + }else{ + rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT); + } + if( rc==SQLITE_OK && N==P4_DYNAMIC ){ + pColName->flags &= (~MEM_Static); + pColName->zMalloc = pColName->z; + } + return rc; +} + +/* +** A read or write transaction may or may not be active on database handle +** db. If a transaction is active, commit it. If there is a +** write-transaction spanning more than one database file, this routine +** takes care of the master journal trickery. +*/ +static int vdbeCommit(sqlite3 *db){ + int i; + int nTrans = 0; /* Number of databases with an active write-transaction */ + int rc = SQLITE_OK; + int needXcommit = 0; + + /* Before doing anything else, call the xSync() callback for any + ** virtual module tables written in this transaction. This has to + ** be done before determining whether a master journal file is + ** required, as an xSync() callback may add an attached database + ** to the transaction. + */ + rc = sqlite3VtabSync(db, rc); + if( rc!=SQLITE_OK ){ + return rc; + } + + /* This loop determines (a) if the commit hook should be invoked and + ** (b) how many database files have open write transactions, not + ** including the temp database. (b) is important because if more than + ** one database file has an open write transaction, a master journal + ** file is required for an atomic commit. + */ + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( sqlite3BtreeIsInTrans(pBt) ){ + needXcommit = 1; + if( i!=1 ) nTrans++; + } + } + + /* If there are any write-transactions at all, invoke the commit hook */ + if( needXcommit && db->xCommitCallback ){ + (void)sqlite3SafetyOff(db); + rc = db->xCommitCallback(db->pCommitArg); + (void)sqlite3SafetyOn(db); + if( rc ){ + return SQLITE_CONSTRAINT; + } + } + + /* The simple case - no more than one database file (not counting the + ** TEMP database) has a transaction active. There is no need for the + ** master-journal. + ** + ** If the return value of sqlite3BtreeGetFilename() is a zero length + ** string, it means the main database is :memory:. In that case we do + ** not support atomic multi-file commits, so use the simple case then + ** too. + */ + if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + rc = sqlite3BtreeCommitPhaseOne(pBt, 0); + } + } + + /* Do the commit only if all databases successfully complete phase 1. + ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an + ** IO error while deleting or truncating a journal file. It is unlikely, + ** but could happen. In this case abandon processing and return the error. + */ + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + rc = sqlite3BtreeCommitPhaseTwo(pBt); + } + } + if( rc==SQLITE_OK ){ + sqlite3VtabCommit(db); + } + } + + /* The complex case - There is a multi-file write-transaction active. + ** This requires a master journal file to ensure the transaction is + ** committed atomicly. + */ +#ifndef SQLITE_OMIT_DISKIO + else{ + sqlite3_vfs *pVfs = db->pVfs; + int needSync = 0; + char *zMaster = 0; /* File-name for the master journal */ + char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); + sqlite3_file *pMaster = 0; + i64 offset = 0; + + /* Select a master journal file name */ + do { + u32 random; + sqlite3_free(zMaster); + sqlite3_randomness(sizeof(random), &random); + zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff); + if( !zMaster ){ + return SQLITE_NOMEM; + } + rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS); + }while( rc==1 ); + if( rc!=0 ){ + rc = SQLITE_IOERR_NOMEM; + }else{ + /* Open the master journal. */ + rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, + SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| + SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 + ); + } + if( rc!=SQLITE_OK ){ + sqlite3_free(zMaster); + return rc; + } + + /* Write the name of each database file in the transaction into the new + ** master journal file. If an error occurs at this point close + ** and delete the master journal file. All the individual journal files + ** still have 'null' as the master journal pointer, so they will roll + ** back independently if a failure occurs. + */ + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( i==1 ) continue; /* Ignore the TEMP database */ + if( sqlite3BtreeIsInTrans(pBt) ){ + char const *zFile = sqlite3BtreeGetJournalname(pBt); + if( zFile[0]==0 ) continue; /* Ignore :memory: databases */ + if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ + needSync = 1; + } + rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset); + offset += strlen(zFile)+1; + if( rc!=SQLITE_OK ){ + sqlite3OsCloseFree(pMaster); + sqlite3OsDelete(pVfs, zMaster, 0); + sqlite3_free(zMaster); + return rc; + } + } + } + + /* Sync the master journal file. If the IOCAP_SEQUENTIAL device + ** flag is set this is not required. + */ + zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt); + if( (needSync + && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)) + && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){ + sqlite3OsCloseFree(pMaster); + sqlite3OsDelete(pVfs, zMaster, 0); + sqlite3_free(zMaster); + return rc; + } + + /* Sync all the db files involved in the transaction. The same call + ** sets the master journal pointer in each individual journal. If + ** an error occurs here, do not delete the master journal file. + ** + ** If the error occurs during the first call to + ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the + ** master journal file will be orphaned. But we cannot delete it, + ** in case the master journal file name was written into the journal + ** file before the failure occured. + */ + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); + } + } + sqlite3OsCloseFree(pMaster); + if( rc!=SQLITE_OK ){ + sqlite3_free(zMaster); + return rc; + } + + /* Delete the master journal file. This commits the transaction. After + ** doing this the directory is synced again before any individual + ** transaction files are deleted. + */ + rc = sqlite3OsDelete(pVfs, zMaster, 1); + sqlite3_free(zMaster); + zMaster = 0; + if( rc ){ + return rc; + } + + /* All files and directories have already been synced, so the following + ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and + ** deleting or truncating journals. If something goes wrong while + ** this is happening we don't really care. The integrity of the + ** transaction is already guaranteed, but some stray 'cold' journals + ** may be lying around. Returning an error code won't help matters. + */ + disable_simulated_io_errors(); + sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC); + for(i=0; i<db->nDb; i++){ + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + sqlite3BtreeCommitPhaseTwo(pBt); + } + } + sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC); + enable_simulated_io_errors(); + + sqlite3VtabCommit(db); + } +#endif + + return rc; +} + +/* +** This routine checks that the sqlite3.activeVdbeCnt count variable +** matches the number of vdbe's in the list sqlite3.pVdbe that are +** currently active. An assertion fails if the two counts do not match. +** This is an internal self-check only - it is not an essential processing +** step. +** +** This is a no-op if NDEBUG is defined. +*/ +#ifndef NDEBUG +static void checkActiveVdbeCnt(sqlite3 *db){ + Vdbe *p; + int cnt = 0; + p = db->pVdbe; + while( p ){ + if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ + cnt++; + } + p = p->pNext; + } + assert( cnt==db->activeVdbeCnt ); +} +#else +#define checkActiveVdbeCnt(x) +#endif + +/* +** For every Btree that in database connection db which +** has been modified, "trip" or invalidate each cursor in +** that Btree might have been modified so that the cursor +** can never be used again. This happens when a rollback +*** occurs. We have to trip all the other cursors, even +** cursor from other VMs in different database connections, +** so that none of them try to use the data at which they +** were pointing and which now may have been changed due +** to the rollback. +** +** Remember that a rollback can delete tables complete and +** reorder rootpages. So it is not sufficient just to save +** the state of the cursor. We have to invalidate the cursor +** so that it is never used again. +*/ +static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ + int i; + for(i=0; i<db->nDb; i++){ + Btree *p = db->aDb[i].pBt; + if( p && sqlite3BtreeIsInTrans(p) ){ + sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); + } + } +} + +/* +** This routine is called the when a VDBE tries to halt. If the VDBE +** has made changes and is in autocommit mode, then commit those +** changes. If a rollback is needed, then do the rollback. +** +** This routine is the only way to move the state of a VM from +** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to +** call this on a VM that is in the SQLITE_MAGIC_HALT state. +** +** Return an error code. If the commit could not complete because of +** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it +** means the close did not happen and needs to be repeated. +*/ +SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe *p){ + sqlite3 *db = p->db; + int i; + int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */ + int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */ + + /* This function contains the logic that determines if a statement or + ** transaction will be committed or rolled back as a result of the + ** execution of this virtual machine. + ** + ** If any of the following errors occur: + ** + ** SQLITE_NOMEM + ** SQLITE_IOERR + ** SQLITE_FULL + ** SQLITE_INTERRUPT + ** + ** Then the internal cache might have been left in an inconsistent + ** state. We need to rollback the statement transaction, if there is + ** one, or the complete transaction if there is no statement transaction. + */ + + if( p->db->mallocFailed ){ + p->rc = SQLITE_NOMEM; + } + closeAllCursorsExceptActiveVtabs(p); + if( p->magic!=VDBE_MAGIC_RUN ){ + return SQLITE_OK; + } + checkActiveVdbeCnt(db); + + /* No commit or rollback needed if the program never started */ + if( p->pc>=0 ){ + int mrc; /* Primary error code from p->rc */ + + /* Lock all btrees used by the statement */ + sqlite3BtreeMutexArrayEnter(&p->aMutex); + + /* Check for one of the special errors */ + mrc = p->rc & 0xff; + isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR + || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; + if( isSpecialError ){ + /* This loop does static analysis of the query to see which of the + ** following three categories it falls into: + ** + ** Read-only + ** Query with statement journal + ** Query without statement journal + ** + ** We could do something more elegant than this static analysis (i.e. + ** store the type of query as part of the compliation phase), but + ** handling malloc() or IO failure is a fairly obscure edge case so + ** this is probably easier. Todo: Might be an opportunity to reduce + ** code size a very small amount though... + */ + int notReadOnly = 0; + int isStatement = 0; + assert(p->aOp || p->nOp==0); + for(i=0; i<p->nOp; i++){ + switch( p->aOp[i].opcode ){ + case OP_Transaction: + notReadOnly |= p->aOp[i].p2; + break; + case OP_Statement: + isStatement = 1; + break; + } + } + + + /* If the query was read-only, we need do no rollback at all. Otherwise, + ** proceed with the special handling. + */ + if( notReadOnly || mrc!=SQLITE_INTERRUPT ){ + if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){ + xFunc = sqlite3BtreeRollbackStmt; + p->rc = SQLITE_BUSY; + } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){ + xFunc = sqlite3BtreeRollbackStmt; + }else{ + /* We are forced to roll back the active transaction. Before doing + ** so, abort any other statements this handle currently has active. + */ + invalidateCursorsOnModifiedBtrees(db); + sqlite3RollbackAll(db); + db->autoCommit = 1; + } + } + } + + /* If the auto-commit flag is set and this is the only active vdbe, then + ** we do either a commit or rollback of the current transaction. + ** + ** Note: This block also runs if one of the special errors handled + ** above has occured. + */ + if( db->autoCommit && db->activeVdbeCnt==1 ){ + if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ + /* The auto-commit flag is true, and the vdbe program was + ** successful or hit an 'OR FAIL' constraint. This means a commit + ** is required. + */ + int rc = vdbeCommit(db); + if( rc==SQLITE_BUSY ){ + sqlite3BtreeMutexArrayLeave(&p->aMutex); + return SQLITE_BUSY; + }else if( rc!=SQLITE_OK ){ + p->rc = rc; + sqlite3RollbackAll(db); + }else{ + sqlite3CommitInternalChanges(db); + } + }else{ + sqlite3RollbackAll(db); + } + }else if( !xFunc ){ + if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ + if( p->openedStatement ){ + xFunc = sqlite3BtreeCommitStmt; + } + }else if( p->errorAction==OE_Abort ){ + xFunc = sqlite3BtreeRollbackStmt; + }else{ + invalidateCursorsOnModifiedBtrees(db); + sqlite3RollbackAll(db); + db->autoCommit = 1; + } + } + + /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or + ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs + ** and the return code is still SQLITE_OK, set the return code to the new + ** error value. + */ + assert(!xFunc || + xFunc==sqlite3BtreeCommitStmt || + xFunc==sqlite3BtreeRollbackStmt + ); + for(i=0; xFunc && i<db->nDb; i++){ + int rc; + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + rc = xFunc(pBt); + if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){ + p->rc = rc; + sqlite3SetString(&p->zErrMsg, 0); + } + } + } + + /* If this was an INSERT, UPDATE or DELETE and the statement was committed, + ** set the change counter. + */ + if( p->changeCntOn && p->pc>=0 ){ + if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){ + sqlite3VdbeSetChanges(db, p->nChange); + }else{ + sqlite3VdbeSetChanges(db, 0); + } + p->nChange = 0; + } + + /* Rollback or commit any schema changes that occurred. */ + if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ + sqlite3ResetInternalSchema(db, 0); + db->flags = (db->flags | SQLITE_InternChanges); + } + + /* Release the locks */ + sqlite3BtreeMutexArrayLeave(&p->aMutex); + } + + /* We have successfully halted and closed the VM. Record this fact. */ + if( p->pc>=0 ){ + db->activeVdbeCnt--; + } + p->magic = VDBE_MAGIC_HALT; + checkActiveVdbeCnt(db); + if( p->db->mallocFailed ){ + p->rc = SQLITE_NOMEM; + } + + return SQLITE_OK; +} + + +/* +** Each VDBE holds the result of the most recent sqlite3_step() call +** in p->rc. This routine sets that result back to SQLITE_OK. +*/ +SQLITE_PRIVATE void sqlite3VdbeResetStepResult(Vdbe *p){ + p->rc = SQLITE_OK; +} + +/* +** Clean up a VDBE after execution but do not delete the VDBE just yet. +** Write any error messages into *pzErrMsg. Return the result code. +** +** After this routine is run, the VDBE should be ready to be executed +** again. +** +** To look at it another way, this routine resets the state of the +** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to +** VDBE_MAGIC_INIT. +*/ +SQLITE_PRIVATE int sqlite3VdbeReset(Vdbe *p, int freebuffers){ + sqlite3 *db; + db = p->db; + + /* If the VM did not run to completion or if it encountered an + ** error, then it might not have been halted properly. So halt + ** it now. + */ + (void)sqlite3SafetyOn(db); + sqlite3VdbeHalt(p); + (void)sqlite3SafetyOff(db); + + /* If the VDBE has be run even partially, then transfer the error code + ** and error message from the VDBE into the main database structure. But + ** if the VDBE has just been set to run but has not actually executed any + ** instructions yet, leave the main database error information unchanged. + */ + if( p->pc>=0 ){ + if( p->zErrMsg ){ + sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,sqlite3_free); + db->errCode = p->rc; + p->zErrMsg = 0; + }else if( p->rc ){ + sqlite3Error(db, p->rc, 0); + }else{ + sqlite3Error(db, SQLITE_OK, 0); + } + }else if( p->rc && p->expired ){ + /* The expired flag was set on the VDBE before the first call + ** to sqlite3_step(). For consistency (since sqlite3_step() was + ** called), set the database error in this case as well. + */ + sqlite3Error(db, p->rc, 0); + sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, sqlite3_free); + p->zErrMsg = 0; + } + + /* Reclaim all memory used by the VDBE + */ + Cleanup(p, freebuffers); + + /* Save profiling information from this VDBE run. + */ +#ifdef VDBE_PROFILE + { + FILE *out = fopen("vdbe_profile.out", "a"); + if( out ){ + int i; + fprintf(out, "---- "); + for(i=0; i<p->nOp; i++){ + fprintf(out, "%02x", p->aOp[i].opcode); + } + fprintf(out, "\n"); + for(i=0; i<p->nOp; i++){ + fprintf(out, "%6d %10lld %8lld ", + p->aOp[i].cnt, + p->aOp[i].cycles, + p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 + ); + sqlite3VdbePrintOp(out, i, &p->aOp[i]); + } + fclose(out); + } + } +#endif + p->magic = VDBE_MAGIC_INIT; + p->aborted = 0; + return p->rc & db->errMask; +} + +/* +** Clean up and delete a VDBE after execution. Return an integer which is +** the result code. Write any error message text into *pzErrMsg. +*/ +SQLITE_PRIVATE int sqlite3VdbeFinalize(Vdbe *p){ + int rc = SQLITE_OK; + if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ + rc = sqlite3VdbeReset(p, 1); + assert( (rc & p->db->errMask)==rc ); + }else if( p->magic!=VDBE_MAGIC_INIT ){ + return SQLITE_MISUSE; + } + releaseMemArray(&p->aMem[1], p->nMem, 1); + sqlite3VdbeDelete(p); + return rc; +} + +/* +** Call the destructor for each auxdata entry in pVdbeFunc for which +** the corresponding bit in mask is clear. Auxdata entries beyond 31 +** are always destroyed. To destroy all auxdata entries, call this +** routine with mask==0. +*/ +SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ + int i; + for(i=0; i<pVdbeFunc->nAux; i++){ + struct AuxData *pAux = &pVdbeFunc->apAux[i]; + if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){ + if( pAux->xDelete ){ + pAux->xDelete(pAux->pAux); + } + pAux->pAux = 0; + } + } +} + +/* +** Delete an entire VDBE. +*/ +SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){ + int i; + if( p==0 ) return; + Cleanup(p, 1); + if( p->pPrev ){ + p->pPrev->pNext = p->pNext; + }else{ + assert( p->db->pVdbe==p ); + p->db->pVdbe = p->pNext; + } + if( p->pNext ){ + p->pNext->pPrev = p->pPrev; + } + if( p->aOp ){ + Op *pOp = p->aOp; + for(i=0; i<p->nOp; i++, pOp++){ + freeP4(pOp->p4type, pOp->p4.p); +#ifdef SQLITE_DEBUG + sqlite3_free(pOp->zComment); +#endif + } + sqlite3_free(p->aOp); + } + releaseMemArray(p->aVar, p->nVar, 1); + sqlite3_free(p->aLabel); + if( p->aMem ){ + sqlite3_free(&p->aMem[1]); + } + releaseMemArray(p->aColName, p->nResColumn*COLNAME_N, 1); + sqlite3_free(p->aColName); + sqlite3_free(p->zSql); + p->magic = VDBE_MAGIC_DEAD; + sqlite3_free(p); +} + +/* +** If a MoveTo operation is pending on the given cursor, then do that +** MoveTo now. Return an error code. If no MoveTo is pending, this +** routine does nothing and returns SQLITE_OK. +*/ +SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(Cursor *p){ + if( p->deferredMoveto ){ + int res, rc; +#ifdef SQLITE_TEST + extern int sqlite3_search_count; +#endif + assert( p->isTable ); + rc = sqlite3BtreeMoveto(p->pCursor, 0, 0, p->movetoTarget, 0, &res); + if( rc ) return rc; + *p->pIncrKey = 0; + p->lastRowid = keyToInt(p->movetoTarget); + p->rowidIsValid = res==0; + if( res<0 ){ + rc = sqlite3BtreeNext(p->pCursor, &res); + if( rc ) return rc; + } +#ifdef SQLITE_TEST + sqlite3_search_count++; +#endif + p->deferredMoveto = 0; + p->cacheStatus = CACHE_STALE; + } + return SQLITE_OK; +} + +/* +** The following functions: +** +** sqlite3VdbeSerialType() +** sqlite3VdbeSerialTypeLen() +** sqlite3VdbeSerialRead() +** sqlite3VdbeSerialLen() +** sqlite3VdbeSerialWrite() +** +** encapsulate the code that serializes values for storage in SQLite +** data and index records. Each serialized value consists of a +** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned +** integer, stored as a varint. +** +** In an SQLite index record, the serial type is stored directly before +** the blob of data that it corresponds to. In a table record, all serial +** types are stored at the start of the record, and the blobs of data at +** the end. Hence these functions allow the caller to handle the +** serial-type and data blob seperately. +** +** The following table describes the various storage classes for data: +** +** serial type bytes of data type +** -------------- --------------- --------------- +** 0 0 NULL +** 1 1 signed integer +** 2 2 signed integer +** 3 3 signed integer +** 4 4 signed integer +** 5 6 signed integer +** 6 8 signed integer +** 7 8 IEEE float +** 8 0 Integer constant 0 +** 9 0 Integer constant 1 +** 10,11 reserved for expansion +** N>=12 and even (N-12)/2 BLOB +** N>=13 and odd (N-13)/2 text +** +** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions +** of SQLite will not understand those serial types. +*/ + +/* +** Return the serial-type for the value stored in pMem. +*/ +SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ + int flags = pMem->flags; + int n; + + if( flags&MEM_Null ){ + return 0; + } + if( flags&MEM_Int ){ + /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ +# define MAX_6BYTE ((((i64)0x00008000)<<32)-1) + i64 i = pMem->u.i; + u64 u; + if( file_format>=4 && (i&1)==i ){ + return 8+i; + } + u = i<0 ? -i : i; + if( u<=127 ) return 1; + if( u<=32767 ) return 2; + if( u<=8388607 ) return 3; + if( u<=2147483647 ) return 4; + if( u<=MAX_6BYTE ) return 5; + return 6; + } + if( flags&MEM_Real ){ + return 7; + } + assert( flags&(MEM_Str|MEM_Blob) ); + n = pMem->n; + if( flags & MEM_Zero ){ + n += pMem->u.i; + } + assert( n>=0 ); + return ((n*2) + 12 + ((flags&MEM_Str)!=0)); +} + +/* +** Return the length of the data corresponding to the supplied serial-type. +*/ +SQLITE_PRIVATE int sqlite3VdbeSerialTypeLen(u32 serial_type){ + if( serial_type>=12 ){ + return (serial_type-12)/2; + }else{ + static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; + return aSize[serial_type]; + } +} + +/* +** If we are on an architecture with mixed-endian floating +** points (ex: ARM7) then swap the lower 4 bytes with the +** upper 4 bytes. Return the result. +** +** For most architectures, this is a no-op. +** +** (later): It is reported to me that the mixed-endian problem +** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems +** that early versions of GCC stored the two words of a 64-bit +** float in the wrong order. And that error has been propagated +** ever since. The blame is not necessarily with GCC, though. +** GCC might have just copying the problem from a prior compiler. +** I am also told that newer versions of GCC that follow a different +** ABI get the byte order right. +** +** Developers using SQLite on an ARM7 should compile and run their +** application using -DSQLITE_DEBUG=1 at least once. With DEBUG +** enabled, some asserts below will ensure that the byte order of +** floating point values is correct. +** +** (2007-08-30) Frank van Vugt has studied this problem closely +** and has send his findings to the SQLite developers. Frank +** writes that some Linux kernels offer floating point hardware +** emulation that uses only 32-bit mantissas instead of a full +** 48-bits as required by the IEEE standard. (This is the +** CONFIG_FPE_FASTFPE option.) On such systems, floating point +** byte swapping becomes very complicated. To avoid problems, +** the necessary byte swapping is carried out using a 64-bit integer +** rather than a 64-bit float. Frank assures us that the code here +** works for him. We, the developers, have no way to independently +** verify this, but Frank seems to know what he is talking about +** so we trust him. +*/ +#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT +static u64 floatSwap(u64 in){ + union { + u64 r; + u32 i[2]; + } u; + u32 t; + + u.r = in; + t = u.i[0]; + u.i[0] = u.i[1]; + u.i[1] = t; + return u.r; +} +# define swapMixedEndianFloat(X) X = floatSwap(X) +#else +# define swapMixedEndianFloat(X) +#endif + +/* +** Write the serialized data blob for the value stored in pMem into +** buf. It is assumed that the caller has allocated sufficient space. +** Return the number of bytes written. +** +** nBuf is the amount of space left in buf[]. nBuf must always be +** large enough to hold the entire field. Except, if the field is +** a blob with a zero-filled tail, then buf[] might be just the right +** size to hold everything except for the zero-filled tail. If buf[] +** is only big enough to hold the non-zero prefix, then only write that +** prefix into buf[]. But if buf[] is large enough to hold both the +** prefix and the tail then write the prefix and set the tail to all +** zeros. +** +** Return the number of bytes actually written into buf[]. The number +** of bytes in the zero-filled tail is included in the return value only +** if those bytes were zeroed in buf[]. +*/ +SQLITE_PRIVATE int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ + u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); + int len; + + /* Integer and Real */ + if( serial_type<=7 && serial_type>0 ){ + u64 v; + int i; + if( serial_type==7 ){ + assert( sizeof(v)==sizeof(pMem->r) ); + memcpy(&v, &pMem->r, sizeof(v)); + swapMixedEndianFloat(v); + }else{ + v = pMem->u.i; + } + len = i = sqlite3VdbeSerialTypeLen(serial_type); + assert( len<=nBuf ); + while( i-- ){ + buf[i] = (v&0xFF); + v >>= 8; + } + return len; + } + + /* String or blob */ + if( serial_type>=12 ){ + assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0) + == sqlite3VdbeSerialTypeLen(serial_type) ); + assert( pMem->n<=nBuf ); + len = pMem->n; + memcpy(buf, pMem->z, len); + if( pMem->flags & MEM_Zero ){ + len += pMem->u.i; + if( len>nBuf ){ + len = nBuf; + } + memset(&buf[pMem->n], 0, len-pMem->n); + } + return len; + } + + /* NULL or constants 0 or 1 */ + return 0; +} + +/* +** Deserialize the data blob pointed to by buf as serial type serial_type +** and store the result in pMem. Return the number of bytes read. +*/ +SQLITE_PRIVATE int sqlite3VdbeSerialGet( + const unsigned char *buf, /* Buffer to deserialize from */ + u32 serial_type, /* Serial type to deserialize */ + Mem *pMem /* Memory cell to write value into */ +){ + switch( serial_type ){ + case 10: /* Reserved for future use */ + case 11: /* Reserved for future use */ + case 0: { /* NULL */ + pMem->flags = MEM_Null; + break; + } + case 1: { /* 1-byte signed integer */ + pMem->u.i = (signed char)buf[0]; + pMem->flags = MEM_Int; + return 1; + } + case 2: { /* 2-byte signed integer */ + pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; + pMem->flags = MEM_Int; + return 2; + } + case 3: { /* 3-byte signed integer */ + pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; + pMem->flags = MEM_Int; + return 3; + } + case 4: { /* 4-byte signed integer */ + pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; + pMem->flags = MEM_Int; + return 4; + } + case 5: { /* 6-byte signed integer */ + u64 x = (((signed char)buf[0])<<8) | buf[1]; + u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; + x = (x<<32) | y; + pMem->u.i = *(i64*)&x; + pMem->flags = MEM_Int; + return 6; + } + case 6: /* 8-byte signed integer */ + case 7: { /* IEEE floating point */ + u64 x; + u32 y; +#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) + /* Verify that integers and floating point values use the same + ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is + ** defined that 64-bit floating point values really are mixed + ** endian. + */ + static const u64 t1 = ((u64)0x3ff00000)<<32; + static const double r1 = 1.0; + u64 t2 = t1; + swapMixedEndianFloat(t2); + assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); +#endif + + x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; + y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; + x = (x<<32) | y; + if( serial_type==6 ){ + pMem->u.i = *(i64*)&x; + pMem->flags = MEM_Int; + }else{ + assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); + swapMixedEndianFloat(x); + memcpy(&pMem->r, &x, sizeof(x)); + pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; + } + return 8; + } + case 8: /* Integer 0 */ + case 9: { /* Integer 1 */ + pMem->u.i = serial_type-8; + pMem->flags = MEM_Int; + return 0; + } + default: { + int len = (serial_type-12)/2; + pMem->z = (char *)buf; + pMem->n = len; + pMem->xDel = 0; + if( serial_type&0x01 ){ + pMem->flags = MEM_Str | MEM_Ephem; + }else{ + pMem->flags = MEM_Blob | MEM_Ephem; + } + return len; + } + } + return 0; +} + + +/* +** Given the nKey-byte encoding of a record in pKey[], parse the +** record into a UnpackedRecord structure. Return a pointer to +** that structure. +** +** The calling function might provide szSpace bytes of memory +** space at pSpace. This space can be used to hold the returned +** VDbeParsedRecord structure if it is large enough. If it is +** not big enough, space is obtained from sqlite3_malloc(). +** +** The returned structure should be closed by a call to +** sqlite3VdbeDeleteUnpackedRecord(). +*/ +SQLITE_PRIVATE UnpackedRecord *sqlite3VdbeRecordUnpack( + KeyInfo *pKeyInfo, /* Information about the record format */ + int nKey, /* Size of the binary record */ + const void *pKey, /* The binary record */ + void *pSpace, /* Space available to hold resulting object */ + int szSpace /* Size of pSpace[] in bytes */ +){ + const unsigned char *aKey = (const unsigned char *)pKey; + UnpackedRecord *p; + int nByte; + int i, idx, d; + u32 szHdr; + Mem *pMem; + + assert( sizeof(Mem)>sizeof(*p) ); + nByte = sizeof(Mem)*(pKeyInfo->nField+2); + if( nByte>szSpace ){ + p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); + if( p==0 ) return 0; + p->needFree = 1; + }else{ + p = pSpace; + p->needFree = 0; + } + p->pKeyInfo = pKeyInfo; + p->nField = pKeyInfo->nField + 1; + p->needDestroy = 1; + p->aMem = pMem = &((Mem*)p)[1]; + idx = getVarint32(aKey, szHdr); + d = szHdr; + i = 0; + while( idx<szHdr && i<p->nField ){ + u32 serial_type; + + idx += getVarint32( aKey+idx, serial_type); + if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break; + pMem->enc = pKeyInfo->enc; + pMem->db = pKeyInfo->db; + pMem->flags = 0; + pMem->zMalloc = 0; + d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); + pMem++; + i++; + } + p->nField = i; + return (void*)p; +} + +/* +** This routine destroys a UnpackedRecord object +*/ +SQLITE_PRIVATE void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ + if( p ){ + if( p->needDestroy ){ + int i; + Mem *pMem; + for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){ + if( pMem->zMalloc ){ + sqlite3VdbeMemRelease(pMem); + } + } + } + if( p->needFree ){ + sqlite3_free(p); + } + } +} + +/* +** This function compares the two table rows or index records +** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero +** or positive integer if {nKey1, pKey1} is less than, equal to or +** greater than pPKey2. The {nKey1, pKey1} key must be a blob +** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 +** key must be a parsed key such as obtained from +** sqlite3VdbeParseRecord. +** +** Key1 and Key2 do not have to contain the same number of fields. +** But if the lengths differ, Key2 must be the shorter of the two. +** +** Historical note: In earlier versions of this routine both Key1 +** and Key2 were blobs obtained from OP_MakeRecord. But we found +** that in typical use the same Key2 would be submitted multiple times +** in a row. So an optimization was added to parse the Key2 key +** separately and submit the parsed version. In this way, we avoid +** parsing the same Key2 multiple times in a row. +*/ +SQLITE_PRIVATE int sqlite3VdbeRecordCompare( + int nKey1, const void *pKey1, + UnpackedRecord *pPKey2 +){ + u32 d1; /* Offset into aKey[] of next data element */ + u32 idx1; /* Offset into aKey[] of next header element */ + u32 szHdr1; /* Number of bytes in header */ + int i = 0; + int nField; + int rc = 0; + const unsigned char *aKey1 = (const unsigned char *)pKey1; + KeyInfo *pKeyInfo; + Mem mem1; + + pKeyInfo = pPKey2->pKeyInfo; + mem1.enc = pKeyInfo->enc; + mem1.db = pKeyInfo->db; + mem1.flags = 0; + mem1.zMalloc = 0; + + idx1 = getVarint32(aKey1, szHdr1); + d1 = szHdr1; + nField = pKeyInfo->nField; + while( idx1<szHdr1 && i<pPKey2->nField ){ + u32 serial_type1; + + /* Read the serial types for the next element in each key. */ + idx1 += getVarint32( aKey1+idx1, serial_type1 ); + if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; + + /* Extract the values to be compared. + */ + d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); + + /* Do the comparison + */ + rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], + i<nField ? pKeyInfo->aColl[i] : 0); + if( rc!=0 ){ + break; + } + i++; + } + if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1); + + /* One of the keys ran out of fields, but all the fields up to that point + ** were equal. If the incrKey flag is true, then the second key is + ** treated as larger. + */ + if( rc==0 ){ + if( pKeyInfo->incrKey ){ + rc = -1; + }else if( !pKeyInfo->prefixIsEqual ){ + if( d1<nKey1 ){ + rc = 1; + } + } + }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField + && pKeyInfo->aSortOrder[i] ){ + rc = -rc; + } + + return rc; +} + +/* +** The argument is an index entry composed using the OP_MakeRecord opcode. +** The last entry in this record should be an integer (specifically +** an integer rowid). This routine returns the number of bytes in +** that integer. +*/ +SQLITE_PRIVATE int sqlite3VdbeIdxRowidLen(const u8 *aKey){ + u32 szHdr; /* Size of the header */ + u32 typeRowid; /* Serial type of the rowid */ + + (void)getVarint32(aKey, szHdr); + (void)getVarint32(&aKey[szHdr-1], typeRowid); + return sqlite3VdbeSerialTypeLen(typeRowid); +} + + +/* +** pCur points at an index entry created using the OP_MakeRecord opcode. +** Read the rowid (the last field in the record) and store it in *rowid. +** Return SQLITE_OK if everything works, or an error code otherwise. +*/ +SQLITE_PRIVATE int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){ + i64 nCellKey = 0; + int rc; + u32 szHdr; /* Size of the header */ + u32 typeRowid; /* Serial type of the rowid */ + u32 lenRowid; /* Size of the rowid */ + Mem m, v; + + sqlite3BtreeKeySize(pCur, &nCellKey); + if( nCellKey<=0 ){ + return SQLITE_CORRUPT_BKPT; + } + m.flags = 0; + m.db = 0; + m.zMalloc = 0; + rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); + if( rc ){ + return rc; + } + (void)getVarint32((u8*)m.z, szHdr); + (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); + lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); + sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); + *rowid = v.u.i; + sqlite3VdbeMemRelease(&m); + return SQLITE_OK; +} + +/* +** Compare the key of the index entry that cursor pC is point to against +** the key string in pKey (of length nKey). Write into *pRes a number +** that is negative, zero, or positive if pC is less than, equal to, +** or greater than pKey. Return SQLITE_OK on success. +** +** pKey is either created without a rowid or is truncated so that it +** omits the rowid at the end. The rowid at the end of the index entry +** is ignored as well. +*/ +SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare( + Cursor *pC, /* The cursor to compare against */ + UnpackedRecord *pUnpacked, + int nKey, const u8 *pKey, /* The key to compare */ + int *res /* Write the comparison result here */ +){ + i64 nCellKey = 0; + int rc; + BtCursor *pCur = pC->pCursor; + int lenRowid; + Mem m; + UnpackedRecord *pRec; + char zSpace[200]; + + sqlite3BtreeKeySize(pCur, &nCellKey); + if( nCellKey<=0 ){ + *res = 0; + return SQLITE_OK; + } + m.db = 0; + m.flags = 0; + m.zMalloc = 0; + rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m); + if( rc ){ + return rc; + } + lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z); + if( !pUnpacked ){ + pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey, + zSpace, sizeof(zSpace)); + }else{ + pRec = pUnpacked; + } + if( pRec==0 ){ + return SQLITE_NOMEM; + } + *res = sqlite3VdbeRecordCompare(m.n-lenRowid, m.z, pRec); + if( !pUnpacked ){ + sqlite3VdbeDeleteUnpackedRecord(pRec); + } + sqlite3VdbeMemRelease(&m); + return SQLITE_OK; +} + +/* +** This routine sets the value to be returned by subsequent calls to +** sqlite3_changes() on the database handle 'db'. +*/ +SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ + assert( sqlite3_mutex_held(db->mutex) ); + db->nChange = nChange; + db->nTotalChange += nChange; +} + +/* +** Set a flag in the vdbe to update the change counter when it is finalised +** or reset. +*/ +SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe *v){ + v->changeCntOn = 1; +} + +/* +** Mark every prepared statement associated with a database connection +** as expired. +** +** An expired statement means that recompilation of the statement is +** recommend. Statements expire when things happen that make their +** programs obsolete. Removing user-defined functions or collating +** sequences, or changing an authorization function are the types of +** things that make prepared statements obsolete. +*/ +SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3 *db){ + Vdbe *p; + for(p = db->pVdbe; p; p=p->pNext){ + p->expired = 1; + } +} + +/* +** Return the database associated with the Vdbe. +*/ +SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe *v){ + return v->db; +} + +/************** End of vdbeaux.c *********************************************/ +/************** Begin file vdbeapi.c *****************************************/ +/* +** 2004 May 26 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains code use to implement APIs that are part of the +** VDBE. +*/ + +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT +/* +** The following structure contains pointers to the end points of a +** doubly-linked list of all compiled SQL statements that may be holding +** buffers eligible for release when the sqlite3_release_memory() interface is +** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2 +** mutex. +** +** Statements are added to the end of this list when sqlite3_reset() is +** called. They are removed either when sqlite3_step() or sqlite3_finalize() +** is called. When statements are added to this list, the associated +** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that +** can be freed using sqlite3VdbeReleaseMemory(). +** +** When statements are added or removed from this list, the mutex +** associated with the Vdbe being added or removed (Vdbe.db->mutex) is +** already held. The LRU2 mutex is then obtained, blocking if necessary, +** the linked-list pointers manipulated and the LRU2 mutex relinquished. +*/ +struct StatementLruList { + Vdbe *pFirst; + Vdbe *pLast; +}; +static struct StatementLruList sqlite3LruStatements; + +/* +** Check that the list looks to be internally consistent. This is used +** as part of an assert() statement as follows: +** +** assert( stmtLruCheck() ); +*/ +#ifndef NDEBUG +static int stmtLruCheck(){ + Vdbe *p; + for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){ + assert(p->pLruNext || p==sqlite3LruStatements.pLast); + assert(!p->pLruNext || p->pLruNext->pLruPrev==p); + assert(p->pLruPrev || p==sqlite3LruStatements.pFirst); + assert(!p->pLruPrev || p->pLruPrev->pLruNext==p); + } + return 1; +} +#endif + +/* +** Add vdbe p to the end of the statement lru list. It is assumed that +** p is not already part of the list when this is called. The lru list +** is protected by the SQLITE_MUTEX_STATIC_LRU mutex. +*/ +static void stmtLruAdd(Vdbe *p){ + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2)); + + if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){ + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2)); + return; + } + + assert( stmtLruCheck() ); + + if( !sqlite3LruStatements.pFirst ){ + assert( !sqlite3LruStatements.pLast ); + sqlite3LruStatements.pFirst = p; + sqlite3LruStatements.pLast = p; + }else{ + assert( !sqlite3LruStatements.pLast->pLruNext ); + p->pLruPrev = sqlite3LruStatements.pLast; + sqlite3LruStatements.pLast->pLruNext = p; + sqlite3LruStatements.pLast = p; + } + + assert( stmtLruCheck() ); + + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2)); +} + +/* +** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove +** statement p from the least-recently-used statement list. If the +** statement is not currently part of the list, this call is a no-op. +*/ +static void stmtLruRemoveNomutex(Vdbe *p){ + if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){ + assert( stmtLruCheck() ); + if( p->pLruNext ){ + p->pLruNext->pLruPrev = p->pLruPrev; + }else{ + sqlite3LruStatements.pLast = p->pLruPrev; + } + if( p->pLruPrev ){ + p->pLruPrev->pLruNext = p->pLruNext; + }else{ + sqlite3LruStatements.pFirst = p->pLruNext; + } + p->pLruNext = 0; + p->pLruPrev = 0; + assert( stmtLruCheck() ); + } +} + +/* +** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove +** statement p from the least-recently-used statement list. If the +** statement is not currently part of the list, this call is a no-op. +*/ +static void stmtLruRemove(Vdbe *p){ + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2)); + stmtLruRemoveNomutex(p); + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2)); +} + +/* +** Try to release n bytes of memory by freeing buffers associated +** with the memory registers of currently unused vdbes. +*/ +SQLITE_PRIVATE int sqlite3VdbeReleaseMemory(int n){ + Vdbe *p; + Vdbe *pNext; + int nFree = 0; + + sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2)); + for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){ + pNext = p->pLruNext; + + /* For each statement handle in the lru list, attempt to obtain the + ** associated database mutex. If it cannot be obtained, continue + ** to the next statement handle. It is not possible to block on + ** the database mutex - that could cause deadlock. + */ + if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){ + nFree += sqlite3VdbeReleaseBuffers(p); + stmtLruRemoveNomutex(p); + sqlite3_mutex_leave(p->db->mutex); + } + } + sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU2)); + + return nFree; +} + +/* +** Call sqlite3Reprepare() on the statement. Remove it from the +** lru list before doing so, as Reprepare() will free all the +** memory register buffers anyway. +*/ +int vdbeReprepare(Vdbe *p){ + stmtLruRemove(p); + return sqlite3Reprepare(p); +} + +#else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */ + #define stmtLruRemove(x) + #define stmtLruAdd(x) + #define vdbeReprepare(x) sqlite3Reprepare(x) +#endif + + +/* +** Return TRUE (non-zero) of the statement supplied as an argument needs +** to be recompiled. A statement needs to be recompiled whenever the +** execution environment changes in a way that would alter the program +** that sqlite3_prepare() generates. For example, if new functions or +** collating sequences are registered or if an authorizer function is +** added or changed. +*/ +SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){ + Vdbe *p = (Vdbe*)pStmt; + return p==0 || p->expired; +} + +/* +** The following routine destroys a virtual machine that is created by +** the sqlite3_compile() routine. The integer returned is an SQLITE_ +** success/failure code that describes the result of executing the virtual +** machine. +** +** This routine sets the error code and string returned by +** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). +*/ +SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){ + int rc; + if( pStmt==0 ){ + rc = SQLITE_OK; + }else{ + Vdbe *v = (Vdbe*)pStmt; +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = v->db->mutex; +#endif + sqlite3_mutex_enter(mutex); + stmtLruRemove(v); + rc = sqlite3VdbeFinalize(v); + sqlite3_mutex_leave(mutex); + } + return rc; +} + +/* +** Terminate the current execution of an SQL statement and reset it +** back to its starting state so that it can be reused. A success code from +** the prior execution is returned. +** +** This routine sets the error code and string returned by +** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). +*/ +SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){ + int rc; + if( pStmt==0 ){ + rc = SQLITE_OK; + }else{ + Vdbe *v = (Vdbe*)pStmt; + sqlite3_mutex_enter(v->db->mutex); + rc = sqlite3VdbeReset(v, 1); + stmtLruAdd(v); + sqlite3VdbeMakeReady(v, -1, 0, 0, 0); + assert( (rc & (v->db->errMask))==rc ); + sqlite3_mutex_leave(v->db->mutex); + } + return rc; +} + +/* +** Set all the parameters in the compiled SQL statement to NULL. +*/ +SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ + int i; + int rc = SQLITE_OK; + Vdbe *p = (Vdbe*)pStmt; +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; +#endif + sqlite3_mutex_enter(mutex); + for(i=0; i<p->nVar; i++){ + sqlite3VdbeMemRelease(&p->aVar[i]); + p->aVar[i].flags = MEM_Null; + } + sqlite3_mutex_leave(mutex); + return rc; +} + + +/**************************** sqlite3_value_ ******************************* +** The following routines extract information from a Mem or sqlite3_value +** structure. +*/ +SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){ + Mem *p = (Mem*)pVal; + if( p->flags & (MEM_Blob|MEM_Str) ){ + sqlite3VdbeMemExpandBlob(p); + p->flags &= ~MEM_Str; + p->flags |= MEM_Blob; + return p->z; + }else{ + return sqlite3_value_text(pVal); + } +} +SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){ + return sqlite3ValueBytes(pVal, SQLITE_UTF8); +} +SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){ + return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); +} +SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){ + return sqlite3VdbeRealValue((Mem*)pVal); +} +SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){ + return sqlite3VdbeIntValue((Mem*)pVal); +} +SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ + return sqlite3VdbeIntValue((Mem*)pVal); +} +SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ + return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){ + return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); +} +SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){ + return sqlite3ValueText(pVal, SQLITE_UTF16BE); +} +SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){ + return sqlite3ValueText(pVal, SQLITE_UTF16LE); +} +#endif /* SQLITE_OMIT_UTF16 */ +SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){ + return pVal->type; +} + +/**************************** sqlite3_result_ ******************************* +** The following routines are used by user-defined functions to specify +** the function result. +*/ +SQLITE_API void sqlite3_result_blob( + sqlite3_context *pCtx, + const void *z, + int n, + void (*xDel)(void *) +){ + assert( n>=0 ); + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); +} +SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetDouble(&pCtx->s, rVal); +} +SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + pCtx->isError = SQLITE_ERROR; + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + pCtx->isError = SQLITE_ERROR; + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); +} +#endif +SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); +} +SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetInt64(&pCtx->s, iVal); +} +SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetNull(&pCtx->s); +} +SQLITE_API void sqlite3_result_text( + sqlite3_context *pCtx, + const char *z, + int n, + void (*xDel)(void *) +){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API void sqlite3_result_text16( + sqlite3_context *pCtx, + const void *z, + int n, + void (*xDel)(void *) +){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); +} +SQLITE_API void sqlite3_result_text16be( + sqlite3_context *pCtx, + const void *z, + int n, + void (*xDel)(void *) +){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); +} +SQLITE_API void sqlite3_result_text16le( + sqlite3_context *pCtx, + const void *z, + int n, + void (*xDel)(void *) +){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); +} +#endif /* SQLITE_OMIT_UTF16 */ +SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemCopy(&pCtx->s, pValue); +} +SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); +} +SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ + pCtx->isError = errCode; +} + +/* Force an SQLITE_TOOBIG error. */ +SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + pCtx->isError = SQLITE_TOOBIG; + sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, + SQLITE_UTF8, SQLITE_STATIC); +} + +/* An SQLITE_NOMEM error. */ +SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){ + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + sqlite3VdbeMemSetNull(&pCtx->s); + pCtx->isError = SQLITE_NOMEM; + pCtx->s.db->mallocFailed = 1; +} + +/* +** Execute the statement pStmt, either until a row of data is ready, the +** statement is completely executed or an error occurs. +** +** This routine implements the bulk of the logic behind the sqlite_step() +** API. The only thing omitted is the automatic recompile if a +** schema change has occurred. That detail is handled by the +** outer sqlite3_step() wrapper procedure. +*/ +static int sqlite3Step(Vdbe *p){ + sqlite3 *db; + int rc; + + assert(p); + if( p->magic!=VDBE_MAGIC_RUN ){ + return SQLITE_MISUSE; + } + + /* Assert that malloc() has not failed */ + db = p->db; + assert( !db->mallocFailed ); + + if( p->aborted ){ + return SQLITE_ABORT; + } + if( p->pc<=0 && p->expired ){ + if( p->rc==SQLITE_OK ){ + p->rc = SQLITE_SCHEMA; + } + rc = SQLITE_ERROR; + goto end_of_step; + } + if( sqlite3SafetyOn(db) ){ + p->rc = SQLITE_MISUSE; + return SQLITE_MISUSE; + } + if( p->pc<0 ){ + /* If there are no other statements currently running, then + ** reset the interrupt flag. This prevents a call to sqlite3_interrupt + ** from interrupting a statement that has not yet started. + */ + if( db->activeVdbeCnt==0 ){ + db->u1.isInterrupted = 0; + } + +#ifndef SQLITE_OMIT_TRACE + if( db->xProfile && !db->init.busy ){ + double rNow; + sqlite3OsCurrentTime(db->pVfs, &rNow); + p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; + } +#endif + + db->activeVdbeCnt++; + p->pc = 0; + stmtLruRemove(p); + } +#ifndef SQLITE_OMIT_EXPLAIN + if( p->explain ){ + rc = sqlite3VdbeList(p); + }else +#endif /* SQLITE_OMIT_EXPLAIN */ + { + rc = sqlite3VdbeExec(p); + } + + if( sqlite3SafetyOff(db) ){ + rc = SQLITE_MISUSE; + } + +#ifndef SQLITE_OMIT_TRACE + /* Invoke the profile callback if there is one + */ + if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0 + && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){ + double rNow; + u64 elapseTime; + + sqlite3OsCurrentTime(db->pVfs, &rNow); + elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; + db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime); + } +#endif + + sqlite3Error(p->db, rc, 0); + p->rc = sqlite3ApiExit(p->db, p->rc); +end_of_step: + assert( (rc&0xff)==rc ); + if( p->zSql && (rc&0xff)<SQLITE_ROW ){ + /* This behavior occurs if sqlite3_prepare_v2() was used to build + ** the prepared statement. Return error codes directly */ + sqlite3Error(p->db, p->rc, 0); + return p->rc; + }else{ + /* This is for legacy sqlite3_prepare() builds and when the code + ** is SQLITE_ROW or SQLITE_DONE */ + return rc; + } +} + +/* +** This is the top-level implementation of sqlite3_step(). Call +** sqlite3Step() to do most of the work. If a schema error occurs, +** call sqlite3Reprepare() and try again. +*/ +#ifdef SQLITE_OMIT_PARSER +SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){ + int rc = SQLITE_MISUSE; + if( pStmt ){ + Vdbe *v; + v = (Vdbe*)pStmt; + sqlite3_mutex_enter(v->db->mutex); + rc = sqlite3Step(v); + sqlite3_mutex_leave(v->db->mutex); + } + return rc; +} +#else +SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){ + int rc = SQLITE_MISUSE; + if( pStmt ){ + int cnt = 0; + Vdbe *v = (Vdbe*)pStmt; + sqlite3 *db = v->db; + sqlite3_mutex_enter(db->mutex); + while( (rc = sqlite3Step(v))==SQLITE_SCHEMA + && cnt++ < 5 + && vdbeReprepare(v) ){ + sqlite3_reset(pStmt); + v->expired = 0; + } + if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){ + /* This case occurs after failing to recompile an sql statement. + ** The error message from the SQL compiler has already been loaded + ** into the database handle. This block copies the error message + ** from the database handle into the statement and sets the statement + ** program counter to 0 to ensure that when the statement is + ** finalized or reset the parser error message is available via + ** sqlite3_errmsg() and sqlite3_errcode(). + */ + const char *zErr = (const char *)sqlite3_value_text(db->pErr); + sqlite3_free(v->zErrMsg); + if( !db->mallocFailed ){ + v->zErrMsg = sqlite3DbStrDup(db, zErr); + } else { + v->zErrMsg = 0; + v->rc = SQLITE_NOMEM; + } + } + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + } + return rc; +} +#endif + +/* +** Extract the user data from a sqlite3_context structure and return a +** pointer to it. +*/ +SQLITE_API void *sqlite3_user_data(sqlite3_context *p){ + assert( p && p->pFunc ); + return p->pFunc->pUserData; +} + +/* +** Extract the user data from a sqlite3_context structure and return a +** pointer to it. +*/ +SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ + assert( p && p->pFunc ); + return p->s.db; +} + +/* +** The following is the implementation of an SQL function that always +** fails with an error message stating that the function is used in the +** wrong context. The sqlite3_overload_function() API might construct +** SQL function that use this routine so that the functions will exist +** for name resolution but are actually overloaded by the xFindFunction +** method of virtual tables. +*/ +SQLITE_PRIVATE void sqlite3InvalidFunction( + sqlite3_context *context, /* The function calling context */ + int argc, /* Number of arguments to the function */ + sqlite3_value **argv /* Value of each argument */ +){ + const char *zName = context->pFunc->zName; + char *zErr; + zErr = sqlite3MPrintf(0, + "unable to use function %s in the requested context", zName); + sqlite3_result_error(context, zErr, -1); + sqlite3_free(zErr); +} + +/* +** Allocate or return the aggregate context for a user function. A new +** context is allocated on the first call. Subsequent calls return the +** same context that was returned on prior calls. +*/ +SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ + Mem *pMem; + assert( p && p->pFunc && p->pFunc->xStep ); + assert( sqlite3_mutex_held(p->s.db->mutex) ); + pMem = p->pMem; + if( (pMem->flags & MEM_Agg)==0 ){ + if( nByte==0 ){ + sqlite3VdbeMemReleaseExternal(pMem); + pMem->flags = MEM_Null; + pMem->z = 0; + }else{ + sqlite3VdbeMemGrow(pMem, nByte, 0); + pMem->flags = MEM_Agg; + pMem->u.pDef = p->pFunc; + if( pMem->z ){ + memset(pMem->z, 0, nByte); + } + } + } + return (void*)pMem->z; +} + +/* +** Return the auxilary data pointer, if any, for the iArg'th argument to +** the user-function defined by pCtx. +*/ +SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ + VdbeFunc *pVdbeFunc; + + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + pVdbeFunc = pCtx->pVdbeFunc; + if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ + return 0; + } + return pVdbeFunc->apAux[iArg].pAux; +} + +/* +** Set the auxilary data pointer and delete function, for the iArg'th +** argument to the user-function defined by pCtx. Any previous value is +** deleted by calling the delete function specified when it was set. +*/ +SQLITE_API void sqlite3_set_auxdata( + sqlite3_context *pCtx, + int iArg, + void *pAux, + void (*xDelete)(void*) +){ + struct AuxData *pAuxData; + VdbeFunc *pVdbeFunc; + if( iArg<0 ) goto failed; + + assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); + pVdbeFunc = pCtx->pVdbeFunc; + if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ + int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); + int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; + pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); + if( !pVdbeFunc ){ + goto failed; + } + pCtx->pVdbeFunc = pVdbeFunc; + memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); + pVdbeFunc->nAux = iArg+1; + pVdbeFunc->pFunc = pCtx->pFunc; + } + + pAuxData = &pVdbeFunc->apAux[iArg]; + if( pAuxData->pAux && pAuxData->xDelete ){ + pAuxData->xDelete(pAuxData->pAux); + } + pAuxData->pAux = pAux; + pAuxData->xDelete = xDelete; + return; + +failed: + if( xDelete ){ + xDelete(pAux); + } +} + +/* +** Return the number of times the Step function of a aggregate has been +** called. +** +** This function is deprecated. Do not use it for new code. It is +** provide only to avoid breaking legacy code. New aggregate function +** implementations should keep their own counts within their aggregate +** context. +*/ +SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){ + assert( p && p->pFunc && p->pFunc->xStep ); + return p->pMem->n; +} + +/* +** Return the number of columns in the result set for the statement pStmt. +*/ +SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){ + Vdbe *pVm = (Vdbe *)pStmt; + return pVm ? pVm->nResColumn : 0; +} + +/* +** Return the number of values available from the current row of the +** currently executing statement pStmt. +*/ +SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){ + Vdbe *pVm = (Vdbe *)pStmt; + if( pVm==0 || pVm->pResultSet==0 ) return 0; + return pVm->nResColumn; +} + + +/* +** Check to see if column iCol of the given statement is valid. If +** it is, return a pointer to the Mem for the value of that column. +** If iCol is not valid, return a pointer to a Mem which has a value +** of NULL. +*/ +static Mem *columnMem(sqlite3_stmt *pStmt, int i){ + Vdbe *pVm; + int vals; + Mem *pOut; + + pVm = (Vdbe *)pStmt; + if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ + sqlite3_mutex_enter(pVm->db->mutex); + vals = sqlite3_data_count(pStmt); + pOut = &pVm->pResultSet[i]; + }else{ + static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; + if( pVm->db ){ + sqlite3_mutex_enter(pVm->db->mutex); + sqlite3Error(pVm->db, SQLITE_RANGE, 0); + } + pOut = (Mem*)&nullMem; + } + return pOut; +} + +/* +** This function is called after invoking an sqlite3_value_XXX function on a +** column value (i.e. a value returned by evaluating an SQL expression in the +** select list of a SELECT statement) that may cause a malloc() failure. If +** malloc() has failed, the threads mallocFailed flag is cleared and the result +** code of statement pStmt set to SQLITE_NOMEM. +** +** Specifically, this is called from within: +** +** sqlite3_column_int() +** sqlite3_column_int64() +** sqlite3_column_text() +** sqlite3_column_text16() +** sqlite3_column_real() +** sqlite3_column_bytes() +** sqlite3_column_bytes16() +** +** But not for sqlite3_column_blob(), which never calls malloc(). +*/ +static void columnMallocFailure(sqlite3_stmt *pStmt) +{ + /* If malloc() failed during an encoding conversion within an + ** sqlite3_column_XXX API, then set the return code of the statement to + ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR + ** and _finalize() will return NOMEM. + */ + Vdbe *p = (Vdbe *)pStmt; + if( p ){ + p->rc = sqlite3ApiExit(p->db, p->rc); + sqlite3_mutex_leave(p->db->mutex); + } +} + +/**************************** sqlite3_column_ ******************************* +** The following routines are used to access elements of the current row +** in the result set. +*/ +SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ + const void *val; + val = sqlite3_value_blob( columnMem(pStmt,i) ); + /* Even though there is no encoding conversion, value_blob() might + ** need to call malloc() to expand the result of a zeroblob() + ** expression. + */ + columnMallocFailure(pStmt); + return val; +} +SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ + int val = sqlite3_value_bytes( columnMem(pStmt,i) ); + columnMallocFailure(pStmt); + return val; +} +SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ + int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); + columnMallocFailure(pStmt); + return val; +} +SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ + double val = sqlite3_value_double( columnMem(pStmt,i) ); + columnMallocFailure(pStmt); + return val; +} +SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ + int val = sqlite3_value_int( columnMem(pStmt,i) ); + columnMallocFailure(pStmt); + return val; +} +SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ + sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); + columnMallocFailure(pStmt); + return val; +} +SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ + const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); + columnMallocFailure(pStmt); + return val; +} +SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ + sqlite3_value *pOut = columnMem(pStmt, i); + columnMallocFailure(pStmt); + return pOut; +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ + const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); + columnMallocFailure(pStmt); + return val; +} +#endif /* SQLITE_OMIT_UTF16 */ +SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ + int iType = sqlite3_value_type( columnMem(pStmt,i) ); + columnMallocFailure(pStmt); + return iType; +} + +/* The following function is experimental and subject to change or +** removal */ +/*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ +** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); +**} +*/ + +/* +** Convert the N-th element of pStmt->pColName[] into a string using +** xFunc() then return that string. If N is out of range, return 0. +** +** There are up to 5 names for each column. useType determines which +** name is returned. Here are the names: +** +** 0 The column name as it should be displayed for output +** 1 The datatype name for the column +** 2 The name of the database that the column derives from +** 3 The name of the table that the column derives from +** 4 The name of the table column that the result column derives from +** +** If the result is not a simple column reference (if it is an expression +** or a constant) then useTypes 2, 3, and 4 return NULL. +*/ +static const void *columnName( + sqlite3_stmt *pStmt, + int N, + const void *(*xFunc)(Mem*), + int useType +){ + const void *ret = 0; + Vdbe *p = (Vdbe *)pStmt; + int n; + + + if( p!=0 ){ + n = sqlite3_column_count(pStmt); + if( N<n && N>=0 ){ + N += useType*n; + sqlite3_mutex_enter(p->db->mutex); + ret = xFunc(&p->aColName[N]); + + /* A malloc may have failed inside of the xFunc() call. If this + ** is the case, clear the mallocFailed flag and return NULL. + */ + if( p->db && p->db->mallocFailed ){ + p->db->mallocFailed = 0; + ret = 0; + } + sqlite3_mutex_leave(p->db->mutex); + } + } + return ret; +} + +/* +** Return the name of the Nth column of the result set returned by SQL +** statement pStmt. +*/ +SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); +} +#endif + +/* +** Constraint: If you have ENABLE_COLUMN_METADATA then you must +** not define OMIT_DECLTYPE. +*/ +#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) +# error "Must not define both SQLITE_OMIT_DECLTYPE \ + and SQLITE_ENABLE_COLUMN_METADATA" +#endif + +#ifndef SQLITE_OMIT_DECLTYPE +/* +** Return the column declaration type (if applicable) of the 'i'th column +** of the result set of SQL statement pStmt. +*/ +SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); +} +#endif /* SQLITE_OMIT_UTF16 */ +#endif /* SQLITE_OMIT_DECLTYPE */ + +#ifdef SQLITE_ENABLE_COLUMN_METADATA +/* +** Return the name of the database from which a result column derives. +** NULL is returned if the result column is an expression or constant or +** anything else which is not an unabiguous reference to a database column. +*/ +SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); +} +#endif /* SQLITE_OMIT_UTF16 */ + +/* +** Return the name of the table from which a result column derives. +** NULL is returned if the result column is an expression or constant or +** anything else which is not an unabiguous reference to a database column. +*/ +SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); +} +#endif /* SQLITE_OMIT_UTF16 */ + +/* +** Return the name of the table column from which a result column derives. +** NULL is returned if the result column is an expression or constant or +** anything else which is not an unabiguous reference to a database column. +*/ +SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ + return columnName( + pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); +} +#endif /* SQLITE_OMIT_UTF16 */ +#endif /* SQLITE_ENABLE_COLUMN_METADATA */ + + +/******************************* sqlite3_bind_ *************************** +** +** Routines used to attach values to wildcards in a compiled SQL statement. +*/ +/* +** Unbind the value bound to variable i in virtual machine p. This is the +** the same as binding a NULL value to the column. If the "i" parameter is +** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. +** +** The error code stored in database p->db is overwritten with the return +** value in any case. +*/ +static int vdbeUnbind(Vdbe *p, int i){ + Mem *pVar; + if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ + if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0); + return SQLITE_MISUSE; + } + if( i<1 || i>p->nVar ){ + sqlite3Error(p->db, SQLITE_RANGE, 0); + return SQLITE_RANGE; + } + i--; + pVar = &p->aVar[i]; + sqlite3VdbeMemRelease(pVar); + pVar->flags = MEM_Null; + sqlite3Error(p->db, SQLITE_OK, 0); + return SQLITE_OK; +} + +/* +** Bind a text or BLOB value. +*/ +static int bindText( + sqlite3_stmt *pStmt, /* The statement to bind against */ + int i, /* Index of the parameter to bind */ + const void *zData, /* Pointer to the data to be bound */ + int nData, /* Number of bytes of data to be bound */ + void (*xDel)(void*), /* Destructor for the data */ + int encoding /* Encoding for the data */ +){ + Vdbe *p = (Vdbe *)pStmt; + Mem *pVar; + int rc; + + if( p==0 ){ + return SQLITE_MISUSE; + } + sqlite3_mutex_enter(p->db->mutex); + rc = vdbeUnbind(p, i); + if( rc==SQLITE_OK && zData!=0 ){ + pVar = &p->aVar[i-1]; + rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); + if( rc==SQLITE_OK && encoding!=0 ){ + rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); + } + sqlite3Error(p->db, rc, 0); + rc = sqlite3ApiExit(p->db, rc); + } + sqlite3_mutex_leave(p->db->mutex); + return rc; +} + + +/* +** Bind a blob value to an SQL statement variable. +*/ +SQLITE_API int sqlite3_bind_blob( + sqlite3_stmt *pStmt, + int i, + const void *zData, + int nData, + void (*xDel)(void*) +){ + return bindText(pStmt, i, zData, nData, xDel, 0); +} +SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ + int rc; + Vdbe *p = (Vdbe *)pStmt; + sqlite3_mutex_enter(p->db->mutex); + rc = vdbeUnbind(p, i); + if( rc==SQLITE_OK ){ + sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); + } + sqlite3_mutex_leave(p->db->mutex); + return rc; +} +SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ + return sqlite3_bind_int64(p, i, (i64)iValue); +} +SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ + int rc; + Vdbe *p = (Vdbe *)pStmt; + sqlite3_mutex_enter(p->db->mutex); + rc = vdbeUnbind(p, i); + if( rc==SQLITE_OK ){ + sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); + } + sqlite3_mutex_leave(p->db->mutex); + return rc; +} +SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ + int rc; + Vdbe *p = (Vdbe*)pStmt; + sqlite3_mutex_enter(p->db->mutex); + rc = vdbeUnbind(p, i); + sqlite3_mutex_leave(p->db->mutex); + return rc; +} +SQLITE_API int sqlite3_bind_text( + sqlite3_stmt *pStmt, + int i, + const char *zData, + int nData, + void (*xDel)(void*) +){ + return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); +} +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API int sqlite3_bind_text16( + sqlite3_stmt *pStmt, + int i, + const void *zData, + int nData, + void (*xDel)(void*) +){ + return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); +} +#endif /* SQLITE_OMIT_UTF16 */ +SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ + int rc; + Vdbe *p = (Vdbe *)pStmt; + sqlite3_mutex_enter(p->db->mutex); + rc = vdbeUnbind(p, i); + if( rc==SQLITE_OK ){ + rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); + } + rc = sqlite3ApiExit(p->db, rc); + sqlite3_mutex_leave(p->db->mutex); + return rc; +} +SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ + int rc; + Vdbe *p = (Vdbe *)pStmt; + sqlite3_mutex_enter(p->db->mutex); + rc = vdbeUnbind(p, i); + if( rc==SQLITE_OK ){ + sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); + } + sqlite3_mutex_leave(p->db->mutex); + return rc; +} + +/* +** Return the number of wildcards that can be potentially bound to. +** This routine is added to support DBD::SQLite. +*/ +SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ + Vdbe *p = (Vdbe*)pStmt; + return p ? p->nVar : 0; +} + +/* +** Create a mapping from variable numbers to variable names +** in the Vdbe.azVar[] array, if such a mapping does not already +** exist. +*/ +static void createVarMap(Vdbe *p){ + if( !p->okVar ){ + sqlite3_mutex_enter(p->db->mutex); + if( !p->okVar ){ + int j; + Op *pOp; + for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ + if( pOp->opcode==OP_Variable ){ + assert( pOp->p1>0 && pOp->p1<=p->nVar ); + p->azVar[pOp->p1-1] = pOp->p4.z; + } + } + p->okVar = 1; + } + sqlite3_mutex_leave(p->db->mutex); + } +} + +/* +** Return the name of a wildcard parameter. Return NULL if the index +** is out of range or if the wildcard is unnamed. +** +** The result is always UTF-8. +*/ +SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ + Vdbe *p = (Vdbe*)pStmt; + if( p==0 || i<1 || i>p->nVar ){ + return 0; + } + createVarMap(p); + return p->azVar[i-1]; +} + +/* +** Given a wildcard parameter name, return the index of the variable +** with that name. If there is no variable with the given name, +** return 0. +*/ +SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ + Vdbe *p = (Vdbe*)pStmt; + int i; + if( p==0 ){ + return 0; + } + createVarMap(p); + if( zName ){ + for(i=0; i<p->nVar; i++){ + const char *z = p->azVar[i]; + if( z && strcmp(z,zName)==0 ){ + return i+1; + } + } + } + return 0; +} + +/* +** Transfer all bindings from the first statement over to the second. +** If the two statements contain a different number of bindings, then +** an SQLITE_ERROR is returned. +*/ +SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ + Vdbe *pFrom = (Vdbe*)pFromStmt; + Vdbe *pTo = (Vdbe*)pToStmt; + int i, rc = SQLITE_OK; + if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) + || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) + || pTo->db!=pFrom->db ){ + return SQLITE_MISUSE; + } + if( pFrom->nVar!=pTo->nVar ){ + return SQLITE_ERROR; + } + sqlite3_mutex_enter(pTo->db->mutex); + for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){ + sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); + } + sqlite3_mutex_leave(pTo->db->mutex); + assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); + return rc; +} + +/* +** Return the sqlite3* database handle to which the prepared statement given +** in the argument belongs. This is the same database handle that was +** the first argument to the sqlite3_prepare() that was used to create +** the statement in the first place. +*/ +SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ + return pStmt ? ((Vdbe*)pStmt)->db : 0; +} + +/************** End of vdbeapi.c *********************************************/ +/************** Begin file vdbe.c ********************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** The code in this file implements execution method of the +** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c") +** handles housekeeping details such as creating and deleting +** VDBE instances. This file is solely interested in executing +** the VDBE program. +** +** In the external interface, an "sqlite3_stmt*" is an opaque pointer +** to a VDBE. +** +** The SQL parser generates a program which is then executed by +** the VDBE to do the work of the SQL statement. VDBE programs are +** similar in form to assembly language. The program consists of +** a linear sequence of operations. Each operation has an opcode +** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4 +** is a null-terminated string. Operand P5 is an unsigned character. +** Few opcodes use all 5 operands. +** +** Computation results are stored on a set of registers numbered beginning +** with 1 and going up to Vdbe.nMem. Each register can store +** either an integer, a null-terminated string, a floating point +** number, or the SQL "NULL" value. An inplicit conversion from one +** type to the other occurs as necessary. +** +** Most of the code in this file is taken up by the sqlite3VdbeExec() +** function which does the work of interpreting a VDBE program. +** But other routines are also provided to help in building up +** a program instruction by instruction. +** +** Various scripts scan this source file in order to generate HTML +** documentation, headers files, or other derived files. The formatting +** of the code in this file is, therefore, important. See other comments +** in this file for details. If in doubt, do not deviate from existing +** commenting and indentation practices when changing or adding code. +** +** $Id: vdbe.c,v 1.740 2008/05/13 13:27:34 drh Exp $ +*/ + +/* +** The following global variable is incremented every time a cursor +** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes. The test +** procedures use this information to make sure that indices are +** working correctly. This variable has no function other than to +** help verify the correct operation of the library. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_search_count = 0; +#endif + +/* +** When this global variable is positive, it gets decremented once before +** each instruction in the VDBE. When reaches zero, the u1.isInterrupted +** field of the sqlite3 structure is set in order to simulate and interrupt. +** +** This facility is used for testing purposes only. It does not function +** in an ordinary build. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_interrupt_count = 0; +#endif + +/* +** The next global variable is incremented each type the OP_Sort opcode +** is executed. The test procedures use this information to make sure that +** sorting is occurring or not occuring at appropriate times. This variable +** has no function other than to help verify the correct operation of the +** library. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_sort_count = 0; +#endif + +/* +** The next global variable records the size of the largest MEM_Blob +** or MEM_Str that has been used by a VDBE opcode. The test procedures +** use this information to make sure that the zero-blob functionality +** is working correctly. This variable has no function other than to +** help verify the correct operation of the library. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_max_blobsize = 0; +static void updateMaxBlobsize(Mem *p){ + if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ + sqlite3_max_blobsize = p->n; + } +} +#endif + +/* +** Test a register to see if it exceeds the current maximum blob size. +** If it does, record the new maximum blob size. +*/ +#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST) +# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) +#else +# define UPDATE_MAX_BLOBSIZE(P) +#endif + +/* +** Release the memory associated with a register. This +** leaves the Mem.flags field in an inconsistent state. +*/ +#define Release(P) if((P)->flags&MEM_Dyn){ sqlite3VdbeMemRelease(P); } + +/* +** Convert the given into a string if it isn't one +** already. Return non-zero if a malloc() fails. +*/ +#define Stringify(P, enc) \ + if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \ + { goto no_mem; } + +/* +** An ephemeral string value (signified by the MEM_Ephem flag) contains +** a pointer to a dynamically allocated string where some other entity +** is responsible for deallocating that string. Because the register +** does not control the string, it might be deleted without the register +** knowing it. +** +** This routine converts an ephemeral string into a dynamically allocated +** string that the register itself controls. In other words, it +** converts an MEM_Ephem string into an MEM_Dyn string. +*/ +#define Deephemeralize(P) \ + if( ((P)->flags&MEM_Ephem)!=0 \ + && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} + +/* +** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) +** P if required. +*/ +#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) + +/* +** Argument pMem points at a regiser that will be passed to a +** user-defined function or returned to the user as the result of a query. +** The second argument, 'db_enc' is the text encoding used by the vdbe for +** register variables. This routine sets the pMem->enc and pMem->type +** variables used by the sqlite3_value_*() routines. +*/ +#define storeTypeInfo(A,B) _storeTypeInfo(A) +static void _storeTypeInfo(Mem *pMem){ + int flags = pMem->flags; + if( flags & MEM_Null ){ + pMem->type = SQLITE_NULL; + } + else if( flags & MEM_Int ){ + pMem->type = SQLITE_INTEGER; + } + else if( flags & MEM_Real ){ + pMem->type = SQLITE_FLOAT; + } + else if( flags & MEM_Str ){ + pMem->type = SQLITE_TEXT; + }else{ + pMem->type = SQLITE_BLOB; + } +} + +/* +** Properties of opcodes. The OPFLG_INITIALIZER macro is +** created by mkopcodeh.awk during compilation. Data is obtained +** from the comments following the "case OP_xxxx:" statements in +** this file. +*/ +static unsigned char opcodeProperty[] = OPFLG_INITIALIZER; + +/* +** Return true if an opcode has any of the OPFLG_xxx properties +** specified by mask. +*/ +SQLITE_PRIVATE int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){ + assert( opcode>0 && opcode<sizeof(opcodeProperty) ); + return (opcodeProperty[opcode]&mask)!=0; +} + +/* +** Allocate cursor number iCur. Return a pointer to it. Return NULL +** if we run out of memory. +*/ +static Cursor *allocateCursor( + Vdbe *p, + int iCur, + Op *pOp, + int iDb, + int isBtreeCursor +){ + /* Find the memory cell that will be used to store the blob of memory + ** required for this Cursor structure. It is convenient to use a + ** vdbe memory cell to manage the memory allocation required for a + ** Cursor structure for the following reasons: + ** + ** * Sometimes cursor numbers are used for a couple of different + ** purposes in a vdbe program. The different uses might require + ** different sized allocations. Memory cells provide growable + ** allocations. + ** + ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can + ** be freed lazily via the sqlite3_release_memory() API. This + ** minimizes the number of malloc calls made by the system. + ** + ** Memory cells for cursors are allocated at the top of the address + ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for + ** cursor 1 is managed by memory cell (p->nMem-1), etc. + */ + Mem *pMem = &p->aMem[p->nMem-iCur]; + + int nByte; + Cursor *pCx = 0; + /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains + ** the number of fields in the records contained in the table or + ** index being opened. Use this to reserve space for the + ** Cursor.aType[] array. + */ + int nField = 0; + if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){ + nField = pOp->p2; + } + nByte = + sizeof(Cursor) + + (isBtreeCursor?sqlite3BtreeCursorSize():0) + + 2*nField*sizeof(u32); + + assert( iCur<p->nCursor ); + if( p->apCsr[iCur] ){ + sqlite3VdbeFreeCursor(p, p->apCsr[iCur]); + p->apCsr[iCur] = 0; + } + if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){ + p->apCsr[iCur] = pCx = (Cursor *)pMem->z; + memset(pMem->z, 0, nByte); + pCx->iDb = iDb; + pCx->nField = nField; + if( nField ){ + pCx->aType = (u32 *)&pMem->z[sizeof(Cursor)]; + } + if( isBtreeCursor ){ + pCx->pCursor = (BtCursor *)&pMem->z[sizeof(Cursor)+2*nField*sizeof(u32)]; + } + } + return pCx; +} + +/* +** Try to convert a value into a numeric representation if we can +** do so without loss of information. In other words, if the string +** looks like a number, convert it into a number. If it does not +** look like a number, leave it alone. +*/ +static void applyNumericAffinity(Mem *pRec){ + if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){ + int realnum; + sqlite3VdbeMemNulTerminate(pRec); + if( (pRec->flags&MEM_Str) + && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){ + i64 value; + sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8); + if( !realnum && sqlite3Atoi64(pRec->z, &value) ){ + pRec->u.i = value; + MemSetTypeFlag(pRec, MEM_Int); + }else{ + sqlite3VdbeMemRealify(pRec); + } + } + } +} + +/* +** Processing is determine by the affinity parameter: +** +** SQLITE_AFF_INTEGER: +** SQLITE_AFF_REAL: +** SQLITE_AFF_NUMERIC: +** Try to convert pRec to an integer representation or a +** floating-point representation if an integer representation +** is not possible. Note that the integer representation is +** always preferred, even if the affinity is REAL, because +** an integer representation is more space efficient on disk. +** +** SQLITE_AFF_TEXT: +** Convert pRec to a text representation. +** +** SQLITE_AFF_NONE: +** No-op. pRec is unchanged. +*/ +static void applyAffinity( + Mem *pRec, /* The value to apply affinity to */ + char affinity, /* The affinity to be applied */ + u8 enc /* Use this text encoding */ +){ + if( affinity==SQLITE_AFF_TEXT ){ + /* Only attempt the conversion to TEXT if there is an integer or real + ** representation (blob and NULL do not get converted) but no string + ** representation. + */ + if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){ + sqlite3VdbeMemStringify(pRec, enc); + } + pRec->flags &= ~(MEM_Real|MEM_Int); + }else if( affinity!=SQLITE_AFF_NONE ){ + assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL + || affinity==SQLITE_AFF_NUMERIC ); + applyNumericAffinity(pRec); + if( pRec->flags & MEM_Real ){ + sqlite3VdbeIntegerAffinity(pRec); + } + } +} + +/* +** Try to convert the type of a function argument or a result column +** into a numeric representation. Use either INTEGER or REAL whichever +** is appropriate. But only do the conversion if it is possible without +** loss of information and return the revised type of the argument. +** +** This is an EXPERIMENTAL api and is subject to change or removal. +*/ +SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){ + Mem *pMem = (Mem*)pVal; + applyNumericAffinity(pMem); + storeTypeInfo(pMem, 0); + return pMem->type; +} + +/* +** Exported version of applyAffinity(). This one works on sqlite3_value*, +** not the internal Mem* type. +*/ +SQLITE_PRIVATE void sqlite3ValueApplyAffinity( + sqlite3_value *pVal, + u8 affinity, + u8 enc +){ + applyAffinity((Mem *)pVal, affinity, enc); +} + +#ifdef SQLITE_DEBUG +/* +** Write a nice string representation of the contents of cell pMem +** into buffer zBuf, length nBuf. +*/ +SQLITE_PRIVATE void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){ + char *zCsr = zBuf; + int f = pMem->flags; + + static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; + + if( f&MEM_Blob ){ + int i; + char c; + if( f & MEM_Dyn ){ + c = 'z'; + assert( (f & (MEM_Static|MEM_Ephem))==0 ); + }else if( f & MEM_Static ){ + c = 't'; + assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); + }else if( f & MEM_Ephem ){ + c = 'e'; + assert( (f & (MEM_Static|MEM_Dyn))==0 ); + }else{ + c = 's'; + } + + sqlite3_snprintf(100, zCsr, "%c", c); + zCsr += strlen(zCsr); + sqlite3_snprintf(100, zCsr, "%d[", pMem->n); + zCsr += strlen(zCsr); + for(i=0; i<16 && i<pMem->n; i++){ + sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF)); + zCsr += strlen(zCsr); + } + for(i=0; i<16 && i<pMem->n; i++){ + char z = pMem->z[i]; + if( z<32 || z>126 ) *zCsr++ = '.'; + else *zCsr++ = z; + } + + sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]); + zCsr += strlen(zCsr); + if( f & MEM_Zero ){ + sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i); + zCsr += strlen(zCsr); + } + *zCsr = '\0'; + }else if( f & MEM_Str ){ + int j, k; + zBuf[0] = ' '; + if( f & MEM_Dyn ){ + zBuf[1] = 'z'; + assert( (f & (MEM_Static|MEM_Ephem))==0 ); + }else if( f & MEM_Static ){ + zBuf[1] = 't'; + assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); + }else if( f & MEM_Ephem ){ + zBuf[1] = 'e'; + assert( (f & (MEM_Static|MEM_Dyn))==0 ); + }else{ + zBuf[1] = 's'; + } + k = 2; + sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n); + k += strlen(&zBuf[k]); + zBuf[k++] = '['; + for(j=0; j<15 && j<pMem->n; j++){ + u8 c = pMem->z[j]; + if( c>=0x20 && c<0x7f ){ + zBuf[k++] = c; + }else{ + zBuf[k++] = '.'; + } + } + zBuf[k++] = ']'; + sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]); + k += strlen(&zBuf[k]); + zBuf[k++] = 0; + } +} +#endif + +#ifdef SQLITE_DEBUG +/* +** Print the value of a register for tracing purposes: +*/ +static void memTracePrint(FILE *out, Mem *p){ + if( p->flags & MEM_Null ){ + fprintf(out, " NULL"); + }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ + fprintf(out, " si:%lld", p->u.i); + }else if( p->flags & MEM_Int ){ + fprintf(out, " i:%lld", p->u.i); + }else if( p->flags & MEM_Real ){ + fprintf(out, " r:%g", p->r); + }else{ + char zBuf[200]; + sqlite3VdbeMemPrettyPrint(p, zBuf); + fprintf(out, " "); + fprintf(out, "%s", zBuf); + } +} +static void registerTrace(FILE *out, int iReg, Mem *p){ + fprintf(out, "REG[%d] = ", iReg); + memTracePrint(out, p); + fprintf(out, "\n"); +} +#endif + +#ifdef SQLITE_DEBUG +# define REGISTER_TRACE(R,M) if(p->trace&&R>0)registerTrace(p->trace,R,M) +#else +# define REGISTER_TRACE(R,M) +#endif + + +#ifdef VDBE_PROFILE +/* +** The following routine only works on pentium-class processors. +** It uses the RDTSC opcode to read the cycle count value out of the +** processor and returns that value. This can be used for high-res +** profiling. +*/ +__inline__ unsigned long long int hwtime(void){ + unsigned int lo, hi; + /* We cannot use "=A", since this would use %rax on x86_64 */ + __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi)); + return (unsigned long long int)hi << 32 | lo; +} +#endif + +/* +** The CHECK_FOR_INTERRUPT macro defined here looks to see if the +** sqlite3_interrupt() routine has been called. If it has been, then +** processing of the VDBE program is interrupted. +** +** This macro added to every instruction that does a jump in order to +** implement a loop. This test used to be on every single instruction, +** but that meant we more testing that we needed. By only testing the +** flag on jump instructions, we get a (small) speed improvement. +*/ +#define CHECK_FOR_INTERRUPT \ + if( db->u1.isInterrupted ) goto abort_due_to_interrupt; + + +/* +** Execute as much of a VDBE program as we can then return. +** +** sqlite3VdbeMakeReady() must be called before this routine in order to +** close the program with a final OP_Halt and to set up the callbacks +** and the error message pointer. +** +** Whenever a row or result data is available, this routine will either +** invoke the result callback (if there is one) or return with +** SQLITE_ROW. +** +** If an attempt is made to open a locked database, then this routine +** will either invoke the busy callback (if there is one) or it will +** return SQLITE_BUSY. +** +** If an error occurs, an error message is written to memory obtained +** from sqlite3_malloc() and p->zErrMsg is made to point to that memory. +** The error code is stored in p->rc and this routine returns SQLITE_ERROR. +** +** If the callback ever returns non-zero, then the program exits +** immediately. There will be no error message but the p->rc field is +** set to SQLITE_ABORT and this routine will return SQLITE_ERROR. +** +** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this +** routine to return SQLITE_ERROR. +** +** Other fatal errors return SQLITE_ERROR. +** +** After this routine has finished, sqlite3VdbeFinalize() should be +** used to clean up the mess that was left behind. +*/ +SQLITE_PRIVATE int sqlite3VdbeExec( + Vdbe *p /* The VDBE */ +){ + int pc; /* The program counter */ + Op *pOp; /* Current operation */ + int rc = SQLITE_OK; /* Value to return */ + sqlite3 *db = p->db; /* The database */ + u8 encoding = ENC(db); /* The database encoding */ + Mem *pIn1, *pIn2, *pIn3; /* Input operands */ + Mem *pOut; /* Output operand */ + u8 opProperty; +#ifdef VDBE_PROFILE + unsigned long long start; /* CPU clock count at start of opcode */ + int origPc; /* Program counter at start of opcode */ +#endif +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + int nProgressOps = 0; /* Opcodes executed since progress callback. */ +#endif + + assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */ + assert( db->magic==SQLITE_MAGIC_BUSY ); + sqlite3BtreeMutexArrayEnter(&p->aMutex); + if( p->rc==SQLITE_NOMEM ){ + /* This happens if a malloc() inside a call to sqlite3_column_text() or + ** sqlite3_column_text16() failed. */ + goto no_mem; + } + assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); + p->rc = SQLITE_OK; + assert( p->explain==0 ); + p->pResultSet = 0; + db->busyHandler.nBusy = 0; + CHECK_FOR_INTERRUPT; + sqlite3VdbeIOTraceSql(p); +#ifdef SQLITE_DEBUG + sqlite3FaultBeginBenign(-1); + if( p->pc==0 && ((p->db->flags & SQLITE_VdbeListing)!=0 + || sqlite3OsAccess(db->pVfs, "vdbe_explain", SQLITE_ACCESS_EXISTS)==1 ) + ){ + int i; + printf("VDBE Program Listing:\n"); + sqlite3VdbePrintSql(p); + for(i=0; i<p->nOp; i++){ + sqlite3VdbePrintOp(stdout, i, &p->aOp[i]); + } + } + if( sqlite3OsAccess(db->pVfs, "vdbe_trace", SQLITE_ACCESS_EXISTS)==1 ){ + p->trace = stdout; + } + sqlite3FaultEndBenign(-1); +#endif + for(pc=p->pc; rc==SQLITE_OK; pc++){ + assert( pc>=0 && pc<p->nOp ); + if( db->mallocFailed ) goto no_mem; +#ifdef VDBE_PROFILE + origPc = pc; + start = hwtime(); +#endif + pOp = &p->aOp[pc]; + + /* Only allow tracing if SQLITE_DEBUG is defined. + */ +#ifdef SQLITE_DEBUG + if( p->trace ){ + if( pc==0 ){ + printf("VDBE Execution Trace:\n"); + sqlite3VdbePrintSql(p); + } + sqlite3VdbePrintOp(p->trace, pc, pOp); + } + if( p->trace==0 && pc==0 ){ + sqlite3FaultBeginBenign(-1); + if( sqlite3OsAccess(db->pVfs, "vdbe_sqltrace", SQLITE_ACCESS_EXISTS)==1 ){ + sqlite3VdbePrintSql(p); + } + sqlite3FaultEndBenign(-1); + } +#endif + + + /* Check to see if we need to simulate an interrupt. This only happens + ** if we have a special test build. + */ +#ifdef SQLITE_TEST + if( sqlite3_interrupt_count>0 ){ + sqlite3_interrupt_count--; + if( sqlite3_interrupt_count==0 ){ + sqlite3_interrupt(db); + } + } +#endif + +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK + /* Call the progress callback if it is configured and the required number + ** of VDBE ops have been executed (either since this invocation of + ** sqlite3VdbeExec() or since last time the progress callback was called). + ** If the progress callback returns non-zero, exit the virtual machine with + ** a return code SQLITE_ABORT. + */ + if( db->xProgress ){ + if( db->nProgressOps==nProgressOps ){ + int prc; + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + prc =db->xProgress(db->pProgressArg); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + if( prc!=0 ){ + rc = SQLITE_INTERRUPT; + goto vdbe_error_halt; + } + nProgressOps = 0; + } + nProgressOps++; + } +#endif + + /* Do common setup processing for any opcode that is marked + ** with the "out2-prerelease" tag. Such opcodes have a single + ** output which is specified by the P2 parameter. The P2 register + ** is initialized to a NULL. + */ + opProperty = opcodeProperty[pOp->opcode]; + if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){ + assert( pOp->p2>0 ); + assert( pOp->p2<=p->nMem ); + pOut = &p->aMem[pOp->p2]; + sqlite3VdbeMemReleaseExternal(pOut); + pOut->flags = MEM_Null; + }else + + /* Do common setup for opcodes marked with one of the following + ** combinations of properties. + ** + ** in1 + ** in1 in2 + ** in1 in2 out3 + ** in1 in3 + ** + ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate + ** registers for inputs. Variable pOut points to the output register. + */ + if( (opProperty & OPFLG_IN1)!=0 ){ + assert( pOp->p1>0 ); + assert( pOp->p1<=p->nMem ); + pIn1 = &p->aMem[pOp->p1]; + REGISTER_TRACE(pOp->p1, pIn1); + if( (opProperty & OPFLG_IN2)!=0 ){ + assert( pOp->p2>0 ); + assert( pOp->p2<=p->nMem ); + pIn2 = &p->aMem[pOp->p2]; + REGISTER_TRACE(pOp->p2, pIn2); + if( (opProperty & OPFLG_OUT3)!=0 ){ + assert( pOp->p3>0 ); + assert( pOp->p3<=p->nMem ); + pOut = &p->aMem[pOp->p3]; + } + }else if( (opProperty & OPFLG_IN3)!=0 ){ + assert( pOp->p3>0 ); + assert( pOp->p3<=p->nMem ); + pIn3 = &p->aMem[pOp->p3]; + REGISTER_TRACE(pOp->p3, pIn3); + } + }else if( (opProperty & OPFLG_IN2)!=0 ){ + assert( pOp->p2>0 ); + assert( pOp->p2<=p->nMem ); + pIn2 = &p->aMem[pOp->p2]; + REGISTER_TRACE(pOp->p2, pIn2); + }else if( (opProperty & OPFLG_IN3)!=0 ){ + assert( pOp->p3>0 ); + assert( pOp->p3<=p->nMem ); + pIn3 = &p->aMem[pOp->p3]; + REGISTER_TRACE(pOp->p3, pIn3); + } + + switch( pOp->opcode ){ + +/***************************************************************************** +** What follows is a massive switch statement where each case implements a +** separate instruction in the virtual machine. If we follow the usual +** indentation conventions, each case should be indented by 6 spaces. But +** that is a lot of wasted space on the left margin. So the code within +** the switch statement will break with convention and be flush-left. Another +** big comment (similar to this one) will mark the point in the code where +** we transition back to normal indentation. +** +** The formatting of each case is important. The makefile for SQLite +** generates two C files "opcodes.h" and "opcodes.c" by scanning this +** file looking for lines that begin with "case OP_". The opcodes.h files +** will be filled with #defines that give unique integer values to each +** opcode and the opcodes.c file is filled with an array of strings where +** each string is the symbolic name for the corresponding opcode. If the +** case statement is followed by a comment of the form "/# same as ... #/" +** that comment is used to determine the particular value of the opcode. +** +** Other keywords in the comment that follows each case are used to +** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. +** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See +** the mkopcodeh.awk script for additional information. +** +** Documentation about VDBE opcodes is generated by scanning this file +** for lines of that contain "Opcode:". That line and all subsequent +** comment lines are used in the generation of the opcode.html documentation +** file. +** +** SUMMARY: +** +** Formatting is important to scripts that scan this file. +** Do not deviate from the formatting style currently in use. +** +*****************************************************************************/ + +/* Opcode: Goto * P2 * * * +** +** An unconditional jump to address P2. +** The next instruction executed will be +** the one at index P2 from the beginning of +** the program. +*/ +case OP_Goto: { /* jump */ + CHECK_FOR_INTERRUPT; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Gosub * P2 * * * +** +** Push the current address plus 1 onto the return address stack +** and then jump to address P2. +** +** The return address stack is of limited depth. If too many +** OP_Gosub operations occur without intervening OP_Returns, then +** the return address stack will fill up and processing will abort +** with a fatal error. +*/ +case OP_Gosub: { /* jump */ + assert( p->returnDepth<sizeof(p->returnStack)/sizeof(p->returnStack[0]) ); + p->returnStack[p->returnDepth++] = pc+1; + pc = pOp->p2 - 1; + break; +} + +/* Opcode: Return * * * * * +** +** Jump immediately to the next instruction after the last unreturned +** OP_Gosub. If an OP_Return has occurred for all OP_Gosubs, then +** processing aborts with a fatal error. +*/ +case OP_Return: { + assert( p->returnDepth>0 ); + p->returnDepth--; + pc = p->returnStack[p->returnDepth] - 1; + break; +} + +/* Opcode: Halt P1 P2 * P4 * +** +** Exit immediately. All open cursors, Fifos, etc are closed +** automatically. +** +** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), +** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). +** For errors, it can be some other value. If P1!=0 then P2 will determine +** whether or not to rollback the current transaction. Do not rollback +** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, +** then back out all changes that have occurred during this execution of the +** VDBE, but do not rollback the transaction. +** +** If P4 is not null then it is an error message string. +** +** There is an implied "Halt 0 0 0" instruction inserted at the very end of +** every program. So a jump past the last instruction of the program +** is the same as executing Halt. +*/ +case OP_Halt: { + p->rc = pOp->p1; + p->pc = pc; + p->errorAction = pOp->p2; + if( pOp->p4.z ){ + sqlite3SetString(&p->zErrMsg, pOp->p4.z, (char*)0); + } + rc = sqlite3VdbeHalt(p); + assert( rc==SQLITE_BUSY || rc==SQLITE_OK ); + if( rc==SQLITE_BUSY ){ + p->rc = rc = SQLITE_BUSY; + }else{ + rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; + } + goto vdbe_return; +} + +/* Opcode: Integer P1 P2 * * * +** +** The 32-bit integer value P1 is written into register P2. +*/ +case OP_Integer: { /* out2-prerelease */ + pOut->flags = MEM_Int; + pOut->u.i = pOp->p1; + break; +} + +/* Opcode: Int64 * P2 * P4 * +** +** P4 is a pointer to a 64-bit integer value. +** Write that value into register P2. +*/ +case OP_Int64: { /* out2-prerelease */ + assert( pOp->p4.pI64!=0 ); + pOut->flags = MEM_Int; + pOut->u.i = *pOp->p4.pI64; + break; +} + +/* Opcode: Real * P2 * P4 * +** +** P4 is a pointer to a 64-bit floating point value. +** Write that value into register P2. +*/ +case OP_Real: { /* same as TK_FLOAT, out2-prerelease */ + pOut->flags = MEM_Real; + assert( !sqlite3IsNaN(*pOp->p4.pReal) ); + pOut->r = *pOp->p4.pReal; + break; +} + +/* Opcode: String8 * P2 * P4 * +** +** P4 points to a nul terminated UTF-8 string. This opcode is transformed +** into an OP_String before it is executed for the first time. +*/ +case OP_String8: { /* same as TK_STRING, out2-prerelease */ + assert( pOp->p4.z!=0 ); + pOp->opcode = OP_String; + pOp->p1 = strlen(pOp->p4.z); + +#ifndef SQLITE_OMIT_UTF16 + if( encoding!=SQLITE_UTF8 ){ + sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); + if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; + if( SQLITE_OK!=sqlite3VdbeMemDynamicify(pOut) ) goto no_mem; + pOut->zMalloc = 0; + pOut->flags |= MEM_Static; + pOut->flags &= ~MEM_Dyn; + if( pOp->p4type==P4_DYNAMIC ){ + sqlite3_free(pOp->p4.z); + } + pOp->p4type = P4_DYNAMIC; + pOp->p4.z = pOut->z; + pOp->p1 = pOut->n; + if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + goto too_big; + } + UPDATE_MAX_BLOBSIZE(pOut); + break; + } +#endif + if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + goto too_big; + } + /* Fall through to the next case, OP_String */ +} + +/* Opcode: String P1 P2 * P4 * +** +** The string value P4 of length P1 (bytes) is stored in register P2. +*/ +case OP_String: { /* out2-prerelease */ + assert( pOp->p4.z!=0 ); + pOut->flags = MEM_Str|MEM_Static|MEM_Term; + pOut->z = pOp->p4.z; + pOut->n = pOp->p1; + pOut->enc = encoding; + UPDATE_MAX_BLOBSIZE(pOut); + break; +} + +/* Opcode: Null * P2 * * * +** +** Write a NULL into register P2. +*/ +case OP_Null: { /* out2-prerelease */ + break; +} + + +#ifndef SQLITE_OMIT_BLOB_LITERAL +/* Opcode: Blob P1 P2 * P4 +** +** P4 points to a blob of data P1 bytes long. Store this +** blob in register P2. This instruction is not coded directly +** by the compiler. Instead, the compiler layer specifies +** an OP_HexBlob opcode, with the hex string representation of +** the blob as P4. This opcode is transformed to an OP_Blob +** the first time it is executed. +*/ +case OP_Blob: { /* out2-prerelease */ + assert( pOp->p1 <= SQLITE_MAX_LENGTH ); + sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); + pOut->enc = encoding; + UPDATE_MAX_BLOBSIZE(pOut); + break; +} +#endif /* SQLITE_OMIT_BLOB_LITERAL */ + +/* Opcode: Variable P1 P2 * * * +** +** The value of variable P1 is written into register P2. A variable is +** an unknown in the original SQL string as handed to sqlite3_compile(). +** Any occurance of the '?' character in the original SQL is considered +** a variable. Variables in the SQL string are number from left to +** right beginning with 1. The values of variables are set using the +** sqlite3_bind() API. +*/ +case OP_Variable: { /* out2-prerelease */ + int j = pOp->p1 - 1; + Mem *pVar; + assert( j>=0 && j<p->nVar ); + + pVar = &p->aVar[j]; + if( sqlite3VdbeMemTooBig(pVar) ){ + goto too_big; + } + sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static); + UPDATE_MAX_BLOBSIZE(pOut); + break; +} + +/* Opcode: Move P1 P2 * * * +** +** Move the value in register P1 over into register P2. Register P1 +** is left holding a NULL. It is an error for P1 and P2 to be the +** same register. +*/ +case OP_Move: { + char *zMalloc; + assert( pOp->p1>0 ); + assert( pOp->p1<=p->nMem ); + pIn1 = &p->aMem[pOp->p1]; + REGISTER_TRACE(pOp->p1, pIn1); + assert( pOp->p2>0 ); + assert( pOp->p2<=p->nMem ); + pOut = &p->aMem[pOp->p2]; + assert( pOut!=pIn1 ); + zMalloc = pOut->zMalloc; + pOut->zMalloc = 0; + sqlite3VdbeMemMove(pOut, pIn1); + pIn1->zMalloc = zMalloc; + REGISTER_TRACE(pOp->p2, pOut); + break; +} + +/* Opcode: Copy P1 P2 * * * +** +** Make a copy of register P1 into register P2. +** +** This instruction makes a deep copy of the value. A duplicate +** is made of any string or blob constant. See also OP_SCopy. +*/ +case OP_Copy: { + assert( pOp->p1>0 ); + assert( pOp->p1<=p->nMem ); + pIn1 = &p->aMem[pOp->p1]; + REGISTER_TRACE(pOp->p1, pIn1); + assert( pOp->p2>0 ); + assert( pOp->p2<=p->nMem ); + pOut = &p->aMem[pOp->p2]; + assert( pOut!=pIn1 ); + sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); + Deephemeralize(pOut); + REGISTER_TRACE(pOp->p2, pOut); + break; +} + +/* Opcode: SCopy P1 P2 * * * +** +** Make a shallow copy of register P1 into register P2. +** +** This instruction makes a shallow copy of the value. If the value +** is a string or blob, then the copy is only a pointer to the +** original and hence if the original changes so will the copy. +** Worse, if the original is deallocated, the copy becomes invalid. +** Thus the program must guarantee that the original will not change +** during the lifetime of the copy. Use OP_Copy to make a complete +** copy. +*/ +case OP_SCopy: { + assert( pOp->p1>0 ); + assert( pOp->p1<=p->nMem ); + pIn1 = &p->aMem[pOp->p1]; + REGISTER_TRACE(pOp->p1, pIn1); + assert( pOp->p2>0 ); + assert( pOp->p2<=p->nMem ); + pOut = &p->aMem[pOp->p2]; + assert( pOut!=pIn1 ); + sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); + REGISTER_TRACE(pOp->p2, pOut); + break; +} + +/* Opcode: ResultRow P1 P2 * * * +** +** The registers P1 throught P1+P2-1 contain a single row of +** results. This opcode causes the sqlite3_step() call to terminate +** with an SQLITE_ROW return code and it sets up the sqlite3_stmt +** structure to provide access to the top P1 values as the result +** row. +*/ +case OP_ResultRow: { + Mem *pMem; + int i; + assert( p->nResColumn==pOp->p2 ); + assert( pOp->p1>0 ); + assert( pOp->p1+pOp->p2<=p->nMem ); + + /* Invalidate all ephemeral cursor row caches */ + p->cacheCtr = (p->cacheCtr + 2)|1; + + /* Make sure the results of the current row are \000 terminated + ** and have an assigned type. The results are deephemeralized as + ** as side effect. + */ + pMem = p->pResultSet = &p->aMem[pOp->p1]; + for(i=0; i<pOp->p2; i++){ + sqlite3VdbeMemNulTerminate(&pMem[i]); + storeTypeInfo(&pMem[i], encoding); + } + if( db->mallocFailed ) goto no_mem; + + /* Return SQLITE_ROW + */ + p->nCallback++; + p->pc = pc + 1; + rc = SQLITE_ROW; + goto vdbe_return; +} + +/* Opcode: Concat P1 P2 P3 * * +** +** Add the text in register P1 onto the end of the text in +** register P2 and store the result in register P3. +** If either the P1 or P2 text are NULL then store NULL in P3. +** +** P3 = P2 || P1 +** +** It is illegal for P1 and P3 to be the same register. Sometimes, +** if P3 is the same register as P2, the implementation is able +** to avoid a memcpy(). +*/ +case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ + i64 nByte; + + assert( pIn1!=pOut ); + if( (pIn1->flags | pIn2->flags) & MEM_Null ){ + sqlite3VdbeMemSetNull(pOut); + break; + } + ExpandBlob(pIn1); + Stringify(pIn1, encoding); + ExpandBlob(pIn2); + Stringify(pIn2, encoding); + nByte = pIn1->n + pIn2->n; + if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + goto too_big; + } + MemSetTypeFlag(pOut, MEM_Str); + if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){ + goto no_mem; + } + if( pOut!=pIn2 ){ + memcpy(pOut->z, pIn2->z, pIn2->n); + } + memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); + pOut->z[nByte] = 0; + pOut->z[nByte+1] = 0; + pOut->flags |= MEM_Term; + pOut->n = nByte; + pOut->enc = encoding; + UPDATE_MAX_BLOBSIZE(pOut); + break; +} + +/* Opcode: Add P1 P2 P3 * * +** +** Add the value in register P1 to the value in register P2 +** and store the result in regiser P3. +** If either input is NULL, the result is NULL. +*/ +/* Opcode: Multiply P1 P2 P3 * * +** +** +** Multiply the value in regiser P1 by the value in regiser P2 +** and store the result in register P3. +** If either input is NULL, the result is NULL. +*/ +/* Opcode: Subtract P1 P2 P3 * * +** +** Subtract the value in register P1 from the value in register P2 +** and store the result in register P3. +** If either input is NULL, the result is NULL. +*/ +/* Opcode: Divide P1 P2 P3 * * +** +** Divide the value in register P1 by the value in register P2 +** and store the result in register P3. If the value in register P2 +** is zero, then the result is NULL. +** If either input is NULL, the result is NULL. +*/ +/* Opcode: Remainder P1 P2 P3 * * +** +** Compute the remainder after integer division of the value in +** register P1 by the value in register P2 and store the result in P3. +** If the value in register P2 is zero the result is NULL. +** If either operand is NULL, the result is NULL. +*/ +case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ +case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ +case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ +case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ +case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ + int flags; + flags = pIn1->flags | pIn2->flags; + if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null; + if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){ + i64 a, b; + a = pIn1->u.i; + b = pIn2->u.i; + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0 ) goto arithmetic_result_is_null; + /* Dividing the largest possible negative 64-bit integer (1<<63) by + ** -1 returns an integer too large to store in a 64-bit data-type. On + ** some architectures, the value overflows to (1<<63). On others, + ** a SIGFPE is issued. The following statement normalizes this + ** behaviour so that all architectures behave as if integer + ** overflow occured. + */ + if( a==-1 && b==SMALLEST_INT64 ) a = 1; + b /= a; + break; + } + default: { + if( a==0 ) goto arithmetic_result_is_null; + if( a==-1 ) a = 1; + b %= a; + break; + } + } + pOut->u.i = b; + MemSetTypeFlag(pOut, MEM_Int); + }else{ + double a, b; + a = sqlite3VdbeRealValue(pIn1); + b = sqlite3VdbeRealValue(pIn2); + switch( pOp->opcode ){ + case OP_Add: b += a; break; + case OP_Subtract: b -= a; break; + case OP_Multiply: b *= a; break; + case OP_Divide: { + if( a==0.0 ) goto arithmetic_result_is_null; + b /= a; + break; + } + default: { + i64 ia = (i64)a; + i64 ib = (i64)b; + if( ia==0 ) goto arithmetic_result_is_null; + if( ia==-1 ) ia = 1; + b = ib % ia; + break; + } + } + if( sqlite3IsNaN(b) ){ + goto arithmetic_result_is_null; + } + pOut->r = b; + MemSetTypeFlag(pOut, MEM_Real); + if( (flags & MEM_Real)==0 ){ + sqlite3VdbeIntegerAffinity(pOut); + } + } + break; + +arithmetic_result_is_null: + sqlite3VdbeMemSetNull(pOut); + break; +} + +/* Opcode: CollSeq * * P4 +** +** P4 is a pointer to a CollSeq struct. If the next call to a user function +** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will +** be returned. This is used by the built-in min(), max() and nullif() +** functions. +** +** The interface used by the implementation of the aforementioned functions +** to retrieve the collation sequence set by this opcode is not available +** publicly, only to user functions defined in func.c. +*/ +case OP_CollSeq: { + assert( pOp->p4type==P4_COLLSEQ ); + break; +} + +/* Opcode: Function P1 P2 P3 P4 P5 +** +** Invoke a user function (P4 is a pointer to a Function structure that +** defines the function) with P5 arguments taken from register P2 and +** successors. The result of the function is stored in register P3. +** Register P3 must not be one of the function inputs. +** +** P1 is a 32-bit bitmask indicating whether or not each argument to the +** function was determined to be constant at compile time. If the first +** argument was constant then bit 0 of P1 is set. This is used to determine +** whether meta data associated with a user function argument using the +** sqlite3_set_auxdata() API may be safely retained until the next +** invocation of this opcode. +** +** See also: AggStep and AggFinal +*/ +case OP_Function: { + int i; + Mem *pArg; + sqlite3_context ctx; + sqlite3_value **apVal; + int n = pOp->p5; + + apVal = p->apArg; + assert( apVal || n==0 ); + + assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) ); + assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); + pArg = &p->aMem[pOp->p2]; + for(i=0; i<n; i++, pArg++){ + apVal[i] = pArg; + storeTypeInfo(pArg, encoding); + REGISTER_TRACE(pOp->p2, pArg); + } + + assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); + if( pOp->p4type==P4_FUNCDEF ){ + ctx.pFunc = pOp->p4.pFunc; + ctx.pVdbeFunc = 0; + }else{ + ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; + ctx.pFunc = ctx.pVdbeFunc->pFunc; + } + + assert( pOp->p3>0 && pOp->p3<=p->nMem ); + pOut = &p->aMem[pOp->p3]; + ctx.s.flags = MEM_Null; + ctx.s.db = db; + ctx.s.xDel = 0; + ctx.s.zMalloc = 0; + + /* The output cell may already have a buffer allocated. Move + ** the pointer to ctx.s so in case the user-function can use + ** the already allocated buffer instead of allocating a new one. + */ + sqlite3VdbeMemMove(&ctx.s, pOut); + MemSetTypeFlag(&ctx.s, MEM_Null); + + ctx.isError = 0; + if( ctx.pFunc->needCollSeq ){ + assert( pOp>p->aOp ); + assert( pOp[-1].p4type==P4_COLLSEQ ); + assert( pOp[-1].opcode==OP_CollSeq ); + ctx.pColl = pOp[-1].p4.pColl; + } + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + (*ctx.pFunc->xFunc)(&ctx, n, apVal); + if( sqlite3SafetyOn(db) ){ + sqlite3VdbeMemRelease(&ctx.s); + goto abort_due_to_misuse; + } + if( db->mallocFailed ){ + /* Even though a malloc() has failed, the implementation of the + ** user function may have called an sqlite3_result_XXX() function + ** to return a value. The following call releases any resources + ** associated with such a value. + ** + ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn() + ** fails also (the if(...) statement above). But if people are + ** misusing sqlite, they have bigger problems than a leaked value. + */ + sqlite3VdbeMemRelease(&ctx.s); + goto no_mem; + } + + /* If any auxilary data functions have been called by this user function, + ** immediately call the destructor for any non-static values. + */ + if( ctx.pVdbeFunc ){ + sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1); + pOp->p4.pVdbeFunc = ctx.pVdbeFunc; + pOp->p4type = P4_VDBEFUNC; + } + + /* If the function returned an error, throw an exception */ + if( ctx.isError ){ + sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); + rc = ctx.isError; + } + + /* Copy the result of the function into register P3 */ + sqlite3VdbeChangeEncoding(&ctx.s, encoding); + sqlite3VdbeMemMove(pOut, &ctx.s); + if( sqlite3VdbeMemTooBig(pOut) ){ + goto too_big; + } + REGISTER_TRACE(pOp->p3, pOut); + UPDATE_MAX_BLOBSIZE(pOut); + break; +} + +/* Opcode: BitAnd P1 P2 P3 * * +** +** Take the bit-wise AND of the values in register P1 and P2 and +** store the result in register P3. +** If either input is NULL, the result is NULL. +*/ +/* Opcode: BitOr P1 P2 P3 * * +** +** Take the bit-wise OR of the values in register P1 and P2 and +** store the result in register P3. +** If either input is NULL, the result is NULL. +*/ +/* Opcode: ShiftLeft P1 P2 P3 * * +** +** Shift the integer value in register P2 to the left by the +** number of bits specified by the integer in regiser P1. +** Store the result in register P3. +** If either input is NULL, the result is NULL. +*/ +/* Opcode: ShiftRight P1 P2 P3 * * +** +** Shift the integer value in register P2 to the right by the +** number of bits specified by the integer in register P1. +** Store the result in register P3. +** If either input is NULL, the result is NULL. +*/ +case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ +case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ +case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ +case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ + i64 a, b; + + if( (pIn1->flags | pIn2->flags) & MEM_Null ){ + sqlite3VdbeMemSetNull(pOut); + break; + } + a = sqlite3VdbeIntValue(pIn2); + b = sqlite3VdbeIntValue(pIn1); + switch( pOp->opcode ){ + case OP_BitAnd: a &= b; break; + case OP_BitOr: a |= b; break; + case OP_ShiftLeft: a <<= b; break; + default: assert( pOp->opcode==OP_ShiftRight ); + a >>= b; break; + } + pOut->u.i = a; + MemSetTypeFlag(pOut, MEM_Int); + break; +} + +/* Opcode: AddImm P1 P2 * * * +** +** Add the constant P2 the value in register P1. +** The result is always an integer. +** +** To force any register to be an integer, just add 0. +*/ +case OP_AddImm: { /* in1 */ + sqlite3VdbeMemIntegerify(pIn1); + pIn1->u.i += pOp->p2; + break; +} + +/* Opcode: ForceInt P1 P2 P3 * * +** +** Convert value in register P1 into an integer. If the value +** in P1 is not numeric (meaning that is is a NULL or a string that +** does not look like an integer or floating point number) then +** jump to P2. If the value in P1 is numeric then +** convert it into the least integer that is greater than or equal to its +** current value if P3==0, or to the least integer that is strictly +** greater than its current value if P3==1. +*/ +case OP_ForceInt: { /* jump, in1 */ + i64 v; + applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); + if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){ + pc = pOp->p2 - 1; + break; + } + if( pIn1->flags & MEM_Int ){ + v = pIn1->u.i + (pOp->p3!=0); + }else{ + assert( pIn1->flags & MEM_Real ); + v = (sqlite3_int64)pIn1->r; + if( pIn1->r>(double)v ) v++; + if( pOp->p3 && pIn1->r==(double)v ) v++; + } + pIn1->u.i = v; + MemSetTypeFlag(pIn1, MEM_Int); + break; +} + +/* Opcode: MustBeInt P1 P2 * * * +** +** Force the value in register P1 to be an integer. If the value +** in P1 is not an integer and cannot be converted into an integer +** without data loss, then jump immediately to P2, or if P2==0 +** raise an SQLITE_MISMATCH exception. +*/ +case OP_MustBeInt: { /* jump, in1 */ + applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); + if( (pIn1->flags & MEM_Int)==0 ){ + if( pOp->p2==0 ){ + rc = SQLITE_MISMATCH; + goto abort_due_to_error; + }else{ + pc = pOp->p2 - 1; + } + }else{ + MemSetTypeFlag(pIn1, MEM_Int); + } + break; +} + +/* Opcode: RealAffinity P1 * * * * +** +** If register P1 holds an integer convert it to a real value. +** +** This opcode is used when extracting information from a column that +** has REAL affinity. Such column values may still be stored as +** integers, for space efficiency, but after extraction we want them +** to have only a real value. +*/ +case OP_RealAffinity: { /* in1 */ + if( pIn1->flags & MEM_Int ){ + sqlite3VdbeMemRealify(pIn1); + } + break; +} + +#ifndef SQLITE_OMIT_CAST +/* Opcode: ToText P1 * * * * +** +** Force the value in register P1 to be text. +** If the value is numeric, convert it to a string using the +** equivalent of printf(). Blob values are unchanged and +** are afterwards simply interpreted as text. +** +** A NULL value is not changed by this routine. It remains NULL. +*/ +case OP_ToText: { /* same as TK_TO_TEXT, in1 */ + if( pIn1->flags & MEM_Null ) break; + assert( MEM_Str==(MEM_Blob>>3) ); + pIn1->flags |= (pIn1->flags&MEM_Blob)>>3; + applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); + rc = ExpandBlob(pIn1); + assert( pIn1->flags & MEM_Str || db->mallocFailed ); + pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob); + UPDATE_MAX_BLOBSIZE(pIn1); + break; +} + +/* Opcode: ToBlob P1 * * * * +** +** Force the value in register P1 to be a BLOB. +** If the value is numeric, convert it to a string first. +** Strings are simply reinterpreted as blobs with no change +** to the underlying data. +** +** A NULL value is not changed by this routine. It remains NULL. +*/ +case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */ + if( pIn1->flags & MEM_Null ) break; + if( (pIn1->flags & MEM_Blob)==0 ){ + applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding); + assert( pIn1->flags & MEM_Str || db->mallocFailed ); + } + MemSetTypeFlag(pIn1, MEM_Blob); + UPDATE_MAX_BLOBSIZE(pIn1); + break; +} + +/* Opcode: ToNumeric P1 * * * * +** +** Force the value in register P1 to be numeric (either an +** integer or a floating-point number.) +** If the value is text or blob, try to convert it to an using the +** equivalent of atoi() or atof() and store 0 if no such conversion +** is possible. +** +** A NULL value is not changed by this routine. It remains NULL. +*/ +case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */ + if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){ + sqlite3VdbeMemNumerify(pIn1); + } + break; +} +#endif /* SQLITE_OMIT_CAST */ + +/* Opcode: ToInt P1 * * * * +** +** Force the value in register P1 be an integer. If +** The value is currently a real number, drop its fractional part. +** If the value is text or blob, try to convert it to an integer using the +** equivalent of atoi() and store 0 if no such conversion is possible. +** +** A NULL value is not changed by this routine. It remains NULL. +*/ +case OP_ToInt: { /* same as TK_TO_INT, in1 */ + if( (pIn1->flags & MEM_Null)==0 ){ + sqlite3VdbeMemIntegerify(pIn1); + } + break; +} + +#ifndef SQLITE_OMIT_CAST +/* Opcode: ToReal P1 * * * * +** +** Force the value in register P1 to be a floating point number. +** If The value is currently an integer, convert it. +** If the value is text or blob, try to convert it to an integer using the +** equivalent of atoi() and store 0.0 if no such conversion is possible. +** +** A NULL value is not changed by this routine. It remains NULL. +*/ +case OP_ToReal: { /* same as TK_TO_REAL, in1 */ + if( (pIn1->flags & MEM_Null)==0 ){ + sqlite3VdbeMemRealify(pIn1); + } + break; +} +#endif /* SQLITE_OMIT_CAST */ + +/* Opcode: Lt P1 P2 P3 P4 P5 +** +** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then +** jump to address P2. +** +** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or +** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL +** bit is clear then fall thru if either operand is NULL. +** +** If the SQLITE_NULLEQUAL bit of P5 is set then treat NULL operands +** as being equal to one another. Normally NULLs are not equal to +** anything including other NULLs. +** +** The SQLITE_AFF_MASK portion of P5 must be an affinity character - +** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made +** to coerce both inputs according to this affinity before the +** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric +** affinity is used. Note that the affinity conversions are stored +** back into the input registers P1 and P3. So this opcode can cause +** persistent changes to registers P1 and P3. +** +** Once any conversions have taken place, and neither value is NULL, +** the values are compared. If both values are blobs then memcmp() is +** used to determine the results of the comparison. If both values +** are text, then the appropriate collating function specified in +** P4 is used to do the comparison. If P4 is not specified then +** memcmp() is used to compare text string. If both values are +** numeric, then a numeric comparison is used. If the two values +** are of different types, then numbers are considered less than +** strings and strings are considered less than blobs. +** +** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead, +** store a boolean result (either 0, or 1, or NULL) in register P2. +*/ +/* Opcode: Ne P1 P2 P3 P4 P5 +** +** This works just like the Lt opcode except that the jump is taken if +** the operands in registers P1 and P3 are not equal. See the Lt opcode for +** additional information. +*/ +/* Opcode: Eq P1 P2 P3 P4 P5 +** +** This works just like the Lt opcode except that the jump is taken if +** the operands in registers P1 and P3 are equal. +** See the Lt opcode for additional information. +*/ +/* Opcode: Le P1 P2 P3 P4 P5 +** +** This works just like the Lt opcode except that the jump is taken if +** the content of register P3 is less than or equal to the content of +** register P1. See the Lt opcode for additional information. +*/ +/* Opcode: Gt P1 P2 P3 P4 P5 +** +** This works just like the Lt opcode except that the jump is taken if +** the content of register P3 is greater than the content of +** register P1. See the Lt opcode for additional information. +*/ +/* Opcode: Ge P1 P2 P3 P4 P5 +** +** This works just like the Lt opcode except that the jump is taken if +** the content of register P3 is greater than or equal to the content of +** register P1. See the Lt opcode for additional information. +*/ +case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ +case OP_Ne: /* same as TK_NE, jump, in1, in3 */ +case OP_Lt: /* same as TK_LT, jump, in1, in3 */ +case OP_Le: /* same as TK_LE, jump, in1, in3 */ +case OP_Gt: /* same as TK_GT, jump, in1, in3 */ +case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ + int flags; + int res; + char affinity; + Mem x1, x3; + + flags = pIn1->flags|pIn3->flags; + + if( flags&MEM_Null ){ + if( (pOp->p5 & SQLITE_NULLEQUAL)!=0 ){ + /* + ** When SQLITE_NULLEQUAL set and either operand is NULL + ** then both operands are converted to integers prior to being + ** passed down into the normal comparison logic below. + ** NULL operands are converted to zero and non-NULL operands + ** are converted to 1. Thus, for example, with SQLITE_NULLEQUAL + ** set, NULL==NULL is true whereas it would normally NULL. + ** Similarly, NULL!=123 is true. + */ + x1.flags = MEM_Int; + x1.u.i = (pIn1->flags & MEM_Null)==0; + pIn1 = &x1; + x3.flags = MEM_Int; + x3.u.i = (pIn3->flags & MEM_Null)==0; + pIn3 = &x3; + }else{ + /* If the SQLITE_NULLEQUAL bit is clear and either operand is NULL then + ** the result is always NULL. The jump is taken if the + ** SQLITE_JUMPIFNULL bit is set. + */ + if( pOp->p5 & SQLITE_STOREP2 ){ + pOut = &p->aMem[pOp->p2]; + MemSetTypeFlag(pOut, MEM_Null); + REGISTER_TRACE(pOp->p2, pOut); + }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ + pc = pOp->p2-1; + } + break; + } + } + + affinity = pOp->p5 & SQLITE_AFF_MASK; + if( affinity ){ + applyAffinity(pIn1, affinity, encoding); + applyAffinity(pIn3, affinity, encoding); + } + + assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); + ExpandBlob(pIn1); + ExpandBlob(pIn3); + res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); + switch( pOp->opcode ){ + case OP_Eq: res = res==0; break; + case OP_Ne: res = res!=0; break; + case OP_Lt: res = res<0; break; + case OP_Le: res = res<=0; break; + case OP_Gt: res = res>0; break; + default: res = res>=0; break; + } + + if( pOp->p5 & SQLITE_STOREP2 ){ + pOut = &p->aMem[pOp->p2]; + MemSetTypeFlag(pOut, MEM_Int); + pOut->u.i = res; + REGISTER_TRACE(pOp->p2, pOut); + }else if( res ){ + pc = pOp->p2-1; + } + break; +} + +/* Opcode: And P1 P2 P3 * * +** +** Take the logical AND of the values in registers P1 and P2 and +** write the result into register P3. +** +** If either P1 or P2 is 0 (false) then the result is 0 even if +** the other input is NULL. A NULL and true or two NULLs give +** a NULL output. +*/ +/* Opcode: Or P1 P2 P3 * * +** +** Take the logical OR of the values in register P1 and P2 and +** store the answer in register P3. +** +** If either P1 or P2 is nonzero (true) then the result is 1 (true) +** even if the other input is NULL. A NULL and false or two NULLs +** give a NULL output. +*/ +case OP_And: /* same as TK_AND, in1, in2, out3 */ +case OP_Or: { /* same as TK_OR, in1, in2, out3 */ + int v1, v2; /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ + + if( pIn1->flags & MEM_Null ){ + v1 = 2; + }else{ + v1 = sqlite3VdbeIntValue(pIn1)!=0; + } + if( pIn2->flags & MEM_Null ){ + v2 = 2; + }else{ + v2 = sqlite3VdbeIntValue(pIn2)!=0; + } + if( pOp->opcode==OP_And ){ + static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; + v1 = and_logic[v1*3+v2]; + }else{ + static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; + v1 = or_logic[v1*3+v2]; + } + if( v1==2 ){ + MemSetTypeFlag(pOut, MEM_Null); + }else{ + pOut->u.i = v1; + MemSetTypeFlag(pOut, MEM_Int); + } + break; +} + +/* Opcode: Not P1 * * * * +** +** Interpret the value in register P1 as a boolean value. Replace it +** with its complement. If the value in register P1 is NULL its value +** is unchanged. +*/ +case OP_Not: { /* same as TK_NOT, in1 */ + if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */ + sqlite3VdbeMemIntegerify(pIn1); + pIn1->u.i = !pIn1->u.i; + assert( pIn1->flags&MEM_Int ); + break; +} + +/* Opcode: BitNot P1 * * * * +** +** Interpret the content of register P1 as an integer. Replace it +** with its ones-complement. If the value is originally NULL, leave +** it unchanged. +*/ +case OP_BitNot: { /* same as TK_BITNOT, in1 */ + if( pIn1->flags & MEM_Null ) break; /* Do nothing to NULLs */ + sqlite3VdbeMemIntegerify(pIn1); + pIn1->u.i = ~pIn1->u.i; + assert( pIn1->flags&MEM_Int ); + break; +} + +/* Opcode: If P1 P2 P3 * * +** +** Jump to P2 if the value in register P1 is true. The value is +** is considered true if it is numeric and non-zero. If the value +** in P1 is NULL then take the jump if P3 is true. +*/ +/* Opcode: IfNot P1 P2 P3 * * +** +** Jump to P2 if the value in register P1 is False. The value is +** is considered true if it has a numeric value of zero. If the value +** in P1 is NULL then take the jump if P3 is true. +*/ +case OP_If: /* jump, in1 */ +case OP_IfNot: { /* jump, in1 */ + int c; + if( pIn1->flags & MEM_Null ){ + c = pOp->p3; + }else{ +#ifdef SQLITE_OMIT_FLOATING_POINT + c = sqlite3VdbeIntValue(pIn1); +#else + c = sqlite3VdbeRealValue(pIn1)!=0.0; +#endif + if( pOp->opcode==OP_IfNot ) c = !c; + } + if( c ){ + pc = pOp->p2-1; + } + break; +} + +/* Opcode: IsNull P1 P2 P3 * * +** +** Jump to P2 if the value in register P1 is NULL. If P3 is greater +** than zero, then check all values reg(P1), reg(P1+1), +** reg(P1+2), ..., reg(P1+P3-1). +*/ +case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ + int n = pOp->p3; + assert( pOp->p3==0 || pOp->p1>0 ); + do{ + if( (pIn1->flags & MEM_Null)!=0 ){ + pc = pOp->p2 - 1; + break; + } + pIn1++; + }while( --n > 0 ); + break; +} + +/* Opcode: NotNull P1 P2 * * * +** +** Jump to P2 if the value in register P1 is not NULL. +*/ +case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ + if( (pIn1->flags & MEM_Null)==0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: SetNumColumns * P2 * * * +** +** This opcode sets the number of columns for the cursor opened by the +** following instruction to P2. +** +** An OP_SetNumColumns is only useful if it occurs immediately before +** one of the following opcodes: +** +** OpenRead +** OpenWrite +** OpenPseudo +** +** If the OP_Column opcode is to be executed on a cursor, then +** this opcode must be present immediately before the opcode that +** opens the cursor. +*/ +case OP_SetNumColumns: { + break; +} + +/* Opcode: Column P1 P2 P3 P4 * +** +** Interpret the data that cursor P1 points to as a structure built using +** the MakeRecord instruction. (See the MakeRecord opcode for additional +** information about the format of the data.) Extract the P2-th column +** from this record. If there are less that (P2+1) +** values in the record, extract a NULL. +** +** The value extracted is stored in register P3. +** +** If the KeyAsData opcode has previously executed on this cursor, then the +** field might be extracted from the key rather than the data. +** +** If the column contains fewer than P2 fields, then extract a NULL. Or, +** if the P4 argument is a P4_MEM use the value of the P4 argument as +** the result. +*/ +case OP_Column: { + u32 payloadSize; /* Number of bytes in the record */ + int p1 = pOp->p1; /* P1 value of the opcode */ + int p2 = pOp->p2; /* column number to retrieve */ + Cursor *pC = 0; /* The VDBE cursor */ + char *zRec; /* Pointer to complete record-data */ + BtCursor *pCrsr; /* The BTree cursor */ + u32 *aType; /* aType[i] holds the numeric type of the i-th column */ + u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ + u32 nField; /* number of fields in the record */ + int len; /* The length of the serialized data for the column */ + int i; /* Loop counter */ + char *zData; /* Part of the record being decoded */ + Mem *pDest; /* Where to write the extracted value */ + Mem sMem; /* For storing the record being decoded */ + + sMem.flags = 0; + sMem.db = 0; + sMem.zMalloc = 0; + assert( p1<p->nCursor ); + assert( pOp->p3>0 && pOp->p3<=p->nMem ); + pDest = &p->aMem[pOp->p3]; + MemSetTypeFlag(pDest, MEM_Null); + + /* This block sets the variable payloadSize to be the total number of + ** bytes in the record. + ** + ** zRec is set to be the complete text of the record if it is available. + ** The complete record text is always available for pseudo-tables + ** If the record is stored in a cursor, the complete record text + ** might be available in the pC->aRow cache. Or it might not be. + ** If the data is unavailable, zRec is set to NULL. + ** + ** We also compute the number of columns in the record. For cursors, + ** the number of columns is stored in the Cursor.nField element. + */ + pC = p->apCsr[p1]; + assert( pC!=0 ); +#ifndef SQLITE_OMIT_VIRTUALTABLE + assert( pC->pVtabCursor==0 ); +#endif + if( pC->pCursor!=0 ){ + /* The record is stored in a B-Tree */ + rc = sqlite3VdbeCursorMoveto(pC); + if( rc ) goto abort_due_to_error; + zRec = 0; + pCrsr = pC->pCursor; + if( pC->nullRow ){ + payloadSize = 0; + }else if( pC->cacheStatus==p->cacheCtr ){ + payloadSize = pC->payloadSize; + zRec = (char*)pC->aRow; + }else if( pC->isIndex ){ + i64 payloadSize64; + sqlite3BtreeKeySize(pCrsr, &payloadSize64); + payloadSize = payloadSize64; + }else{ + sqlite3BtreeDataSize(pCrsr, &payloadSize); + } + nField = pC->nField; + }else{ + assert( pC->pseudoTable ); + /* The record is the sole entry of a pseudo-table */ + payloadSize = pC->nData; + zRec = pC->pData; + pC->cacheStatus = CACHE_STALE; + assert( payloadSize==0 || zRec!=0 ); + nField = pC->nField; + pCrsr = 0; + } + + /* If payloadSize is 0, then just store a NULL */ + if( payloadSize==0 ){ + assert( pDest->flags&MEM_Null ); + goto op_column_out; + } + if( payloadSize>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + goto too_big; + } + + assert( p2<nField ); + + /* Read and parse the table header. Store the results of the parse + ** into the record header cache fields of the cursor. + */ + aType = pC->aType; + if( pC->cacheStatus==p->cacheCtr ){ + aOffset = pC->aOffset; + }else{ + u8 *zIdx; /* Index into header */ + u8 *zEndHdr; /* Pointer to first byte after the header */ + u32 offset; /* Offset into the data */ + int szHdrSz; /* Size of the header size field at start of record */ + int avail; /* Number of bytes of available data */ + + assert(aType); + pC->aOffset = aOffset = &aType[nField]; + pC->payloadSize = payloadSize; + pC->cacheStatus = p->cacheCtr; + + /* Figure out how many bytes are in the header */ + if( zRec ){ + zData = zRec; + }else{ + if( pC->isIndex ){ + zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail); + }else{ + zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail); + } + /* If KeyFetch()/DataFetch() managed to get the entire payload, + ** save the payload in the pC->aRow cache. That will save us from + ** having to make additional calls to fetch the content portion of + ** the record. + */ + if( avail>=payloadSize ){ + zRec = zData; + pC->aRow = (u8*)zData; + }else{ + pC->aRow = 0; + } + } + /* The following assert is true in all cases accept when + ** the database file has been corrupted externally. + ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */ + szHdrSz = getVarint32((u8*)zData, offset); + + /* The KeyFetch() or DataFetch() above are fast and will get the entire + ** record header in most cases. But they will fail to get the complete + ** record header if the record header does not fit on a single page + ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to + ** acquire the complete header text. + */ + if( !zRec && avail<offset ){ + sMem.flags = 0; + sMem.db = 0; + rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem); + if( rc!=SQLITE_OK ){ + goto op_column_out; + } + zData = sMem.z; + } + zEndHdr = (u8 *)&zData[offset]; + zIdx = (u8 *)&zData[szHdrSz]; + + /* Scan the header and use it to fill in the aType[] and aOffset[] + ** arrays. aType[i] will contain the type integer for the i-th + ** column and aOffset[i] will contain the offset from the beginning + ** of the record to the start of the data for the i-th column + */ + for(i=0; i<nField; i++){ + if( zIdx<zEndHdr ){ + aOffset[i] = offset; + zIdx += getVarint32(zIdx, aType[i]); + offset += sqlite3VdbeSerialTypeLen(aType[i]); + }else{ + /* If i is less that nField, then there are less fields in this + ** record than SetNumColumns indicated there are columns in the + ** table. Set the offset for any extra columns not present in + ** the record to 0. This tells code below to store a NULL + ** instead of deserializing a value from the record. + */ + aOffset[i] = 0; + } + } + sqlite3VdbeMemRelease(&sMem); + sMem.flags = MEM_Null; + + /* If we have read more header data than was contained in the header, + ** or if the end of the last field appears to be past the end of the + ** record, or if the end of the last field appears to be before the end + ** of the record (when all fields present), then we must be dealing + ** with a corrupt database. + */ + if( zIdx>zEndHdr || offset>payloadSize || (zIdx==zEndHdr && offset!=payloadSize) ){ + rc = SQLITE_CORRUPT_BKPT; + goto op_column_out; + } + } + + /* Get the column information. If aOffset[p2] is non-zero, then + ** deserialize the value from the record. If aOffset[p2] is zero, + ** then there are not enough fields in the record to satisfy the + ** request. In this case, set the value NULL or to P4 if P4 is + ** a pointer to a Mem object. + */ + if( aOffset[p2] ){ + assert( rc==SQLITE_OK ); + if( zRec ){ + if( pDest->flags&MEM_Dyn ){ + sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], &sMem); + sMem.db = db; + rc = sqlite3VdbeMemCopy(pDest, &sMem); + assert( !(sMem.flags&MEM_Dyn) ); + if( rc!=SQLITE_OK ){ + goto op_column_out; + } + }else{ + sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest); + } + }else{ + len = sqlite3VdbeSerialTypeLen(aType[p2]); + sqlite3VdbeMemMove(&sMem, pDest); + rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem); + if( rc!=SQLITE_OK ){ + goto op_column_out; + } + zData = sMem.z; + sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest); + } + pDest->enc = encoding; + }else{ + if( pOp->p4type==P4_MEM ){ + sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); + }else{ + assert( pDest->flags&MEM_Null ); + } + } + + /* If we dynamically allocated space to hold the data (in the + ** sqlite3VdbeMemFromBtree() call above) then transfer control of that + ** dynamically allocated space over to the pDest structure. + ** This prevents a memory copy. + */ + if( sMem.zMalloc ){ + assert( sMem.z==sMem.zMalloc ); + assert( !(pDest->flags & MEM_Dyn) ); + assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z ); + pDest->flags &= ~(MEM_Ephem|MEM_Static); + pDest->flags |= MEM_Term; + pDest->z = sMem.z; + pDest->zMalloc = sMem.zMalloc; + } + + rc = sqlite3VdbeMemMakeWriteable(pDest); + +op_column_out: + UPDATE_MAX_BLOBSIZE(pDest); + REGISTER_TRACE(pOp->p3, pDest); + break; +} + +/* Opcode: Affinity P1 P2 * P4 * +** +** Apply affinities to a range of P2 registers starting with P1. +** +** P4 is a string that is P2 characters long. The nth character of the +** string indicates the column affinity that should be used for the nth +** memory cell in the range. +*/ +case OP_Affinity: { + char *zAffinity = pOp->p4.z; + Mem *pData0 = &p->aMem[pOp->p1]; + Mem *pLast = &pData0[pOp->p2-1]; + Mem *pRec; + + for(pRec=pData0; pRec<=pLast; pRec++){ + ExpandBlob(pRec); + applyAffinity(pRec, zAffinity[pRec-pData0], encoding); + } + break; +} + +/* Opcode: MakeRecord P1 P2 P3 P4 * +** +** Convert P2 registers beginning with P1 into a single entry +** suitable for use as a data record in a database table or as a key +** in an index. The details of the format are irrelavant as long as +** the OP_Column opcode can decode the record later. +** Refer to source code comments for the details of the record +** format. +** +** P4 may be a string that is P2 characters long. The nth character of the +** string indicates the column affinity that should be used for the nth +** field of the index key. +** +** The mapping from character to affinity is given by the SQLITE_AFF_ +** macros defined in sqliteInt.h. +** +** If P4 is NULL then all index fields have the affinity NONE. +*/ +case OP_MakeRecord: { + /* Assuming the record contains N fields, the record format looks + ** like this: + ** + ** ------------------------------------------------------------------------ + ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | + ** ------------------------------------------------------------------------ + ** + ** Data(0) is taken from register P1. Data(1) comes from register P1+1 + ** and so froth. + ** + ** Each type field is a varint representing the serial type of the + ** corresponding data element (see sqlite3VdbeSerialType()). The + ** hdr-size field is also a varint which is the offset from the beginning + ** of the record to data0. + */ + u8 *zNewRecord; /* A buffer to hold the data for the new record */ + Mem *pRec; /* The new record */ + u64 nData = 0; /* Number of bytes of data space */ + int nHdr = 0; /* Number of bytes of header space */ + u64 nByte = 0; /* Data space required for this record */ + int nZero = 0; /* Number of zero bytes at the end of the record */ + int nVarint; /* Number of bytes in a varint */ + u32 serial_type; /* Type field */ + Mem *pData0; /* First field to be combined into the record */ + Mem *pLast; /* Last field of the record */ + int nField; /* Number of fields in the record */ + char *zAffinity; /* The affinity string for the record */ + int file_format; /* File format to use for encoding */ + int i; /* Space used in zNewRecord[] */ + + nField = pOp->p1; + zAffinity = pOp->p4.z; + assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem ); + pData0 = &p->aMem[nField]; + nField = pOp->p2; + pLast = &pData0[nField-1]; + file_format = p->minWriteFileFormat; + + /* Loop through the elements that will make up the record to figure + ** out how much space is required for the new record. + */ + for(pRec=pData0; pRec<=pLast; pRec++){ + int len; + if( zAffinity ){ + applyAffinity(pRec, zAffinity[pRec-pData0], encoding); + } + if( pRec->flags&MEM_Zero && pRec->n>0 ){ + sqlite3VdbeMemExpandBlob(pRec); + } + serial_type = sqlite3VdbeSerialType(pRec, file_format); + len = sqlite3VdbeSerialTypeLen(serial_type); + nData += len; + nHdr += sqlite3VarintLen(serial_type); + if( pRec->flags & MEM_Zero ){ + /* Only pure zero-filled BLOBs can be input to this Opcode. + ** We do not allow blobs with a prefix and a zero-filled tail. */ + nZero += pRec->u.i; + }else if( len ){ + nZero = 0; + } + } + + /* Add the initial header varint and total the size */ + nHdr += nVarint = sqlite3VarintLen(nHdr); + if( nVarint<sqlite3VarintLen(nHdr) ){ + nHdr++; + } + nByte = nHdr+nData-nZero; + if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + goto too_big; + } + + /* Make sure the output register has a buffer large enough to store + ** the new record. The output register (pOp->p3) is not allowed to + ** be one of the input registers (because the following call to + ** sqlite3VdbeMemGrow() could clobber the value before it is used). + */ + assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); + pOut = &p->aMem[pOp->p3]; + if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){ + goto no_mem; + } + zNewRecord = (u8 *)pOut->z; + + /* Write the record */ + i = putVarint32(zNewRecord, nHdr); + for(pRec=pData0; pRec<=pLast; pRec++){ + serial_type = sqlite3VdbeSerialType(pRec, file_format); + i += putVarint32(&zNewRecord[i], serial_type); /* serial type */ + } + for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */ + i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format); + } + assert( i==nByte ); + + assert( pOp->p3>0 && pOp->p3<=p->nMem ); + pOut->n = nByte; + pOut->flags = MEM_Blob | MEM_Dyn; + pOut->xDel = 0; + if( nZero ){ + pOut->u.i = nZero; + pOut->flags |= MEM_Zero; + } + pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */ + REGISTER_TRACE(pOp->p3, pOut); + UPDATE_MAX_BLOBSIZE(pOut); + break; +} + +/* Opcode: Statement P1 * * * * +** +** Begin an individual statement transaction which is part of a larger +** transaction. This is needed so that the statement +** can be rolled back after an error without having to roll back the +** entire transaction. The statement transaction will automatically +** commit when the VDBE halts. +** +** If the database connection is currently in autocommit mode (that +** is to say, if it is in between BEGIN and COMMIT) +** and if there are no other active statements on the same database +** connection, then this operation is a no-op. No statement transaction +** is needed since any error can use the normal ROLLBACK process to +** undo changes. +** +** If a statement transaction is started, then a statement journal file +** will be allocated and initialized. +** +** The statement is begun on the database file with index P1. The main +** database file has an index of 0 and the file used for temporary tables +** has an index of 1. +*/ +case OP_Statement: { + if( db->autoCommit==0 || db->activeVdbeCnt>1 ){ + int i = pOp->p1; + Btree *pBt; + assert( i>=0 && i<db->nDb ); + assert( db->aDb[i].pBt!=0 ); + pBt = db->aDb[i].pBt; + assert( sqlite3BtreeIsInTrans(pBt) ); + assert( (p->btreeMask & (1<<i))!=0 ); + if( !sqlite3BtreeIsInStmt(pBt) ){ + rc = sqlite3BtreeBeginStmt(pBt); + p->openedStatement = 1; + } + } + break; +} + +/* Opcode: AutoCommit P1 P2 * * * +** +** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll +** back any currently active btree transactions. If there are any active +** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails. +** +** This instruction causes the VM to halt. +*/ +case OP_AutoCommit: { + u8 i = pOp->p1; + u8 rollback = pOp->p2; + + assert( i==1 || i==0 ); + assert( i==1 || rollback==0 ); + + assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ + + if( db->activeVdbeCnt>1 && i && !db->autoCommit ){ + /* If this instruction implements a COMMIT or ROLLBACK, other VMs are + ** still running, and a transaction is active, return an error indicating + ** that the other VMs must complete first. + */ + sqlite3SetString(&p->zErrMsg, "cannot ", rollback?"rollback":"commit", + " transaction - SQL statements in progress", (char*)0); + rc = SQLITE_ERROR; + }else if( i!=db->autoCommit ){ + if( pOp->p2 ){ + assert( i==1 ); + sqlite3RollbackAll(db); + db->autoCommit = 1; + }else{ + db->autoCommit = i; + if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ + p->pc = pc; + db->autoCommit = 1-i; + p->rc = rc = SQLITE_BUSY; + goto vdbe_return; + } + } + if( p->rc==SQLITE_OK ){ + rc = SQLITE_DONE; + }else{ + rc = SQLITE_ERROR; + } + goto vdbe_return; + }else{ + sqlite3SetString(&p->zErrMsg, + (!i)?"cannot start a transaction within a transaction":( + (rollback)?"cannot rollback - no transaction is active": + "cannot commit - no transaction is active"), (char*)0); + + rc = SQLITE_ERROR; + } + break; +} + +/* Opcode: Transaction P1 P2 * * * +** +** Begin a transaction. The transaction ends when a Commit or Rollback +** opcode is encountered. Depending on the ON CONFLICT setting, the +** transaction might also be rolled back if an error is encountered. +** +** P1 is the index of the database file on which the transaction is +** started. Index 0 is the main database file and index 1 is the +** file used for temporary tables. Indices of 2 or more are used for +** attached databases. +** +** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is +** obtained on the database file when a write-transaction is started. No +** other process can start another write transaction while this transaction is +** underway. Starting a write transaction also creates a rollback journal. A +** write transaction must be started before any changes can be made to the +** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained +** on the file. +** +** If P2 is zero, then a read-lock is obtained on the database file. +*/ +case OP_Transaction: { + int i = pOp->p1; + Btree *pBt; + + assert( i>=0 && i<db->nDb ); + assert( (p->btreeMask & (1<<i))!=0 ); + pBt = db->aDb[i].pBt; + + if( pBt ){ + rc = sqlite3BtreeBeginTrans(pBt, pOp->p2); + if( rc==SQLITE_BUSY ){ + p->pc = pc; + p->rc = rc = SQLITE_BUSY; + goto vdbe_return; + } + if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){ + goto abort_due_to_error; + } + } + break; +} + +/* Opcode: ReadCookie P1 P2 P3 * * +** +** Read cookie number P3 from database P1 and write it into register P2. +** P3==0 is the schema version. P3==1 is the database format. +** P3==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** If P1 is negative, then this is a request to read the size of a +** databases free-list. P3 must be set to 1 in this case. The actual +** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1 +** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp"). +** +** There must be a read-lock on the database (either a transaction +** must be started or there must be an open cursor) before +** executing this instruction. +*/ +case OP_ReadCookie: { /* out2-prerelease */ + int iMeta; + int iDb = pOp->p1; + int iCookie = pOp->p3; + + assert( pOp->p3<SQLITE_N_BTREE_META ); + if( iDb<0 ){ + iDb = (-1*(iDb+1)); + iCookie *= -1; + } + assert( iDb>=0 && iDb<db->nDb ); + assert( db->aDb[iDb].pBt!=0 ); + assert( (p->btreeMask & (1<<iDb))!=0 ); + /* The indexing of meta values at the schema layer is off by one from + ** the indexing in the btree layer. The btree considers meta[0] to + ** be the number of free pages in the database (a read-only value) + ** and meta[1] to be the schema cookie. The schema layer considers + ** meta[1] to be the schema cookie. So we have to shift the index + ** by one in the following statement. + */ + rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta); + pOut->u.i = iMeta; + MemSetTypeFlag(pOut, MEM_Int); + break; +} + +/* Opcode: SetCookie P1 P2 P3 * * +** +** Write the content of register P3 (interpreted as an integer) +** into cookie number P2 of database P1. +** P2==0 is the schema version. P2==1 is the database format. +** P2==2 is the recommended pager cache size, and so forth. P1==0 is +** the main database file and P1==1 is the database file used to store +** temporary tables. +** +** A transaction must be started before executing this opcode. +*/ +case OP_SetCookie: { /* in3 */ + Db *pDb; + assert( pOp->p2<SQLITE_N_BTREE_META ); + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + assert( (p->btreeMask & (1<<pOp->p1))!=0 ); + pDb = &db->aDb[pOp->p1]; + assert( pDb->pBt!=0 ); + sqlite3VdbeMemIntegerify(pIn3); + /* See note about index shifting on OP_ReadCookie */ + rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i); + if( pOp->p2==0 ){ + /* When the schema cookie changes, record the new cookie internally */ + pDb->pSchema->schema_cookie = pIn3->u.i; + db->flags |= SQLITE_InternChanges; + }else if( pOp->p2==1 ){ + /* Record changes in the file format */ + pDb->pSchema->file_format = pIn3->u.i; + } + if( pOp->p1==1 ){ + /* Invalidate all prepared statements whenever the TEMP database + ** schema is changed. Ticket #1644 */ + sqlite3ExpirePreparedStatements(db); + } + break; +} + +/* Opcode: VerifyCookie P1 P2 * +** +** Check the value of global database parameter number 0 (the +** schema version) and make sure it is equal to P2. +** P1 is the database number which is 0 for the main database file +** and 1 for the file holding temporary tables and some higher number +** for auxiliary databases. +** +** The cookie changes its value whenever the database schema changes. +** This operation is used to detect when that the cookie has changed +** and that the current process needs to reread the schema. +** +** Either a transaction needs to have been started or an OP_Open needs +** to be executed (to establish a read lock) before this opcode is +** invoked. +*/ +case OP_VerifyCookie: { + int iMeta; + Btree *pBt; + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + assert( (p->btreeMask & (1<<pOp->p1))!=0 ); + pBt = db->aDb[pOp->p1].pBt; + if( pBt ){ + rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta); + }else{ + rc = SQLITE_OK; + iMeta = 0; + } + if( rc==SQLITE_OK && iMeta!=pOp->p2 ){ + sqlite3_free(p->zErrMsg); + p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); + /* If the schema-cookie from the database file matches the cookie + ** stored with the in-memory representation of the schema, do + ** not reload the schema from the database file. + ** + ** If virtual-tables are in use, this is not just an optimisation. + ** Often, v-tables store their data in other SQLite tables, which + ** are queried from within xNext() and other v-table methods using + ** prepared queries. If such a query is out-of-date, we do not want to + ** discard the database schema, as the user code implementing the + ** v-table would have to be ready for the sqlite3_vtab structure itself + ** to be invalidated whenever sqlite3_step() is called from within + ** a v-table method. + */ + if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ + sqlite3ResetInternalSchema(db, pOp->p1); + } + + sqlite3ExpirePreparedStatements(db); + rc = SQLITE_SCHEMA; + } + break; +} + +/* Opcode: OpenRead P1 P2 P3 P4 P5 +** +** Open a read-only cursor for the database table whose root page is +** P2 in a database file. The database file is determined by P3. +** P3==0 means the main database, P3==1 means the database used for +** temporary tables, and P3>1 means used the corresponding attached +** database. Give the new cursor an identifier of P1. The P1 +** values need not be contiguous but all P1 values should be small integers. +** It is an error for P1 to be negative. +** +** If P5!=0 then use the content of register P2 as the root page, not +** the value of P2 itself. +** +** There will be a read lock on the database whenever there is an +** open cursor. If the database was unlocked prior to this instruction +** then a read lock is acquired as part of this instruction. A read +** lock allows other processes to read the database but prohibits +** any other process from modifying the database. The read lock is +** released when all cursors are closed. If this instruction attempts +** to get a read lock but fails, the script terminates with an +** SQLITE_BUSY error code. +** +** The P4 value is a pointer to a KeyInfo structure that defines the +** content and collating sequence of indices. P4 is NULL for cursors +** that are not pointing to indices. +** +** See also OpenWrite. +*/ +/* Opcode: OpenWrite P1 P2 P3 P4 P5 +** +** Open a read/write cursor named P1 on the table or index whose root +** page is P2. Or if P5!=0 use the content of register P2 to find the +** root page. +** +** The P4 value is a pointer to a KeyInfo structure that defines the +** content and collating sequence of indices. P4 is NULL for cursors +** that are not pointing to indices. +** +** This instruction works just like OpenRead except that it opens the cursor +** in read/write mode. For a given table, there can be one or more read-only +** cursors or a single read/write cursor but not both. +** +** See also OpenRead. +*/ +case OP_OpenRead: +case OP_OpenWrite: { + int i = pOp->p1; + int p2 = pOp->p2; + int iDb = pOp->p3; + int wrFlag; + Btree *pX; + Cursor *pCur; + Db *pDb; + + assert( iDb>=0 && iDb<db->nDb ); + assert( (p->btreeMask & (1<<iDb))!=0 ); + pDb = &db->aDb[iDb]; + pX = pDb->pBt; + assert( pX!=0 ); + if( pOp->opcode==OP_OpenWrite ){ + wrFlag = 1; + if( pDb->pSchema->file_format < p->minWriteFileFormat ){ + p->minWriteFileFormat = pDb->pSchema->file_format; + } + }else{ + wrFlag = 0; + } + if( pOp->p5 ){ + assert( p2>0 ); + assert( p2<=p->nMem ); + pIn2 = &p->aMem[p2]; + sqlite3VdbeMemIntegerify(pIn2); + p2 = pIn2->u.i; + assert( p2>=2 ); + } + assert( i>=0 ); + pCur = allocateCursor(p, i, &pOp[-1], iDb, 1); + if( pCur==0 ) goto no_mem; + pCur->nullRow = 1; + rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor); + if( pOp->p4type==P4_KEYINFO ){ + pCur->pKeyInfo = pOp->p4.pKeyInfo; + pCur->pIncrKey = &pCur->pKeyInfo->incrKey; + pCur->pKeyInfo->enc = ENC(p->db); + }else{ + pCur->pKeyInfo = 0; + pCur->pIncrKey = &pCur->bogusIncrKey; + } + switch( rc ){ + case SQLITE_BUSY: { + p->pc = pc; + p->rc = rc = SQLITE_BUSY; + goto vdbe_return; + } + case SQLITE_OK: { + int flags = sqlite3BtreeFlags(pCur->pCursor); + /* Sanity checking. Only the lower four bits of the flags byte should + ** be used. Bit 3 (mask 0x08) is unpreditable. The lower 3 bits + ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or + ** 2 (zerodata for indices). If these conditions are not met it can + ** only mean that we are dealing with a corrupt database file + */ + if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){ + rc = SQLITE_CORRUPT_BKPT; + goto abort_due_to_error; + } + pCur->isTable = (flags & BTREE_INTKEY)!=0; + pCur->isIndex = (flags & BTREE_ZERODATA)!=0; + /* If P4==0 it means we are expected to open a table. If P4!=0 then + ** we expect to be opening an index. If this is not what happened, + ** then the database is corrupt + */ + if( (pCur->isTable && pOp->p4type==P4_KEYINFO) + || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){ + rc = SQLITE_CORRUPT_BKPT; + goto abort_due_to_error; + } + break; + } + case SQLITE_EMPTY: { + pCur->isTable = pOp->p4type!=P4_KEYINFO; + pCur->isIndex = !pCur->isTable; + pCur->pCursor = 0; + rc = SQLITE_OK; + break; + } + default: { + goto abort_due_to_error; + } + } + break; +} + +/* Opcode: OpenEphemeral P1 P2 * P4 * +** +** Open a new cursor P1 to a transient table. +** The cursor is always opened read/write even if +** the main database is read-only. The transient or virtual +** table is deleted automatically when the cursor is closed. +** +** P2 is the number of columns in the virtual table. +** The cursor points to a BTree table if P4==0 and to a BTree index +** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure +** that defines the format of keys in the index. +** +** This opcode was once called OpenTemp. But that created +** confusion because the term "temp table", might refer either +** to a TEMP table at the SQL level, or to a table opened by +** this opcode. Then this opcode was call OpenVirtual. But +** that created confusion with the whole virtual-table idea. +*/ +case OP_OpenEphemeral: { + int i = pOp->p1; + Cursor *pCx; + static const int openFlags = + SQLITE_OPEN_READWRITE | + SQLITE_OPEN_CREATE | + SQLITE_OPEN_EXCLUSIVE | + SQLITE_OPEN_DELETEONCLOSE | + SQLITE_OPEN_TRANSIENT_DB; + + assert( i>=0 ); + pCx = allocateCursor(p, i, pOp, -1, 1); + if( pCx==0 ) goto no_mem; + pCx->nullRow = 1; + rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags, + &pCx->pBt); + if( rc==SQLITE_OK ){ + rc = sqlite3BtreeBeginTrans(pCx->pBt, 1); + } + if( rc==SQLITE_OK ){ + /* If a transient index is required, create it by calling + ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before + ** opening it. If a transient table is required, just use the + ** automatically created table with root-page 1 (an INTKEY table). + */ + if( pOp->p4.pKeyInfo ){ + int pgno; + assert( pOp->p4type==P4_KEYINFO ); + rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); + if( rc==SQLITE_OK ){ + assert( pgno==MASTER_ROOT+1 ); + rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, + (KeyInfo*)pOp->p4.z, pCx->pCursor); + pCx->pKeyInfo = pOp->p4.pKeyInfo; + pCx->pKeyInfo->enc = ENC(p->db); + pCx->pIncrKey = &pCx->pKeyInfo->incrKey; + } + pCx->isTable = 0; + }else{ + rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor); + pCx->isTable = 1; + pCx->pIncrKey = &pCx->bogusIncrKey; + } + } + pCx->isIndex = !pCx->isTable; + break; +} + +/* Opcode: OpenPseudo P1 P2 * * * +** +** Open a new cursor that points to a fake table that contains a single +** row of data. Any attempt to write a second row of data causes the +** first row to be deleted. All data is deleted when the cursor is +** closed. +** +** A pseudo-table created by this opcode is useful for holding the +** NEW or OLD tables in a trigger. Also used to hold the a single +** row output from the sorter so that the row can be decomposed into +** individual columns using the OP_Column opcode. +** +** When OP_Insert is executed to insert a row in to the pseudo table, +** the pseudo-table cursor may or may not make it's own copy of the +** original row data. If P2 is 0, then the pseudo-table will copy the +** original row data. Otherwise, a pointer to the original memory cell +** is stored. In this case, the vdbe program must ensure that the +** memory cell containing the row data is not overwritten until the +** pseudo table is closed (or a new row is inserted into it). +*/ +case OP_OpenPseudo: { + int i = pOp->p1; + Cursor *pCx; + assert( i>=0 ); + pCx = allocateCursor(p, i, &pOp[-1], -1, 0); + if( pCx==0 ) goto no_mem; + pCx->nullRow = 1; + pCx->pseudoTable = 1; + pCx->ephemPseudoTable = pOp->p2; + pCx->pIncrKey = &pCx->bogusIncrKey; + pCx->isTable = 1; + pCx->isIndex = 0; + break; +} + +/* Opcode: Close P1 * * * * +** +** Close a cursor previously opened as P1. If P1 is not +** currently open, this instruction is a no-op. +*/ +case OP_Close: { + int i = pOp->p1; + assert( i>=0 && i<p->nCursor ); + sqlite3VdbeFreeCursor(p, p->apCsr[i]); + p->apCsr[i] = 0; + break; +} + +/* Opcode: MoveGe P1 P2 P3 P4 * +** +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), +** use the integer value in register P3 as a key. If cursor P1 refers +** to an SQL index, then P3 is the first in an array of P4 registers +** that are used as an unpacked index key. +** +** Reposition cursor P1 so that it points to the smallest entry that +** is greater than or equal to the key value. If there are no records +** greater than or equal to the key and P2 is not zero, then jump to P2. +** +** A special feature of this opcode (and different from the +** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is +** zero and P1 is an SQL table (a b-tree with integer keys) then +** the seek is deferred until it is actually needed. It might be +** the case that the cursor is never accessed. By deferring the +** seek, we avoid unnecessary seeks. +** +** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe +*/ +/* Opcode: MoveGt P1 P2 P3 P4 * +** +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), +** use the integer value in register P3 as a key. If cursor P1 refers +** to an SQL index, then P3 is the first in an array of P4 registers +** that are used as an unpacked index key. +** +** Reposition cursor P1 so that it points to the smallest entry that +** is greater than the key value. If there are no records greater than +** the key and P2 is not zero, then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe +*/ +/* Opcode: MoveLt P1 P2 P3 P4 * +** +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), +** use the integer value in register P3 as a key. If cursor P1 refers +** to an SQL index, then P3 is the first in an array of P4 registers +** that are used as an unpacked index key. +** +** Reposition cursor P1 so that it points to the largest entry that +** is less than the key value. If there are no records less than +** the key and P2 is not zero, then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe +*/ +/* Opcode: MoveLe P1 P2 P3 P4 * +** +** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), +** use the integer value in register P3 as a key. If cursor P1 refers +** to an SQL index, then P3 is the first in an array of P4 registers +** that are used as an unpacked index key. +** +** Reposition cursor P1 so that it points to the largest entry that +** is less than or equal to the key value. If there are no records +** less than or equal to the key and P2 is not zero, then jump to P2. +** +** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt +*/ +case OP_MoveLt: /* jump, in3 */ +case OP_MoveLe: /* jump, in3 */ +case OP_MoveGe: /* jump, in3 */ +case OP_MoveGt: { /* jump, in3 */ + int i = pOp->p1; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( pC->pCursor!=0 ){ + int res, oc; + oc = pOp->opcode; + pC->nullRow = 0; + *pC->pIncrKey = oc==OP_MoveGt || oc==OP_MoveLe; + if( pC->isTable ){ + i64 iKey = sqlite3VdbeIntValue(pIn3); + if( pOp->p2==0 ){ + assert( pOp->opcode==OP_MoveGe ); + pC->movetoTarget = iKey; + pC->rowidIsValid = 0; + pC->deferredMoveto = 1; + break; + } + rc = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)iKey, 0, &res); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + pC->lastRowid = iKey; + pC->rowidIsValid = res==0; + }else{ + UnpackedRecord r; + int nField = pOp->p4.i; + assert( pOp->p4type==P4_INT32 ); + assert( nField>0 ); + r.pKeyInfo = pC->pKeyInfo; + r.nField = nField; + r.needFree = 0; + r.needDestroy = 0; + r.aMem = &p->aMem[pOp->p3]; + rc = sqlite3BtreeMoveto(pC->pCursor, 0, &r, 0, 0, &res); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + pC->rowidIsValid = 0; + } + pC->deferredMoveto = 0; + pC->cacheStatus = CACHE_STALE; + *pC->pIncrKey = 0; +#ifdef SQLITE_TEST + sqlite3_search_count++; +#endif + if( oc==OP_MoveGe || oc==OP_MoveGt ){ + if( res<0 ){ + rc = sqlite3BtreeNext(pC->pCursor, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + pC->rowidIsValid = 0; + }else{ + res = 0; + } + }else{ + assert( oc==OP_MoveLt || oc==OP_MoveLe ); + if( res>=0 ){ + rc = sqlite3BtreePrevious(pC->pCursor, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + pC->rowidIsValid = 0; + }else{ + /* res might be negative because the table is empty. Check to + ** see if this is the case. + */ + res = sqlite3BtreeEof(pC->pCursor); + } + } + assert( pOp->p2>0 ); + if( res ){ + pc = pOp->p2 - 1; + } + } + break; +} + +/* Opcode: Found P1 P2 P3 * * +** +** Register P3 holds a blob constructed by MakeRecord. P1 is an index. +** If an entry that matches the value in register p3 exists in P1 then +** jump to P2. If the P3 value does not match any entry in P1 +** then fall thru. The P1 cursor is left pointing at the matching entry +** if it exists. +** +** This instruction is used to implement the IN operator where the +** left-hand side is a SELECT statement. P1 may be a true index, or it +** may be a temporary index that holds the results of the SELECT +** statement. This instruction is also used to implement the +** DISTINCT keyword in SELECT statements. +** +** This instruction checks if index P1 contains a record for which +** the first N serialised values exactly match the N serialised values +** in the record in register P3, where N is the total number of values in +** the P3 record (the P3 record is a prefix of the P1 record). +** +** See also: NotFound, MoveTo, IsUnique, NotExists +*/ +/* Opcode: NotFound P1 P2 P3 * * +** +** Register P3 holds a blob constructed by MakeRecord. P1 is +** an index. If no entry exists in P1 that matches the blob then jump +** to P2. If an entry does existing, fall through. The cursor is left +** pointing to the entry that matches. +** +** See also: Found, MoveTo, NotExists, IsUnique +*/ +case OP_NotFound: /* jump, in3 */ +case OP_Found: { /* jump, in3 */ + int i = pOp->p1; + int alreadyExists = 0; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pC = p->apCsr[i])->pCursor!=0 ){ + int res; + assert( pC->isTable==0 ); + assert( pIn3->flags & MEM_Blob ); + if( pOp->opcode==OP_Found ){ + pC->pKeyInfo->prefixIsEqual = 1; + } + rc = sqlite3BtreeMoveto(pC->pCursor, pIn3->z, 0, pIn3->n, 0, &res); + pC->pKeyInfo->prefixIsEqual = 0; + if( rc!=SQLITE_OK ){ + break; + } + alreadyExists = (res==0); + pC->deferredMoveto = 0; + pC->cacheStatus = CACHE_STALE; + } + if( pOp->opcode==OP_Found ){ + if( alreadyExists ) pc = pOp->p2 - 1; + }else{ + if( !alreadyExists ) pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: IsUnique P1 P2 P3 P4 * +** +** The P3 register contains an integer record number. Call this +** record number R. The P4 register contains an index key created +** using MakeIdxRec. Call it K. +** +** P1 is an index. So it has no data and its key consists of a +** record generated by OP_MakeRecord where the last field is the +** rowid of the entry that the index refers to. +** +** This instruction asks if there is an entry in P1 where the +** fields matches K but the rowid is different from R. +** If there is no such entry, then there is an immediate +** jump to P2. If any entry does exist where the index string +** matches K but the record number is not R, then the record +** number for that entry is written into P3 and control +** falls through to the next instruction. +** +** See also: NotFound, NotExists, Found +*/ +case OP_IsUnique: { /* jump, in3 */ + int i = pOp->p1; + Cursor *pCx; + BtCursor *pCrsr; + Mem *pK; + i64 R; + + /* Pop the value R off the top of the stack + */ + assert( pOp->p4type==P4_INT32 ); + assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem ); + pK = &p->aMem[pOp->p4.i]; + sqlite3VdbeMemIntegerify(pIn3); + R = pIn3->u.i; + assert( i>=0 && i<p->nCursor ); + pCx = p->apCsr[i]; + assert( pCx!=0 ); + pCrsr = pCx->pCursor; + if( pCrsr!=0 ){ + int res; + i64 v; /* The record number on the P1 entry that matches K */ + char *zKey; /* The value of K */ + int nKey; /* Number of bytes in K */ + int len; /* Number of bytes in K without the rowid at the end */ + int szRowid; /* Size of the rowid column at the end of zKey */ + + /* Make sure K is a string and make zKey point to K + */ + assert( pK->flags & MEM_Blob ); + zKey = pK->z; + nKey = pK->n; + + szRowid = sqlite3VdbeIdxRowidLen((u8*)zKey); + len = nKey-szRowid; + + /* Search for an entry in P1 where all but the last four bytes match K. + ** If there is no such entry, jump immediately to P2. + */ + assert( pCx->deferredMoveto==0 ); + pCx->cacheStatus = CACHE_STALE; + rc = sqlite3BtreeMoveto(pCrsr, zKey, 0, len, 0, &res); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( res<0 ){ + rc = sqlite3BtreeNext(pCrsr, &res); + if( res ){ + pc = pOp->p2 - 1; + break; + } + } + rc = sqlite3VdbeIdxKeyCompare(pCx, 0, len, (u8*)zKey, &res); + if( rc!=SQLITE_OK ) goto abort_due_to_error; + if( res>0 ){ + pc = pOp->p2 - 1; + break; + } + + /* At this point, pCrsr is pointing to an entry in P1 where all but + ** the final entry (the rowid) matches K. Check to see if the + ** final rowid column is different from R. If it equals R then jump + ** immediately to P2. + */ + rc = sqlite3VdbeIdxRowid(pCrsr, &v); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( v==R ){ + pc = pOp->p2 - 1; + break; + } + + /* The final varint of the key is different from R. Store it back + ** into register R3. (The record number of an entry that violates + ** a UNIQUE constraint.) + */ + pIn3->u.i = v; + assert( pIn3->flags&MEM_Int ); + } + break; +} + +/* Opcode: NotExists P1 P2 P3 * * +** +** Use the content of register P3 as a integer key. If a record +** with that key does not exist in table of P1, then jump to P2. +** If the record does exist, then fall thru. The cursor is left +** pointing to the record if it exists. +** +** The difference between this operation and NotFound is that this +** operation assumes the key is an integer and that P1 is a table whereas +** NotFound assumes key is a blob constructed from MakeRecord and +** P1 is an index. +** +** See also: Found, MoveTo, NotFound, IsUnique +*/ +case OP_NotExists: { /* jump, in3 */ + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int res; + u64 iKey; + assert( pIn3->flags & MEM_Int ); + assert( p->apCsr[i]->isTable ); + iKey = intToKey(pIn3->u.i); + rc = sqlite3BtreeMoveto(pCrsr, 0, 0, iKey, 0,&res); + pC->lastRowid = pIn3->u.i; + pC->rowidIsValid = res==0; + pC->nullRow = 0; + pC->cacheStatus = CACHE_STALE; + /* res might be uninitialized if rc!=SQLITE_OK. But if rc!=SQLITE_OK + ** processing is about to abort so we really do not care whether or not + ** the following jump is taken. (In other words, do not stress over + ** the error that valgrind sometimes shows on the next statement when + ** running ioerr.test and similar failure-recovery test scripts.) */ + if( res!=0 ){ + pc = pOp->p2 - 1; + assert( pC->rowidIsValid==0 ); + } + } + break; +} + +/* Opcode: Sequence P1 P2 * * * +** +** Find the next available sequence number for cursor P1. +** Write the sequence number into register P2. +** The sequence number on the cursor is incremented after this +** instruction. +*/ +case OP_Sequence: { /* out2-prerelease */ + int i = pOp->p1; + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + pOut->u.i = p->apCsr[i]->seqCount++; + MemSetTypeFlag(pOut, MEM_Int); + break; +} + + +/* Opcode: NewRowid P1 P2 P3 * * +** +** Get a new integer record number (a.k.a "rowid") used as the key to a table. +** The record number is not previously used as a key in the database +** table that cursor P1 points to. The new record number is written +** written to register P2. +** +** If P3>0 then P3 is a register that holds the largest previously +** generated record number. No new record numbers are allowed to be less +** than this value. When this value reaches its maximum, a SQLITE_FULL +** error is generated. The P3 register is updated with the generated +** record number. This P3 mechanism is used to help implement the +** AUTOINCREMENT feature. +*/ +case OP_NewRowid: { /* out2-prerelease */ + int i = pOp->p1; + i64 v = 0; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pC = p->apCsr[i])->pCursor==0 ){ + /* The zero initialization above is all that is needed */ + }else{ + /* The next rowid or record number (different terms for the same + ** thing) is obtained in a two-step algorithm. + ** + ** First we attempt to find the largest existing rowid and add one + ** to that. But if the largest existing rowid is already the maximum + ** positive integer, we have to fall through to the second + ** probabilistic algorithm + ** + ** The second algorithm is to select a rowid at random and see if + ** it already exists in the table. If it does not exist, we have + ** succeeded. If the random rowid does exist, we select a new one + ** and try again, up to 1000 times. + ** + ** For a table with less than 2 billion entries, the probability + ** of not finding a unused rowid is about 1.0e-300. This is a + ** non-zero probability, but it is still vanishingly small and should + ** never cause a problem. You are much, much more likely to have a + ** hardware failure than for this algorithm to fail. + ** + ** The analysis in the previous paragraph assumes that you have a good + ** source of random numbers. Is a library function like lrand48() + ** good enough? Maybe. Maybe not. It's hard to know whether there + ** might be subtle bugs is some implementations of lrand48() that + ** could cause problems. To avoid uncertainty, SQLite uses its own + ** random number generator based on the RC4 algorithm. + ** + ** To promote locality of reference for repetitive inserts, the + ** first few attempts at chosing a random rowid pick values just a little + ** larger than the previous rowid. This has been shown experimentally + ** to double the speed of the COPY operation. + */ + int res, rx=SQLITE_OK, cnt; + i64 x; + cnt = 0; + if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) != + BTREE_INTKEY ){ + rc = SQLITE_CORRUPT_BKPT; + goto abort_due_to_error; + } + assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 ); + assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 ); + +#ifdef SQLITE_32BIT_ROWID +# define MAX_ROWID 0x7fffffff +#else + /* Some compilers complain about constants of the form 0x7fffffffffffffff. + ** Others complain about 0x7ffffffffffffffffLL. The following macro seems + ** to provide the constant while making all compilers happy. + */ +# define MAX_ROWID ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) +#endif + + if( !pC->useRandomRowid ){ + if( pC->nextRowidValid ){ + v = pC->nextRowid; + }else{ + rc = sqlite3BtreeLast(pC->pCursor, &res); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + if( res ){ + v = 1; + }else{ + sqlite3BtreeKeySize(pC->pCursor, &v); + v = keyToInt(v); + if( v==MAX_ROWID ){ + pC->useRandomRowid = 1; + }else{ + v++; + } + } + } + +#ifndef SQLITE_OMIT_AUTOINCREMENT + if( pOp->p3 ){ + Mem *pMem; + assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */ + pMem = &p->aMem[pOp->p3]; + REGISTER_TRACE(pOp->p3, pMem); + sqlite3VdbeMemIntegerify(pMem); + assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ + if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ + rc = SQLITE_FULL; + goto abort_due_to_error; + } + if( v<pMem->u.i+1 ){ + v = pMem->u.i + 1; + } + pMem->u.i = v; + } +#endif + + if( v<MAX_ROWID ){ + pC->nextRowidValid = 1; + pC->nextRowid = v+1; + }else{ + pC->nextRowidValid = 0; + } + } + if( pC->useRandomRowid ){ + assert( pOp->p3==0 ); /* SQLITE_FULL must have occurred prior to this */ + v = db->priorNewRowid; + cnt = 0; + do{ + if( cnt==0 && (v&0xffffff)==v ){ + v++; + }else{ + sqlite3_randomness(sizeof(v), &v); + if( cnt<5 ) v &= 0xffffff; + } + if( v==0 ) continue; + x = intToKey(v); + rx = sqlite3BtreeMoveto(pC->pCursor, 0, 0, (u64)x, 0, &res); + cnt++; + }while( cnt<100 && rx==SQLITE_OK && res==0 ); + db->priorNewRowid = v; + if( rx==SQLITE_OK && res==0 ){ + rc = SQLITE_FULL; + goto abort_due_to_error; + } + } + pC->rowidIsValid = 0; + pC->deferredMoveto = 0; + pC->cacheStatus = CACHE_STALE; + } + MemSetTypeFlag(pOut, MEM_Int); + pOut->u.i = v; + break; +} + +/* Opcode: Insert P1 P2 P3 P4 P5 +** +** Write an entry into the table of cursor P1. A new entry is +** created if it doesn't already exist or the data for an existing +** entry is overwritten. The data is the value stored register +** number P2. The key is stored in register P3. The key must +** be an integer. +** +** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is +** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, +** then rowid is stored for subsequent return by the +** sqlite3_last_insert_rowid() function (otherwise it is unmodified). +** +** Parameter P4 may point to a string containing the table-name, or +** may be NULL. If it is not NULL, then the update-hook +** (sqlite3.xUpdateCallback) is invoked following a successful insert. +** +** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically +** allocated, then ownership of P2 is transferred to the pseudo-cursor +** and register P2 becomes ephemeral. If the cursor is changed, the +** value of register P2 will then change. Make sure this does not +** cause any problems.) +** +** This instruction only works on tables. The equivalent instruction +** for indices is OP_IdxInsert. +*/ +case OP_Insert: { + Mem *pData = &p->aMem[pOp->p2]; + Mem *pKey = &p->aMem[pOp->p3]; + + i64 iKey; /* The integer ROWID or key for the record to be inserted */ + int i = pOp->p1; + Cursor *pC; + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + assert( pC->pCursor!=0 || pC->pseudoTable ); + assert( pKey->flags & MEM_Int ); + assert( pC->isTable ); + REGISTER_TRACE(pOp->p2, pData); + REGISTER_TRACE(pOp->p3, pKey); + + iKey = intToKey(pKey->u.i); + if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; + if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i; + if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){ + pC->nextRowidValid = 0; + } + if( pData->flags & MEM_Null ){ + pData->z = 0; + pData->n = 0; + }else{ + assert( pData->flags & (MEM_Blob|MEM_Str) ); + } + if( pC->pseudoTable ){ + if( !pC->ephemPseudoTable ){ + sqlite3_free(pC->pData); + } + pC->iKey = iKey; + pC->nData = pData->n; + if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){ + pC->pData = pData->z; + if( !pC->ephemPseudoTable ){ + pData->flags &= ~MEM_Dyn; + pData->flags |= MEM_Ephem; + pData->zMalloc = 0; + } + }else{ + pC->pData = sqlite3_malloc( pC->nData+2 ); + if( !pC->pData ) goto no_mem; + memcpy(pC->pData, pData->z, pC->nData); + pC->pData[pC->nData] = 0; + pC->pData[pC->nData+1] = 0; + } + pC->nullRow = 0; + }else{ + int nZero; + if( pData->flags & MEM_Zero ){ + nZero = pData->u.i; + }else{ + nZero = 0; + } + rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey, + pData->z, pData->n, nZero, + pOp->p5 & OPFLAG_APPEND); + } + + pC->rowidIsValid = 0; + pC->deferredMoveto = 0; + pC->cacheStatus = CACHE_STALE; + + /* Invoke the update-hook if required. */ + if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ + const char *zDb = db->aDb[pC->iDb].zName; + const char *zTbl = pOp->p4.z; + int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT); + assert( pC->isTable ); + db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey); + assert( pC->iDb>=0 ); + } + break; +} + +/* Opcode: Delete P1 P2 * P4 * +** +** Delete the record at which the P1 cursor is currently pointing. +** +** The cursor will be left pointing at either the next or the previous +** record in the table. If it is left pointing at the next record, then +** the next Next instruction will be a no-op. Hence it is OK to delete +** a record from within an Next loop. +** +** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is +** incremented (otherwise not). +** +** P1 must not be pseudo-table. It has to be a real table with +** multiple rows. +** +** If P4 is not NULL, then it is the name of the table that P1 is +** pointing to. The update hook will be invoked, if it exists. +** If P4 is not NULL then the P1 cursor must have been positioned +** using OP_NotFound prior to invoking this opcode. +*/ +case OP_Delete: { + int i = pOp->p1; + i64 iKey; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */ + + /* If the update-hook will be invoked, set iKey to the rowid of the + ** row being deleted. + */ + if( db->xUpdateCallback && pOp->p4.z ){ + assert( pC->isTable ); + assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */ + iKey = pC->lastRowid; + } + + rc = sqlite3VdbeCursorMoveto(pC); + if( rc ) goto abort_due_to_error; + rc = sqlite3BtreeDelete(pC->pCursor); + pC->nextRowidValid = 0; + pC->cacheStatus = CACHE_STALE; + + /* Invoke the update-hook if required. */ + if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){ + const char *zDb = db->aDb[pC->iDb].zName; + const char *zTbl = pOp->p4.z; + db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey); + assert( pC->iDb>=0 ); + } + if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++; + break; +} + +/* Opcode: ResetCount P1 * * +** +** This opcode resets the VMs internal change counter to 0. If P1 is true, +** then the value of the change counter is copied to the database handle +** change counter (returned by subsequent calls to sqlite3_changes()) +** before it is reset. This is used by trigger programs. +*/ +case OP_ResetCount: { + if( pOp->p1 ){ + sqlite3VdbeSetChanges(db, p->nChange); + } + p->nChange = 0; + break; +} + +/* Opcode: RowData P1 P2 * * * +** +** Write into register P2 the complete row data for cursor P1. +** There is no interpretation of the data. +** It is just copied onto the P2 register exactly as +** it is found in the database file. +** +** If the P1 cursor must be pointing to a valid row (not a NULL row) +** of a real table, not a pseudo-table. +*/ +/* Opcode: RowKey P1 P2 * * * +** +** Write into register P2 the complete row key for cursor P1. +** There is no interpretation of the data. +** The key is copied onto the P3 register exactly as +** it is found in the database file. +** +** If the P1 cursor must be pointing to a valid row (not a NULL row) +** of a real table, not a pseudo-table. +*/ +case OP_RowKey: +case OP_RowData: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + u32 n; + + pOut = &p->aMem[pOp->p2]; + + /* Note that RowKey and RowData are really exactly the same instruction */ + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC->isTable || pOp->opcode==OP_RowKey ); + assert( pC->isIndex || pOp->opcode==OP_RowData ); + assert( pC!=0 ); + assert( pC->nullRow==0 ); + assert( pC->pseudoTable==0 ); + assert( pC->pCursor!=0 ); + pCrsr = pC->pCursor; + rc = sqlite3VdbeCursorMoveto(pC); + if( rc ) goto abort_due_to_error; + if( pC->isIndex ){ + i64 n64; + assert( !pC->isTable ); + sqlite3BtreeKeySize(pCrsr, &n64); + if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + goto too_big; + } + n = n64; + }else{ + sqlite3BtreeDataSize(pCrsr, &n); + if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){ + goto too_big; + } + } + if( sqlite3VdbeMemGrow(pOut, n, 0) ){ + goto no_mem; + } + pOut->n = n; + MemSetTypeFlag(pOut, MEM_Blob); + if( pC->isIndex ){ + rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z); + }else{ + rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z); + } + pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */ + UPDATE_MAX_BLOBSIZE(pOut); + break; +} + +/* Opcode: Rowid P1 P2 * * * +** +** Store in register P2 an integer which is the key of the table entry that +** P1 is currently point to. If p2==0 then push the integer. +*/ +case OP_Rowid: { /* out2-prerelease */ + int i = pOp->p1; + Cursor *pC; + i64 v; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + rc = sqlite3VdbeCursorMoveto(pC); + if( rc ) goto abort_due_to_error; + if( pC->rowidIsValid ){ + v = pC->lastRowid; + }else if( pC->pseudoTable ){ + v = keyToInt(pC->iKey); + }else if( pC->nullRow ){ + /* Leave the rowid set to a NULL */ + break; + }else{ + assert( pC->pCursor!=0 ); + sqlite3BtreeKeySize(pC->pCursor, &v); + v = keyToInt(v); + } + pOut->u.i = v; + MemSetTypeFlag(pOut, MEM_Int); + break; +} + +/* Opcode: NullRow P1 * * * * +** +** Move the cursor P1 to a null row. Any OP_Column operations +** that occur while the cursor is on the null row will always +** write a NULL. +*/ +case OP_NullRow: { + int i = pOp->p1; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + pC->nullRow = 1; + pC->rowidIsValid = 0; + break; +} + +/* Opcode: Last P1 P2 * * * +** +** The next use of the Rowid or Column or Next instruction for P1 +** will refer to the last entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Last: { /* jump */ + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + int res; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + pCrsr = pC->pCursor; + assert( pCrsr!=0 ); + rc = sqlite3BtreeLast(pCrsr, &res); + pC->nullRow = res; + pC->deferredMoveto = 0; + pC->cacheStatus = CACHE_STALE; + if( res && pOp->p2>0 ){ + pc = pOp->p2 - 1; + } + break; +} + + +/* Opcode: Sort P1 P2 * * * +** +** This opcode does exactly the same thing as OP_Rewind except that +** it increments an undocumented global variable used for testing. +** +** Sorting is accomplished by writing records into a sorting index, +** then rewinding that index and playing it back from beginning to +** end. We use the OP_Sort opcode instead of OP_Rewind to do the +** rewinding so that the global variable will be incremented and +** regression tests can determine whether or not the optimizer is +** correctly optimizing out sorts. +*/ +case OP_Sort: { /* jump */ +#ifdef SQLITE_TEST + sqlite3_sort_count++; + sqlite3_search_count--; +#endif + /* Fall through into OP_Rewind */ +} +/* Opcode: Rewind P1 P2 * * * +** +** The next use of the Rowid or Column or Next instruction for P1 +** will refer to the first entry in the database table or index. +** If the table or index is empty and P2>0, then jump immediately to P2. +** If P2 is 0 or if the table or index is not empty, fall through +** to the following instruction. +*/ +case OP_Rewind: { /* jump */ + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + int res; + + assert( i>=0 && i<p->nCursor ); + pC = p->apCsr[i]; + assert( pC!=0 ); + if( (pCrsr = pC->pCursor)!=0 ){ + rc = sqlite3BtreeFirst(pCrsr, &res); + pC->atFirst = res==0; + pC->deferredMoveto = 0; + pC->cacheStatus = CACHE_STALE; + }else{ + res = 1; + } + pC->nullRow = res; + assert( pOp->p2>0 && pOp->p2<p->nOp ); + if( res ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: Next P1 P2 * * * +** +** Advance cursor P1 so that it points to the next key/data pair in its +** table or index. If there are no more key/value pairs then fall through +** to the following instruction. But if the cursor advance was successful, +** jump immediately to P2. +** +** The P1 cursor must be for a real table, not a pseudo-table. +** +** See also: Prev +*/ +/* Opcode: Prev P1 P2 * * * +** +** Back up cursor P1 so that it points to the previous key/data pair in its +** table or index. If there is no previous key/value pairs then fall through +** to the following instruction. But if the cursor backup was successful, +** jump immediately to P2. +** +** The P1 cursor must be for a real table, not a pseudo-table. +*/ +case OP_Prev: /* jump */ +case OP_Next: { /* jump */ + Cursor *pC; + BtCursor *pCrsr; + + CHECK_FOR_INTERRUPT; + assert( pOp->p1>=0 && pOp->p1<p->nCursor ); + pC = p->apCsr[pOp->p1]; + if( pC==0 ){ + break; /* See ticket #2273 */ + } + pCrsr = pC->pCursor; + assert( pCrsr ); + if( pC->nullRow==0 ){ + int res = 1; + assert( pC->deferredMoveto==0 ); + rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) : + sqlite3BtreePrevious(pCrsr, &res); + pC->nullRow = res; + pC->cacheStatus = CACHE_STALE; + if( res==0 ){ + pc = pOp->p2 - 1; +#ifdef SQLITE_TEST + sqlite3_search_count++; +#endif + } + } + pC->rowidIsValid = 0; + break; +} + +/* Opcode: IdxInsert P1 P2 P3 * * +** +** Register P2 holds a SQL index key made using the +** MakeIdxRec instructions. This opcode writes that key +** into the index P1. Data for the entry is nil. +** +** P3 is a flag that provides a hint to the b-tree layer that this +** insert is likely to be an append. +** +** This instruction only works for indices. The equivalent instruction +** for tables is OP_Insert. +*/ +case OP_IdxInsert: { /* in2 */ + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + assert( pIn2->flags & MEM_Blob ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + assert( pC->isTable==0 ); + rc = ExpandBlob(pIn2); + if( rc==SQLITE_OK ){ + int nKey = pIn2->n; + const char *zKey = pIn2->z; + rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3); + assert( pC->deferredMoveto==0 ); + pC->cacheStatus = CACHE_STALE; + } + } + break; +} + +/* Opcode: IdxDeleteM P1 P2 P3 * * +** +** The content of P3 registers starting at register P2 form +** an unpacked index key. This opcode removes that entry from the +** index opened by cursor P1. +*/ +case OP_IdxDelete: { + int i = pOp->p1; + Cursor *pC; + BtCursor *pCrsr; + assert( pOp->p3>0 ); + assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem ); + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + int res; + UnpackedRecord r; + r.pKeyInfo = pC->pKeyInfo; + r.nField = pOp->p3; + r.needFree = 0; + r.needDestroy = 0; + r.aMem = &p->aMem[pOp->p2]; + rc = sqlite3BtreeMoveto(pCrsr, 0, &r, 0, 0, &res); + if( rc==SQLITE_OK && res==0 ){ + rc = sqlite3BtreeDelete(pCrsr); + } + assert( pC->deferredMoveto==0 ); + pC->cacheStatus = CACHE_STALE; + } + break; +} + +/* Opcode: IdxRowid P1 P2 * * * +** +** Write into register P2 an integer which is the last entry in the record at +** the end of the index key pointed to by cursor P1. This integer should be +** the rowid of the table entry to which this index entry points. +** +** See also: Rowid, MakeIdxRec. +*/ +case OP_IdxRowid: { /* out2-prerelease */ + int i = pOp->p1; + BtCursor *pCrsr; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){ + i64 rowid; + + assert( pC->deferredMoveto==0 ); + assert( pC->isTable==0 ); + if( !pC->nullRow ){ + rc = sqlite3VdbeIdxRowid(pCrsr, &rowid); + if( rc!=SQLITE_OK ){ + goto abort_due_to_error; + } + MemSetTypeFlag(pOut, MEM_Int); + pOut->u.i = rowid; + } + } + break; +} + +/* Opcode: IdxGE P1 P2 P3 P4 P5 +** +** The P4 register values beginning with P3 form an unpacked index +** key that omits the ROWID. Compare this key value against the index +** that P1 is currently pointing to, ignoring the ROWID on the P1 index. +** +** If the P1 index entry is greater than or equal to the key value +** then jump to P2. Otherwise fall through to the next instruction. +** +** If P5 is non-zero then the key value is increased by an epsilon +** prior to the comparison. This make the opcode work like IdxGT except +** that if the key from register P3 is a prefix of the key in the cursor, +** the result is false whereas it would be true with IdxGT. +*/ +/* Opcode: IdxLT P1 P2 P3 * P5 +** +** The P4 register values beginning with P3 form an unpacked index +** key that omits the ROWID. Compare this key value against the index +** that P1 is currently pointing to, ignoring the ROWID on the P1 index. +** +** If the P1 index entry is less than the key value then jump to P2. +** Otherwise fall through to the next instruction. +** +** If P5 is non-zero then the key value is increased by an epsilon prior +** to the comparison. This makes the opcode work like IdxLE. +*/ +case OP_IdxLT: /* jump, in3 */ +case OP_IdxGE: { /* jump, in3 */ + int i= pOp->p1; + Cursor *pC; + + assert( i>=0 && i<p->nCursor ); + assert( p->apCsr[i]!=0 ); + if( (pC = p->apCsr[i])->pCursor!=0 ){ + int res; + UnpackedRecord r; + assert( pC->deferredMoveto==0 ); + assert( pOp->p5==0 || pOp->p5==1 ); + assert( pOp->p4type==P4_INT32 ); + r.pKeyInfo = pC->pKeyInfo; + r.nField = pOp->p4.i; + r.needFree = 0; + r.needDestroy = 0; + r.aMem = &p->aMem[pOp->p3]; + *pC->pIncrKey = pOp->p5; + rc = sqlite3VdbeIdxKeyCompare(pC, &r, 0, 0, &res); + *pC->pIncrKey = 0; + if( pOp->opcode==OP_IdxLT ){ + res = -res; + }else{ + assert( pOp->opcode==OP_IdxGE ); + res++; + } + if( res>0 ){ + pc = pOp->p2 - 1 ; + } + } + break; +} + +/* Opcode: Destroy P1 P2 P3 * * +** +** Delete an entire database table or index whose root page in the database +** file is given by P1. +** +** The table being destroyed is in the main database file if P3==0. If +** P3==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** If AUTOVACUUM is enabled then it is possible that another root page +** might be moved into the newly deleted root page in order to keep all +** root pages contiguous at the beginning of the database. The former +** value of the root page that moved - its value before the move occurred - +** is stored in register P2. If no page +** movement was required (because the table being dropped was already +** the last one in the database) then a zero is stored in register P2. +** If AUTOVACUUM is disabled then a zero is stored in register P2. +** +** See also: Clear +*/ +case OP_Destroy: { /* out2-prerelease */ + int iMoved; + int iCnt; +#ifndef SQLITE_OMIT_VIRTUALTABLE + Vdbe *pVdbe; + iCnt = 0; + for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){ + if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){ + iCnt++; + } + } +#else + iCnt = db->activeVdbeCnt; +#endif + if( iCnt>1 ){ + rc = SQLITE_LOCKED; + p->errorAction = OE_Abort; + }else{ + int iDb = pOp->p3; + assert( iCnt==1 ); + assert( (p->btreeMask & (1<<iDb))!=0 ); + rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); + MemSetTypeFlag(pOut, MEM_Int); + pOut->u.i = iMoved; +#ifndef SQLITE_OMIT_AUTOVACUUM + if( rc==SQLITE_OK && iMoved!=0 ){ + sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1); + } +#endif + } + break; +} + +/* Opcode: Clear P1 P2 * +** +** Delete all contents of the database table or index whose root page +** in the database file is given by P1. But, unlike Destroy, do not +** remove the table or index from the database file. +** +** The table being clear is in the main database file if P2==0. If +** P2==1 then the table to be clear is in the auxiliary database file +** that is used to store tables create using CREATE TEMPORARY TABLE. +** +** See also: Destroy +*/ +case OP_Clear: { + assert( (p->btreeMask & (1<<pOp->p2))!=0 ); + rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1); + break; +} + +/* Opcode: CreateTable P1 P2 * * * +** +** Allocate a new table in the main database file if P1==0 or in the +** auxiliary database file if P1==1 or in an attached database if +** P1>1. Write the root page number of the new table into +** register P2 +** +** The difference between a table and an index is this: A table must +** have a 4-byte integer key and can have arbitrary data. An index +** has an arbitrary key but no data. +** +** See also: CreateIndex +*/ +/* Opcode: CreateIndex P1 P2 * * * +** +** Allocate a new index in the main database file if P1==0 or in the +** auxiliary database file if P1==1 or in an attached database if +** P1>1. Write the root page number of the new table into +** register P2. +** +** See documentation on OP_CreateTable for additional information. +*/ +case OP_CreateIndex: /* out2-prerelease */ +case OP_CreateTable: { /* out2-prerelease */ + int pgno; + int flags; + Db *pDb; + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + assert( (p->btreeMask & (1<<pOp->p1))!=0 ); + pDb = &db->aDb[pOp->p1]; + assert( pDb->pBt!=0 ); + if( pOp->opcode==OP_CreateTable ){ + /* flags = BTREE_INTKEY; */ + flags = BTREE_LEAFDATA|BTREE_INTKEY; + }else{ + flags = BTREE_ZERODATA; + } + rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags); + if( rc==SQLITE_OK ){ + pOut->u.i = pgno; + MemSetTypeFlag(pOut, MEM_Int); + } + break; +} + +/* Opcode: ParseSchema P1 P2 * P4 * +** +** Read and parse all entries from the SQLITE_MASTER table of database P1 +** that match the WHERE clause P4. P2 is the "force" flag. Always do +** the parsing if P2 is true. If P2 is false, then this routine is a +** no-op if the schema is not currently loaded. In other words, if P2 +** is false, the SQLITE_MASTER table is only parsed if the rest of the +** schema is already loaded into the symbol table. +** +** This opcode invokes the parser to create a new virtual machine, +** then runs the new virtual machine. It is thus a reentrant opcode. +*/ +case OP_ParseSchema: { + char *zSql; + int iDb = pOp->p1; + const char *zMaster; + InitData initData; + + assert( iDb>=0 && iDb<db->nDb ); + if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){ + break; + } + zMaster = SCHEMA_TABLE(iDb); + initData.db = db; + initData.iDb = pOp->p1; + initData.pzErrMsg = &p->zErrMsg; + zSql = sqlite3MPrintf(db, + "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s", + db->aDb[iDb].zName, zMaster, pOp->p4.z); + if( zSql==0 ) goto no_mem; + (void)sqlite3SafetyOff(db); + assert( db->init.busy==0 ); + db->init.busy = 1; + assert( !db->mallocFailed ); + rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); + if( rc==SQLITE_ABORT ) rc = initData.rc; + sqlite3_free(zSql); + db->init.busy = 0; + (void)sqlite3SafetyOn(db); + if( rc==SQLITE_NOMEM ){ + goto no_mem; + } + break; +} + +#if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) +/* Opcode: LoadAnalysis P1 * * * * +** +** Read the sqlite_stat1 table for database P1 and load the content +** of that table into the internal index hash table. This will cause +** the analysis to be used when preparing all subsequent queries. +*/ +case OP_LoadAnalysis: { + int iDb = pOp->p1; + assert( iDb>=0 && iDb<db->nDb ); + rc = sqlite3AnalysisLoad(db, iDb); + break; +} +#endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER) */ + +/* Opcode: DropTable P1 * * P4 * +** +** Remove the internal (in-memory) data structures that describe +** the table named P4 in database P1. This is called after a table +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropTable: { + sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); + break; +} + +/* Opcode: DropIndex P1 * * P4 * +** +** Remove the internal (in-memory) data structures that describe +** the index named P4 in database P1. This is called after an index +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropIndex: { + sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); + break; +} + +/* Opcode: DropTrigger P1 * * P4 * +** +** Remove the internal (in-memory) data structures that describe +** the trigger named P4 in database P1. This is called after a trigger +** is dropped in order to keep the internal representation of the +** schema consistent with what is on disk. +*/ +case OP_DropTrigger: { + sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); + break; +} + + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK +/* Opcode: IntegrityCk P1 P2 P3 * P5 +** +** Do an analysis of the currently open database. Store in +** register P1 the text of an error message describing any problems. +** If no problems are found, store a NULL in register P1. +** +** The register P3 contains the maximum number of allowed errors. +** At most reg(P3) errors will be reported. +** In other words, the analysis stops as soon as reg(P1) errors are +** seen. Reg(P1) is updated with the number of errors remaining. +** +** The root page numbers of all tables in the database are integer +** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables +** total. +** +** If P5 is not zero, the check is done on the auxiliary database +** file, not the main database file. +** +** This opcode is used to implement the integrity_check pragma. +*/ +case OP_IntegrityCk: { + int nRoot; /* Number of tables to check. (Number of root pages.) */ + int *aRoot; /* Array of rootpage numbers for tables to be checked */ + int j; /* Loop counter */ + int nErr; /* Number of errors reported */ + char *z; /* Text of the error report */ + Mem *pnErr; /* Register keeping track of errors remaining */ + + nRoot = pOp->p2; + assert( nRoot>0 ); + aRoot = sqlite3_malloc( sizeof(int)*(nRoot+1) ); + if( aRoot==0 ) goto no_mem; + assert( pOp->p3>0 && pOp->p3<=p->nMem ); + pnErr = &p->aMem[pOp->p3]; + assert( (pnErr->flags & MEM_Int)!=0 ); + assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); + pIn1 = &p->aMem[pOp->p1]; + for(j=0; j<nRoot; j++){ + aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]); + } + aRoot[j] = 0; + assert( pOp->p5<db->nDb ); + assert( (p->btreeMask & (1<<pOp->p5))!=0 ); + z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot, + pnErr->u.i, &nErr); + pnErr->u.i -= nErr; + sqlite3VdbeMemSetNull(pIn1); + if( nErr==0 ){ + assert( z==0 ); + }else{ + sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); + } + UPDATE_MAX_BLOBSIZE(pIn1); + sqlite3VdbeChangeEncoding(pIn1, encoding); + sqlite3_free(aRoot); + break; +} +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +/* Opcode: FifoWrite P1 * * * * +** +** Write the integer from register P1 into the Fifo. +*/ +case OP_FifoWrite: { /* in1 */ + if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){ + goto no_mem; + } + break; +} + +/* Opcode: FifoRead P1 P2 * * * +** +** Attempt to read a single integer from the Fifo. Store that +** integer in register P1. +** +** If the Fifo is empty jump to P2. +*/ +case OP_FifoRead: { /* jump */ + CHECK_FOR_INTERRUPT; + assert( pOp->p1>0 && pOp->p1<=p->nMem ); + pOut = &p->aMem[pOp->p1]; + MemSetTypeFlag(pOut, MEM_Int); + if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){ + pc = pOp->p2 - 1; + } + break; +} + +#ifndef SQLITE_OMIT_TRIGGER +/* Opcode: ContextPush * * * +** +** Save the current Vdbe context such that it can be restored by a ContextPop +** opcode. The context stores the last insert row id, the last statement change +** count, and the current statement change count. +*/ +case OP_ContextPush: { + int i = p->contextStackTop++; + Context *pContext; + + assert( i>=0 ); + /* FIX ME: This should be allocated as part of the vdbe at compile-time */ + if( i>=p->contextStackDepth ){ + p->contextStackDepth = i+1; + p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack, + sizeof(Context)*(i+1)); + if( p->contextStack==0 ) goto no_mem; + } + pContext = &p->contextStack[i]; + pContext->lastRowid = db->lastRowid; + pContext->nChange = p->nChange; + pContext->sFifo = p->sFifo; + sqlite3VdbeFifoInit(&p->sFifo); + break; +} + +/* Opcode: ContextPop * * * +** +** Restore the Vdbe context to the state it was in when contextPush was last +** executed. The context stores the last insert row id, the last statement +** change count, and the current statement change count. +*/ +case OP_ContextPop: { + Context *pContext = &p->contextStack[--p->contextStackTop]; + assert( p->contextStackTop>=0 ); + db->lastRowid = pContext->lastRowid; + p->nChange = pContext->nChange; + sqlite3VdbeFifoClear(&p->sFifo); + p->sFifo = pContext->sFifo; + break; +} +#endif /* #ifndef SQLITE_OMIT_TRIGGER */ + +#ifndef SQLITE_OMIT_AUTOINCREMENT +/* Opcode: MemMax P1 P2 * * * +** +** Set the value of register P1 to the maximum of its current value +** and the value in register P2. +** +** This instruction throws an error if the memory cell is not initially +** an integer. +*/ +case OP_MemMax: { /* in1, in2 */ + sqlite3VdbeMemIntegerify(pIn1); + sqlite3VdbeMemIntegerify(pIn2); + if( pIn1->u.i<pIn2->u.i){ + pIn1->u.i = pIn2->u.i; + } + break; +} +#endif /* SQLITE_OMIT_AUTOINCREMENT */ + +/* Opcode: IfPos P1 P2 * * * +** +** If the value of register P1 is 1 or greater, jump to P2. +** +** It is illegal to use this instruction on a register that does +** not contain an integer. An assertion fault will result if you try. +*/ +case OP_IfPos: { /* jump, in1 */ + assert( pIn1->flags&MEM_Int ); + if( pIn1->u.i>0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: IfNeg P1 P2 * * * +** +** If the value of register P1 is less than zero, jump to P2. +** +** It is illegal to use this instruction on a register that does +** not contain an integer. An assertion fault will result if you try. +*/ +case OP_IfNeg: { /* jump, in1 */ + assert( pIn1->flags&MEM_Int ); + if( pIn1->u.i<0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: IfZero P1 P2 * * * +** +** If the value of register P1 is exactly 0, jump to P2. +** +** It is illegal to use this instruction on a register that does +** not contain an integer. An assertion fault will result if you try. +*/ +case OP_IfZero: { /* jump, in1 */ + assert( pIn1->flags&MEM_Int ); + if( pIn1->u.i==0 ){ + pc = pOp->p2 - 1; + } + break; +} + +/* Opcode: AggStep * P2 P3 P4 P5 +** +** Execute the step function for an aggregate. The +** function has P5 arguments. P4 is a pointer to the FuncDef +** structure that specifies the function. Use register +** P3 as the accumulator. +** +** The P5 arguments are taken from register P2 and its +** successors. +*/ +case OP_AggStep: { + int n = pOp->p5; + int i; + Mem *pMem, *pRec; + sqlite3_context ctx; + sqlite3_value **apVal; + + assert( n>=0 ); + pRec = &p->aMem[pOp->p2]; + apVal = p->apArg; + assert( apVal || n==0 ); + for(i=0; i<n; i++, pRec++){ + apVal[i] = pRec; + storeTypeInfo(pRec, encoding); + } + ctx.pFunc = pOp->p4.pFunc; + assert( pOp->p3>0 && pOp->p3<=p->nMem ); + ctx.pMem = pMem = &p->aMem[pOp->p3]; + pMem->n++; + ctx.s.flags = MEM_Null; + ctx.s.z = 0; + ctx.s.zMalloc = 0; + ctx.s.xDel = 0; + ctx.s.db = db; + ctx.isError = 0; + ctx.pColl = 0; + if( ctx.pFunc->needCollSeq ){ + assert( pOp>p->aOp ); + assert( pOp[-1].p4type==P4_COLLSEQ ); + assert( pOp[-1].opcode==OP_CollSeq ); + ctx.pColl = pOp[-1].p4.pColl; + } + (ctx.pFunc->xStep)(&ctx, n, apVal); + if( ctx.isError ){ + sqlite3SetString(&p->zErrMsg, sqlite3_value_text(&ctx.s), (char*)0); + rc = ctx.isError; + } + sqlite3VdbeMemRelease(&ctx.s); + break; +} + +/* Opcode: AggFinal P1 P2 * P4 * +** +** Execute the finalizer function for an aggregate. P1 is +** the memory location that is the accumulator for the aggregate. +** +** P2 is the number of arguments that the step function takes and +** P4 is a pointer to the FuncDef for this function. The P2 +** argument is not used by this opcode. It is only there to disambiguate +** functions that can take varying numbers of arguments. The +** P4 argument is only needed for the degenerate case where +** the step function was not previously called. +*/ +case OP_AggFinal: { + Mem *pMem; + assert( pOp->p1>0 && pOp->p1<=p->nMem ); + pMem = &p->aMem[pOp->p1]; + assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); + rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); + if( rc==SQLITE_ERROR ){ + sqlite3SetString(&p->zErrMsg, sqlite3_value_text(pMem), (char*)0); + } + sqlite3VdbeChangeEncoding(pMem, encoding); + UPDATE_MAX_BLOBSIZE(pMem); + if( sqlite3VdbeMemTooBig(pMem) ){ + goto too_big; + } + break; +} + + +#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) +/* Opcode: Vacuum * * * * * +** +** Vacuum the entire database. This opcode will cause other virtual +** machines to be created and run. It may not be called from within +** a transaction. +*/ +case OP_Vacuum: { + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + rc = sqlite3RunVacuum(&p->zErrMsg, db); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + break; +} +#endif + +#if !defined(SQLITE_OMIT_AUTOVACUUM) +/* Opcode: IncrVacuum P1 P2 * * * +** +** Perform a single step of the incremental vacuum procedure on +** the P1 database. If the vacuum has finished, jump to instruction +** P2. Otherwise, fall through to the next instruction. +*/ +case OP_IncrVacuum: { /* jump */ + Btree *pBt; + + assert( pOp->p1>=0 && pOp->p1<db->nDb ); + assert( (p->btreeMask & (1<<pOp->p1))!=0 ); + pBt = db->aDb[pOp->p1].pBt; + rc = sqlite3BtreeIncrVacuum(pBt); + if( rc==SQLITE_DONE ){ + pc = pOp->p2 - 1; + rc = SQLITE_OK; + } + break; +} +#endif + +/* Opcode: Expire P1 * * * * +** +** Cause precompiled statements to become expired. An expired statement +** fails with an error code of SQLITE_SCHEMA if it is ever executed +** (via sqlite3_step()). +** +** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, +** then only the currently executing statement is affected. +*/ +case OP_Expire: { + if( !pOp->p1 ){ + sqlite3ExpirePreparedStatements(db); + }else{ + p->expired = 1; + } + break; +} + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* Opcode: TableLock P1 P2 P3 P4 * +** +** Obtain a lock on a particular table. This instruction is only used when +** the shared-cache feature is enabled. +** +** If P1 is the index of the database in sqlite3.aDb[] of the database +** on which the lock is acquired. A readlock is obtained if P3==0 or +** a write lock if P3==1. +** +** P2 contains the root-page of the table to lock. +** +** P4 contains a pointer to the name of the table being locked. This is only +** used to generate an error message if the lock cannot be obtained. +*/ +case OP_TableLock: { + int p1 = pOp->p1; + u8 isWriteLock = pOp->p3; + assert( p1>=0 && p1<db->nDb ); + assert( (p->btreeMask & (1<<p1))!=0 ); + assert( isWriteLock==0 || isWriteLock==1 ); + rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); + if( rc==SQLITE_LOCKED ){ + const char *z = pOp->p4.z; + sqlite3SetString(&p->zErrMsg, "database table is locked: ", z, (char*)0); + } + break; +} +#endif /* SQLITE_OMIT_SHARED_CACHE */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VBegin * * * P4 * +** +** P4 a pointer to an sqlite3_vtab structure. Call the xBegin method +** for that table. +*/ +case OP_VBegin: { + rc = sqlite3VtabBegin(db, pOp->p4.pVtab); + break; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VCreate P1 * * P4 * +** +** P4 is the name of a virtual table in database P1. Call the xCreate method +** for that table. +*/ +case OP_VCreate: { + rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg); + break; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VDestroy P1 * * P4 * +** +** P4 is the name of a virtual table in database P1. Call the xDestroy method +** of that table. +*/ +case OP_VDestroy: { + p->inVtabMethod = 2; + rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); + p->inVtabMethod = 0; + break; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VOpen P1 * * P4 * +** +** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. +** P1 is a cursor number. This opcode opens a cursor to the virtual +** table and stores that cursor in P1. +*/ +case OP_VOpen: { + Cursor *pCur = 0; + sqlite3_vtab_cursor *pVtabCursor = 0; + + sqlite3_vtab *pVtab = pOp->p4.pVtab; + sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule; + + assert(pVtab && pModule); + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + rc = pModule->xOpen(pVtab, &pVtabCursor); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + if( SQLITE_OK==rc ){ + /* Initialise sqlite3_vtab_cursor base class */ + pVtabCursor->pVtab = pVtab; + + /* Initialise vdbe cursor object */ + pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0); + if( pCur ){ + pCur->pVtabCursor = pVtabCursor; + pCur->pModule = pVtabCursor->pVtab->pModule; + }else{ + db->mallocFailed = 1; + pModule->xClose(pVtabCursor); + } + } + break; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VFilter P1 P2 P3 P4 * +** +** P1 is a cursor opened using VOpen. P2 is an address to jump to if +** the filtered result set is empty. +** +** P4 is either NULL or a string that was generated by the xBestIndex +** method of the module. The interpretation of the P4 string is left +** to the module implementation. +** +** This opcode invokes the xFilter method on the virtual table specified +** by P1. The integer query plan parameter to xFilter is stored in register +** P3. Register P3+1 stores the argc parameter to be passed to the +** xFilter method. Registers P3+2..P3+1+argc are the argc additional +** parametersneath additional parameters which are passed to +** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. +** +** A jump is made to P2 if the result set after filtering would be empty. +*/ +case OP_VFilter: { /* jump */ + int nArg; + int iQuery; + const sqlite3_module *pModule; + Mem *pQuery = &p->aMem[pOp->p3]; + Mem *pArgc = &pQuery[1]; + + Cursor *pCur = p->apCsr[pOp->p1]; + + REGISTER_TRACE(pOp->p3, pQuery); + assert( pCur->pVtabCursor ); + pModule = pCur->pVtabCursor->pVtab->pModule; + + /* Grab the index number and argc parameters */ + assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); + nArg = pArgc->u.i; + iQuery = pQuery->u.i; + + /* Invoke the xFilter method */ + { + int res = 0; + int i; + Mem **apArg = p->apArg; + for(i = 0; i<nArg; i++){ + apArg[i] = &pArgc[i+1]; + storeTypeInfo(apArg[i], 0); + } + + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + p->inVtabMethod = 1; + rc = pModule->xFilter(pCur->pVtabCursor, iQuery, pOp->p4.z, nArg, apArg); + p->inVtabMethod = 0; + if( rc==SQLITE_OK ){ + res = pModule->xEof(pCur->pVtabCursor); + } + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + + if( res ){ + pc = pOp->p2 - 1; + } + } + pCur->nullRow = 0; + + break; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VRowid P1 P2 * * * +** +** Store into register P2 the rowid of +** the virtual-table that the P1 cursor is pointing to. +*/ +case OP_VRowid: { /* out2-prerelease */ + const sqlite3_module *pModule; + sqlite_int64 iRow; + Cursor *pCur = p->apCsr[pOp->p1]; + + assert( pCur->pVtabCursor ); + if( pCur->nullRow ){ + break; + } + pModule = pCur->pVtabCursor->pVtab->pModule; + assert( pModule->xRowid ); + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + rc = pModule->xRowid(pCur->pVtabCursor, &iRow); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + MemSetTypeFlag(pOut, MEM_Int); + pOut->u.i = iRow; + break; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VColumn P1 P2 P3 * * +** +** Store the value of the P2-th column of +** the row of the virtual-table that the +** P1 cursor is pointing to into register P3. +*/ +case OP_VColumn: { + const sqlite3_module *pModule; + Mem *pDest; + sqlite3_context sContext; + + Cursor *pCur = p->apCsr[pOp->p1]; + assert( pCur->pVtabCursor ); + assert( pOp->p3>0 && pOp->p3<=p->nMem ); + pDest = &p->aMem[pOp->p3]; + if( pCur->nullRow ){ + sqlite3VdbeMemSetNull(pDest); + break; + } + pModule = pCur->pVtabCursor->pVtab->pModule; + assert( pModule->xColumn ); + memset(&sContext, 0, sizeof(sContext)); + + /* The output cell may already have a buffer allocated. Move + ** the current contents to sContext.s so in case the user-function + ** can use the already allocated buffer instead of allocating a + ** new one. + */ + sqlite3VdbeMemMove(&sContext.s, pDest); + MemSetTypeFlag(&sContext.s, MEM_Null); + + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2); + + /* Copy the result of the function to the P3 register. We + ** do this regardless of whether or not an error occured to ensure any + ** dynamic allocation in sContext.s (a Mem struct) is released. + */ + sqlite3VdbeChangeEncoding(&sContext.s, encoding); + REGISTER_TRACE(pOp->p3, pDest); + sqlite3VdbeMemMove(pDest, &sContext.s); + UPDATE_MAX_BLOBSIZE(pDest); + + if( sqlite3SafetyOn(db) ){ + goto abort_due_to_misuse; + } + if( sqlite3VdbeMemTooBig(pDest) ){ + goto too_big; + } + break; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VNext P1 P2 * * * +** +** Advance virtual table P1 to the next row in its result set and +** jump to instruction P2. Or, if the virtual table has reached +** the end of its result set, then fall through to the next instruction. +*/ +case OP_VNext: { /* jump */ + const sqlite3_module *pModule; + int res = 0; + + Cursor *pCur = p->apCsr[pOp->p1]; + assert( pCur->pVtabCursor ); + if( pCur->nullRow ){ + break; + } + pModule = pCur->pVtabCursor->pVtab->pModule; + assert( pModule->xNext ); + + /* Invoke the xNext() method of the module. There is no way for the + ** underlying implementation to return an error if one occurs during + ** xNext(). Instead, if an error occurs, true is returned (indicating that + ** data is available) and the error code returned when xColumn or + ** some other method is next invoked on the save virtual table cursor. + */ + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + p->inVtabMethod = 1; + rc = pModule->xNext(pCur->pVtabCursor); + p->inVtabMethod = 0; + if( rc==SQLITE_OK ){ + res = pModule->xEof(pCur->pVtabCursor); + } + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + + if( !res ){ + /* If there is data, jump to P2 */ + pc = pOp->p2 - 1; + } + break; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VRename P1 * * P4 * +** +** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. +** This opcode invokes the corresponding xRename method. The value +** in register P1 is passed as the zName argument to the xRename method. +*/ +case OP_VRename: { + sqlite3_vtab *pVtab = pOp->p4.pVtab; + Mem *pName = &p->aMem[pOp->p1]; + assert( pVtab->pModule->xRename ); + REGISTER_TRACE(pOp->p1, pName); + + Stringify(pName, encoding); + + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + sqlite3VtabLock(pVtab); + rc = pVtab->pModule->xRename(pVtab, pName->z); + sqlite3VtabUnlock(db, pVtab); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + + break; +} +#endif + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Opcode: VUpdate P1 P2 P3 P4 * +** +** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. +** This opcode invokes the corresponding xUpdate method. P2 values +** are contiguous memory cells starting at P3 to pass to the xUpdate +** invocation. The value in register (P3+P2-1) corresponds to the +** p2th element of the argv array passed to xUpdate. +** +** The xUpdate method will do a DELETE or an INSERT or both. +** The argv[0] element (which corresponds to memory cell P3) +** is the rowid of a row to delete. If argv[0] is NULL then no +** deletion occurs. The argv[1] element is the rowid of the new +** row. This can be NULL to have the virtual table select the new +** rowid for itself. The subsequent elements in the array are +** the values of columns in the new row. +** +** If P2==1 then no insert is performed. argv[0] is the rowid of +** a row to delete. +** +** P1 is a boolean flag. If it is set to true and the xUpdate call +** is successful, then the value returned by sqlite3_last_insert_rowid() +** is set to the value of the rowid for the row just inserted. +*/ +case OP_VUpdate: { + sqlite3_vtab *pVtab = pOp->p4.pVtab; + sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule; + int nArg = pOp->p2; + assert( pOp->p4type==P4_VTAB ); + if( pModule->xUpdate==0 ){ + sqlite3SetString(&p->zErrMsg, "read-only table", 0); + rc = SQLITE_ERROR; + }else{ + int i; + sqlite_int64 rowid; + Mem **apArg = p->apArg; + Mem *pX = &p->aMem[pOp->p3]; + for(i=0; i<nArg; i++){ + storeTypeInfo(pX, 0); + apArg[i] = pX; + pX++; + } + if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; + sqlite3VtabLock(pVtab); + rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); + sqlite3VtabUnlock(db, pVtab); + if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse; + if( pOp->p1 && rc==SQLITE_OK ){ + assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); + db->lastRowid = rowid; + } + p->nChange++; + } + break; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +#ifndef SQLITE_OMIT_TRACE +/* Opcode: Trace * * * P4 * +** +** If tracing is enabled (by the sqlite3_trace()) interface, then +** the UTF-8 string contained in P4 is emitted on the trace callback. +*/ +case OP_Trace: { + if( pOp->p4.z ){ + if( db->xTrace ){ + db->xTrace(db->pTraceArg, pOp->p4.z); + } +#ifdef SQLITE_DEBUG + if( (db->flags & SQLITE_SqlTrace)!=0 ){ + sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z); + } +#endif /* SQLITE_DEBUG */ + } + break; +} +#endif + + +/* Opcode: Noop * * * * * +** +** Do nothing. This instruction is often useful as a jump +** destination. +*/ +/* +** The magic Explain opcode are only inserted when explain==2 (which +** is to say when the EXPLAIN QUERY PLAN syntax is used.) +** This opcode records information from the optimizer. It is the +** the same as a no-op. This opcodesnever appears in a real VM program. +*/ +default: { /* This is really OP_Noop and OP_Explain */ + break; +} + +/***************************************************************************** +** The cases of the switch statement above this line should all be indented +** by 6 spaces. But the left-most 6 spaces have been removed to improve the +** readability. From this point on down, the normal indentation rules are +** restored. +*****************************************************************************/ + } + +#ifdef VDBE_PROFILE + { + long long elapse = hwtime() - start; + pOp->cycles += elapse; + pOp->cnt++; +#if 0 + fprintf(stdout, "%10lld ", elapse); + sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]); +#endif + } +#endif + + /* The following code adds nothing to the actual functionality + ** of the program. It is only here for testing and debugging. + ** On the other hand, it does burn CPU cycles every time through + ** the evaluator loop. So we can leave it out when NDEBUG is defined. + */ +#ifndef NDEBUG + assert( pc>=-1 && pc<p->nOp ); + +#ifdef SQLITE_DEBUG + if( p->trace ){ + if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc); + if( opProperty & OPFLG_OUT2_PRERELEASE ){ + registerTrace(p->trace, pOp->p2, pOut); + } + if( opProperty & OPFLG_OUT3 ){ + registerTrace(p->trace, pOp->p3, pOut); + } + } +#endif /* SQLITE_DEBUG */ +#endif /* NDEBUG */ + } /* The end of the for(;;) loop the loops through opcodes */ + + /* If we reach this point, it means that execution is finished with + ** an error of some kind. + */ +vdbe_error_halt: + assert( rc ); + p->rc = rc; + rc = SQLITE_ERROR; + sqlite3VdbeHalt(p); + + /* This is the only way out of this procedure. We have to + ** release the mutexes on btrees that were acquired at the + ** top. */ +vdbe_return: + sqlite3BtreeMutexArrayLeave(&p->aMutex); + return rc; + + /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH + ** is encountered. + */ +too_big: + sqlite3SetString(&p->zErrMsg, "string or blob too big", (char*)0); + rc = SQLITE_TOOBIG; + goto vdbe_error_halt; + + /* Jump to here if a malloc() fails. + */ +no_mem: + db->mallocFailed = 1; + sqlite3SetString(&p->zErrMsg, "out of memory", (char*)0); + rc = SQLITE_NOMEM; + goto vdbe_error_halt; + + /* Jump to here for an SQLITE_MISUSE error. + */ +abort_due_to_misuse: + rc = SQLITE_MISUSE; + /* Fall thru into abort_due_to_error */ + + /* Jump to here for any other kind of fatal error. The "rc" variable + ** should hold the error number. + */ +abort_due_to_error: + assert( p->zErrMsg==0 ); + if( db->mallocFailed ) rc = SQLITE_NOMEM; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); + goto vdbe_error_halt; + + /* Jump to here if the sqlite3_interrupt() API sets the interrupt + ** flag. + */ +abort_due_to_interrupt: + assert( db->u1.isInterrupted ); + rc = SQLITE_INTERRUPT; + p->rc = rc; + sqlite3SetString(&p->zErrMsg, sqlite3ErrStr(rc), (char*)0); + goto vdbe_error_halt; +} + +/************** End of vdbe.c ************************************************/ +/************** Begin file vdbeblob.c ****************************************/ +/* +** 2007 May 1 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains code used to implement incremental BLOB I/O. +** +** $Id: vdbeblob.c,v 1.22 2008/04/24 09:49:55 danielk1977 Exp $ +*/ + + +#ifndef SQLITE_OMIT_INCRBLOB + +/* +** Valid sqlite3_blob* handles point to Incrblob structures. +*/ +typedef struct Incrblob Incrblob; +struct Incrblob { + int flags; /* Copy of "flags" passed to sqlite3_blob_open() */ + int nByte; /* Size of open blob, in bytes */ + int iOffset; /* Byte offset of blob in cursor data */ + BtCursor *pCsr; /* Cursor pointing at blob row */ + sqlite3_stmt *pStmt; /* Statement holding cursor open */ + sqlite3 *db; /* The associated database */ +}; + +/* +** Open a blob handle. +*/ +SQLITE_API int sqlite3_blob_open( + sqlite3* db, /* The database connection */ + const char *zDb, /* The attached database containing the blob */ + const char *zTable, /* The table containing the blob */ + const char *zColumn, /* The column containing the blob */ + sqlite_int64 iRow, /* The row containing the glob */ + int flags, /* True -> read/write access, false -> read-only */ + sqlite3_blob **ppBlob /* Handle for accessing the blob returned here */ +){ + int nAttempt = 0; + int iCol; /* Index of zColumn in row-record */ + + /* This VDBE program seeks a btree cursor to the identified + ** db/table/row entry. The reason for using a vdbe program instead + ** of writing code to use the b-tree layer directly is that the + ** vdbe program will take advantage of the various transaction, + ** locking and error handling infrastructure built into the vdbe. + ** + ** After seeking the cursor, the vdbe executes an OP_ResultRow. + ** Code external to the Vdbe then "borrows" the b-tree cursor and + ** uses it to implement the blob_read(), blob_write() and + ** blob_bytes() functions. + ** + ** The sqlite3_blob_close() function finalizes the vdbe program, + ** which closes the b-tree cursor and (possibly) commits the + ** transaction. + */ + static const VdbeOpList openBlob[] = { + {OP_Transaction, 0, 0, 0}, /* 0: Start a transaction */ + {OP_VerifyCookie, 0, 0, 0}, /* 1: Check the schema cookie */ + + /* One of the following two instructions is replaced by an + ** OP_Noop before exection. + */ + {OP_SetNumColumns, 0, 0, 0}, /* 2: Num cols for cursor */ + {OP_OpenRead, 0, 0, 0}, /* 3: Open cursor 0 for reading */ + {OP_SetNumColumns, 0, 0, 0}, /* 4: Num cols for cursor */ + {OP_OpenWrite, 0, 0, 0}, /* 5: Open cursor 0 for read/write */ + + {OP_Variable, 1, 1, 0}, /* 6: Push the rowid to the stack */ + {OP_NotExists, 0, 10, 1}, /* 7: Seek the cursor */ + {OP_Column, 0, 0, 1}, /* 8 */ + {OP_ResultRow, 1, 0, 0}, /* 9 */ + {OP_Close, 0, 0, 0}, /* 10 */ + {OP_Halt, 0, 0, 0}, /* 11 */ + }; + + Vdbe *v = 0; + int rc = SQLITE_OK; + char zErr[128]; + + zErr[0] = 0; + sqlite3_mutex_enter(db->mutex); + do { + Parse sParse; + Table *pTab; + + memset(&sParse, 0, sizeof(Parse)); + sParse.db = db; + + rc = sqlite3SafetyOn(db); + if( rc!=SQLITE_OK ){ + sqlite3_mutex_leave(db->mutex); + return rc; + } + + sqlite3BtreeEnterAll(db); + pTab = sqlite3LocateTable(&sParse, 0, zTable, zDb); + if( pTab && IsVirtual(pTab) ){ + pTab = 0; + sqlite3ErrorMsg(&sParse, "cannot open virtual table: %s", zTable); + } +#ifndef SQLITE_OMIT_VIEW + if( pTab && pTab->pSelect ){ + pTab = 0; + sqlite3ErrorMsg(&sParse, "cannot open view: %s", zTable); + } +#endif + if( !pTab ){ + if( sParse.zErrMsg ){ + sqlite3_snprintf(sizeof(zErr), zErr, "%s", sParse.zErrMsg); + } + sqlite3_free(sParse.zErrMsg); + rc = SQLITE_ERROR; + (void)sqlite3SafetyOff(db); + sqlite3BtreeLeaveAll(db); + goto blob_open_out; + } + + /* Now search pTab for the exact column. */ + for(iCol=0; iCol < pTab->nCol; iCol++) { + if( sqlite3StrICmp(pTab->aCol[iCol].zName, zColumn)==0 ){ + break; + } + } + if( iCol==pTab->nCol ){ + sqlite3_snprintf(sizeof(zErr), zErr, "no such column: \"%s\"", zColumn); + rc = SQLITE_ERROR; + (void)sqlite3SafetyOff(db); + sqlite3BtreeLeaveAll(db); + goto blob_open_out; + } + + /* If the value is being opened for writing, check that the + ** column is not indexed. It is against the rules to open an + ** indexed column for writing. + */ + if( flags ){ + Index *pIdx; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int j; + for(j=0; j<pIdx->nColumn; j++){ + if( pIdx->aiColumn[j]==iCol ){ + sqlite3_snprintf(sizeof(zErr), zErr, + "cannot open indexed column for writing"); + rc = SQLITE_ERROR; + (void)sqlite3SafetyOff(db); + sqlite3BtreeLeaveAll(db); + goto blob_open_out; + } + } + } + } + + v = sqlite3VdbeCreate(db); + if( v ){ + int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + sqlite3VdbeAddOpList(v, sizeof(openBlob)/sizeof(VdbeOpList), openBlob); + + /* Configure the OP_Transaction */ + sqlite3VdbeChangeP1(v, 0, iDb); + sqlite3VdbeChangeP2(v, 0, (flags ? 1 : 0)); + + /* Configure the OP_VerifyCookie */ + sqlite3VdbeChangeP1(v, 1, iDb); + sqlite3VdbeChangeP2(v, 1, pTab->pSchema->schema_cookie); + + /* Make sure a mutex is held on the table to be accessed */ + sqlite3VdbeUsesBtree(v, iDb); + + /* Remove either the OP_OpenWrite or OpenRead. Set the P2 + ** parameter of the other to pTab->tnum. + */ + sqlite3VdbeChangeToNoop(v, (flags ? 3 : 5), 1); + sqlite3VdbeChangeP2(v, (flags ? 5 : 3), pTab->tnum); + sqlite3VdbeChangeP3(v, (flags ? 5 : 3), iDb); + + /* Configure the OP_SetNumColumns. Configure the cursor to + ** think that the table has one more column than it really + ** does. An OP_Column to retrieve this imaginary column will + ** always return an SQL NULL. This is useful because it means + ** we can invoke OP_Column to fill in the vdbe cursors type + ** and offset cache without causing any IO. + */ + sqlite3VdbeChangeP2(v, flags ? 4 : 2, pTab->nCol+1); + if( !db->mallocFailed ){ + sqlite3VdbeMakeReady(v, 1, 1, 1, 0); + } + } + + sqlite3BtreeLeaveAll(db); + rc = sqlite3SafetyOff(db); + if( rc!=SQLITE_OK || db->mallocFailed ){ + goto blob_open_out; + } + + sqlite3_bind_int64((sqlite3_stmt *)v, 1, iRow); + rc = sqlite3_step((sqlite3_stmt *)v); + if( rc!=SQLITE_ROW ){ + nAttempt++; + rc = sqlite3_finalize((sqlite3_stmt *)v); + sqlite3_snprintf(sizeof(zErr), zErr, sqlite3_errmsg(db)); + v = 0; + } + } while( nAttempt<5 && rc==SQLITE_SCHEMA ); + + if( rc==SQLITE_ROW ){ + /* The row-record has been opened successfully. Check that the + ** column in question contains text or a blob. If it contains + ** text, it is up to the caller to get the encoding right. + */ + Incrblob *pBlob; + u32 type = v->apCsr[0]->aType[iCol]; + + if( type<12 ){ + sqlite3_snprintf(sizeof(zErr), zErr, "cannot open value of type %s", + type==0?"null": type==7?"real": "integer" + ); + rc = SQLITE_ERROR; + goto blob_open_out; + } + pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob)); + if( db->mallocFailed ){ + sqlite3_free(pBlob); + goto blob_open_out; + } + pBlob->flags = flags; + pBlob->pCsr = v->apCsr[0]->pCursor; + sqlite3BtreeEnterCursor(pBlob->pCsr); + sqlite3BtreeCacheOverflow(pBlob->pCsr); + sqlite3BtreeLeaveCursor(pBlob->pCsr); + pBlob->pStmt = (sqlite3_stmt *)v; + pBlob->iOffset = v->apCsr[0]->aOffset[iCol]; + pBlob->nByte = sqlite3VdbeSerialTypeLen(type); + pBlob->db = db; + *ppBlob = (sqlite3_blob *)pBlob; + rc = SQLITE_OK; + }else if( rc==SQLITE_OK ){ + sqlite3_snprintf(sizeof(zErr), zErr, "no such rowid: %lld", iRow); + rc = SQLITE_ERROR; + } + +blob_open_out: + zErr[sizeof(zErr)-1] = '\0'; + if( rc!=SQLITE_OK || db->mallocFailed ){ + sqlite3_finalize((sqlite3_stmt *)v); + } + sqlite3Error(db, rc, (rc==SQLITE_OK?0:zErr)); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Close a blob handle that was previously created using +** sqlite3_blob_open(). +*/ +SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){ + Incrblob *p = (Incrblob *)pBlob; + int rc; + + rc = sqlite3_finalize(p->pStmt); + sqlite3_free(p); + return rc; +} + +/* +** Perform a read or write operation on a blob +*/ +static int blobReadWrite( + sqlite3_blob *pBlob, + void *z, + int n, + int iOffset, + int (*xCall)(BtCursor*, u32, u32, void*) +){ + int rc; + Incrblob *p = (Incrblob *)pBlob; + Vdbe *v; + sqlite3 *db = p->db; + + /* Request is out of range. Return a transient error. */ + if( (iOffset+n)>p->nByte ){ + return SQLITE_ERROR; + } + sqlite3_mutex_enter(db->mutex); + + /* If there is no statement handle, then the blob-handle has + ** already been invalidated. Return SQLITE_ABORT in this case. + */ + v = (Vdbe*)p->pStmt; + if( v==0 ){ + rc = SQLITE_ABORT; + }else{ + /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is + ** returned, clean-up the statement handle. + */ + assert( db == v->db ); + sqlite3BtreeEnterCursor(p->pCsr); + rc = xCall(p->pCsr, iOffset+p->iOffset, n, z); + sqlite3BtreeLeaveCursor(p->pCsr); + if( rc==SQLITE_ABORT ){ + sqlite3VdbeFinalize(v); + p->pStmt = 0; + }else{ + db->errCode = rc; + v->rc = rc; + } + } + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Read data from a blob handle. +*/ +SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){ + return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData); +} + +/* +** Write data to a blob handle. +*/ +SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){ + return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData); +} + +/* +** Query a blob handle for the size of the data. +** +** The Incrblob.nByte field is fixed for the lifetime of the Incrblob +** so no mutex is required for access. +*/ +SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){ + Incrblob *p = (Incrblob *)pBlob; + return p->nByte; +} + +#endif /* #ifndef SQLITE_OMIT_INCRBLOB */ + +/************** End of vdbeblob.c ********************************************/ +/************** Begin file journal.c *****************************************/ +/* +** 2007 August 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** @(#) $Id: journal.c,v 1.8 2008/05/01 18:01:47 drh Exp $ +*/ + +#ifdef SQLITE_ENABLE_ATOMIC_WRITE + +/* +** This file implements a special kind of sqlite3_file object used +** by SQLite to create journal files if the atomic-write optimization +** is enabled. +** +** The distinctive characteristic of this sqlite3_file is that the +** actual on disk file is created lazily. When the file is created, +** the caller specifies a buffer size for an in-memory buffer to +** be used to service read() and write() requests. The actual file +** on disk is not created or populated until either: +** +** 1) The in-memory representation grows too large for the allocated +** buffer, or +** 2) The xSync() method is called. +*/ + + + +/* +** A JournalFile object is a subclass of sqlite3_file used by +** as an open file handle for journal files. +*/ +struct JournalFile { + sqlite3_io_methods *pMethod; /* I/O methods on journal files */ + int nBuf; /* Size of zBuf[] in bytes */ + char *zBuf; /* Space to buffer journal writes */ + int iSize; /* Amount of zBuf[] currently used */ + int flags; /* xOpen flags */ + sqlite3_vfs *pVfs; /* The "real" underlying VFS */ + sqlite3_file *pReal; /* The "real" underlying file descriptor */ + const char *zJournal; /* Name of the journal file */ +}; +typedef struct JournalFile JournalFile; + +/* +** If it does not already exists, create and populate the on-disk file +** for JournalFile p. +*/ +static int createFile(JournalFile *p){ + int rc = SQLITE_OK; + if( !p->pReal ){ + sqlite3_file *pReal = (sqlite3_file *)&p[1]; + rc = sqlite3OsOpen(p->pVfs, p->zJournal, pReal, p->flags, 0); + if( rc==SQLITE_OK ){ + p->pReal = pReal; + if( p->iSize>0 ){ + assert(p->iSize<=p->nBuf); + rc = sqlite3OsWrite(p->pReal, p->zBuf, p->iSize, 0); + } + } + } + return rc; +} + +/* +** Close the file. +*/ +static int jrnlClose(sqlite3_file *pJfd){ + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + sqlite3OsClose(p->pReal); + } + sqlite3_free(p->zBuf); + return SQLITE_OK; +} + +/* +** Read data from the file. +*/ +static int jrnlRead( + sqlite3_file *pJfd, /* The journal file from which to read */ + void *zBuf, /* Put the results here */ + int iAmt, /* Number of bytes to read */ + sqlite_int64 iOfst /* Begin reading at this offset */ +){ + int rc = SQLITE_OK; + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + rc = sqlite3OsRead(p->pReal, zBuf, iAmt, iOfst); + }else{ + assert( iAmt+iOfst<=p->iSize ); + memcpy(zBuf, &p->zBuf[iOfst], iAmt); + } + return rc; +} + +/* +** Write data to the file. +*/ +static int jrnlWrite( + sqlite3_file *pJfd, /* The journal file into which to write */ + const void *zBuf, /* Take data to be written from here */ + int iAmt, /* Number of bytes to write */ + sqlite_int64 iOfst /* Begin writing at this offset into the file */ +){ + int rc = SQLITE_OK; + JournalFile *p = (JournalFile *)pJfd; + if( !p->pReal && (iOfst+iAmt)>p->nBuf ){ + rc = createFile(p); + } + if( rc==SQLITE_OK ){ + if( p->pReal ){ + rc = sqlite3OsWrite(p->pReal, zBuf, iAmt, iOfst); + }else{ + memcpy(&p->zBuf[iOfst], zBuf, iAmt); + if( p->iSize<(iOfst+iAmt) ){ + p->iSize = (iOfst+iAmt); + } + } + } + return rc; +} + +/* +** Truncate the file. +*/ +static int jrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){ + int rc = SQLITE_OK; + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + rc = sqlite3OsTruncate(p->pReal, size); + }else if( size<p->iSize ){ + p->iSize = size; + } + return rc; +} + +/* +** Sync the file. +*/ +static int jrnlSync(sqlite3_file *pJfd, int flags){ + int rc; + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + rc = sqlite3OsSync(p->pReal, flags); + }else{ + rc = SQLITE_OK; + } + return rc; +} + +/* +** Query the size of the file in bytes. +*/ +static int jrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){ + int rc = SQLITE_OK; + JournalFile *p = (JournalFile *)pJfd; + if( p->pReal ){ + rc = sqlite3OsFileSize(p->pReal, pSize); + }else{ + *pSize = (sqlite_int64) p->iSize; + } + return rc; +} + +/* +** Table of methods for JournalFile sqlite3_file object. +*/ +static struct sqlite3_io_methods JournalFileMethods = { + 1, /* iVersion */ + jrnlClose, /* xClose */ + jrnlRead, /* xRead */ + jrnlWrite, /* xWrite */ + jrnlTruncate, /* xTruncate */ + jrnlSync, /* xSync */ + jrnlFileSize, /* xFileSize */ + 0, /* xLock */ + 0, /* xUnlock */ + 0, /* xCheckReservedLock */ + 0, /* xFileControl */ + 0, /* xSectorSize */ + 0 /* xDeviceCharacteristics */ +}; + +/* +** Open a journal file. +*/ +SQLITE_PRIVATE int sqlite3JournalOpen( + sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */ + const char *zName, /* Name of the journal file */ + sqlite3_file *pJfd, /* Preallocated, blank file handle */ + int flags, /* Opening flags */ + int nBuf /* Bytes buffered before opening the file */ +){ + JournalFile *p = (JournalFile *)pJfd; + memset(p, 0, sqlite3JournalSize(pVfs)); + if( nBuf>0 ){ + p->zBuf = sqlite3MallocZero(nBuf); + if( !p->zBuf ){ + return SQLITE_NOMEM; + } + }else{ + return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0); + } + p->pMethod = &JournalFileMethods; + p->nBuf = nBuf; + p->flags = flags; + p->zJournal = zName; + p->pVfs = pVfs; + return SQLITE_OK; +} + +/* +** If the argument p points to a JournalFile structure, and the underlying +** file has not yet been created, create it now. +*/ +SQLITE_PRIVATE int sqlite3JournalCreate(sqlite3_file *p){ + if( p->pMethods!=&JournalFileMethods ){ + return SQLITE_OK; + } + return createFile((JournalFile *)p); +} + +/* +** Return the number of bytes required to store a JournalFile that uses vfs +** pVfs to create the underlying on-disk files. +*/ +SQLITE_PRIVATE int sqlite3JournalSize(sqlite3_vfs *pVfs){ + return (pVfs->szOsFile+sizeof(JournalFile)); +} +#endif + +/************** End of journal.c *********************************************/ +/************** Begin file expr.c ********************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains routines used for analyzing expressions and +** for generating VDBE code that evaluates expressions in SQLite. +** +** $Id: expr.c,v 1.371 2008/05/01 17:16:53 drh Exp $ +*/ + +/* +** Return the 'affinity' of the expression pExpr if any. +** +** If pExpr is a column, a reference to a column via an 'AS' alias, +** or a sub-select with a column as the return value, then the +** affinity of that column is returned. Otherwise, 0x00 is returned, +** indicating no affinity for the expression. +** +** i.e. the WHERE clause expresssions in the following statements all +** have an affinity: +** +** CREATE TABLE t1(a); +** SELECT * FROM t1 WHERE a; +** SELECT a AS b FROM t1 WHERE b; +** SELECT * FROM t1 WHERE (select a from t1); +*/ +SQLITE_PRIVATE char sqlite3ExprAffinity(Expr *pExpr){ + int op = pExpr->op; + if( op==TK_SELECT ){ + return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr); + } +#ifndef SQLITE_OMIT_CAST + if( op==TK_CAST ){ + return sqlite3AffinityType(&pExpr->token); + } +#endif + return pExpr->affinity; +} + +/* +** Set the collating sequence for expression pExpr to be the collating +** sequence named by pToken. Return a pointer to the revised expression. +** The collating sequence is marked as "explicit" using the EP_ExpCollate +** flag. An explicit collating sequence will override implicit +** collating sequences. +*/ +SQLITE_PRIVATE Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){ + char *zColl = 0; /* Dequoted name of collation sequence */ + CollSeq *pColl; + zColl = sqlite3NameFromToken(pParse->db, pName); + if( pExpr && zColl ){ + pColl = sqlite3LocateCollSeq(pParse, zColl, -1); + if( pColl ){ + pExpr->pColl = pColl; + pExpr->flags |= EP_ExpCollate; + } + } + sqlite3_free(zColl); + return pExpr; +} + +/* +** Return the default collation sequence for the expression pExpr. If +** there is no default collation type, return 0. +*/ +SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ + CollSeq *pColl = 0; + if( pExpr ){ + int op; + pColl = pExpr->pColl; + op = pExpr->op; + if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){ + return sqlite3ExprCollSeq(pParse, pExpr->pLeft); + } + } + if( sqlite3CheckCollSeq(pParse, pColl) ){ + pColl = 0; + } + return pColl; +} + +/* +** pExpr is an operand of a comparison operator. aff2 is the +** type affinity of the other operand. This routine returns the +** type affinity that should be used for the comparison operator. +*/ +SQLITE_PRIVATE char sqlite3CompareAffinity(Expr *pExpr, char aff2){ + char aff1 = sqlite3ExprAffinity(pExpr); + if( aff1 && aff2 ){ + /* Both sides of the comparison are columns. If one has numeric + ** affinity, use that. Otherwise use no affinity. + */ + if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ + return SQLITE_AFF_NUMERIC; + }else{ + return SQLITE_AFF_NONE; + } + }else if( !aff1 && !aff2 ){ + /* Neither side of the comparison is a column. Compare the + ** results directly. + */ + return SQLITE_AFF_NONE; + }else{ + /* One side is a column, the other is not. Use the columns affinity. */ + assert( aff1==0 || aff2==0 ); + return (aff1 + aff2); + } +} + +/* +** pExpr is a comparison operator. Return the type affinity that should +** be applied to both operands prior to doing the comparison. +*/ +static char comparisonAffinity(Expr *pExpr){ + char aff; + assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || + pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || + pExpr->op==TK_NE ); + assert( pExpr->pLeft ); + aff = sqlite3ExprAffinity(pExpr->pLeft); + if( pExpr->pRight ){ + aff = sqlite3CompareAffinity(pExpr->pRight, aff); + } + else if( pExpr->pSelect ){ + aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff); + } + else if( !aff ){ + aff = SQLITE_AFF_NONE; + } + return aff; +} + +/* +** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. +** idx_affinity is the affinity of an indexed column. Return true +** if the index with affinity idx_affinity may be used to implement +** the comparison in pExpr. +*/ +SQLITE_PRIVATE int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ + char aff = comparisonAffinity(pExpr); + switch( aff ){ + case SQLITE_AFF_NONE: + return 1; + case SQLITE_AFF_TEXT: + return idx_affinity==SQLITE_AFF_TEXT; + default: + return sqlite3IsNumericAffinity(idx_affinity); + } +} + +/* +** Return the P5 value that should be used for a binary comparison +** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. +*/ +static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ + u8 aff = (char)sqlite3ExprAffinity(pExpr2); + aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull; + return aff; +} + +/* +** Return a pointer to the collation sequence that should be used by +** a binary comparison operator comparing pLeft and pRight. +** +** If the left hand expression has a collating sequence type, then it is +** used. Otherwise the collation sequence for the right hand expression +** is used, or the default (BINARY) if neither expression has a collating +** type. +** +** Argument pRight (but not pLeft) may be a null pointer. In this case, +** it is not considered. +*/ +SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq( + Parse *pParse, + Expr *pLeft, + Expr *pRight +){ + CollSeq *pColl; + assert( pLeft ); + if( pLeft->flags & EP_ExpCollate ){ + assert( pLeft->pColl ); + pColl = pLeft->pColl; + }else if( pRight && pRight->flags & EP_ExpCollate ){ + assert( pRight->pColl ); + pColl = pRight->pColl; + }else{ + pColl = sqlite3ExprCollSeq(pParse, pLeft); + if( !pColl ){ + pColl = sqlite3ExprCollSeq(pParse, pRight); + } + } + return pColl; +} + +/* +** Generate the operands for a comparison operation. Before +** generating the code for each operand, set the EP_AnyAff +** flag on the expression so that it will be able to used a +** cached column value that has previously undergone an +** affinity change. +*/ +static void codeCompareOperands( + Parse *pParse, /* Parsing and code generating context */ + Expr *pLeft, /* The left operand */ + int *pRegLeft, /* Register where left operand is stored */ + int *pFreeLeft, /* Free this register when done */ + Expr *pRight, /* The right operand */ + int *pRegRight, /* Register where right operand is stored */ + int *pFreeRight /* Write temp register for right operand there */ +){ + while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft; + pLeft->flags |= EP_AnyAff; + *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft); + while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft; + pRight->flags |= EP_AnyAff; + *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight); +} + +/* +** Generate code for a comparison operator. +*/ +static int codeCompare( + Parse *pParse, /* The parsing (and code generating) context */ + Expr *pLeft, /* The left operand */ + Expr *pRight, /* The right operand */ + int opcode, /* The comparison opcode */ + int in1, int in2, /* Register holding operands */ + int dest, /* Jump here if true. */ + int jumpIfNull /* If true, jump if either operand is NULL */ +){ + int p5; + int addr; + CollSeq *p4; + + p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); + p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); + addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, + (void*)p4, P4_COLLSEQ); + sqlite3VdbeChangeP5(pParse->pVdbe, p5); + if( p5 & SQLITE_AFF_MASK ){ + sqlite3ExprCacheAffinityChange(pParse, in1, 1); + sqlite3ExprCacheAffinityChange(pParse, in2, 1); + } + return addr; +} + +/* +** Construct a new expression node and return a pointer to it. Memory +** for this node is obtained from sqlite3_malloc(). The calling function +** is responsible for making sure the node eventually gets freed. +*/ +SQLITE_PRIVATE Expr *sqlite3Expr( + sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ + int op, /* Expression opcode */ + Expr *pLeft, /* Left operand */ + Expr *pRight, /* Right operand */ + const Token *pToken /* Argument token */ +){ + Expr *pNew; + pNew = sqlite3DbMallocZero(db, sizeof(Expr)); + if( pNew==0 ){ + /* When malloc fails, delete pLeft and pRight. Expressions passed to + ** this function must always be allocated with sqlite3Expr() for this + ** reason. + */ + sqlite3ExprDelete(pLeft); + sqlite3ExprDelete(pRight); + return 0; + } + pNew->op = op; + pNew->pLeft = pLeft; + pNew->pRight = pRight; + pNew->iAgg = -1; + if( pToken ){ + assert( pToken->dyn==0 ); + pNew->span = pNew->token = *pToken; + }else if( pLeft ){ + if( pRight ){ + sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span); + if( pRight->flags & EP_ExpCollate ){ + pNew->flags |= EP_ExpCollate; + pNew->pColl = pRight->pColl; + } + } + if( pLeft->flags & EP_ExpCollate ){ + pNew->flags |= EP_ExpCollate; + pNew->pColl = pLeft->pColl; + } + } + + sqlite3ExprSetHeight(pNew); + return pNew; +} + +/* +** Works like sqlite3Expr() except that it takes an extra Parse* +** argument and notifies the associated connection object if malloc fails. +*/ +SQLITE_PRIVATE Expr *sqlite3PExpr( + Parse *pParse, /* Parsing context */ + int op, /* Expression opcode */ + Expr *pLeft, /* Left operand */ + Expr *pRight, /* Right operand */ + const Token *pToken /* Argument token */ +){ + return sqlite3Expr(pParse->db, op, pLeft, pRight, pToken); +} + +/* +** When doing a nested parse, you can include terms in an expression +** that look like this: #1 #2 ... These terms refer to registers +** in the virtual machine. #N is the N-th register. +** +** This routine is called by the parser to deal with on of those terms. +** It immediately generates code to store the value in a memory location. +** The returns an expression that will code to extract the value from +** that memory location as needed. +*/ +SQLITE_PRIVATE Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){ + Vdbe *v = pParse->pVdbe; + Expr *p; + if( pParse->nested==0 ){ + sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken); + return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); + } + if( v==0 ) return 0; + p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken); + if( p==0 ){ + return 0; /* Malloc failed */ + } + p->iTable = atoi((char*)&pToken->z[1]); + return p; +} + +/* +** Join two expressions using an AND operator. If either expression is +** NULL, then just return the other expression. +*/ +SQLITE_PRIVATE Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ + if( pLeft==0 ){ + return pRight; + }else if( pRight==0 ){ + return pLeft; + }else{ + return sqlite3Expr(db, TK_AND, pLeft, pRight, 0); + } +} + +/* +** Set the Expr.span field of the given expression to span all +** text between the two given tokens. +*/ +SQLITE_PRIVATE void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){ + assert( pRight!=0 ); + assert( pLeft!=0 ); + if( pExpr && pRight->z && pLeft->z ){ + assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 ); + if( pLeft->dyn==0 && pRight->dyn==0 ){ + pExpr->span.z = pLeft->z; + pExpr->span.n = pRight->n + (pRight->z - pLeft->z); + }else{ + pExpr->span.z = 0; + } + } +} + +/* +** Construct a new expression node for a function with multiple +** arguments. +*/ +SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ + Expr *pNew; + assert( pToken ); + pNew = sqlite3DbMallocZero(pParse->db, sizeof(Expr) ); + if( pNew==0 ){ + sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */ + return 0; + } + pNew->op = TK_FUNCTION; + pNew->pList = pList; + assert( pToken->dyn==0 ); + pNew->token = *pToken; + pNew->span = pNew->token; + + sqlite3ExprSetHeight(pNew); + return pNew; +} + +/* +** Assign a variable number to an expression that encodes a wildcard +** in the original SQL statement. +** +** Wildcards consisting of a single "?" are assigned the next sequential +** variable number. +** +** Wildcards of the form "?nnn" are assigned the number "nnn". We make +** sure "nnn" is not too be to avoid a denial of service attack when +** the SQL statement comes from an external source. +** +** Wildcards of the form ":aaa" or "$aaa" are assigned the same number +** as the previous instance of the same wildcard. Or if this is the first +** instance of the wildcard, the next sequenial variable number is +** assigned. +*/ +SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ + Token *pToken; + sqlite3 *db = pParse->db; + + if( pExpr==0 ) return; + pToken = &pExpr->token; + assert( pToken->n>=1 ); + assert( pToken->z!=0 ); + assert( pToken->z[0]!=0 ); + if( pToken->n==1 ){ + /* Wildcard of the form "?". Assign the next variable number */ + pExpr->iTable = ++pParse->nVar; + }else if( pToken->z[0]=='?' ){ + /* Wildcard of the form "?nnn". Convert "nnn" to an integer and + ** use it as the variable number */ + int i; + pExpr->iTable = i = atoi((char*)&pToken->z[1]); + testcase( i==0 ); + testcase( i==1 ); + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); + testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); + if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ + sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", + db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); + } + if( i>pParse->nVar ){ + pParse->nVar = i; + } + }else{ + /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable + ** number as the prior appearance of the same name, or if the name + ** has never appeared before, reuse the same variable number + */ + int i, n; + n = pToken->n; + for(i=0; i<pParse->nVarExpr; i++){ + Expr *pE; + if( (pE = pParse->apVarExpr[i])!=0 + && pE->token.n==n + && memcmp(pE->token.z, pToken->z, n)==0 ){ + pExpr->iTable = pE->iTable; + break; + } + } + if( i>=pParse->nVarExpr ){ + pExpr->iTable = ++pParse->nVar; + if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){ + pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10; + pParse->apVarExpr = + sqlite3DbReallocOrFree( + db, + pParse->apVarExpr, + pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) + ); + } + if( !db->mallocFailed ){ + assert( pParse->apVarExpr!=0 ); + pParse->apVarExpr[pParse->nVarExpr++] = pExpr; + } + } + } + if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ + sqlite3ErrorMsg(pParse, "too many SQL variables"); + } +} + +/* +** Recursively delete an expression tree. +*/ +SQLITE_PRIVATE void sqlite3ExprDelete(Expr *p){ + if( p==0 ) return; + if( p->span.dyn ) sqlite3_free((char*)p->span.z); + if( p->token.dyn ) sqlite3_free((char*)p->token.z); + sqlite3ExprDelete(p->pLeft); + sqlite3ExprDelete(p->pRight); + sqlite3ExprListDelete(p->pList); + sqlite3SelectDelete(p->pSelect); + sqlite3_free(p); +} + +/* +** The Expr.token field might be a string literal that is quoted. +** If so, remove the quotation marks. +*/ +SQLITE_PRIVATE void sqlite3DequoteExpr(sqlite3 *db, Expr *p){ + if( ExprHasAnyProperty(p, EP_Dequoted) ){ + return; + } + ExprSetProperty(p, EP_Dequoted); + if( p->token.dyn==0 ){ + sqlite3TokenCopy(db, &p->token, &p->token); + } + sqlite3Dequote((char*)p->token.z); +} + + +/* +** The following group of routines make deep copies of expressions, +** expression lists, ID lists, and select statements. The copies can +** be deleted (by being passed to their respective ...Delete() routines) +** without effecting the originals. +** +** The expression list, ID, and source lists return by sqlite3ExprListDup(), +** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded +** by subsequent calls to sqlite*ListAppend() routines. +** +** Any tables that the SrcList might point to are not duplicated. +*/ +SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){ + Expr *pNew; + if( p==0 ) return 0; + pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); + if( pNew==0 ) return 0; + memcpy(pNew, p, sizeof(*pNew)); + if( p->token.z!=0 ){ + pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n); + pNew->token.dyn = 1; + }else{ + assert( pNew->token.z==0 ); + } + pNew->span.z = 0; + pNew->pLeft = sqlite3ExprDup(db, p->pLeft); + pNew->pRight = sqlite3ExprDup(db, p->pRight); + pNew->pList = sqlite3ExprListDup(db, p->pList); + pNew->pSelect = sqlite3SelectDup(db, p->pSelect); + return pNew; +} +SQLITE_PRIVATE void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){ + if( pTo->dyn ) sqlite3_free((char*)pTo->z); + if( pFrom->z ){ + pTo->n = pFrom->n; + pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n); + pTo->dyn = 1; + }else{ + pTo->z = 0; + } +} +SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){ + ExprList *pNew; + struct ExprList_item *pItem, *pOldItem; + int i; + if( p==0 ) return 0; + pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); + if( pNew==0 ) return 0; + pNew->iECursor = 0; + pNew->nExpr = pNew->nAlloc = p->nExpr; + pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) ); + if( pItem==0 ){ + sqlite3_free(pNew); + return 0; + } + pOldItem = p->a; + for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ + Expr *pNewExpr, *pOldExpr; + pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr); + if( pOldExpr->span.z!=0 && pNewExpr ){ + /* Always make a copy of the span for top-level expressions in the + ** expression list. The logic in SELECT processing that determines + ** the names of columns in the result set needs this information */ + sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span); + } + assert( pNewExpr==0 || pNewExpr->span.z!=0 + || pOldExpr->span.z==0 + || db->mallocFailed ); + pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); + pItem->sortOrder = pOldItem->sortOrder; + pItem->isAgg = pOldItem->isAgg; + pItem->done = 0; + } + return pNew; +} + +/* +** If cursors, triggers, views and subqueries are all omitted from +** the build, then none of the following routines, except for +** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes +** called with a NULL argument. +*/ +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ + || !defined(SQLITE_OMIT_SUBQUERY) +SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){ + SrcList *pNew; + int i; + int nByte; + if( p==0 ) return 0; + nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); + pNew = sqlite3DbMallocRaw(db, nByte ); + if( pNew==0 ) return 0; + pNew->nSrc = pNew->nAlloc = p->nSrc; + for(i=0; i<p->nSrc; i++){ + struct SrcList_item *pNewItem = &pNew->a[i]; + struct SrcList_item *pOldItem = &p->a[i]; + Table *pTab; + pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); + pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); + pNewItem->jointype = pOldItem->jointype; + pNewItem->iCursor = pOldItem->iCursor; + pNewItem->isPopulated = pOldItem->isPopulated; + pTab = pNewItem->pTab = pOldItem->pTab; + if( pTab ){ + pTab->nRef++; + } + pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect); + pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn); + pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); + pNewItem->colUsed = pOldItem->colUsed; + } + return pNew; +} +SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ + IdList *pNew; + int i; + if( p==0 ) return 0; + pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); + if( pNew==0 ) return 0; + pNew->nId = pNew->nAlloc = p->nId; + pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); + if( pNew->a==0 ){ + sqlite3_free(pNew); + return 0; + } + for(i=0; i<p->nId; i++){ + struct IdList_item *pNewItem = &pNew->a[i]; + struct IdList_item *pOldItem = &p->a[i]; + pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); + pNewItem->idx = pOldItem->idx; + } + return pNew; +} +SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){ + Select *pNew; + if( p==0 ) return 0; + pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); + if( pNew==0 ) return 0; + pNew->isDistinct = p->isDistinct; + pNew->pEList = sqlite3ExprListDup(db, p->pEList); + pNew->pSrc = sqlite3SrcListDup(db, p->pSrc); + pNew->pWhere = sqlite3ExprDup(db, p->pWhere); + pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy); + pNew->pHaving = sqlite3ExprDup(db, p->pHaving); + pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy); + pNew->op = p->op; + pNew->pPrior = sqlite3SelectDup(db, p->pPrior); + pNew->pLimit = sqlite3ExprDup(db, p->pLimit); + pNew->pOffset = sqlite3ExprDup(db, p->pOffset); + pNew->iLimit = -1; + pNew->iOffset = -1; + pNew->isResolved = p->isResolved; + pNew->isAgg = p->isAgg; + pNew->usesEphm = 0; + pNew->disallowOrderBy = 0; + pNew->pRightmost = 0; + pNew->addrOpenEphm[0] = -1; + pNew->addrOpenEphm[1] = -1; + pNew->addrOpenEphm[2] = -1; + return pNew; +} +#else +SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3 *db, Select *p){ + assert( p==0 ); + return 0; +} +#endif + + +/* +** Add a new element to the end of an expression list. If pList is +** initially NULL, then create a new expression list. +*/ +SQLITE_PRIVATE ExprList *sqlite3ExprListAppend( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List to which to append. Might be NULL */ + Expr *pExpr, /* Expression to be appended */ + Token *pName /* AS keyword for the expression */ +){ + sqlite3 *db = pParse->db; + if( pList==0 ){ + pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); + if( pList==0 ){ + goto no_mem; + } + assert( pList->nAlloc==0 ); + } + if( pList->nAlloc<=pList->nExpr ){ + struct ExprList_item *a; + int n = pList->nAlloc*2 + 4; + a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0])); + if( a==0 ){ + goto no_mem; + } + pList->a = a; + pList->nAlloc = n; + } + assert( pList->a!=0 ); + if( pExpr || pName ){ + struct ExprList_item *pItem = &pList->a[pList->nExpr++]; + memset(pItem, 0, sizeof(*pItem)); + pItem->zName = sqlite3NameFromToken(db, pName); + pItem->pExpr = pExpr; + } + return pList; + +no_mem: + /* Avoid leaking memory if malloc has failed. */ + sqlite3ExprDelete(pExpr); + sqlite3ExprListDelete(pList); + return 0; +} + +/* +** If the expression list pEList contains more than iLimit elements, +** leave an error message in pParse. +*/ +SQLITE_PRIVATE void sqlite3ExprListCheckLength( + Parse *pParse, + ExprList *pEList, + const char *zObject +){ + int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; + testcase( pEList && pEList->nExpr==mx ); + testcase( pEList && pEList->nExpr==mx+1 ); + if( pEList && pEList->nExpr>mx ){ + sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); + } +} + + +/* The following three functions, heightOfExpr(), heightOfExprList() +** and heightOfSelect(), are used to determine the maximum height +** of any expression tree referenced by the structure passed as the +** first argument. +** +** If this maximum height is greater than the current value pointed +** to by pnHeight, the second parameter, then set *pnHeight to that +** value. +*/ +static void heightOfExpr(Expr *p, int *pnHeight){ + if( p ){ + if( p->nHeight>*pnHeight ){ + *pnHeight = p->nHeight; + } + } +} +static void heightOfExprList(ExprList *p, int *pnHeight){ + if( p ){ + int i; + for(i=0; i<p->nExpr; i++){ + heightOfExpr(p->a[i].pExpr, pnHeight); + } + } +} +static void heightOfSelect(Select *p, int *pnHeight){ + if( p ){ + heightOfExpr(p->pWhere, pnHeight); + heightOfExpr(p->pHaving, pnHeight); + heightOfExpr(p->pLimit, pnHeight); + heightOfExpr(p->pOffset, pnHeight); + heightOfExprList(p->pEList, pnHeight); + heightOfExprList(p->pGroupBy, pnHeight); + heightOfExprList(p->pOrderBy, pnHeight); + heightOfSelect(p->pPrior, pnHeight); + } +} + +/* +** Set the Expr.nHeight variable in the structure passed as an +** argument. An expression with no children, Expr.pList or +** Expr.pSelect member has a height of 1. Any other expression +** has a height equal to the maximum height of any other +** referenced Expr plus one. +*/ +SQLITE_PRIVATE void sqlite3ExprSetHeight(Expr *p){ + int nHeight = 0; + heightOfExpr(p->pLeft, &nHeight); + heightOfExpr(p->pRight, &nHeight); + heightOfExprList(p->pList, &nHeight); + heightOfSelect(p->pSelect, &nHeight); + p->nHeight = nHeight + 1; +} + +/* +** Return the maximum height of any expression tree referenced +** by the select statement passed as an argument. +*/ +SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){ + int nHeight = 0; + heightOfSelect(p, &nHeight); + return nHeight; +} + +/* +** Delete an entire expression list. +*/ +SQLITE_PRIVATE void sqlite3ExprListDelete(ExprList *pList){ + int i; + struct ExprList_item *pItem; + if( pList==0 ) return; + assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) ); + assert( pList->nExpr<=pList->nAlloc ); + for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ + sqlite3ExprDelete(pItem->pExpr); + sqlite3_free(pItem->zName); + } + sqlite3_free(pList->a); + sqlite3_free(pList); +} + +/* +** Walk an expression tree. Call xFunc for each node visited. xFunc +** is called on the node before xFunc is called on the nodes children. +** +** The return value from xFunc determines whether the tree walk continues. +** 0 means continue walking the tree. 1 means do not walk children +** of the current node but continue with siblings. 2 means abandon +** the tree walk completely. +** +** The return value from this routine is 1 to abandon the tree walk +** and 0 to continue. +** +** NOTICE: This routine does *not* descend into subqueries. +*/ +static int walkExprList(ExprList *, int (*)(void *, Expr*), void *); +static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){ + int rc; + if( pExpr==0 ) return 0; + rc = (*xFunc)(pArg, pExpr); + if( rc==0 ){ + if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1; + if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1; + if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1; + } + return rc>1; +} + +/* +** Call walkExprTree() for every expression in list p. +*/ +static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){ + int i; + struct ExprList_item *pItem; + if( !p ) return 0; + for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){ + if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1; + } + return 0; +} + +/* +** Call walkExprTree() for every expression in Select p, not including +** expressions that are part of sub-selects in any FROM clause or the LIMIT +** or OFFSET expressions.. +*/ +static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){ + walkExprList(p->pEList, xFunc, pArg); + walkExprTree(p->pWhere, xFunc, pArg); + walkExprList(p->pGroupBy, xFunc, pArg); + walkExprTree(p->pHaving, xFunc, pArg); + walkExprList(p->pOrderBy, xFunc, pArg); + if( p->pPrior ){ + walkSelectExpr(p->pPrior, xFunc, pArg); + } + return 0; +} + + +/* +** This routine is designed as an xFunc for walkExprTree(). +** +** pArg is really a pointer to an integer. If we can tell by looking +** at pExpr that the expression that contains pExpr is not a constant +** expression, then set *pArg to 0 and return 2 to abandon the tree walk. +** If pExpr does does not disqualify the expression from being a constant +** then do nothing. +** +** After walking the whole tree, if no nodes are found that disqualify +** the expression as constant, then we assume the whole expression +** is constant. See sqlite3ExprIsConstant() for additional information. +*/ +static int exprNodeIsConstant(void *pArg, Expr *pExpr){ + int *pN = (int*)pArg; + + /* If *pArg is 3 then any term of the expression that comes from + ** the ON or USING clauses of a join disqualifies the expression + ** from being considered constant. */ + if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){ + *pN = 0; + return 2; + } + + switch( pExpr->op ){ + /* Consider functions to be constant if all their arguments are constant + ** and *pArg==2 */ + case TK_FUNCTION: + if( (*pN)==2 ) return 0; + /* Fall through */ + case TK_ID: + case TK_COLUMN: + case TK_DOT: + case TK_AGG_FUNCTION: + case TK_AGG_COLUMN: +#ifndef SQLITE_OMIT_SUBQUERY + case TK_SELECT: + case TK_EXISTS: + testcase( pExpr->op==TK_SELECT ); + testcase( pExpr->op==TK_EXISTS ); +#endif + testcase( pExpr->op==TK_ID ); + testcase( pExpr->op==TK_COLUMN ); + testcase( pExpr->op==TK_DOT ); + testcase( pExpr->op==TK_AGG_FUNCTION ); + testcase( pExpr->op==TK_AGG_COLUMN ); + *pN = 0; + return 2; + case TK_IN: + if( pExpr->pSelect ){ + *pN = 0; + return 2; + } + default: + return 0; + } +} + +/* +** Walk an expression tree. Return 1 if the expression is constant +** and 0 if it involves variables or function calls. +** +** For the purposes of this function, a double-quoted string (ex: "abc") +** is considered a variable but a single-quoted string (ex: 'abc') is +** a constant. +*/ +SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){ + int isConst = 1; + walkExprTree(p, exprNodeIsConstant, &isConst); + return isConst; +} + +/* +** Walk an expression tree. Return 1 if the expression is constant +** that does no originate from the ON or USING clauses of a join. +** Return 0 if it involves variables or function calls or terms from +** an ON or USING clause. +*/ +SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){ + int isConst = 3; + walkExprTree(p, exprNodeIsConstant, &isConst); + return isConst!=0; +} + +/* +** Walk an expression tree. Return 1 if the expression is constant +** or a function call with constant arguments. Return and 0 if there +** are any variables. +** +** For the purposes of this function, a double-quoted string (ex: "abc") +** is considered a variable but a single-quoted string (ex: 'abc') is +** a constant. +*/ +SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p){ + int isConst = 2; + walkExprTree(p, exprNodeIsConstant, &isConst); + return isConst!=0; +} + +/* +** If the expression p codes a constant integer that is small enough +** to fit in a 32-bit integer, return 1 and put the value of the integer +** in *pValue. If the expression is not an integer or if it is too big +** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. +*/ +SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr *p, int *pValue){ + switch( p->op ){ + case TK_INTEGER: { + if( sqlite3GetInt32((char*)p->token.z, pValue) ){ + return 1; + } + break; + } + case TK_UPLUS: { + return sqlite3ExprIsInteger(p->pLeft, pValue); + } + case TK_UMINUS: { + int v; + if( sqlite3ExprIsInteger(p->pLeft, &v) ){ + *pValue = -v; + return 1; + } + break; + } + default: break; + } + return 0; +} + +/* +** Return TRUE if the given string is a row-id column name. +*/ +SQLITE_PRIVATE int sqlite3IsRowid(const char *z){ + if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; + if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; + if( sqlite3StrICmp(z, "OID")==0 ) return 1; + return 0; +} + +/* +** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up +** that name in the set of source tables in pSrcList and make the pExpr +** expression node refer back to that source column. The following changes +** are made to pExpr: +** +** pExpr->iDb Set the index in db->aDb[] of the database holding +** the table. +** pExpr->iTable Set to the cursor number for the table obtained +** from pSrcList. +** pExpr->iColumn Set to the column number within the table. +** pExpr->op Set to TK_COLUMN. +** pExpr->pLeft Any expression this points to is deleted +** pExpr->pRight Any expression this points to is deleted. +** +** The pDbToken is the name of the database (the "X"). This value may be +** NULL meaning that name is of the form Y.Z or Z. Any available database +** can be used. The pTableToken is the name of the table (the "Y"). This +** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it +** means that the form of the name is Z and that columns from any table +** can be used. +** +** If the name cannot be resolved unambiguously, leave an error message +** in pParse and return non-zero. Return zero on success. +*/ +static int lookupName( + Parse *pParse, /* The parsing context */ + Token *pDbToken, /* Name of the database containing table, or NULL */ + Token *pTableToken, /* Name of table containing column, or NULL */ + Token *pColumnToken, /* Name of the column. */ + NameContext *pNC, /* The name context used to resolve the name */ + Expr *pExpr /* Make this EXPR node point to the selected column */ +){ + char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */ + char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */ + char *zCol = 0; /* Name of the column. The "Z" */ + int i, j; /* Loop counters */ + int cnt = 0; /* Number of matching column names */ + int cntTab = 0; /* Number of matching table names */ + sqlite3 *db = pParse->db; /* The database */ + struct SrcList_item *pItem; /* Use for looping over pSrcList items */ + struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ + NameContext *pTopNC = pNC; /* First namecontext in the list */ + Schema *pSchema = 0; /* Schema of the expression */ + + assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */ + zDb = sqlite3NameFromToken(db, pDbToken); + zTab = sqlite3NameFromToken(db, pTableToken); + zCol = sqlite3NameFromToken(db, pColumnToken); + if( db->mallocFailed ){ + goto lookupname_end; + } + + pExpr->iTable = -1; + while( pNC && cnt==0 ){ + ExprList *pEList; + SrcList *pSrcList = pNC->pSrcList; + + if( pSrcList ){ + for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ + Table *pTab; + int iDb; + Column *pCol; + + pTab = pItem->pTab; + assert( pTab!=0 ); + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( pTab->nCol>0 ); + if( zTab ){ + if( pItem->zAlias ){ + char *zTabName = pItem->zAlias; + if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue; + }else{ + char *zTabName = pTab->zName; + if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue; + if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){ + continue; + } + } + } + if( 0==(cntTab++) ){ + pExpr->iTable = pItem->iCursor; + pSchema = pTab->pSchema; + pMatch = pItem; + } + for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ + if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ + const char *zColl = pTab->aCol[j].zColl; + IdList *pUsing; + cnt++; + pExpr->iTable = pItem->iCursor; + pMatch = pItem; + pSchema = pTab->pSchema; + /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ + pExpr->iColumn = j==pTab->iPKey ? -1 : j; + pExpr->affinity = pTab->aCol[j].affinity; + if( (pExpr->flags & EP_ExpCollate)==0 ){ + pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); + } + if( i<pSrcList->nSrc-1 ){ + if( pItem[1].jointype & JT_NATURAL ){ + /* If this match occurred in the left table of a natural join, + ** then skip the right table to avoid a duplicate match */ + pItem++; + i++; + }else if( (pUsing = pItem[1].pUsing)!=0 ){ + /* If this match occurs on a column that is in the USING clause + ** of a join, skip the search of the right table of the join + ** to avoid a duplicate match there. */ + int k; + for(k=0; k<pUsing->nId; k++){ + if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){ + pItem++; + i++; + break; + } + } + } + } + break; + } + } + } + } + +#ifndef SQLITE_OMIT_TRIGGER + /* If we have not already resolved the name, then maybe + ** it is a new.* or old.* trigger argument reference + */ + if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){ + TriggerStack *pTriggerStack = pParse->trigStack; + Table *pTab = 0; + u32 *piColMask; + if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){ + pExpr->iTable = pTriggerStack->newIdx; + assert( pTriggerStack->pTab ); + pTab = pTriggerStack->pTab; + piColMask = &(pTriggerStack->newColMask); + }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){ + pExpr->iTable = pTriggerStack->oldIdx; + assert( pTriggerStack->pTab ); + pTab = pTriggerStack->pTab; + piColMask = &(pTriggerStack->oldColMask); + } + + if( pTab ){ + int iCol; + Column *pCol = pTab->aCol; + + pSchema = pTab->pSchema; + cntTab++; + for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) { + if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ + const char *zColl = pTab->aCol[iCol].zColl; + cnt++; + pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol; + pExpr->affinity = pTab->aCol[iCol].affinity; + if( (pExpr->flags & EP_ExpCollate)==0 ){ + pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0); + } + pExpr->pTab = pTab; + if( iCol>=0 ){ + testcase( iCol==31 ); + testcase( iCol==32 ); + *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0); + } + break; + } + } + } + } +#endif /* !defined(SQLITE_OMIT_TRIGGER) */ + + /* + ** Perhaps the name is a reference to the ROWID + */ + if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){ + cnt = 1; + pExpr->iColumn = -1; + pExpr->affinity = SQLITE_AFF_INTEGER; + } + + /* + ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z + ** might refer to an result-set alias. This happens, for example, when + ** we are resolving names in the WHERE clause of the following command: + ** + ** SELECT a+b AS x FROM table WHERE x<10; + ** + ** In cases like this, replace pExpr with a copy of the expression that + ** forms the result set entry ("a+b" in the example) and return immediately. + ** Note that the expression in the result set should have already been + ** resolved by the time the WHERE clause is resolved. + */ + if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){ + for(j=0; j<pEList->nExpr; j++){ + char *zAs = pEList->a[j].zName; + if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ + Expr *pDup, *pOrig; + assert( pExpr->pLeft==0 && pExpr->pRight==0 ); + assert( pExpr->pList==0 ); + assert( pExpr->pSelect==0 ); + pOrig = pEList->a[j].pExpr; + if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){ + sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); + sqlite3_free(zCol); + return 2; + } + pDup = sqlite3ExprDup(db, pOrig); + if( pExpr->flags & EP_ExpCollate ){ + pDup->pColl = pExpr->pColl; + pDup->flags |= EP_ExpCollate; + } + if( pExpr->span.dyn ) sqlite3_free((char*)pExpr->span.z); + if( pExpr->token.dyn ) sqlite3_free((char*)pExpr->token.z); + memcpy(pExpr, pDup, sizeof(*pExpr)); + sqlite3_free(pDup); + cnt = 1; + pMatch = 0; + assert( zTab==0 && zDb==0 ); + goto lookupname_end_2; + } + } + } + + /* Advance to the next name context. The loop will exit when either + ** we have a match (cnt>0) or when we run out of name contexts. + */ + if( cnt==0 ){ + pNC = pNC->pNext; + } + } + + /* + ** If X and Y are NULL (in other words if only the column name Z is + ** supplied) and the value of Z is enclosed in double-quotes, then + ** Z is a string literal if it doesn't match any column names. In that + ** case, we need to return right away and not make any changes to + ** pExpr. + ** + ** Because no reference was made to outer contexts, the pNC->nRef + ** fields are not changed in any context. + */ + if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){ + sqlite3_free(zCol); + return 0; + } + + /* + ** cnt==0 means there was not match. cnt>1 means there were two or + ** more matches. Either way, we have an error. + */ + if( cnt!=1 ){ + const char *zErr; + zErr = cnt==0 ? "no such column" : "ambiguous column name"; + if( zDb ){ + sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); + }else if( zTab ){ + sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); + }else{ + sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); + } + pTopNC->nErr++; + } + + /* If a column from a table in pSrcList is referenced, then record + ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes + ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the + ** column number is greater than the number of bits in the bitmask + ** then set the high-order bit of the bitmask. + */ + if( pExpr->iColumn>=0 && pMatch!=0 ){ + int n = pExpr->iColumn; + testcase( n==sizeof(Bitmask)*8-1 ); + if( n>=sizeof(Bitmask)*8 ){ + n = sizeof(Bitmask)*8-1; + } + assert( pMatch->iCursor==pExpr->iTable ); + pMatch->colUsed |= ((Bitmask)1)<<n; + } + +lookupname_end: + /* Clean up and return + */ + sqlite3_free(zDb); + sqlite3_free(zTab); + sqlite3ExprDelete(pExpr->pLeft); + pExpr->pLeft = 0; + sqlite3ExprDelete(pExpr->pRight); + pExpr->pRight = 0; + pExpr->op = TK_COLUMN; +lookupname_end_2: + sqlite3_free(zCol); + if( cnt==1 ){ + assert( pNC!=0 ); + sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); + if( pMatch && !pMatch->pSelect ){ + pExpr->pTab = pMatch->pTab; + } + /* Increment the nRef value on all name contexts from TopNC up to + ** the point where the name matched. */ + for(;;){ + assert( pTopNC!=0 ); + pTopNC->nRef++; + if( pTopNC==pNC ) break; + pTopNC = pTopNC->pNext; + } + return 0; + } else { + return 1; + } +} + +/* +** This routine is designed as an xFunc for walkExprTree(). +** +** Resolve symbolic names into TK_COLUMN operators for the current +** node in the expression tree. Return 0 to continue the search down +** the tree or 2 to abort the tree walk. +** +** This routine also does error checking and name resolution for +** function names. The operator for aggregate functions is changed +** to TK_AGG_FUNCTION. +*/ +static int nameResolverStep(void *pArg, Expr *pExpr){ + NameContext *pNC = (NameContext*)pArg; + Parse *pParse; + + if( pExpr==0 ) return 1; + assert( pNC!=0 ); + pParse = pNC->pParse; + + if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1; + ExprSetProperty(pExpr, EP_Resolved); +#ifndef NDEBUG + if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ + SrcList *pSrcList = pNC->pSrcList; + int i; + for(i=0; i<pNC->pSrcList->nSrc; i++){ + assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); + } + } +#endif + switch( pExpr->op ){ + /* Double-quoted strings (ex: "abc") are used as identifiers if + ** possible. Otherwise they remain as strings. Single-quoted + ** strings (ex: 'abc') are always string literals. + */ + case TK_STRING: { + if( pExpr->token.z[0]=='\'' ) break; + /* Fall thru into the TK_ID case if this is a double-quoted string */ + } + /* A lone identifier is the name of a column. + */ + case TK_ID: { + lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr); + return 1; + } + + /* A table name and column name: ID.ID + ** Or a database, table and column: ID.ID.ID + */ + case TK_DOT: { + Token *pColumn; + Token *pTable; + Token *pDb; + Expr *pRight; + + /* if( pSrcList==0 ) break; */ + pRight = pExpr->pRight; + if( pRight->op==TK_ID ){ + pDb = 0; + pTable = &pExpr->pLeft->token; + pColumn = &pRight->token; + }else{ + assert( pRight->op==TK_DOT ); + pDb = &pExpr->pLeft->token; + pTable = &pRight->pLeft->token; + pColumn = &pRight->pRight->token; + } + lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr); + return 1; + } + + /* Resolve function names + */ + case TK_CONST_FUNC: + case TK_FUNCTION: { + ExprList *pList = pExpr->pList; /* The argument list */ + int n = pList ? pList->nExpr : 0; /* Number of arguments */ + int no_such_func = 0; /* True if no such function exists */ + int wrong_num_args = 0; /* True if wrong number of arguments */ + int is_agg = 0; /* True if is an aggregate function */ + int i; + int auth; /* Authorization to use the function */ + int nId; /* Number of characters in function name */ + const char *zId; /* The function name. */ + FuncDef *pDef; /* Information about the function */ + int enc = ENC(pParse->db); /* The database encoding */ + + zId = (char*)pExpr->token.z; + nId = pExpr->token.n; + pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); + if( pDef==0 ){ + pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0); + if( pDef==0 ){ + no_such_func = 1; + }else{ + wrong_num_args = 1; + } + }else{ + is_agg = pDef->xFunc==0; + } +#ifndef SQLITE_OMIT_AUTHORIZATION + if( pDef ){ + auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); + if( auth!=SQLITE_OK ){ + if( auth==SQLITE_DENY ){ + sqlite3ErrorMsg(pParse, "not authorized to use function: %s", + pDef->zName); + pNC->nErr++; + } + pExpr->op = TK_NULL; + return 1; + } + } +#endif + if( is_agg && !pNC->allowAgg ){ + sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); + pNC->nErr++; + is_agg = 0; + }else if( no_such_func ){ + sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); + pNC->nErr++; + }else if( wrong_num_args ){ + sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", + nId, zId); + pNC->nErr++; + } + if( is_agg ){ + pExpr->op = TK_AGG_FUNCTION; + pNC->hasAgg = 1; + } + if( is_agg ) pNC->allowAgg = 0; + for(i=0; pNC->nErr==0 && i<n; i++){ + walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC); + } + if( is_agg ) pNC->allowAgg = 1; + /* FIX ME: Compute pExpr->affinity based on the expected return + ** type of the function + */ + return is_agg; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_SELECT: + case TK_EXISTS: +#endif + case TK_IN: { + if( pExpr->pSelect ){ + int nRef = pNC->nRef; +#ifndef SQLITE_OMIT_CHECK + if( pNC->isCheck ){ + sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); + } +#endif + sqlite3SelectResolve(pParse, pExpr->pSelect, pNC); + assert( pNC->nRef>=nRef ); + if( nRef!=pNC->nRef ){ + ExprSetProperty(pExpr, EP_VarSelect); + } + } + break; + } +#ifndef SQLITE_OMIT_CHECK + case TK_VARIABLE: { + if( pNC->isCheck ){ + sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); + } + break; + } +#endif + } + return 0; +} + +/* +** This routine walks an expression tree and resolves references to +** table columns. Nodes of the form ID.ID or ID resolve into an +** index to the table in the table list and a column offset. The +** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable +** value is changed to the index of the referenced table in pTabList +** plus the "base" value. The base value will ultimately become the +** VDBE cursor number for a cursor that is pointing into the referenced +** table. The Expr.iColumn value is changed to the index of the column +** of the referenced table. The Expr.iColumn value for the special +** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an +** alias for ROWID. +** +** Also resolve function names and check the functions for proper +** usage. Make sure all function names are recognized and all functions +** have the correct number of arguments. Leave an error message +** in pParse->zErrMsg if anything is amiss. Return the number of errors. +** +** If the expression contains aggregate functions then set the EP_Agg +** property on the expression. +*/ +SQLITE_PRIVATE int sqlite3ExprResolveNames( + NameContext *pNC, /* Namespace to resolve expressions in. */ + Expr *pExpr /* The expression to be analyzed. */ +){ + int savedHasAgg; + + if( pExpr==0 ) return 0; +#if SQLITE_MAX_EXPR_DEPTH>0 + { + int mxDepth = pNC->pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; + if( (pExpr->nHeight+pNC->pParse->nHeight)>mxDepth ){ + sqlite3ErrorMsg(pNC->pParse, + "Expression tree is too large (maximum depth %d)", mxDepth + ); + return 1; + } + pNC->pParse->nHeight += pExpr->nHeight; + } +#endif + savedHasAgg = pNC->hasAgg; + pNC->hasAgg = 0; + walkExprTree(pExpr, nameResolverStep, pNC); +#if SQLITE_MAX_EXPR_DEPTH>0 + pNC->pParse->nHeight -= pExpr->nHeight; +#endif + if( pNC->nErr>0 ){ + ExprSetProperty(pExpr, EP_Error); + } + if( pNC->hasAgg ){ + ExprSetProperty(pExpr, EP_Agg); + }else if( savedHasAgg ){ + pNC->hasAgg = 1; + } + return ExprHasProperty(pExpr, EP_Error); +} + +/* +** A pointer instance of this structure is used to pass information +** through walkExprTree into codeSubqueryStep(). +*/ +typedef struct QueryCoder QueryCoder; +struct QueryCoder { + Parse *pParse; /* The parsing context */ + NameContext *pNC; /* Namespace of first enclosing query */ +}; + +#ifdef SQLITE_TEST + int sqlite3_enable_in_opt = 1; +#else + #define sqlite3_enable_in_opt 1 +#endif + +/* +** Return true if the IN operator optimization is enabled and +** the SELECT statement p exists and is of the +** simple form: +** +** SELECT <column> FROM <table> +** +** If this is the case, it may be possible to use an existing table +** or index instead of generating an epheremal table. +*/ +#ifndef SQLITE_OMIT_SUBQUERY +static int isCandidateForInOpt(Select *p){ + SrcList *pSrc; + ExprList *pEList; + Table *pTab; + if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */ + if( p==0 ) return 0; /* right-hand side of IN is SELECT */ + if( p->pPrior ) return 0; /* Not a compound SELECT */ + if( p->isDistinct ) return 0; /* No DISTINCT keyword */ + if( p->isAgg ) return 0; /* Contains no aggregate functions */ + if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */ + if( p->pLimit ) return 0; /* Has no LIMIT clause */ + if( p->pOffset ) return 0; + if( p->pWhere ) return 0; /* Has no WHERE clause */ + pSrc = p->pSrc; + if( pSrc==0 ) return 0; /* A single table in the FROM clause */ + if( pSrc->nSrc!=1 ) return 0; + if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */ + pTab = pSrc->a[0].pTab; + if( pTab==0 ) return 0; + if( pTab->pSelect ) return 0; /* FROM clause is not a view */ + if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ + pEList = p->pEList; + if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ + if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ + return 1; +} +#endif /* SQLITE_OMIT_SUBQUERY */ + +/* +** This function is used by the implementation of the IN (...) operator. +** It's job is to find or create a b-tree structure that may be used +** either to test for membership of the (...) set or to iterate through +** its members, skipping duplicates. +** +** The cursor opened on the structure (database table, database index +** or ephermal table) is stored in pX->iTable before this function returns. +** The returned value indicates the structure type, as follows: +** +** IN_INDEX_ROWID - The cursor was opened on a database table. +** IN_INDEX_INDEX - The cursor was opened on a database index. +** IN_INDEX_EPH - The cursor was opened on a specially created and +** populated epheremal table. +** +** An existing structure may only be used if the SELECT is of the simple +** form: +** +** SELECT <column> FROM <table> +** +** If the mustBeUnique parameter is false, the structure will be used +** for fast set membership tests. In this case an epheremal table must +** be used unless <column> is an INTEGER PRIMARY KEY or an index can +** be found with <column> as its left-most column. +** +** If mustBeUnique is true, then the structure will be used to iterate +** through the set members, skipping any duplicates. In this case an +** epheremal table must be used unless the selected <column> is guaranteed +** to be unique - either because it is an INTEGER PRIMARY KEY or it +** is unique by virtue of a constraint or implicit index. +*/ +#ifndef SQLITE_OMIT_SUBQUERY +SQLITE_PRIVATE int sqlite3FindInIndex(Parse *pParse, Expr *pX, int mustBeUnique){ + Select *p; + int eType = 0; + int iTab = pParse->nTab++; + + /* The follwing if(...) expression is true if the SELECT is of the + ** simple form: + ** + ** SELECT <column> FROM <table> + ** + ** If this is the case, it may be possible to use an existing table + ** or index instead of generating an epheremal table. + */ + p = pX->pSelect; + if( isCandidateForInOpt(p) ){ + sqlite3 *db = pParse->db; + Index *pIdx; + Expr *pExpr = p->pEList->a[0].pExpr; + int iCol = pExpr->iColumn; + Vdbe *v = sqlite3GetVdbe(pParse); + + /* This function is only called from two places. In both cases the vdbe + ** has already been allocated. So assume sqlite3GetVdbe() is always + ** successful here. + */ + assert(v); + if( iCol<0 ){ + int iMem = ++pParse->nMem; + int iAddr; + Table *pTab = p->pSrc->a[0].pTab; + int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + sqlite3VdbeUsesBtree(v, iDb); + + iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); + sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); + + sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); + eType = IN_INDEX_ROWID; + + sqlite3VdbeJumpHere(v, iAddr); + }else{ + /* The collation sequence used by the comparison. If an index is to + ** be used in place of a temp-table, it must be ordered according + ** to this collation sequence. + */ + CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); + + /* Check that the affinity that will be used to perform the + ** comparison is the same as the affinity of the column. If + ** it is not, it is not possible to use any index. + */ + Table *pTab = p->pSrc->a[0].pTab; + char aff = comparisonAffinity(pX); + int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE); + + for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ + if( (pIdx->aiColumn[0]==iCol) + && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0)) + && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None)) + ){ + int iDb; + int iMem = ++pParse->nMem; + int iAddr; + char *pKey; + + pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx); + iDb = sqlite3SchemaToIndex(db, pIdx->pSchema); + sqlite3VdbeUsesBtree(v, iDb); + + iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem); + sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem); + + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn); + sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb, + pKey,P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pIdx->zName)); + eType = IN_INDEX_INDEX; + + sqlite3VdbeJumpHere(v, iAddr); + } + } + } + } + + if( eType==0 ){ + sqlite3CodeSubselect(pParse, pX); + eType = IN_INDEX_EPH; + }else{ + pX->iTable = iTab; + } + return eType; +} +#endif + +/* +** Generate code for scalar subqueries used as an expression +** and IN operators. Examples: +** +** (SELECT a FROM b) -- subquery +** EXISTS (SELECT a FROM b) -- EXISTS subquery +** x IN (4,5,11) -- IN operator with list on right-hand side +** x IN (SELECT a FROM b) -- IN operator with subquery on the right +** +** The pExpr parameter describes the expression that contains the IN +** operator or subquery. +*/ +#ifndef SQLITE_OMIT_SUBQUERY +SQLITE_PRIVATE void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){ + int testAddr = 0; /* One-time test address */ + Vdbe *v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + + + /* This code must be run in its entirety every time it is encountered + ** if any of the following is true: + ** + ** * The right-hand side is a correlated subquery + ** * The right-hand side is an expression list containing variables + ** * We are inside a trigger + ** + ** If all of the above are false, then we can run this code just once + ** save the results, and reuse the same result on subsequent invocations. + */ + if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){ + int mem = ++pParse->nMem; + sqlite3VdbeAddOp1(v, OP_If, mem); + testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem); + assert( testAddr>0 || pParse->db->mallocFailed ); + } + + switch( pExpr->op ){ + case TK_IN: { + char affinity; + KeyInfo keyInfo; + int addr; /* Address of OP_OpenEphemeral instruction */ + + affinity = sqlite3ExprAffinity(pExpr->pLeft); + + /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' + ** expression it is handled the same way. A virtual table is + ** filled with single-field index keys representing the results + ** from the SELECT or the <exprlist>. + ** + ** If the 'x' expression is a column value, or the SELECT... + ** statement returns a column value, then the affinity of that + ** column is used to build the index keys. If both 'x' and the + ** SELECT... statement are columns, then numeric affinity is used + ** if either column has NUMERIC or INTEGER affinity. If neither + ** 'x' nor the SELECT... statement are columns, then numeric affinity + ** is used. + */ + pExpr->iTable = pParse->nTab++; + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1); + memset(&keyInfo, 0, sizeof(keyInfo)); + keyInfo.nField = 1; + + if( pExpr->pSelect ){ + /* Case 1: expr IN (SELECT ...) + ** + ** Generate code to write the results of the select into the temporary + ** table allocated and opened above. + */ + SelectDest dest; + ExprList *pEList; + + sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); + dest.affinity = (int)affinity; + assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); + if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0, 0) ){ + return; + } + pEList = pExpr->pSelect->pEList; + if( pEList && pEList->nExpr>0 ){ + keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, + pEList->a[0].pExpr); + } + }else if( pExpr->pList ){ + /* Case 2: expr IN (exprlist) + ** + ** For each expression, build an index key from the evaluation and + ** store it in the temporary table. If <expr> is a column, then use + ** that columns affinity when building index keys. If <expr> is not + ** a column, use numeric affinity. + */ + int i; + ExprList *pList = pExpr->pList; + struct ExprList_item *pItem; + int r1, r2; + + if( !affinity ){ + affinity = SQLITE_AFF_NONE; + } + keyInfo.aColl[0] = pExpr->pLeft->pColl; + + /* Loop through each expression in <exprlist>. */ + r1 = sqlite3GetTempReg(pParse); + r2 = sqlite3GetTempReg(pParse); + for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ + Expr *pE2 = pItem->pExpr; + + /* If the expression is not constant then we will need to + ** disable the test that was generated above that makes sure + ** this code only executes once. Because for a non-constant + ** expression we need to rerun this code each time. + */ + if( testAddr && !sqlite3ExprIsConstant(pE2) ){ + sqlite3VdbeChangeToNoop(v, testAddr-1, 2); + testAddr = 0; + } + + /* Evaluate the expression and insert it into the temp table */ + pParse->disableColCache++; + sqlite3ExprCode(pParse, pE2, r1); + assert( pParse->disableColCache>0 ); + pParse->disableColCache--; + sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); + sqlite3ExprCacheAffinityChange(pParse, r1, 1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); + } + sqlite3ReleaseTempReg(pParse, r1); + sqlite3ReleaseTempReg(pParse, r2); + } + sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); + break; + } + + case TK_EXISTS: + case TK_SELECT: { + /* This has to be a scalar SELECT. Generate code to put the + ** value of this select in a memory cell and record the number + ** of the memory cell in iColumn. + */ + static const Token one = { (u8*)"1", 0, 1 }; + Select *pSel; + SelectDest dest; + + pSel = pExpr->pSelect; + sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); + if( pExpr->op==TK_SELECT ){ + dest.eDest = SRT_Mem; + sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm); + VdbeComment((v, "Init subquery result")); + }else{ + dest.eDest = SRT_Exists; + sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm); + VdbeComment((v, "Init EXISTS result")); + } + sqlite3ExprDelete(pSel->pLimit); + pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one); + if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0, 0) ){ + return; + } + pExpr->iColumn = dest.iParm; + break; + } + } + + if( testAddr ){ + sqlite3VdbeJumpHere(v, testAddr-1); + } + + return; +} +#endif /* SQLITE_OMIT_SUBQUERY */ + +/* +** Duplicate an 8-byte value +*/ +static char *dup8bytes(Vdbe *v, const char *in){ + char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); + if( out ){ + memcpy(out, in, 8); + } + return out; +} + +/* +** Generate an instruction that will put the floating point +** value described by z[0..n-1] into register iMem. +** +** The z[] string will probably not be zero-terminated. But the +** z[n] character is guaranteed to be something that does not look +** like the continuation of the number. +*/ +static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){ + assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); + if( z ){ + double value; + char *zV; + assert( !isdigit(z[n]) ); + sqlite3AtoF(z, &value); + if( sqlite3IsNaN(value) ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, iMem); + }else{ + if( negateFlag ) value = -value; + zV = dup8bytes(v, (char*)&value); + sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); + } + } +} + + +/* +** Generate an instruction that will put the integer describe by +** text z[0..n-1] into register iMem. +** +** The z[] string will probably not be zero-terminated. But the +** z[n] character is guaranteed to be something that does not look +** like the continuation of the number. +*/ +static void codeInteger(Vdbe *v, const char *z, int n, int negFlag, int iMem){ + assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed ); + if( z ){ + int i; + assert( !isdigit(z[n]) ); + if( sqlite3GetInt32(z, &i) ){ + if( negFlag ) i = -i; + sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); + }else if( sqlite3FitsIn64Bits(z, negFlag) ){ + i64 value; + char *zV; + sqlite3Atoi64(z, &value); + if( negFlag ) value = -value; + zV = dup8bytes(v, (char*)&value); + sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); + }else{ + codeReal(v, z, n, negFlag, iMem); + } + } +} + + +/* +** Generate code that will extract the iColumn-th column from +** table pTab and store the column value in a register. An effort +** is made to store the column value in register iReg, but this is +** not guaranteed. The location of the column value is returned. +** +** There must be an open cursor to pTab in iTable when this routine +** is called. If iColumn<0 then code is generated that extracts the rowid. +** +** This routine might attempt to reuse the value of the column that +** has already been loaded into a register. The value will always +** be used if it has not undergone any affinity changes. But if +** an affinity change has occurred, then the cached value will only be +** used if allowAffChng is true. +*/ +SQLITE_PRIVATE int sqlite3ExprCodeGetColumn( + Parse *pParse, /* Parsing and code generating context */ + Table *pTab, /* Description of the table we are reading from */ + int iColumn, /* Index of the table column */ + int iTable, /* The cursor pointing to the table */ + int iReg, /* Store results here */ + int allowAffChng /* True if prior affinity changes are OK */ +){ + Vdbe *v = pParse->pVdbe; + int i; + struct yColCache *p; + + for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){ + if( p->iTable==iTable && p->iColumn==iColumn + && (!p->affChange || allowAffChng) ){ +#if 0 + sqlite3VdbeAddOp0(v, OP_Noop); + VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg)); +#endif + return p->iReg; + } + } + assert( v!=0 ); + if( iColumn<0 ){ + int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid; + sqlite3VdbeAddOp2(v, op, iTable, iReg); + }else if( pTab==0 ){ + sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg); + }else{ + int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; + sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg); + sqlite3ColumnDefault(v, pTab, iColumn); +#ifndef SQLITE_OMIT_FLOATING_POINT + if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){ + sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); + } +#endif + } + if( pParse->disableColCache==0 ){ + i = pParse->iColCache; + p = &pParse->aColCache[i]; + p->iTable = iTable; + p->iColumn = iColumn; + p->iReg = iReg; + p->affChange = 0; + i++; + if( i>=ArraySize(pParse->aColCache) ) i = 0; + if( i>pParse->nColCache ) pParse->nColCache = i; + pParse->iColCache = i; + } + return iReg; +} + +/* +** Clear all column cache entries associated with the vdbe +** cursor with cursor number iTable. +*/ +SQLITE_PRIVATE void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){ + if( iTable<0 ){ + pParse->nColCache = 0; + pParse->iColCache = 0; + }else{ + int i; + for(i=0; i<pParse->nColCache; i++){ + if( pParse->aColCache[i].iTable==iTable ){ + testcase( i==pParse->nColCache-1 ); + pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; + pParse->iColCache = pParse->nColCache; + } + } + } +} + +/* +** Record the fact that an affinity change has occurred on iCount +** registers starting with iStart. +*/ +SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ + int iEnd = iStart + iCount - 1; + int i; + for(i=0; i<pParse->nColCache; i++){ + int r = pParse->aColCache[i].iReg; + if( r>=iStart && r<=iEnd ){ + pParse->aColCache[i].affChange = 1; + } + } +} + +/* +** Generate code to moves content from one register to another. +** Keep the column cache up-to-date. +*/ +SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo){ + int i; + if( iFrom==iTo ) return; + sqlite3VdbeAddOp2(pParse->pVdbe, OP_Move, iFrom, iTo); + for(i=0; i<pParse->nColCache; i++){ + if( pParse->aColCache[i].iReg==iFrom ){ + pParse->aColCache[i].iReg = iTo; + } + } +} + +/* +** Return true if any register in the range iFrom..iTo (inclusive) +** is used as part of the column cache. +*/ +static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ + int i; + for(i=0; i<pParse->nColCache; i++){ + int r = pParse->aColCache[i].iReg; + if( r>=iFrom && r<=iTo ) return 1; + } + return 0; +} + +/* +** Theres is a value in register iCurrent. We ultimately want +** the value to be in register iTarget. It might be that +** iCurrent and iTarget are the same register. +** +** We are going to modify the value, so we need to make sure it +** is not a cached register. If iCurrent is a cached register, +** then try to move the value over to iTarget. If iTarget is a +** cached register, then clear the corresponding cache line. +** +** Return the register that the value ends up in. +*/ +SQLITE_PRIVATE int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){ + int i; + assert( pParse->pVdbe!=0 ); + if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){ + return iCurrent; + } + if( iCurrent!=iTarget ){ + sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget); + } + for(i=0; i<pParse->nColCache; i++){ + if( pParse->aColCache[i].iReg==iTarget ){ + pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache]; + pParse->iColCache = pParse->nColCache; + } + } + return iTarget; +} + +/* +** If the last instruction coded is an ephemeral copy of any of +** the registers in the nReg registers beginning with iReg, then +** convert the last instruction from OP_SCopy to OP_Copy. +*/ +SQLITE_PRIVATE void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){ + int addr; + VdbeOp *pOp; + Vdbe *v; + + v = pParse->pVdbe; + addr = sqlite3VdbeCurrentAddr(v); + pOp = sqlite3VdbeGetOp(v, addr-1); + assert( pOp || pParse->db->mallocFailed ); + if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){ + pOp->opcode = OP_Copy; + } +} + +/* +** Generate code into the current Vdbe to evaluate the given +** expression. Attempt to store the results in register "target". +** Return the register where results are stored. +** +** With this routine, there is no guaranteed that results will +** be stored in target. The result might be stored in some other +** register if it is convenient to do so. The calling function +** must check the return code and move the results to the desired +** register. +*/ +SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ + Vdbe *v = pParse->pVdbe; /* The VM under construction */ + int op; /* The opcode being coded */ + int inReg = target; /* Results stored in register inReg */ + int regFree1 = 0; /* If non-zero free this temporary register */ + int regFree2 = 0; /* If non-zero free this temporary register */ + int r1, r2, r3, r4; /* Various register numbers */ + + assert( v!=0 || pParse->db->mallocFailed ); + assert( target>0 && target<=pParse->nMem ); + if( v==0 ) return 0; + + if( pExpr==0 ){ + op = TK_NULL; + }else{ + op = pExpr->op; + } + switch( op ){ + case TK_AGG_COLUMN: { + AggInfo *pAggInfo = pExpr->pAggInfo; + struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; + if( !pAggInfo->directMode ){ + assert( pCol->iMem>0 ); + inReg = pCol->iMem; + break; + }else if( pAggInfo->useSortingIdx ){ + sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx, + pCol->iSorterColumn, target); + break; + } + /* Otherwise, fall thru into the TK_COLUMN case */ + } + case TK_COLUMN: { + if( pExpr->iTable<0 ){ + /* This only happens when coding check constraints */ + assert( pParse->ckBase>0 ); + inReg = pExpr->iColumn + pParse->ckBase; + }else{ + testcase( (pExpr->flags & EP_AnyAff)!=0 ); + inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, + pExpr->iColumn, pExpr->iTable, target, + pExpr->flags & EP_AnyAff); + } + break; + } + case TK_INTEGER: { + codeInteger(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); + break; + } + case TK_FLOAT: { + codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target); + break; + } + case TK_STRING: { + sqlite3DequoteExpr(pParse->db, pExpr); + sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0, + (char*)pExpr->token.z, pExpr->token.n); + break; + } + case TK_NULL: { + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + break; + } +#ifndef SQLITE_OMIT_BLOB_LITERAL + case TK_BLOB: { + int n; + const char *z; + char *zBlob; + assert( pExpr->token.n>=3 ); + assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); + assert( pExpr->token.z[1]=='\'' ); + assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); + n = pExpr->token.n - 3; + z = (char*)pExpr->token.z + 2; + zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); + sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); + break; + } +#endif + case TK_VARIABLE: { + sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target); + if( pExpr->token.n>1 ){ + sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n); + } + break; + } + case TK_REGISTER: { + inReg = pExpr->iTable; + break; + } +#ifndef SQLITE_OMIT_CAST + case TK_CAST: { + /* Expressions of the form: CAST(pLeft AS token) */ + int aff, to_op; + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); + aff = sqlite3AffinityType(&pExpr->token); + to_op = aff - SQLITE_AFF_TEXT + OP_ToText; + assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT ); + assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE ); + assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC ); + assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER ); + assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL ); + testcase( to_op==OP_ToText ); + testcase( to_op==OP_ToBlob ); + testcase( to_op==OP_ToNumeric ); + testcase( to_op==OP_ToInt ); + testcase( to_op==OP_ToReal ); + sqlite3VdbeAddOp1(v, to_op, inReg); + testcase( usedAsColumnCache(pParse, inReg, inReg) ); + sqlite3ExprCacheAffinityChange(pParse, inReg, 1); + break; + } +#endif /* SQLITE_OMIT_CAST */ + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + assert( TK_LT==OP_Lt ); + assert( TK_LE==OP_Le ); + assert( TK_GT==OP_Gt ); + assert( TK_GE==OP_Ge ); + assert( TK_EQ==OP_Eq ); + assert( TK_NE==OP_Ne ); + testcase( op==TK_LT ); + testcase( op==TK_LE ); + testcase( op==TK_GT ); + testcase( op==TK_GE ); + testcase( op==TK_EQ ); + testcase( op==TK_NE ); + codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, + pExpr->pRight, &r2, ®Free2); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, inReg, SQLITE_STOREP2); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_AND: + case TK_OR: + case TK_PLUS: + case TK_STAR: + case TK_MINUS: + case TK_REM: + case TK_BITAND: + case TK_BITOR: + case TK_SLASH: + case TK_LSHIFT: + case TK_RSHIFT: + case TK_CONCAT: { + assert( TK_AND==OP_And ); + assert( TK_OR==OP_Or ); + assert( TK_PLUS==OP_Add ); + assert( TK_MINUS==OP_Subtract ); + assert( TK_REM==OP_Remainder ); + assert( TK_BITAND==OP_BitAnd ); + assert( TK_BITOR==OP_BitOr ); + assert( TK_SLASH==OP_Divide ); + assert( TK_LSHIFT==OP_ShiftLeft ); + assert( TK_RSHIFT==OP_ShiftRight ); + assert( TK_CONCAT==OP_Concat ); + testcase( op==TK_AND ); + testcase( op==TK_OR ); + testcase( op==TK_PLUS ); + testcase( op==TK_MINUS ); + testcase( op==TK_REM ); + testcase( op==TK_BITAND ); + testcase( op==TK_BITOR ); + testcase( op==TK_SLASH ); + testcase( op==TK_LSHIFT ); + testcase( op==TK_RSHIFT ); + testcase( op==TK_CONCAT ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); + sqlite3VdbeAddOp3(v, op, r2, r1, target); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_UMINUS: { + Expr *pLeft = pExpr->pLeft; + assert( pLeft ); + if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){ + Token *p = &pLeft->token; + if( pLeft->op==TK_FLOAT ){ + codeReal(v, (char*)p->z, p->n, 1, target); + }else{ + codeInteger(v, (char*)p->z, p->n, 1, target); + } + }else{ + regFree1 = r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_Integer, 0, r1); + r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); + sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); + testcase( regFree2==0 ); + } + inReg = target; + break; + } + case TK_BITNOT: + case TK_NOT: { + assert( TK_BITNOT==OP_BitNot ); + assert( TK_NOT==OP_Not ); + testcase( op==TK_BITNOT ); + testcase( op==TK_NOT ); + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); + testcase( inReg==target ); + testcase( usedAsColumnCache(pParse, inReg, inReg) ); + inReg = sqlite3ExprWritableRegister(pParse, inReg, target); + sqlite3VdbeAddOp1(v, op, inReg); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + int addr; + assert( TK_ISNULL==OP_IsNull ); + assert( TK_NOTNULL==OP_NotNull ); + testcase( op==TK_ISNULL ); + testcase( op==TK_NOTNULL ); + sqlite3VdbeAddOp2(v, OP_Integer, 1, target); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + testcase( regFree1==0 ); + addr = sqlite3VdbeAddOp1(v, op, r1); + sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); + sqlite3VdbeJumpHere(v, addr); + break; + } + case TK_AGG_FUNCTION: { + AggInfo *pInfo = pExpr->pAggInfo; + if( pInfo==0 ){ + sqlite3ErrorMsg(pParse, "misuse of aggregate: %T", + &pExpr->span); + }else{ + inReg = pInfo->aFunc[pExpr->iAgg].iMem; + } + break; + } + case TK_CONST_FUNC: + case TK_FUNCTION: { + ExprList *pList = pExpr->pList; + int nExpr = pList ? pList->nExpr : 0; + FuncDef *pDef; + int nId; + const char *zId; + int constMask = 0; + int i; + sqlite3 *db = pParse->db; + u8 enc = ENC(db); + CollSeq *pColl = 0; + + testcase( op==TK_CONST_FUNC ); + testcase( op==TK_FUNCTION ); + zId = (char*)pExpr->token.z; + nId = pExpr->token.n; + pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0); + assert( pDef!=0 ); + if( pList ){ + nExpr = pList->nExpr; + r1 = sqlite3GetTempRange(pParse, nExpr); + sqlite3ExprCodeExprList(pParse, pList, r1, 1); + }else{ + nExpr = r1 = 0; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + /* Possibly overload the function if the first argument is + ** a virtual table column. + ** + ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the + ** second argument, not the first, as the argument to test to + ** see if it is a column in a virtual table. This is done because + ** the left operand of infix functions (the operand we want to + ** control overloading) ends up as the second argument to the + ** function. The expression "A glob B" is equivalent to + ** "glob(B,A). We want to use the A in "A glob B" to test + ** for function overloading. But we use the B term in "glob(B,A)". + */ + if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){ + pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr); + }else if( nExpr>0 ){ + pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr); + } +#endif + for(i=0; i<nExpr && i<32; i++){ + if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){ + constMask |= (1<<i); + } + if( pDef->needCollSeq && !pColl ){ + pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); + } + } + if( pDef->needCollSeq ){ + if( !pColl ) pColl = pParse->db->pDfltColl; + sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); + } + sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, + (char*)pDef, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, nExpr); + if( nExpr ){ + sqlite3ReleaseTempRange(pParse, r1, nExpr); + } + sqlite3ExprCacheAffinityChange(pParse, r1, nExpr); + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_EXISTS: + case TK_SELECT: { + testcase( op==TK_EXISTS ); + testcase( op==TK_SELECT ); + if( pExpr->iColumn==0 ){ + sqlite3CodeSubselect(pParse, pExpr); + } + inReg = pExpr->iColumn; + break; + } + case TK_IN: { + int j1, j2, j3, j4, j5; + char affinity; + int eType; + + eType = sqlite3FindInIndex(pParse, pExpr, 0); + + /* Figure out the affinity to use to create a key from the results + ** of the expression. affinityStr stores a static string suitable for + ** P4 of OP_MakeRecord. + */ + affinity = comparisonAffinity(pExpr); + + sqlite3VdbeAddOp2(v, OP_Integer, 1, target); + + /* Code the <expr> from "<expr> IN (...)". The temporary table + ** pExpr->iTable contains the values that make up the (...) set. + */ + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + testcase( regFree1==0 ); + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + j2 = sqlite3VdbeAddOp0(v, OP_Goto); + sqlite3VdbeJumpHere(v, j1); + if( eType==IN_INDEX_ROWID ){ + j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, r1); + j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, r1); + j5 = sqlite3VdbeAddOp0(v, OP_Goto); + sqlite3VdbeJumpHere(v, j3); + sqlite3VdbeJumpHere(v, j4); + }else{ + r2 = regFree2 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1); + sqlite3ExprCacheAffinityChange(pParse, r1, 1); + j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2); + } + sqlite3VdbeAddOp2(v, OP_AddImm, target, -1); + sqlite3VdbeJumpHere(v, j2); + sqlite3VdbeJumpHere(v, j5); + break; + } +#endif + /* + ** x BETWEEN y AND z + ** + ** This is equivalent to + ** + ** x>=y AND x<=z + ** + ** X is stored in pExpr->pLeft. + ** Y is stored in pExpr->pList->a[0].pExpr. + ** Z is stored in pExpr->pList->a[1].pExpr. + */ + case TK_BETWEEN: { + Expr *pLeft = pExpr->pLeft; + struct ExprList_item *pLItem = pExpr->pList->a; + Expr *pRight = pLItem->pExpr; + + codeCompareOperands(pParse, pLeft, &r1, ®Free1, + pRight, &r2, ®Free2); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + r3 = sqlite3GetTempReg(pParse); + r4 = sqlite3GetTempReg(pParse); + codeCompare(pParse, pLeft, pRight, OP_Ge, + r1, r2, r3, SQLITE_STOREP2); + pLItem++; + pRight = pLItem->pExpr; + sqlite3ReleaseTempReg(pParse, regFree2); + r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); + testcase( regFree2==0 ); + codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); + sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); + sqlite3ReleaseTempReg(pParse, r3); + sqlite3ReleaseTempReg(pParse, r4); + break; + } + case TK_UPLUS: { + inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); + break; + } + + /* + ** Form A: + ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END + ** + ** Form B: + ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END + ** + ** Form A is can be transformed into the equivalent form B as follows: + ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... + ** WHEN x=eN THEN rN ELSE y END + ** + ** X (if it exists) is in pExpr->pLeft. + ** Y is in pExpr->pRight. The Y is also optional. If there is no + ** ELSE clause and no other term matches, then the result of the + ** exprssion is NULL. + ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. + ** + ** The result of the expression is the Ri for the first matching Ei, + ** or if there is no matching Ei, the ELSE term Y, or if there is + ** no ELSE term, NULL. + */ + case TK_CASE: { + int endLabel; /* GOTO label for end of CASE stmt */ + int nextCase; /* GOTO label for next WHEN clause */ + int nExpr; /* 2x number of WHEN terms */ + int i; /* Loop counter */ + ExprList *pEList; /* List of WHEN terms */ + struct ExprList_item *aListelem; /* Array of WHEN terms */ + Expr opCompare; /* The X==Ei expression */ + Expr cacheX; /* Cached expression X */ + Expr *pX; /* The X expression */ + Expr *pTest; /* X==Ei (form A) or just Ei (form B) */ + + assert(pExpr->pList); + assert((pExpr->pList->nExpr % 2) == 0); + assert(pExpr->pList->nExpr > 0); + pEList = pExpr->pList; + aListelem = pEList->a; + nExpr = pEList->nExpr; + endLabel = sqlite3VdbeMakeLabel(v); + if( (pX = pExpr->pLeft)!=0 ){ + cacheX = *pX; + testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER ); + cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1); + testcase( regFree1==0 ); + cacheX.op = TK_REGISTER; + cacheX.iColumn = 0; + opCompare.op = TK_EQ; + opCompare.pLeft = &cacheX; + pTest = &opCompare; + } + pParse->disableColCache++; + for(i=0; i<nExpr; i=i+2){ + if( pX ){ + opCompare.pRight = aListelem[i].pExpr; + }else{ + pTest = aListelem[i].pExpr; + } + nextCase = sqlite3VdbeMakeLabel(v); + testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER ); + sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); + testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); + testcase( aListelem[i+1].pExpr->op==TK_REGISTER ); + sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); + sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); + sqlite3VdbeResolveLabel(v, nextCase); + } + if( pExpr->pRight ){ + sqlite3ExprCode(pParse, pExpr->pRight, target); + }else{ + sqlite3VdbeAddOp2(v, OP_Null, 0, target); + } + sqlite3VdbeResolveLabel(v, endLabel); + assert( pParse->disableColCache>0 ); + pParse->disableColCache--; + break; + } +#ifndef SQLITE_OMIT_TRIGGER + case TK_RAISE: { + if( !pParse->trigStack ){ + sqlite3ErrorMsg(pParse, + "RAISE() may only be used within a trigger-program"); + return 0; + } + if( pExpr->iColumn!=OE_Ignore ){ + assert( pExpr->iColumn==OE_Rollback || + pExpr->iColumn == OE_Abort || + pExpr->iColumn == OE_Fail ); + sqlite3DequoteExpr(pParse->db, pExpr); + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0, + (char*)pExpr->token.z, pExpr->token.n); + } else { + assert( pExpr->iColumn == OE_Ignore ); + sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); + sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump); + VdbeComment((v, "raise(IGNORE)")); + } + break; + } +#endif + } + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); + return inReg; +} + +/* +** Generate code to evaluate an expression and store the results +** into a register. Return the register number where the results +** are stored. +** +** If the register is a temporary register that can be deallocated, +** then write its number into *pReg. If the result register is not +** a temporary, then set *pReg to zero. +*/ +SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ + int r1 = sqlite3GetTempReg(pParse); + int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); + if( r2==r1 ){ + *pReg = r1; + }else{ + sqlite3ReleaseTempReg(pParse, r1); + *pReg = 0; + } + return r2; +} + +/* +** Generate code that will evaluate expression pExpr and store the +** results in register target. The results are guaranteed to appear +** in register target. +*/ +SQLITE_PRIVATE int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ + int inReg; + + assert( target>0 && target<=pParse->nMem ); + inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); + assert( pParse->pVdbe || pParse->db->mallocFailed ); + if( inReg!=target && pParse->pVdbe ){ + sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); + } + return target; +} + +/* +** Generate code that evalutes the given expression and puts the result +** in register target. +** +** Also make a copy of the expression results into another "cache" register +** and modify the expression so that the next time it is evaluated, +** the result is a copy of the cache register. +** +** This routine is used for expressions that are used multiple +** times. They are evaluated once and the results of the expression +** are reused. +*/ +SQLITE_PRIVATE int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ + Vdbe *v = pParse->pVdbe; + int inReg; + inReg = sqlite3ExprCode(pParse, pExpr, target); + assert( target>0 ); + if( pExpr->op!=TK_REGISTER ){ + int iMem; + iMem = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem); + pExpr->iTable = iMem; + pExpr->iColumn = pExpr->op; + pExpr->op = TK_REGISTER; + } + return inReg; +} + +/* +** Return TRUE if pExpr is an constant expression that is appropriate +** for factoring out of a loop. Appropriate expressions are: +** +** * Any expression that evaluates to two or more opcodes. +** +** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, +** or OP_Variable that does not need to be placed in a +** specific register. +** +** There is no point in factoring out single-instruction constant +** expressions that need to be placed in a particular register. +** We could factor them out, but then we would end up adding an +** OP_SCopy instruction to move the value into the correct register +** later. We might as well just use the original instruction and +** avoid the OP_SCopy. +*/ +static int isAppropriateForFactoring(Expr *p){ + if( !sqlite3ExprIsConstantNotJoin(p) ){ + return 0; /* Only constant expressions are appropriate for factoring */ + } + if( (p->flags & EP_FixedDest)==0 ){ + return 1; /* Any constant without a fixed destination is appropriate */ + } + while( p->op==TK_UPLUS ) p = p->pLeft; + switch( p->op ){ +#ifndef SQLITE_OMIT_BLOB_LITERAL + case TK_BLOB: +#endif + case TK_VARIABLE: + case TK_INTEGER: + case TK_FLOAT: + case TK_NULL: + case TK_STRING: { + testcase( p->op==TK_BLOB ); + testcase( p->op==TK_VARIABLE ); + testcase( p->op==TK_INTEGER ); + testcase( p->op==TK_FLOAT ); + testcase( p->op==TK_NULL ); + testcase( p->op==TK_STRING ); + /* Single-instruction constants with a fixed destination are + ** better done in-line. If we factor them, they will just end + ** up generating an OP_SCopy to move the value to the destination + ** register. */ + return 0; + } + case TK_UMINUS: { + if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){ + return 0; + } + break; + } + default: { + break; + } + } + return 1; +} + +/* +** If pExpr is a constant expression that is appropriate for +** factoring out of a loop, then evaluate the expression +** into a register and convert the expression into a TK_REGISTER +** expression. +*/ +static int evalConstExpr(void *pArg, Expr *pExpr){ + Parse *pParse = (Parse*)pArg; + switch( pExpr->op ){ + case TK_REGISTER: { + return 1; + } + case TK_FUNCTION: + case TK_AGG_FUNCTION: + case TK_CONST_FUNC: { + /* The arguments to a function have a fixed destination. + ** Mark them this way to avoid generated unneeded OP_SCopy + ** instructions. + */ + ExprList *pList = pExpr->pList; + if( pList ){ + int i = pList->nExpr; + struct ExprList_item *pItem = pList->a; + for(; i>0; i--, pItem++){ + if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest; + } + } + break; + } + } + if( isAppropriateForFactoring(pExpr) ){ + int r1 = ++pParse->nMem; + int r2; + r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); + if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1); + pExpr->iColumn = pExpr->op; + pExpr->op = TK_REGISTER; + pExpr->iTable = r2; + return 1; + } + return 0; +} + +/* +** Preevaluate constant subexpressions within pExpr and store the +** results in registers. Modify pExpr so that the constant subexpresions +** are TK_REGISTER opcodes that refer to the precomputed values. +*/ +SQLITE_PRIVATE void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){ + walkExprTree(pExpr, evalConstExpr, pParse); +} + + +/* +** Generate code that pushes the value of every element of the given +** expression list into a sequence of registers beginning at target. +** +** Return the number of elements evaluated. +*/ +SQLITE_PRIVATE int sqlite3ExprCodeExprList( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* The expression list to be coded */ + int target, /* Where to write results */ + int doHardCopy /* Call sqlite3ExprHardCopy on each element if true */ +){ + struct ExprList_item *pItem; + int i, n; + assert( pList!=0 || pParse->db->mallocFailed ); + if( pList==0 ){ + return 0; + } + assert( target>0 ); + n = pList->nExpr; + for(pItem=pList->a, i=0; i<n; i++, pItem++){ + sqlite3ExprCode(pParse, pItem->pExpr, target+i); + if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n); + } + return n; +} + +/* +** Generate code for a boolean expression such that a jump is made +** to the label "dest" if the expression is true but execution +** continues straight thru if the expression is false. +** +** If the expression evaluates to NULL (neither true nor false), then +** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. +** +** This code depends on the fact that certain token values (ex: TK_EQ) +** are the same as opcode values (ex: OP_Eq) that implement the corresponding +** operation. Special comments in vdbe.c and the mkopcodeh.awk script in +** the make process cause these values to align. Assert()s in the code +** below verify that the numbers are aligned correctly. +*/ +SQLITE_PRIVATE void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ + Vdbe *v = pParse->pVdbe; + int op = 0; + int regFree1 = 0; + int regFree2 = 0; + int r1, r2; + + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); + if( v==0 || pExpr==0 ) return; + op = pExpr->op; + switch( op ){ + case TK_AND: { + int d2 = sqlite3VdbeMakeLabel(v); + testcase( jumpIfNull==0 ); + testcase( pParse->disableColCache==0 ); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); + pParse->disableColCache++; + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); + assert( pParse->disableColCache>0 ); + pParse->disableColCache--; + sqlite3VdbeResolveLabel(v, d2); + break; + } + case TK_OR: { + testcase( jumpIfNull==0 ); + testcase( pParse->disableColCache==0 ); + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); + pParse->disableColCache++; + sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); + assert( pParse->disableColCache>0 ); + pParse->disableColCache--; + break; + } + case TK_NOT: { + testcase( jumpIfNull==0 ); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); + break; + } + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + assert( TK_LT==OP_Lt ); + assert( TK_LE==OP_Le ); + assert( TK_GT==OP_Gt ); + assert( TK_GE==OP_Ge ); + assert( TK_EQ==OP_Eq ); + assert( TK_NE==OP_Ne ); + testcase( op==TK_LT ); + testcase( op==TK_LE ); + testcase( op==TK_GT ); + testcase( op==TK_GE ); + testcase( op==TK_EQ ); + testcase( op==TK_NE ); + testcase( jumpIfNull==0 ); + codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, + pExpr->pRight, &r2, ®Free2); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, dest, jumpIfNull); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + assert( TK_ISNULL==OP_IsNull ); + assert( TK_NOTNULL==OP_NotNull ); + testcase( op==TK_ISNULL ); + testcase( op==TK_NOTNULL ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + sqlite3VdbeAddOp2(v, op, r1, dest); + testcase( regFree1==0 ); + break; + } + case TK_BETWEEN: { + /* x BETWEEN y AND z + ** + ** Is equivalent to + ** + ** x>=y AND x<=z + ** + ** Code it as such, taking care to do the common subexpression + ** elementation of x. + */ + Expr exprAnd; + Expr compLeft; + Expr compRight; + Expr exprX; + + exprX = *pExpr->pLeft; + exprAnd.op = TK_AND; + exprAnd.pLeft = &compLeft; + exprAnd.pRight = &compRight; + compLeft.op = TK_GE; + compLeft.pLeft = &exprX; + compLeft.pRight = pExpr->pList->a[0].pExpr; + compRight.op = TK_LE; + compRight.pLeft = &exprX; + compRight.pRight = pExpr->pList->a[1].pExpr; + exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); + testcase( regFree1==0 ); + exprX.op = TK_REGISTER; + testcase( jumpIfNull==0 ); + sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); + break; + } + default: { + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); + sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); + testcase( regFree1==0 ); + testcase( jumpIfNull==0 ); + break; + } + } + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); +} + +/* +** Generate code for a boolean expression such that a jump is made +** to the label "dest" if the expression is false but execution +** continues straight thru if the expression is true. +** +** If the expression evaluates to NULL (neither true nor false) then +** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull +** is 0. +*/ +SQLITE_PRIVATE void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ + Vdbe *v = pParse->pVdbe; + int op = 0; + int regFree1 = 0; + int regFree2 = 0; + int r1, r2; + + assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); + if( v==0 || pExpr==0 ) return; + + /* The value of pExpr->op and op are related as follows: + ** + ** pExpr->op op + ** --------- ---------- + ** TK_ISNULL OP_NotNull + ** TK_NOTNULL OP_IsNull + ** TK_NE OP_Eq + ** TK_EQ OP_Ne + ** TK_GT OP_Le + ** TK_LE OP_Gt + ** TK_GE OP_Lt + ** TK_LT OP_Ge + ** + ** For other values of pExpr->op, op is undefined and unused. + ** The value of TK_ and OP_ constants are arranged such that we + ** can compute the mapping above using the following expression. + ** Assert()s verify that the computation is correct. + */ + op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); + + /* Verify correct alignment of TK_ and OP_ constants + */ + assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); + assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); + assert( pExpr->op!=TK_NE || op==OP_Eq ); + assert( pExpr->op!=TK_EQ || op==OP_Ne ); + assert( pExpr->op!=TK_LT || op==OP_Ge ); + assert( pExpr->op!=TK_LE || op==OP_Gt ); + assert( pExpr->op!=TK_GT || op==OP_Le ); + assert( pExpr->op!=TK_GE || op==OP_Lt ); + + switch( pExpr->op ){ + case TK_AND: { + testcase( jumpIfNull==0 ); + testcase( pParse->disableColCache==0 ); + sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); + pParse->disableColCache++; + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); + assert( pParse->disableColCache>0 ); + pParse->disableColCache--; + break; + } + case TK_OR: { + int d2 = sqlite3VdbeMakeLabel(v); + testcase( jumpIfNull==0 ); + testcase( pParse->disableColCache==0 ); + sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); + pParse->disableColCache++; + sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); + assert( pParse->disableColCache>0 ); + pParse->disableColCache--; + sqlite3VdbeResolveLabel(v, d2); + break; + } + case TK_NOT: { + sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); + break; + } + case TK_LT: + case TK_LE: + case TK_GT: + case TK_GE: + case TK_NE: + case TK_EQ: { + testcase( op==TK_LT ); + testcase( op==TK_LE ); + testcase( op==TK_GT ); + testcase( op==TK_GE ); + testcase( op==TK_EQ ); + testcase( op==TK_NE ); + testcase( jumpIfNull==0 ); + codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1, + pExpr->pRight, &r2, ®Free2); + codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, + r1, r2, dest, jumpIfNull); + testcase( regFree1==0 ); + testcase( regFree2==0 ); + break; + } + case TK_ISNULL: + case TK_NOTNULL: { + testcase( op==TK_ISNULL ); + testcase( op==TK_NOTNULL ); + r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); + sqlite3VdbeAddOp2(v, op, r1, dest); + testcase( regFree1==0 ); + break; + } + case TK_BETWEEN: { + /* x BETWEEN y AND z + ** + ** Is equivalent to + ** + ** x>=y AND x<=z + ** + ** Code it as such, taking care to do the common subexpression + ** elementation of x. + */ + Expr exprAnd; + Expr compLeft; + Expr compRight; + Expr exprX; + + exprX = *pExpr->pLeft; + exprAnd.op = TK_AND; + exprAnd.pLeft = &compLeft; + exprAnd.pRight = &compRight; + compLeft.op = TK_GE; + compLeft.pLeft = &exprX; + compLeft.pRight = pExpr->pList->a[0].pExpr; + compRight.op = TK_LE; + compRight.pLeft = &exprX; + compRight.pRight = pExpr->pList->a[1].pExpr; + exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1); + testcase( regFree1==0 ); + exprX.op = TK_REGISTER; + testcase( jumpIfNull==0 ); + sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); + break; + } + default: { + r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); + sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); + testcase( regFree1==0 ); + testcase( jumpIfNull==0 ); + break; + } + } + sqlite3ReleaseTempReg(pParse, regFree1); + sqlite3ReleaseTempReg(pParse, regFree2); +} + +/* +** Do a deep comparison of two expression trees. Return TRUE (non-zero) +** if they are identical and return FALSE if they differ in any way. +** +** Sometimes this routine will return FALSE even if the two expressions +** really are equivalent. If we cannot prove that the expressions are +** identical, we return FALSE just to be safe. So if this routine +** returns false, then you do not really know for certain if the two +** expressions are the same. But if you get a TRUE return, then you +** can be sure the expressions are the same. In the places where +** this routine is used, it does not hurt to get an extra FALSE - that +** just might result in some slightly slower code. But returning +** an incorrect TRUE could lead to a malfunction. +*/ +SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB){ + int i; + if( pA==0||pB==0 ){ + return pB==pA; + } + if( pA->op!=pB->op ) return 0; + if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0; + if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0; + if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0; + if( pA->pList ){ + if( pB->pList==0 ) return 0; + if( pA->pList->nExpr!=pB->pList->nExpr ) return 0; + for(i=0; i<pA->pList->nExpr; i++){ + if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){ + return 0; + } + } + }else if( pB->pList ){ + return 0; + } + if( pA->pSelect || pB->pSelect ) return 0; + if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0; + if( pA->op!=TK_COLUMN && pA->token.z ){ + if( pB->token.z==0 ) return 0; + if( pB->token.n!=pA->token.n ) return 0; + if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){ + return 0; + } + } + return 1; +} + + +/* +** Add a new element to the pAggInfo->aCol[] array. Return the index of +** the new element. Return a negative number if malloc fails. +*/ +static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ + int i; + pInfo->aCol = sqlite3ArrayAllocate( + db, + pInfo->aCol, + sizeof(pInfo->aCol[0]), + 3, + &pInfo->nColumn, + &pInfo->nColumnAlloc, + &i + ); + return i; +} + +/* +** Add a new element to the pAggInfo->aFunc[] array. Return the index of +** the new element. Return a negative number if malloc fails. +*/ +static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ + int i; + pInfo->aFunc = sqlite3ArrayAllocate( + db, + pInfo->aFunc, + sizeof(pInfo->aFunc[0]), + 3, + &pInfo->nFunc, + &pInfo->nFuncAlloc, + &i + ); + return i; +} + +/* +** This is an xFunc for walkExprTree() used to implement +** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates +** for additional information. +** +** This routine analyzes the aggregate function at pExpr. +*/ +static int analyzeAggregate(void *pArg, Expr *pExpr){ + int i; + NameContext *pNC = (NameContext *)pArg; + Parse *pParse = pNC->pParse; + SrcList *pSrcList = pNC->pSrcList; + AggInfo *pAggInfo = pNC->pAggInfo; + + switch( pExpr->op ){ + case TK_AGG_COLUMN: + case TK_COLUMN: { + /* Check to see if the column is in one of the tables in the FROM + ** clause of the aggregate query */ + if( pSrcList ){ + struct SrcList_item *pItem = pSrcList->a; + for(i=0; i<pSrcList->nSrc; i++, pItem++){ + struct AggInfo_col *pCol; + if( pExpr->iTable==pItem->iCursor ){ + /* If we reach this point, it means that pExpr refers to a table + ** that is in the FROM clause of the aggregate query. + ** + ** Make an entry for the column in pAggInfo->aCol[] if there + ** is not an entry there already. + */ + int k; + pCol = pAggInfo->aCol; + for(k=0; k<pAggInfo->nColumn; k++, pCol++){ + if( pCol->iTable==pExpr->iTable && + pCol->iColumn==pExpr->iColumn ){ + break; + } + } + if( (k>=pAggInfo->nColumn) + && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 + ){ + pCol = &pAggInfo->aCol[k]; + pCol->pTab = pExpr->pTab; + pCol->iTable = pExpr->iTable; + pCol->iColumn = pExpr->iColumn; + pCol->iMem = ++pParse->nMem; + pCol->iSorterColumn = -1; + pCol->pExpr = pExpr; + if( pAggInfo->pGroupBy ){ + int j, n; + ExprList *pGB = pAggInfo->pGroupBy; + struct ExprList_item *pTerm = pGB->a; + n = pGB->nExpr; + for(j=0; j<n; j++, pTerm++){ + Expr *pE = pTerm->pExpr; + if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && + pE->iColumn==pExpr->iColumn ){ + pCol->iSorterColumn = j; + break; + } + } + } + if( pCol->iSorterColumn<0 ){ + pCol->iSorterColumn = pAggInfo->nSortingColumn++; + } + } + /* There is now an entry for pExpr in pAggInfo->aCol[] (either + ** because it was there before or because we just created it). + ** Convert the pExpr to be a TK_AGG_COLUMN referring to that + ** pAggInfo->aCol[] entry. + */ + pExpr->pAggInfo = pAggInfo; + pExpr->op = TK_AGG_COLUMN; + pExpr->iAgg = k; + break; + } /* endif pExpr->iTable==pItem->iCursor */ + } /* end loop over pSrcList */ + } + return 1; + } + case TK_AGG_FUNCTION: { + /* The pNC->nDepth==0 test causes aggregate functions in subqueries + ** to be ignored */ + if( pNC->nDepth==0 ){ + /* Check to see if pExpr is a duplicate of another aggregate + ** function that is already in the pAggInfo structure + */ + struct AggInfo_func *pItem = pAggInfo->aFunc; + for(i=0; i<pAggInfo->nFunc; i++, pItem++){ + if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){ + break; + } + } + if( i>=pAggInfo->nFunc ){ + /* pExpr is original. Make a new entry in pAggInfo->aFunc[] + */ + u8 enc = ENC(pParse->db); + i = addAggInfoFunc(pParse->db, pAggInfo); + if( i>=0 ){ + pItem = &pAggInfo->aFunc[i]; + pItem->pExpr = pExpr; + pItem->iMem = ++pParse->nMem; + pItem->pFunc = sqlite3FindFunction(pParse->db, + (char*)pExpr->token.z, pExpr->token.n, + pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0); + if( pExpr->flags & EP_Distinct ){ + pItem->iDistinct = pParse->nTab++; + }else{ + pItem->iDistinct = -1; + } + } + } + /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry + */ + pExpr->iAgg = i; + pExpr->pAggInfo = pAggInfo; + return 1; + } + } + } + + /* Recursively walk subqueries looking for TK_COLUMN nodes that need + ** to be changed to TK_AGG_COLUMN. But increment nDepth so that + ** TK_AGG_FUNCTION nodes in subqueries will be unchanged. + */ + if( pExpr->pSelect ){ + pNC->nDepth++; + walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC); + pNC->nDepth--; + } + return 0; +} + +/* +** Analyze the given expression looking for aggregate functions and +** for variables that need to be added to the pParse->aAgg[] array. +** Make additional entries to the pParse->aAgg[] array as necessary. +** +** This routine should only be called after the expression has been +** analyzed by sqlite3ExprResolveNames(). +*/ +SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ + walkExprTree(pExpr, analyzeAggregate, pNC); +} + +/* +** Call sqlite3ExprAnalyzeAggregates() for every expression in an +** expression list. Return the number of errors. +** +** If an error is found, the analysis is cut short. +*/ +SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ + struct ExprList_item *pItem; + int i; + if( pList ){ + for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ + sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); + } + } +} + +/* +** Allocate or deallocate temporary use registers during code generation. +*/ +SQLITE_PRIVATE int sqlite3GetTempReg(Parse *pParse){ + int i, r; + if( pParse->nTempReg==0 ){ + return ++pParse->nMem; + } + for(i=0; i<pParse->nTempReg; i++){ + r = pParse->aTempReg[i]; + if( usedAsColumnCache(pParse, r, r) ) continue; + } + if( i>=pParse->nTempReg ){ + return ++pParse->nMem; + } + while( i<pParse->nTempReg-1 ){ + pParse->aTempReg[i] = pParse->aTempReg[i+1]; + } + pParse->nTempReg--; + return r; +} +SQLITE_PRIVATE void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ + if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ + pParse->aTempReg[pParse->nTempReg++] = iReg; + } +} + +/* +** Allocate or deallocate a block of nReg consecutive registers +*/ +SQLITE_PRIVATE int sqlite3GetTempRange(Parse *pParse, int nReg){ + int i, n; + i = pParse->iRangeReg; + n = pParse->nRangeReg; + if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){ + pParse->iRangeReg += nReg; + pParse->nRangeReg -= nReg; + }else{ + i = pParse->nMem+1; + pParse->nMem += nReg; + } + return i; +} +SQLITE_PRIVATE void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ + if( nReg>pParse->nRangeReg ){ + pParse->nRangeReg = nReg; + pParse->iRangeReg = iReg; + } +} + +/************** End of expr.c ************************************************/ +/************** Begin file alter.c *******************************************/ +/* +** 2005 February 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that used to generate VDBE code +** that implements the ALTER TABLE command. +** +** $Id: alter.c,v 1.44 2008/05/09 14:17:52 drh Exp $ +*/ + +/* +** The code in this file only exists if we are not omitting the +** ALTER TABLE logic from the build. +*/ +#ifndef SQLITE_OMIT_ALTERTABLE + + +/* +** This function is used by SQL generated to implement the +** ALTER TABLE command. The first argument is the text of a CREATE TABLE or +** CREATE INDEX command. The second is a table name. The table name in +** the CREATE TABLE or CREATE INDEX statement is replaced with the third +** argument and the result returned. Examples: +** +** sqlite_rename_table('CREATE TABLE abc(a, b, c)', 'def') +** -> 'CREATE TABLE def(a, b, c)' +** +** sqlite_rename_table('CREATE INDEX i ON abc(a)', 'def') +** -> 'CREATE INDEX i ON def(a, b, c)' +*/ +static void renameTableFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + unsigned char const *zSql = sqlite3_value_text(argv[0]); + unsigned char const *zTableName = sqlite3_value_text(argv[1]); + + int token; + Token tname; + unsigned char const *zCsr = zSql; + int len = 0; + char *zRet; + + sqlite3 *db = sqlite3_context_db_handle(context); + + /* The principle used to locate the table name in the CREATE TABLE + ** statement is that the table name is the first non-space token that + ** is immediately followed by a left parenthesis - TK_LP - or "USING" TK_USING. + */ + if( zSql ){ + do { + if( !*zCsr ){ + /* Ran out of input before finding an opening bracket. Return NULL. */ + return; + } + + /* Store the token that zCsr points to in tname. */ + tname.z = zCsr; + tname.n = len; + + /* Advance zCsr to the next token. Store that token type in 'token', + ** and its length in 'len' (to be used next iteration of this loop). + */ + do { + zCsr += len; + len = sqlite3GetToken(zCsr, &token); + } while( token==TK_SPACE || token==TK_COMMENT ); + assert( len>0 ); + } while( token!=TK_LP && token!=TK_USING ); + + zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql, + zTableName, tname.z+tname.n); + sqlite3_result_text(context, zRet, -1, sqlite3_free); + } +} + +#ifndef SQLITE_OMIT_TRIGGER +/* This function is used by SQL generated to implement the +** ALTER TABLE command. The first argument is the text of a CREATE TRIGGER +** statement. The second is a table name. The table name in the CREATE +** TRIGGER statement is replaced with the third argument and the result +** returned. This is analagous to renameTableFunc() above, except for CREATE +** TRIGGER, not CREATE INDEX and CREATE TABLE. +*/ +static void renameTriggerFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + unsigned char const *zSql = sqlite3_value_text(argv[0]); + unsigned char const *zTableName = sqlite3_value_text(argv[1]); + + int token; + Token tname; + int dist = 3; + unsigned char const *zCsr = zSql; + int len = 0; + char *zRet; + + sqlite3 *db = sqlite3_context_db_handle(context); + + /* The principle used to locate the table name in the CREATE TRIGGER + ** statement is that the table name is the first token that is immediatedly + ** preceded by either TK_ON or TK_DOT and immediatedly followed by one + ** of TK_WHEN, TK_BEGIN or TK_FOR. + */ + if( zSql ){ + do { + + if( !*zCsr ){ + /* Ran out of input before finding the table name. Return NULL. */ + return; + } + + /* Store the token that zCsr points to in tname. */ + tname.z = zCsr; + tname.n = len; + + /* Advance zCsr to the next token. Store that token type in 'token', + ** and its length in 'len' (to be used next iteration of this loop). + */ + do { + zCsr += len; + len = sqlite3GetToken(zCsr, &token); + }while( token==TK_SPACE ); + assert( len>0 ); + + /* Variable 'dist' stores the number of tokens read since the most + ** recent TK_DOT or TK_ON. This means that when a WHEN, FOR or BEGIN + ** token is read and 'dist' equals 2, the condition stated above + ** to be met. + ** + ** Note that ON cannot be a database, table or column name, so + ** there is no need to worry about syntax like + ** "CREATE TRIGGER ... ON ON.ON BEGIN ..." etc. + */ + dist++; + if( token==TK_DOT || token==TK_ON ){ + dist = 0; + } + } while( dist!=2 || (token!=TK_WHEN && token!=TK_FOR && token!=TK_BEGIN) ); + + /* Variable tname now contains the token that is the old table-name + ** in the CREATE TRIGGER statement. + */ + zRet = sqlite3MPrintf(db, "%.*s\"%w\"%s", tname.z - zSql, zSql, + zTableName, tname.z+tname.n); + sqlite3_result_text(context, zRet, -1, sqlite3_free); + } +} +#endif /* !SQLITE_OMIT_TRIGGER */ + +/* +** Register built-in functions used to help implement ALTER TABLE +*/ +SQLITE_PRIVATE void sqlite3AlterFunctions(sqlite3 *db){ + static const struct { + char *zName; + signed char nArg; + void (*xFunc)(sqlite3_context*,int,sqlite3_value **); + } aFuncs[] = { + { "sqlite_rename_table", 2, renameTableFunc}, +#ifndef SQLITE_OMIT_TRIGGER + { "sqlite_rename_trigger", 2, renameTriggerFunc}, +#endif + }; + int i; + + for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ + sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg, + SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0); + } +} + +/* +** Generate the text of a WHERE expression which can be used to select all +** temporary triggers on table pTab from the sqlite_temp_master table. If +** table pTab has no temporary triggers, or is itself stored in the +** temporary database, NULL is returned. +*/ +static char *whereTempTriggers(Parse *pParse, Table *pTab){ + Trigger *pTrig; + char *zWhere = 0; + char *tmp = 0; + const Schema *pTempSchema = pParse->db->aDb[1].pSchema; /* Temp db schema */ + + /* If the table is not located in the temp-db (in which case NULL is + ** returned, loop through the tables list of triggers. For each trigger + ** that is not part of the temp-db schema, add a clause to the WHERE + ** expression being built up in zWhere. + */ + if( pTab->pSchema!=pTempSchema ){ + sqlite3 *db = pParse->db; + for( pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext ){ + if( pTrig->pSchema==pTempSchema ){ + if( !zWhere ){ + zWhere = sqlite3MPrintf(db, "name=%Q", pTrig->name); + }else{ + tmp = zWhere; + zWhere = sqlite3MPrintf(db, "%s OR name=%Q", zWhere, pTrig->name); + sqlite3_free(tmp); + } + } + } + } + return zWhere; +} + +/* +** Generate code to drop and reload the internal representation of table +** pTab from the database, including triggers and temporary triggers. +** Argument zName is the name of the table in the database schema at +** the time the generated code is executed. This can be different from +** pTab->zName if this function is being called to code part of an +** "ALTER TABLE RENAME TO" statement. +*/ +static void reloadTableSchema(Parse *pParse, Table *pTab, const char *zName){ + Vdbe *v; + char *zWhere; + int iDb; /* Index of database containing pTab */ +#ifndef SQLITE_OMIT_TRIGGER + Trigger *pTrig; +#endif + + v = sqlite3GetVdbe(pParse); + if( !v ) return; + assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + assert( iDb>=0 ); + +#ifndef SQLITE_OMIT_TRIGGER + /* Drop any table triggers from the internal schema. */ + for(pTrig=pTab->pTrigger; pTrig; pTrig=pTrig->pNext){ + int iTrigDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); + assert( iTrigDb==iDb || iTrigDb==1 ); + sqlite3VdbeAddOp4(v, OP_DropTrigger, iTrigDb, 0, 0, pTrig->name, 0); + } +#endif + + /* Drop the table and index from the internal schema */ + sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); + + /* Reload the table, index and permanent trigger schemas. */ + zWhere = sqlite3MPrintf(pParse->db, "tbl_name=%Q", zName); + if( !zWhere ) return; + sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); + +#ifndef SQLITE_OMIT_TRIGGER + /* Now, if the table is not stored in the temp database, reload any temp + ** triggers. Don't use IN(...) in case SQLITE_OMIT_SUBQUERY is defined. + */ + if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){ + sqlite3VdbeAddOp4(v, OP_ParseSchema, 1, 0, 0, zWhere, P4_DYNAMIC); + } +#endif +} + +/* +** Generate code to implement the "ALTER TABLE xxx RENAME TO yyy" +** command. +*/ +SQLITE_PRIVATE void sqlite3AlterRenameTable( + Parse *pParse, /* Parser context. */ + SrcList *pSrc, /* The table to rename. */ + Token *pName /* The new table name. */ +){ + int iDb; /* Database that contains the table */ + char *zDb; /* Name of database iDb */ + Table *pTab; /* Table being renamed */ + char *zName = 0; /* NULL-terminated version of pName */ + sqlite3 *db = pParse->db; /* Database connection */ + int nTabName; /* Number of UTF-8 characters in zTabName */ + const char *zTabName; /* Original name of the table */ + Vdbe *v; +#ifndef SQLITE_OMIT_TRIGGER + char *zWhere = 0; /* Where clause to locate temp triggers */ +#endif + int isVirtualRename = 0; /* True if this is a v-table with an xRename() */ + + if( db->mallocFailed ) goto exit_rename_table; + assert( pSrc->nSrc==1 ); + assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); + + pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase); + if( !pTab ) goto exit_rename_table; + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + zDb = db->aDb[iDb].zName; + + /* Get a NULL terminated version of the new table name. */ + zName = sqlite3NameFromToken(db, pName); + if( !zName ) goto exit_rename_table; + + /* Check that a table or index named 'zName' does not already exist + ** in database iDb. If so, this is an error. + */ + if( sqlite3FindTable(db, zName, zDb) || sqlite3FindIndex(db, zName, zDb) ){ + sqlite3ErrorMsg(pParse, + "there is already another table or index with this name: %s", zName); + goto exit_rename_table; + } + + /* Make sure it is not a system table being altered, or a reserved name + ** that the table is being renamed to. + */ + if( strlen(pTab->zName)>6 && 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ){ + sqlite3ErrorMsg(pParse, "table %s may not be altered", pTab->zName); + goto exit_rename_table; + } + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ + goto exit_rename_table; + } + +#ifndef SQLITE_OMIT_VIEW + if( pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "view %s may not be altered", pTab->zName); + goto exit_rename_table; + } +#endif + +#ifndef SQLITE_OMIT_AUTHORIZATION + /* Invoke the authorization callback. */ + if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ + goto exit_rename_table; + } +#endif + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto exit_rename_table; + } + if( IsVirtual(pTab) && pTab->pMod->pModule->xRename ){ + isVirtualRename = 1; + } +#endif + + /* Begin a transaction and code the VerifyCookie for database iDb. + ** Then modify the schema cookie (since the ALTER TABLE modifies the + ** schema). Open a statement transaction if the table is a virtual + ** table. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ){ + goto exit_rename_table; + } + sqlite3BeginWriteOperation(pParse, isVirtualRename, iDb); + sqlite3ChangeCookie(pParse, iDb); + + /* If this is a virtual table, invoke the xRename() function if + ** one is defined. The xRename() callback will modify the names + ** of any resources used by the v-table implementation (including other + ** SQLite tables) that are identified by the name of the virtual table. + */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( isVirtualRename ){ + int i = ++pParse->nMem; + sqlite3VdbeAddOp4(v, OP_String8, 0, i, 0, zName, 0); + sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pTab->pVtab, P4_VTAB); + } +#endif + + /* figure out how many UTF-8 characters are in zName */ + zTabName = pTab->zName; + nTabName = sqlite3Utf8CharLen(zTabName, -1); + + /* Modify the sqlite_master table to use the new table name. */ + sqlite3NestedParse(pParse, + "UPDATE %Q.%s SET " +#ifdef SQLITE_OMIT_TRIGGER + "sql = sqlite_rename_table(sql, %Q), " +#else + "sql = CASE " + "WHEN type = 'trigger' THEN sqlite_rename_trigger(sql, %Q)" + "ELSE sqlite_rename_table(sql, %Q) END, " +#endif + "tbl_name = %Q, " + "name = CASE " + "WHEN type='table' THEN %Q " + "WHEN name LIKE 'sqlite_autoindex%%' AND type='index' THEN " + "'sqlite_autoindex_' || %Q || substr(name,%d+18) " + "ELSE name END " + "WHERE tbl_name=%Q AND " + "(type='table' OR type='index' OR type='trigger');", + zDb, SCHEMA_TABLE(iDb), zName, zName, zName, +#ifndef SQLITE_OMIT_TRIGGER + zName, +#endif + zName, nTabName, zTabName + ); + +#ifndef SQLITE_OMIT_AUTOINCREMENT + /* If the sqlite_sequence table exists in this database, then update + ** it with the new table name. + */ + if( sqlite3FindTable(db, "sqlite_sequence", zDb) ){ + sqlite3NestedParse(pParse, + "UPDATE \"%w\".sqlite_sequence set name = %Q WHERE name = %Q", + zDb, zName, pTab->zName); + } +#endif + +#ifndef SQLITE_OMIT_TRIGGER + /* If there are TEMP triggers on this table, modify the sqlite_temp_master + ** table. Don't do this if the table being ALTERed is itself located in + ** the temp database. + */ + if( (zWhere=whereTempTriggers(pParse, pTab))!=0 ){ + sqlite3NestedParse(pParse, + "UPDATE sqlite_temp_master SET " + "sql = sqlite_rename_trigger(sql, %Q), " + "tbl_name = %Q " + "WHERE %s;", zName, zName, zWhere); + sqlite3_free(zWhere); + } +#endif + + /* Drop and reload the internal table schema. */ + reloadTableSchema(pParse, pTab, zName); + +exit_rename_table: + sqlite3SrcListDelete(pSrc); + sqlite3_free(zName); +} + + +/* +** This function is called after an "ALTER TABLE ... ADD" statement +** has been parsed. Argument pColDef contains the text of the new +** column definition. +** +** The Table structure pParse->pNewTable was extended to include +** the new column during parsing. +*/ +SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *pParse, Token *pColDef){ + Table *pNew; /* Copy of pParse->pNewTable */ + Table *pTab; /* Table being altered */ + int iDb; /* Database number */ + const char *zDb; /* Database name */ + const char *zTab; /* Table name */ + char *zCol; /* Null-terminated column definition */ + Column *pCol; /* The new column */ + Expr *pDflt; /* Default value for the new column */ + sqlite3 *db; /* The database connection; */ + + if( pParse->nErr ) return; + pNew = pParse->pNewTable; + assert( pNew ); + + db = pParse->db; + assert( sqlite3BtreeHoldsAllMutexes(db) ); + iDb = sqlite3SchemaToIndex(db, pNew->pSchema); + zDb = db->aDb[iDb].zName; + zTab = pNew->zName; + pCol = &pNew->aCol[pNew->nCol-1]; + pDflt = pCol->pDflt; + pTab = sqlite3FindTable(db, zTab, zDb); + assert( pTab ); + +#ifndef SQLITE_OMIT_AUTHORIZATION + /* Invoke the authorization callback. */ + if( sqlite3AuthCheck(pParse, SQLITE_ALTER_TABLE, zDb, pTab->zName, 0) ){ + return; + } +#endif + + /* If the default value for the new column was specified with a + ** literal NULL, then set pDflt to 0. This simplifies checking + ** for an SQL NULL default below. + */ + if( pDflt && pDflt->op==TK_NULL ){ + pDflt = 0; + } + + /* Check that the new column is not specified as PRIMARY KEY or UNIQUE. + ** If there is a NOT NULL constraint, then the default value for the + ** column must not be NULL. + */ + if( pCol->isPrimKey ){ + sqlite3ErrorMsg(pParse, "Cannot add a PRIMARY KEY column"); + return; + } + if( pNew->pIndex ){ + sqlite3ErrorMsg(pParse, "Cannot add a UNIQUE column"); + return; + } + if( pCol->notNull && !pDflt ){ + sqlite3ErrorMsg(pParse, + "Cannot add a NOT NULL column with default value NULL"); + return; + } + + /* Ensure the default expression is something that sqlite3ValueFromExpr() + ** can handle (i.e. not CURRENT_TIME etc.) + */ + if( pDflt ){ + sqlite3_value *pVal; + if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){ + db->mallocFailed = 1; + return; + } + if( !pVal ){ + sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default"); + return; + } + sqlite3ValueFree(pVal); + } + + /* Modify the CREATE TABLE statement. */ + zCol = sqlite3DbStrNDup(db, (char*)pColDef->z, pColDef->n); + if( zCol ){ + char *zEnd = &zCol[pColDef->n-1]; + while( (zEnd>zCol && *zEnd==';') || isspace(*(unsigned char *)zEnd) ){ + *zEnd-- = '\0'; + } + sqlite3NestedParse(pParse, + "UPDATE \"%w\".%s SET " + "sql = substr(sql,1,%d) || ', ' || %Q || substr(sql,%d) " + "WHERE type = 'table' AND name = %Q", + zDb, SCHEMA_TABLE(iDb), pNew->addColOffset, zCol, pNew->addColOffset+1, + zTab + ); + sqlite3_free(zCol); + } + + /* If the default value of the new column is NULL, then set the file + ** format to 2. If the default value of the new column is not NULL, + ** the file format becomes 3. + */ + sqlite3MinimumFileFormat(pParse, iDb, pDflt ? 3 : 2); + + /* Reload the schema of the modified table. */ + reloadTableSchema(pParse, pTab, pTab->zName); +} + +/* +** This function is called by the parser after the table-name in +** an "ALTER TABLE <table-name> ADD" statement is parsed. Argument +** pSrc is the full-name of the table being altered. +** +** This routine makes a (partial) copy of the Table structure +** for the table being altered and sets Parse.pNewTable to point +** to it. Routines called by the parser as the column definition +** is parsed (i.e. sqlite3AddColumn()) add the new Column data to +** the copy. The copy of the Table structure is deleted by tokenize.c +** after parsing is finished. +** +** Routine sqlite3AlterFinishAddColumn() will be called to complete +** coding the "ALTER TABLE ... ADD" statement. +*/ +SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *pParse, SrcList *pSrc){ + Table *pNew; + Table *pTab; + Vdbe *v; + int iDb; + int i; + int nAlloc; + sqlite3 *db = pParse->db; + + /* Look up the table being altered. */ + assert( pParse->pNewTable==0 ); + assert( sqlite3BtreeHoldsAllMutexes(db) ); + if( db->mallocFailed ) goto exit_begin_add_column; + pTab = sqlite3LocateTable(pParse, 0, pSrc->a[0].zName, pSrc->a[0].zDatabase); + if( !pTab ) goto exit_begin_add_column; + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + sqlite3ErrorMsg(pParse, "virtual tables may not be altered"); + goto exit_begin_add_column; + } +#endif + + /* Make sure this is not an attempt to ALTER a view. */ + if( pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "Cannot add a column to a view"); + goto exit_begin_add_column; + } + + assert( pTab->addColOffset>0 ); + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + + /* Put a copy of the Table struct in Parse.pNewTable for the + ** sqlite3AddColumn() function and friends to modify. + */ + pNew = (Table*)sqlite3DbMallocZero(db, sizeof(Table)); + if( !pNew ) goto exit_begin_add_column; + pParse->pNewTable = pNew; + pNew->nRef = 1; + pNew->nCol = pTab->nCol; + assert( pNew->nCol>0 ); + nAlloc = (((pNew->nCol-1)/8)*8)+8; + assert( nAlloc>=pNew->nCol && nAlloc%8==0 && nAlloc-pNew->nCol<8 ); + pNew->aCol = (Column*)sqlite3DbMallocZero(db, sizeof(Column)*nAlloc); + pNew->zName = sqlite3DbStrDup(db, pTab->zName); + if( !pNew->aCol || !pNew->zName ){ + db->mallocFailed = 1; + goto exit_begin_add_column; + } + memcpy(pNew->aCol, pTab->aCol, sizeof(Column)*pNew->nCol); + for(i=0; i<pNew->nCol; i++){ + Column *pCol = &pNew->aCol[i]; + pCol->zName = sqlite3DbStrDup(db, pCol->zName); + pCol->zColl = 0; + pCol->zType = 0; + pCol->pDflt = 0; + } + pNew->pSchema = db->aDb[iDb].pSchema; + pNew->addColOffset = pTab->addColOffset; + pNew->nRef = 1; + + /* Begin a transaction and increment the schema cookie. */ + sqlite3BeginWriteOperation(pParse, 0, iDb); + v = sqlite3GetVdbe(pParse); + if( !v ) goto exit_begin_add_column; + sqlite3ChangeCookie(pParse, iDb); + +exit_begin_add_column: + sqlite3SrcListDelete(pSrc); + return; +} +#endif /* SQLITE_ALTER_TABLE */ + +/************** End of alter.c ***********************************************/ +/************** Begin file analyze.c *****************************************/ +/* +** 2005 July 8 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code associated with the ANALYZE command. +** +** @(#) $Id: analyze.c,v 1.42 2008/03/25 09:47:35 danielk1977 Exp $ +*/ +#ifndef SQLITE_OMIT_ANALYZE + +/* +** This routine generates code that opens the sqlite_stat1 table on cursor +** iStatCur. +** +** If the sqlite_stat1 tables does not previously exist, it is created. +** If it does previously exist, all entires associated with table zWhere +** are removed. If zWhere==0 then all entries are removed. +*/ +static void openStatTable( + Parse *pParse, /* Parsing context */ + int iDb, /* The database we are looking in */ + int iStatCur, /* Open the sqlite_stat1 table on this cursor */ + const char *zWhere /* Delete entries associated with this table */ +){ + sqlite3 *db = pParse->db; + Db *pDb; + int iRootPage; + int createStat1 = 0; + Table *pStat; + Vdbe *v = sqlite3GetVdbe(pParse); + + if( v==0 ) return; + assert( sqlite3BtreeHoldsAllMutexes(db) ); + assert( sqlite3VdbeDb(v)==db ); + pDb = &db->aDb[iDb]; + if( (pStat = sqlite3FindTable(db, "sqlite_stat1", pDb->zName))==0 ){ + /* The sqlite_stat1 tables does not exist. Create it. + ** Note that a side-effect of the CREATE TABLE statement is to leave + ** the rootpage of the new table in register pParse->regRoot. This is + ** important because the OpenWrite opcode below will be needing it. */ + sqlite3NestedParse(pParse, + "CREATE TABLE %Q.sqlite_stat1(tbl,idx,stat)", + pDb->zName + ); + iRootPage = pParse->regRoot; + createStat1 = 1; /* Cause rootpage to be taken from top of stack */ + }else if( zWhere ){ + /* The sqlite_stat1 table exists. Delete all entries associated with + ** the table zWhere. */ + sqlite3NestedParse(pParse, + "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", + pDb->zName, zWhere + ); + iRootPage = pStat->tnum; + }else{ + /* The sqlite_stat1 table already exists. Delete all rows. */ + iRootPage = pStat->tnum; + sqlite3VdbeAddOp2(v, OP_Clear, pStat->tnum, iDb); + } + + /* Open the sqlite_stat1 table for writing. Unless it was created + ** by this vdbe program, lock it for writing at the shared-cache level. + ** If this vdbe did create the sqlite_stat1 table, then it must have + ** already obtained a schema-lock, making the write-lock redundant. + */ + if( !createStat1 ){ + sqlite3TableLock(pParse, iDb, iRootPage, 1, "sqlite_stat1"); + } + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 3); + sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur, iRootPage, iDb); + sqlite3VdbeChangeP5(v, createStat1); +} + +/* +** Generate code to do an analysis of all indices associated with +** a single table. +*/ +static void analyzeOneTable( + Parse *pParse, /* Parser context */ + Table *pTab, /* Table whose indices are to be analyzed */ + int iStatCur, /* Cursor that writes to the sqlite_stat1 table */ + int iMem /* Available memory locations begin here */ +){ + Index *pIdx; /* An index to being analyzed */ + int iIdxCur; /* Cursor number for index being analyzed */ + int nCol; /* Number of columns in the index */ + Vdbe *v; /* The virtual machine being built up */ + int i; /* Loop counter */ + int topOfLoop; /* The top of the loop */ + int endOfLoop; /* The end of the loop */ + int addr; /* The address of an instruction */ + int iDb; /* Index of database containing pTab */ + + v = sqlite3GetVdbe(pParse); + if( v==0 || pTab==0 || pTab->pIndex==0 ){ + /* Do no analysis for tables that have no indices */ + return; + } + assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + assert( iDb>=0 ); +#ifndef SQLITE_OMIT_AUTHORIZATION + if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, + pParse->db->aDb[iDb].zName ) ){ + return; + } +#endif + + /* Establish a read-lock on the table at the shared-cache level. */ + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); + + iIdxCur = pParse->nTab; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); + int regFields; /* Register block for building records */ + int regRec; /* Register holding completed record */ + int regTemp; /* Temporary use register */ + int regCol; /* Content of a column from the table being analyzed */ + int regRowid; /* Rowid for the inserted record */ + int regF2; + + /* Open a cursor to the index to be analyzed + */ + assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) ); + nCol = pIdx->nColumn; + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nCol+1); + sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb, + (char *)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pIdx->zName)); + regFields = iMem+nCol*2; + regTemp = regRowid = regCol = regFields+3; + regRec = regCol+1; + if( regRec>pParse->nMem ){ + pParse->nMem = regRec; + } + + /* Memory cells are used as follows: + ** + ** mem[iMem]: The total number of rows in the table. + ** mem[iMem+1]: Number of distinct values in column 1 + ** ... + ** mem[iMem+nCol]: Number of distinct values in column N + ** mem[iMem+nCol+1] Last observed value of column 1 + ** ... + ** mem[iMem+nCol+nCol]: Last observed value of column N + ** + ** Cells iMem through iMem+nCol are initialized to 0. The others + ** are initialized to NULL. + */ + for(i=0; i<=nCol; i++){ + sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i); + } + for(i=0; i<nCol; i++){ + sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1); + } + + /* Do the analysis. + */ + endOfLoop = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop); + topOfLoop = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); + for(i=0; i<nCol; i++){ + sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol); + sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1); + /**** TODO: add collating sequence *****/ + sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); + } + sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop); + for(i=0; i<nCol; i++){ + sqlite3VdbeJumpHere(v, topOfLoop + 2*(i + 1)); + sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1); + sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1); + } + sqlite3VdbeResolveLabel(v, endOfLoop); + sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop); + sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); + + /* Store the results. + ** + ** The result is a single row of the sqlite_stat1 table. The first + ** two columns are the names of the table and index. The third column + ** is a string composed of a list of integer statistics about the + ** index. The first integer in the list is the total number of entires + ** in the index. There is one additional integer in the list for each + ** column of the table. This additional integer is a guess of how many + ** rows of the table the index will select. If D is the count of distinct + ** values and K is the total number of rows, then the integer is computed + ** as: + ** + ** I = (K+D-1)/D + ** + ** If K==0 then no entry is made into the sqlite_stat1 table. + ** If K>0 then it is always the case the D>0 so division by zero + ** is never possible. + */ + addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); + sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0); + regF2 = regFields+2; + sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2); + for(i=0; i<nCol; i++){ + sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); + sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2); + sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp); + sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); + sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp); + sqlite3VdbeAddOp1(v, OP_ToInt, regTemp); + sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2); + } + sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0); + sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid); + sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + sqlite3VdbeJumpHere(v, addr); + } +} + +/* +** Generate code that will cause the most recent index analysis to +** be laoded into internal hash tables where is can be used. +*/ +static void loadAnalysis(Parse *pParse, int iDb){ + Vdbe *v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); + } +} + +/* +** Generate code that will do an analysis of an entire database +*/ +static void analyzeDatabase(Parse *pParse, int iDb){ + sqlite3 *db = pParse->db; + Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ + HashElem *k; + int iStatCur; + int iMem; + + sqlite3BeginWriteOperation(pParse, 0, iDb); + iStatCur = pParse->nTab++; + openStatTable(pParse, iDb, iStatCur, 0); + iMem = pParse->nMem+1; + for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ + Table *pTab = (Table*)sqliteHashData(k); + analyzeOneTable(pParse, pTab, iStatCur, iMem); + } + loadAnalysis(pParse, iDb); +} + +/* +** Generate code that will do an analysis of a single table in +** a database. +*/ +static void analyzeTable(Parse *pParse, Table *pTab){ + int iDb; + int iStatCur; + + assert( pTab!=0 ); + assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + sqlite3BeginWriteOperation(pParse, 0, iDb); + iStatCur = pParse->nTab++; + openStatTable(pParse, iDb, iStatCur, pTab->zName); + analyzeOneTable(pParse, pTab, iStatCur, pParse->nMem+1); + loadAnalysis(pParse, iDb); +} + +/* +** Generate code for the ANALYZE command. The parser calls this routine +** when it recognizes an ANALYZE command. +** +** ANALYZE -- 1 +** ANALYZE <database> -- 2 +** ANALYZE ?<database>.?<tablename> -- 3 +** +** Form 1 causes all indices in all attached databases to be analyzed. +** Form 2 analyzes all indices the single database named. +** Form 3 analyzes all indices associated with the named table. +*/ +SQLITE_PRIVATE void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ + sqlite3 *db = pParse->db; + int iDb; + int i; + char *z, *zDb; + Table *pTab; + Token *pTableName; + + /* Read the database schema. If an error occurs, leave an error message + ** and code in pParse and return NULL. */ + assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + return; + } + + if( pName1==0 ){ + /* Form 1: Analyze everything */ + for(i=0; i<db->nDb; i++){ + if( i==1 ) continue; /* Do not analyze the TEMP database */ + analyzeDatabase(pParse, i); + } + }else if( pName2==0 || pName2->n==0 ){ + /* Form 2: Analyze the database or table named */ + iDb = sqlite3FindDb(db, pName1); + if( iDb>=0 ){ + analyzeDatabase(pParse, iDb); + }else{ + z = sqlite3NameFromToken(db, pName1); + if( z ){ + pTab = sqlite3LocateTable(pParse, 0, z, 0); + sqlite3_free(z); + if( pTab ){ + analyzeTable(pParse, pTab); + } + } + } + }else{ + /* Form 3: Analyze the fully qualified table name */ + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); + if( iDb>=0 ){ + zDb = db->aDb[iDb].zName; + z = sqlite3NameFromToken(db, pTableName); + if( z ){ + pTab = sqlite3LocateTable(pParse, 0, z, zDb); + sqlite3_free(z); + if( pTab ){ + analyzeTable(pParse, pTab); + } + } + } + } +} + +/* +** Used to pass information from the analyzer reader through to the +** callback routine. +*/ +typedef struct analysisInfo analysisInfo; +struct analysisInfo { + sqlite3 *db; + const char *zDatabase; +}; + +/* +** This callback is invoked once for each index when reading the +** sqlite_stat1 table. +** +** argv[0] = name of the index +** argv[1] = results of analysis - on integer for each column +*/ +static int analysisLoader(void *pData, int argc, char **argv, char **azNotUsed){ + analysisInfo *pInfo = (analysisInfo*)pData; + Index *pIndex; + int i, c; + unsigned int v; + const char *z; + + assert( argc==2 ); + if( argv==0 || argv[0]==0 || argv[1]==0 ){ + return 0; + } + pIndex = sqlite3FindIndex(pInfo->db, argv[0], pInfo->zDatabase); + if( pIndex==0 ){ + return 0; + } + z = argv[1]; + for(i=0; *z && i<=pIndex->nColumn; i++){ + v = 0; + while( (c=z[0])>='0' && c<='9' ){ + v = v*10 + c - '0'; + z++; + } + pIndex->aiRowEst[i] = v; + if( *z==' ' ) z++; + } + return 0; +} + +/* +** Load the content of the sqlite_stat1 table into the index hash tables. +*/ +SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ + analysisInfo sInfo; + HashElem *i; + char *zSql; + int rc; + + assert( iDb>=0 && iDb<db->nDb ); + assert( db->aDb[iDb].pBt!=0 ); + assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); + + /* Clear any prior statistics */ + for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ + Index *pIdx = sqliteHashData(i); + sqlite3DefaultRowEst(pIdx); + } + + /* Check to make sure the sqlite_stat1 table existss */ + sInfo.db = db; + sInfo.zDatabase = db->aDb[iDb].zName; + if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ + return SQLITE_ERROR; + } + + + /* Load new statistics out of the sqlite_stat1 table */ + zSql = sqlite3MPrintf(db, "SELECT idx, stat FROM %Q.sqlite_stat1", + sInfo.zDatabase); + (void)sqlite3SafetyOff(db); + rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); + (void)sqlite3SafetyOn(db); + sqlite3_free(zSql); + return rc; +} + + +#endif /* SQLITE_OMIT_ANALYZE */ + +/************** End of analyze.c *********************************************/ +/************** Begin file attach.c ******************************************/ +/* +** 2003 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the ATTACH and DETACH commands. +** +** $Id: attach.c,v 1.75 2008/04/17 17:02:01 drh Exp $ +*/ + +#ifndef SQLITE_OMIT_ATTACH +/* +** Resolve an expression that was part of an ATTACH or DETACH statement. This +** is slightly different from resolving a normal SQL expression, because simple +** identifiers are treated as strings, not possible column names or aliases. +** +** i.e. if the parser sees: +** +** ATTACH DATABASE abc AS def +** +** it treats the two expressions as literal strings 'abc' and 'def' instead of +** looking for columns of the same name. +** +** This only applies to the root node of pExpr, so the statement: +** +** ATTACH DATABASE abc||def AS 'db2' +** +** will fail because neither abc or def can be resolved. +*/ +static int resolveAttachExpr(NameContext *pName, Expr *pExpr) +{ + int rc = SQLITE_OK; + if( pExpr ){ + if( pExpr->op!=TK_ID ){ + rc = sqlite3ExprResolveNames(pName, pExpr); + if( rc==SQLITE_OK && !sqlite3ExprIsConstant(pExpr) ){ + sqlite3ErrorMsg(pName->pParse, "invalid name: \"%T\"", &pExpr->span); + return SQLITE_ERROR; + } + }else{ + pExpr->op = TK_STRING; + } + } + return rc; +} + +/* +** An SQL user-function registered to do the work of an ATTACH statement. The +** three arguments to the function come directly from an attach statement: +** +** ATTACH DATABASE x AS y KEY z +** +** SELECT sqlite_attach(x, y, z) +** +** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the +** third argument. +*/ +static void attachFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i; + int rc = 0; + sqlite3 *db = sqlite3_context_db_handle(context); + const char *zName; + const char *zFile; + Db *aNew; + char *zErrDyn = 0; + char zErr[128]; + + zFile = (const char *)sqlite3_value_text(argv[0]); + zName = (const char *)sqlite3_value_text(argv[1]); + if( zFile==0 ) zFile = ""; + if( zName==0 ) zName = ""; + + /* Check for the following errors: + ** + ** * Too many attached databases, + ** * Transaction currently open + ** * Specified database name already being used. + */ + if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){ + sqlite3_snprintf( + sizeof(zErr), zErr, "too many attached databases - max %d", + db->aLimit[SQLITE_LIMIT_ATTACHED] + ); + goto attach_error; + } + if( !db->autoCommit ){ + sqlite3_snprintf(sizeof(zErr), zErr, + "cannot ATTACH database within transaction"); + goto attach_error; + } + for(i=0; i<db->nDb; i++){ + char *z = db->aDb[i].zName; + if( z && zName && sqlite3StrICmp(z, zName)==0 ){ + sqlite3_snprintf(sizeof(zErr), zErr, + "database %s is already in use", zName); + goto attach_error; + } + } + + /* Allocate the new entry in the db->aDb[] array and initialise the schema + ** hash tables. + */ + if( db->aDb==db->aDbStatic ){ + aNew = sqlite3_malloc( sizeof(db->aDb[0])*3 ); + if( aNew==0 ){ + db->mallocFailed = 1; + return; + } + memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2); + }else{ + aNew = sqlite3_realloc(db->aDb, sizeof(db->aDb[0])*(db->nDb+1) ); + if( aNew==0 ){ + db->mallocFailed = 1; + return; + } + } + db->aDb = aNew; + aNew = &db->aDb[db->nDb++]; + memset(aNew, 0, sizeof(*aNew)); + + /* Open the database file. If the btree is successfully opened, use + ** it to obtain the database schema. At this point the schema may + ** or may not be initialised. + */ + rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE, + db->openFlags | SQLITE_OPEN_MAIN_DB, + &aNew->pBt); + if( rc==SQLITE_OK ){ + Pager *pPager; + aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt); + if( !aNew->pSchema ){ + rc = SQLITE_NOMEM; + }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){ + sqlite3_snprintf(sizeof(zErr), zErr, + "attached databases must use the same text encoding as main database"); + goto attach_error; + } + pPager = sqlite3BtreePager(aNew->pBt); + sqlite3PagerLockingMode(pPager, db->dfltLockMode); + sqlite3PagerJournalMode(pPager, db->dfltJournalMode); + } + aNew->zName = sqlite3DbStrDup(db, zName); + aNew->safety_level = 3; + +#if SQLITE_HAS_CODEC + { + extern int sqlite3CodecAttach(sqlite3*, int, const void*, int); + extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); + int nKey; + char *zKey; + int t = sqlite3_value_type(argv[2]); + switch( t ){ + case SQLITE_INTEGER: + case SQLITE_FLOAT: + zErrDyn = sqlite3DbStrDup(db, "Invalid key value"); + rc = SQLITE_ERROR; + break; + + case SQLITE_TEXT: + case SQLITE_BLOB: + nKey = sqlite3_value_bytes(argv[2]); + zKey = (char *)sqlite3_value_blob(argv[2]); + sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); + break; + + case SQLITE_NULL: + /* No key specified. Use the key from the main database */ + sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); + sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); + break; + } + } +#endif + + /* If the file was opened successfully, read the schema for the new database. + ** If this fails, or if opening the file failed, then close the file and + ** remove the entry from the db->aDb[] array. i.e. put everything back the way + ** we found it. + */ + if( rc==SQLITE_OK ){ + (void)sqlite3SafetyOn(db); + sqlite3BtreeEnterAll(db); + rc = sqlite3Init(db, &zErrDyn); + sqlite3BtreeLeaveAll(db); + (void)sqlite3SafetyOff(db); + } + if( rc ){ + int iDb = db->nDb - 1; + assert( iDb>=2 ); + if( db->aDb[iDb].pBt ){ + sqlite3BtreeClose(db->aDb[iDb].pBt); + db->aDb[iDb].pBt = 0; + db->aDb[iDb].pSchema = 0; + } + sqlite3ResetInternalSchema(db, 0); + db->nDb = iDb; + if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ + db->mallocFailed = 1; + sqlite3_snprintf(sizeof(zErr),zErr, "out of memory"); + }else{ + sqlite3_snprintf(sizeof(zErr),zErr, "unable to open database: %s", zFile); + } + goto attach_error; + } + + return; + +attach_error: + /* Return an error if we get here */ + if( zErrDyn ){ + sqlite3_result_error(context, zErrDyn, -1); + sqlite3_free(zErrDyn); + }else{ + zErr[sizeof(zErr)-1] = 0; + sqlite3_result_error(context, zErr, -1); + } + if( rc ) sqlite3_result_error_code(context, rc); +} + +/* +** An SQL user-function registered to do the work of an DETACH statement. The +** three arguments to the function come directly from a detach statement: +** +** DETACH DATABASE x +** +** SELECT sqlite_detach(x) +*/ +static void detachFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const char *zName = (const char *)sqlite3_value_text(argv[0]); + sqlite3 *db = sqlite3_context_db_handle(context); + int i; + Db *pDb = 0; + char zErr[128]; + + if( zName==0 ) zName = ""; + for(i=0; i<db->nDb; i++){ + pDb = &db->aDb[i]; + if( pDb->pBt==0 ) continue; + if( sqlite3StrICmp(pDb->zName, zName)==0 ) break; + } + + if( i>=db->nDb ){ + sqlite3_snprintf(sizeof(zErr),zErr, "no such database: %s", zName); + goto detach_error; + } + if( i<2 ){ + sqlite3_snprintf(sizeof(zErr),zErr, "cannot detach database %s", zName); + goto detach_error; + } + if( !db->autoCommit ){ + sqlite3_snprintf(sizeof(zErr), zErr, + "cannot DETACH database within transaction"); + goto detach_error; + } + if( sqlite3BtreeIsInReadTrans(pDb->pBt) ){ + sqlite3_snprintf(sizeof(zErr),zErr, "database %s is locked", zName); + goto detach_error; + } + + sqlite3BtreeClose(pDb->pBt); + pDb->pBt = 0; + pDb->pSchema = 0; + sqlite3ResetInternalSchema(db, 0); + return; + +detach_error: + sqlite3_result_error(context, zErr, -1); +} + +/* +** This procedure generates VDBE code for a single invocation of either the +** sqlite_detach() or sqlite_attach() SQL user functions. +*/ +static void codeAttach( + Parse *pParse, /* The parser context */ + int type, /* Either SQLITE_ATTACH or SQLITE_DETACH */ + const char *zFunc, /* Either "sqlite_attach" or "sqlite_detach */ + int nFunc, /* Number of args to pass to zFunc */ + Expr *pAuthArg, /* Expression to pass to authorization callback */ + Expr *pFilename, /* Name of database file */ + Expr *pDbname, /* Name of the database to use internally */ + Expr *pKey /* Database key for encryption extension */ +){ + int rc; + NameContext sName; + Vdbe *v; + FuncDef *pFunc; + sqlite3* db = pParse->db; + int regArgs; + +#ifndef SQLITE_OMIT_AUTHORIZATION + assert( db->mallocFailed || pAuthArg ); + if( pAuthArg ){ + char *zAuthArg = sqlite3NameFromToken(db, &pAuthArg->span); + if( !zAuthArg ){ + goto attach_end; + } + rc = sqlite3AuthCheck(pParse, type, zAuthArg, 0, 0); + sqlite3_free(zAuthArg); + if(rc!=SQLITE_OK ){ + goto attach_end; + } + } +#endif /* SQLITE_OMIT_AUTHORIZATION */ + + memset(&sName, 0, sizeof(NameContext)); + sName.pParse = pParse; + + if( + SQLITE_OK!=(rc = resolveAttachExpr(&sName, pFilename)) || + SQLITE_OK!=(rc = resolveAttachExpr(&sName, pDbname)) || + SQLITE_OK!=(rc = resolveAttachExpr(&sName, pKey)) + ){ + pParse->nErr++; + goto attach_end; + } + + v = sqlite3GetVdbe(pParse); + regArgs = sqlite3GetTempRange(pParse, 4); + sqlite3ExprCode(pParse, pFilename, regArgs); + sqlite3ExprCode(pParse, pDbname, regArgs+1); + sqlite3ExprCode(pParse, pKey, regArgs+2); + + assert( v || db->mallocFailed ); + if( v ){ + sqlite3VdbeAddOp3(v, OP_Function, 0, regArgs+3-nFunc, regArgs+3); + sqlite3VdbeChangeP5(v, nFunc); + pFunc = sqlite3FindFunction(db, zFunc, strlen(zFunc), nFunc, SQLITE_UTF8,0); + sqlite3VdbeChangeP4(v, -1, (char *)pFunc, P4_FUNCDEF); + + /* Code an OP_Expire. For an ATTACH statement, set P1 to true (expire this + ** statement only). For DETACH, set it to false (expire all existing + ** statements). + */ + sqlite3VdbeAddOp1(v, OP_Expire, (type==SQLITE_ATTACH)); + } + +attach_end: + sqlite3ExprDelete(pFilename); + sqlite3ExprDelete(pDbname); + sqlite3ExprDelete(pKey); +} + +/* +** Called by the parser to compile a DETACH statement. +** +** DETACH pDbname +*/ +SQLITE_PRIVATE void sqlite3Detach(Parse *pParse, Expr *pDbname){ + codeAttach(pParse, SQLITE_DETACH, "sqlite_detach", 1, pDbname, 0, 0, pDbname); +} + +/* +** Called by the parser to compile an ATTACH statement. +** +** ATTACH p AS pDbname KEY pKey +*/ +SQLITE_PRIVATE void sqlite3Attach(Parse *pParse, Expr *p, Expr *pDbname, Expr *pKey){ + codeAttach(pParse, SQLITE_ATTACH, "sqlite_attach", 3, p, p, pDbname, pKey); +} +#endif /* SQLITE_OMIT_ATTACH */ + +/* +** Register the functions sqlite_attach and sqlite_detach. +*/ +SQLITE_PRIVATE void sqlite3AttachFunctions(sqlite3 *db){ +#ifndef SQLITE_OMIT_ATTACH + static const int enc = SQLITE_UTF8; + sqlite3CreateFunc(db, "sqlite_attach", 3, enc, 0, attachFunc, 0, 0); + sqlite3CreateFunc(db, "sqlite_detach", 1, enc, 0, detachFunc, 0, 0); +#endif +} + +/* +** Initialize a DbFixer structure. This routine must be called prior +** to passing the structure to one of the sqliteFixAAAA() routines below. +** +** The return value indicates whether or not fixation is required. TRUE +** means we do need to fix the database references, FALSE means we do not. +*/ +SQLITE_PRIVATE int sqlite3FixInit( + DbFixer *pFix, /* The fixer to be initialized */ + Parse *pParse, /* Error messages will be written here */ + int iDb, /* This is the database that must be used */ + const char *zType, /* "view", "trigger", or "index" */ + const Token *pName /* Name of the view, trigger, or index */ +){ + sqlite3 *db; + + if( iDb<0 || iDb==1 ) return 0; + db = pParse->db; + assert( db->nDb>iDb ); + pFix->pParse = pParse; + pFix->zDb = db->aDb[iDb].zName; + pFix->zType = zType; + pFix->pName = pName; + return 1; +} + +/* +** The following set of routines walk through the parse tree and assign +** a specific database to all table references where the database name +** was left unspecified in the original SQL statement. The pFix structure +** must have been initialized by a prior call to sqlite3FixInit(). +** +** These routines are used to make sure that an index, trigger, or +** view in one database does not refer to objects in a different database. +** (Exception: indices, triggers, and views in the TEMP database are +** allowed to refer to anything.) If a reference is explicitly made +** to an object in a different database, an error message is added to +** pParse->zErrMsg and these routines return non-zero. If everything +** checks out, these routines return 0. +*/ +SQLITE_PRIVATE int sqlite3FixSrcList( + DbFixer *pFix, /* Context of the fixation */ + SrcList *pList /* The Source list to check and modify */ +){ + int i; + const char *zDb; + struct SrcList_item *pItem; + + if( pList==0 ) return 0; + zDb = pFix->zDb; + for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ + if( pItem->zDatabase==0 ){ + pItem->zDatabase = sqlite3DbStrDup(pFix->pParse->db, zDb); + }else if( sqlite3StrICmp(pItem->zDatabase,zDb)!=0 ){ + sqlite3ErrorMsg(pFix->pParse, + "%s %T cannot reference objects in database %s", + pFix->zType, pFix->pName, pItem->zDatabase); + return 1; + } +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) + if( sqlite3FixSelect(pFix, pItem->pSelect) ) return 1; + if( sqlite3FixExpr(pFix, pItem->pOn) ) return 1; +#endif + } + return 0; +} +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) +SQLITE_PRIVATE int sqlite3FixSelect( + DbFixer *pFix, /* Context of the fixation */ + Select *pSelect /* The SELECT statement to be fixed to one database */ +){ + while( pSelect ){ + if( sqlite3FixExprList(pFix, pSelect->pEList) ){ + return 1; + } + if( sqlite3FixSrcList(pFix, pSelect->pSrc) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pSelect->pWhere) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pSelect->pHaving) ){ + return 1; + } + pSelect = pSelect->pPrior; + } + return 0; +} +SQLITE_PRIVATE int sqlite3FixExpr( + DbFixer *pFix, /* Context of the fixation */ + Expr *pExpr /* The expression to be fixed to one database */ +){ + while( pExpr ){ + if( sqlite3FixSelect(pFix, pExpr->pSelect) ){ + return 1; + } + if( sqlite3FixExprList(pFix, pExpr->pList) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pExpr->pRight) ){ + return 1; + } + pExpr = pExpr->pLeft; + } + return 0; +} +SQLITE_PRIVATE int sqlite3FixExprList( + DbFixer *pFix, /* Context of the fixation */ + ExprList *pList /* The expression to be fixed to one database */ +){ + int i; + struct ExprList_item *pItem; + if( pList==0 ) return 0; + for(i=0, pItem=pList->a; i<pList->nExpr; i++, pItem++){ + if( sqlite3FixExpr(pFix, pItem->pExpr) ){ + return 1; + } + } + return 0; +} +#endif + +#ifndef SQLITE_OMIT_TRIGGER +SQLITE_PRIVATE int sqlite3FixTriggerStep( + DbFixer *pFix, /* Context of the fixation */ + TriggerStep *pStep /* The trigger step be fixed to one database */ +){ + while( pStep ){ + if( sqlite3FixSelect(pFix, pStep->pSelect) ){ + return 1; + } + if( sqlite3FixExpr(pFix, pStep->pWhere) ){ + return 1; + } + if( sqlite3FixExprList(pFix, pStep->pExprList) ){ + return 1; + } + pStep = pStep->pNext; + } + return 0; +} +#endif + +/************** End of attach.c **********************************************/ +/************** Begin file auth.c ********************************************/ +/* +** 2003 January 11 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the sqlite3_set_authorizer() +** API. This facility is an optional feature of the library. Embedded +** systems that do not need this facility may omit it by recompiling +** the library with -DSQLITE_OMIT_AUTHORIZATION=1 +** +** $Id: auth.c,v 1.29 2007/09/18 15:55:07 drh Exp $ +*/ + +/* +** All of the code in this file may be omitted by defining a single +** macro. +*/ +#ifndef SQLITE_OMIT_AUTHORIZATION + +/* +** Set or clear the access authorization function. +** +** The access authorization function is be called during the compilation +** phase to verify that the user has read and/or write access permission on +** various fields of the database. The first argument to the auth function +** is a copy of the 3rd argument to this routine. The second argument +** to the auth function is one of these constants: +** +** SQLITE_CREATE_INDEX +** SQLITE_CREATE_TABLE +** SQLITE_CREATE_TEMP_INDEX +** SQLITE_CREATE_TEMP_TABLE +** SQLITE_CREATE_TEMP_TRIGGER +** SQLITE_CREATE_TEMP_VIEW +** SQLITE_CREATE_TRIGGER +** SQLITE_CREATE_VIEW +** SQLITE_DELETE +** SQLITE_DROP_INDEX +** SQLITE_DROP_TABLE +** SQLITE_DROP_TEMP_INDEX +** SQLITE_DROP_TEMP_TABLE +** SQLITE_DROP_TEMP_TRIGGER +** SQLITE_DROP_TEMP_VIEW +** SQLITE_DROP_TRIGGER +** SQLITE_DROP_VIEW +** SQLITE_INSERT +** SQLITE_PRAGMA +** SQLITE_READ +** SQLITE_SELECT +** SQLITE_TRANSACTION +** SQLITE_UPDATE +** +** The third and fourth arguments to the auth function are the name of +** the table and the column that are being accessed. The auth function +** should return either SQLITE_OK, SQLITE_DENY, or SQLITE_IGNORE. If +** SQLITE_OK is returned, it means that access is allowed. SQLITE_DENY +** means that the SQL statement will never-run - the sqlite3_exec() call +** will return with an error. SQLITE_IGNORE means that the SQL statement +** should run but attempts to read the specified column will return NULL +** and attempts to write the column will be ignored. +** +** Setting the auth function to NULL disables this hook. The default +** setting of the auth function is NULL. +*/ +SQLITE_API int sqlite3_set_authorizer( + sqlite3 *db, + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*), + void *pArg +){ + sqlite3_mutex_enter(db->mutex); + db->xAuth = xAuth; + db->pAuthArg = pArg; + sqlite3ExpirePreparedStatements(db); + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +/* +** Write an error message into pParse->zErrMsg that explains that the +** user-supplied authorization function returned an illegal value. +*/ +static void sqliteAuthBadReturnCode(Parse *pParse, int rc){ + sqlite3ErrorMsg(pParse, "illegal return value (%d) from the " + "authorization function - should be SQLITE_OK, SQLITE_IGNORE, " + "or SQLITE_DENY", rc); + pParse->rc = SQLITE_ERROR; +} + +/* +** The pExpr should be a TK_COLUMN expression. The table referred to +** is in pTabList or else it is the NEW or OLD table of a trigger. +** Check to see if it is OK to read this particular column. +** +** If the auth function returns SQLITE_IGNORE, change the TK_COLUMN +** instruction into a TK_NULL. If the auth function returns SQLITE_DENY, +** then generate an error. +*/ +SQLITE_PRIVATE void sqlite3AuthRead( + Parse *pParse, /* The parser context */ + Expr *pExpr, /* The expression to check authorization on */ + Schema *pSchema, /* The schema of the expression */ + SrcList *pTabList /* All table that pExpr might refer to */ +){ + sqlite3 *db = pParse->db; + int rc; + Table *pTab = 0; /* The table being read */ + const char *zCol; /* Name of the column of the table */ + int iSrc; /* Index in pTabList->a[] of table being read */ + const char *zDBase; /* Name of database being accessed */ + TriggerStack *pStack; /* The stack of current triggers */ + int iDb; /* The index of the database the expression refers to */ + + if( db->xAuth==0 ) return; + if( pExpr->op!=TK_COLUMN ) return; + iDb = sqlite3SchemaToIndex(pParse->db, pSchema); + if( iDb<0 ){ + /* An attempt to read a column out of a subquery or other + ** temporary table. */ + return; + } + for(iSrc=0; pTabList && iSrc<pTabList->nSrc; iSrc++){ + if( pExpr->iTable==pTabList->a[iSrc].iCursor ) break; + } + if( iSrc>=0 && pTabList && iSrc<pTabList->nSrc ){ + pTab = pTabList->a[iSrc].pTab; + }else if( (pStack = pParse->trigStack)!=0 ){ + /* This must be an attempt to read the NEW or OLD pseudo-tables + ** of a trigger. + */ + assert( pExpr->iTable==pStack->newIdx || pExpr->iTable==pStack->oldIdx ); + pTab = pStack->pTab; + } + if( pTab==0 ) return; + if( pExpr->iColumn>=0 ){ + assert( pExpr->iColumn<pTab->nCol ); + zCol = pTab->aCol[pExpr->iColumn].zName; + }else if( pTab->iPKey>=0 ){ + assert( pTab->iPKey<pTab->nCol ); + zCol = pTab->aCol[pTab->iPKey].zName; + }else{ + zCol = "ROWID"; + } + assert( iDb>=0 && iDb<db->nDb ); + zDBase = db->aDb[iDb].zName; + rc = db->xAuth(db->pAuthArg, SQLITE_READ, pTab->zName, zCol, zDBase, + pParse->zAuthContext); + if( rc==SQLITE_IGNORE ){ + pExpr->op = TK_NULL; + }else if( rc==SQLITE_DENY ){ + if( db->nDb>2 || iDb!=0 ){ + sqlite3ErrorMsg(pParse, "access to %s.%s.%s is prohibited", + zDBase, pTab->zName, zCol); + }else{ + sqlite3ErrorMsg(pParse, "access to %s.%s is prohibited",pTab->zName,zCol); + } + pParse->rc = SQLITE_AUTH; + }else if( rc!=SQLITE_OK ){ + sqliteAuthBadReturnCode(pParse, rc); + } +} + +/* +** Do an authorization check using the code and arguments given. Return +** either SQLITE_OK (zero) or SQLITE_IGNORE or SQLITE_DENY. If SQLITE_DENY +** is returned, then the error count and error message in pParse are +** modified appropriately. +*/ +SQLITE_PRIVATE int sqlite3AuthCheck( + Parse *pParse, + int code, + const char *zArg1, + const char *zArg2, + const char *zArg3 +){ + sqlite3 *db = pParse->db; + int rc; + + /* Don't do any authorization checks if the database is initialising + ** or if the parser is being invoked from within sqlite3_declare_vtab. + */ + if( db->init.busy || IN_DECLARE_VTAB ){ + return SQLITE_OK; + } + + if( db->xAuth==0 ){ + return SQLITE_OK; + } + rc = db->xAuth(db->pAuthArg, code, zArg1, zArg2, zArg3, pParse->zAuthContext); + if( rc==SQLITE_DENY ){ + sqlite3ErrorMsg(pParse, "not authorized"); + pParse->rc = SQLITE_AUTH; + }else if( rc!=SQLITE_OK && rc!=SQLITE_IGNORE ){ + rc = SQLITE_DENY; + sqliteAuthBadReturnCode(pParse, rc); + } + return rc; +} + +/* +** Push an authorization context. After this routine is called, the +** zArg3 argument to authorization callbacks will be zContext until +** popped. Or if pParse==0, this routine is a no-op. +*/ +SQLITE_PRIVATE void sqlite3AuthContextPush( + Parse *pParse, + AuthContext *pContext, + const char *zContext +){ + pContext->pParse = pParse; + if( pParse ){ + pContext->zAuthContext = pParse->zAuthContext; + pParse->zAuthContext = zContext; + } +} + +/* +** Pop an authorization context that was previously pushed +** by sqlite3AuthContextPush +*/ +SQLITE_PRIVATE void sqlite3AuthContextPop(AuthContext *pContext){ + if( pContext->pParse ){ + pContext->pParse->zAuthContext = pContext->zAuthContext; + pContext->pParse = 0; + } +} + +#endif /* SQLITE_OMIT_AUTHORIZATION */ + +/************** End of auth.c ************************************************/ +/************** Begin file build.c *******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the SQLite parser +** when syntax rules are reduced. The routines in this file handle the +** following kinds of SQL syntax: +** +** CREATE TABLE +** DROP TABLE +** CREATE INDEX +** DROP INDEX +** creating ID lists +** BEGIN TRANSACTION +** COMMIT +** ROLLBACK +** +** $Id: build.c,v 1.484 2008/05/01 17:16:53 drh Exp $ +*/ + +/* +** This routine is called when a new SQL statement is beginning to +** be parsed. Initialize the pParse structure as needed. +*/ +SQLITE_PRIVATE void sqlite3BeginParse(Parse *pParse, int explainFlag){ + pParse->explain = explainFlag; + pParse->nVar = 0; +} + +#ifndef SQLITE_OMIT_SHARED_CACHE +/* +** The TableLock structure is only used by the sqlite3TableLock() and +** codeTableLocks() functions. +*/ +struct TableLock { + int iDb; /* The database containing the table to be locked */ + int iTab; /* The root page of the table to be locked */ + u8 isWriteLock; /* True for write lock. False for a read lock */ + const char *zName; /* Name of the table */ +}; + +/* +** Record the fact that we want to lock a table at run-time. +** +** The table to be locked has root page iTab and is found in database iDb. +** A read or a write lock can be taken depending on isWritelock. +** +** This routine just records the fact that the lock is desired. The +** code to make the lock occur is generated by a later call to +** codeTableLocks() which occurs during sqlite3FinishCoding(). +*/ +SQLITE_PRIVATE void sqlite3TableLock( + Parse *pParse, /* Parsing context */ + int iDb, /* Index of the database containing the table to lock */ + int iTab, /* Root page number of the table to be locked */ + u8 isWriteLock, /* True for a write lock */ + const char *zName /* Name of the table to be locked */ +){ + int i; + int nBytes; + TableLock *p; + + if( iDb<0 ){ + return; + } + + for(i=0; i<pParse->nTableLock; i++){ + p = &pParse->aTableLock[i]; + if( p->iDb==iDb && p->iTab==iTab ){ + p->isWriteLock = (p->isWriteLock || isWriteLock); + return; + } + } + + nBytes = sizeof(TableLock) * (pParse->nTableLock+1); + pParse->aTableLock = + sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes); + if( pParse->aTableLock ){ + p = &pParse->aTableLock[pParse->nTableLock++]; + p->iDb = iDb; + p->iTab = iTab; + p->isWriteLock = isWriteLock; + p->zName = zName; + }else{ + pParse->nTableLock = 0; + pParse->db->mallocFailed = 1; + } +} + +/* +** Code an OP_TableLock instruction for each table locked by the +** statement (configured by calls to sqlite3TableLock()). +*/ +static void codeTableLocks(Parse *pParse){ + int i; + Vdbe *pVdbe; + + if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ + return; + } + + for(i=0; i<pParse->nTableLock; i++){ + TableLock *p = &pParse->aTableLock[i]; + int p1 = p->iDb; + sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, + p->zName, P4_STATIC); + } +} +#else + #define codeTableLocks(x) +#endif + +/* +** This routine is called after a single SQL statement has been +** parsed and a VDBE program to execute that statement has been +** prepared. This routine puts the finishing touches on the +** VDBE program and resets the pParse structure for the next +** parse. +** +** Note that if an error occurred, it might be the case that +** no VDBE code was generated. +*/ +SQLITE_PRIVATE void sqlite3FinishCoding(Parse *pParse){ + sqlite3 *db; + Vdbe *v; + + db = pParse->db; + if( db->mallocFailed ) return; + if( pParse->nested ) return; + if( pParse->nErr ) return; + if( !pParse->pVdbe ){ + if( pParse->rc==SQLITE_OK && pParse->nErr ){ + pParse->rc = SQLITE_ERROR; + return; + } + } + + /* Begin by generating some termination code at the end of the + ** vdbe program + */ + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp0(v, OP_Halt); + + /* The cookie mask contains one bit for each database file open. + ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are + ** set for each database that is used. Generate code to start a + ** transaction on each used database and to verify the schema cookie + ** on each used database. + */ + if( pParse->cookieGoto>0 ){ + u32 mask; + int iDb; + sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); + for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ + if( (mask & pParse->cookieMask)==0 ) continue; + sqlite3VdbeUsesBtree(v, iDb); + sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); + sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + { + int i; + for(i=0; i<pParse->nVtabLock; i++){ + char *vtab = (char *)pParse->apVtabLock[i]->pVtab; + sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); + } + pParse->nVtabLock = 0; + } +#endif + + /* Once all the cookies have been verified and transactions opened, + ** obtain the required table-locks. This is a no-op unless the + ** shared-cache feature is enabled. + */ + codeTableLocks(pParse); + sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); + } + +#ifndef SQLITE_OMIT_TRACE + if( !db->init.busy ){ + /* Change the P4 argument of the first opcode (which will always be + ** an OP_Trace) to be the complete text of the current SQL statement. + */ + VdbeOp *pOp = sqlite3VdbeGetOp(v, 0); + if( pOp && pOp->opcode==OP_Trace ){ + sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql); + } + } +#endif /* SQLITE_OMIT_TRACE */ + } + + + /* Get the VDBE program ready for execution + */ + if( v && pParse->nErr==0 && !db->mallocFailed ){ +#ifdef SQLITE_DEBUG + FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; + sqlite3VdbeTrace(v, trace); +#endif + assert( pParse->disableColCache==0 ); /* Disables and re-enables match */ + sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, + pParse->nTab+3, pParse->explain); + pParse->rc = SQLITE_DONE; + pParse->colNamesSet = 0; + }else if( pParse->rc==SQLITE_OK ){ + pParse->rc = SQLITE_ERROR; + } + pParse->nTab = 0; + pParse->nMem = 0; + pParse->nSet = 0; + pParse->nVar = 0; + pParse->cookieMask = 0; + pParse->cookieGoto = 0; +} + +/* +** Run the parser and code generator recursively in order to generate +** code for the SQL statement given onto the end of the pParse context +** currently under construction. When the parser is run recursively +** this way, the final OP_Halt is not appended and other initialization +** and finalization steps are omitted because those are handling by the +** outermost parser. +** +** Not everything is nestable. This facility is designed to permit +** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use +** care if you decide to try to use this routine for some other purposes. +*/ +SQLITE_PRIVATE void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ + va_list ap; + char *zSql; +# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) + char saveBuf[SAVE_SZ]; + + if( pParse->nErr ) return; + assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ + va_start(ap, zFormat); + zSql = sqlite3VMPrintf(pParse->db, zFormat, ap); + va_end(ap); + if( zSql==0 ){ + pParse->db->mallocFailed = 1; + return; /* A malloc must have failed */ + } + pParse->nested++; + memcpy(saveBuf, &pParse->nVar, SAVE_SZ); + memset(&pParse->nVar, 0, SAVE_SZ); + sqlite3RunParser(pParse, zSql, 0); + sqlite3_free(zSql); + memcpy(&pParse->nVar, saveBuf, SAVE_SZ); + pParse->nested--; +} + +/* +** Locate the in-memory structure that describes a particular database +** table given the name of that table and (optionally) the name of the +** database containing the table. Return NULL if not found. +** +** If zDatabase is 0, all databases are searched for the table and the +** first matching table is returned. (No checking for duplicate table +** names is done.) The search order is TEMP first, then MAIN, then any +** auxiliary databases added using the ATTACH command. +** +** See also sqlite3LocateTable(). +*/ +SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ + Table *p = 0; + int i; + assert( zName!=0 ); + for(i=OMIT_TEMPDB; i<db->nDb; i++){ + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ + if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; + p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, strlen(zName)+1); + if( p ) break; + } + return p; +} + +/* +** Locate the in-memory structure that describes a particular database +** table given the name of that table and (optionally) the name of the +** database containing the table. Return NULL if not found. Also leave an +** error message in pParse->zErrMsg. +** +** The difference between this routine and sqlite3FindTable() is that this +** routine leaves an error message in pParse->zErrMsg where +** sqlite3FindTable() does not. +*/ +SQLITE_PRIVATE Table *sqlite3LocateTable( + Parse *pParse, /* context in which to report errors */ + int isView, /* True if looking for a VIEW rather than a TABLE */ + const char *zName, /* Name of the table we are looking for */ + const char *zDbase /* Name of the database. Might be NULL */ +){ + Table *p; + + /* Read the database schema. If an error occurs, leave an error message + ** and code in pParse and return NULL. */ + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + return 0; + } + + p = sqlite3FindTable(pParse->db, zName, zDbase); + if( p==0 ){ + const char *zMsg = isView ? "no such view" : "no such table"; + if( zDbase ){ + sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); + }else{ + sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); + } + pParse->checkSchema = 1; + } + return p; +} + +/* +** Locate the in-memory structure that describes +** a particular index given the name of that index +** and the name of the database that contains the index. +** Return NULL if not found. +** +** If zDatabase is 0, all databases are searched for the +** table and the first matching index is returned. (No checking +** for duplicate index names is done.) The search order is +** TEMP first, then MAIN, then any auxiliary databases added +** using the ATTACH command. +*/ +SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ + Index *p = 0; + int i; + for(i=OMIT_TEMPDB; i<db->nDb; i++){ + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ + Schema *pSchema = db->aDb[j].pSchema; + if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; + assert( pSchema || (j==1 && !db->aDb[1].pBt) ); + if( pSchema ){ + p = sqlite3HashFind(&pSchema->idxHash, zName, strlen(zName)+1); + } + if( p ) break; + } + return p; +} + +/* +** Reclaim the memory used by an index +*/ +static void freeIndex(Index *p){ + sqlite3_free(p->zColAff); + sqlite3_free(p); +} + +/* +** Remove the given index from the index hash table, and free +** its memory structures. +** +** The index is removed from the database hash tables but +** it is not unlinked from the Table that it indexes. +** Unlinking from the Table must be done by the calling function. +*/ +static void sqliteDeleteIndex(Index *p){ + Index *pOld; + const char *zName = p->zName; + + pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen( zName)+1, 0); + assert( pOld==0 || pOld==p ); + freeIndex(p); +} + +/* +** For the index called zIdxName which is found in the database iDb, +** unlike that index from its Table then remove the index from +** the index hash table and free all memory structures associated +** with the index. +*/ +SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ + Index *pIndex; + int len; + Hash *pHash = &db->aDb[iDb].pSchema->idxHash; + + len = strlen(zIdxName); + pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); + if( pIndex ){ + if( pIndex->pTable->pIndex==pIndex ){ + pIndex->pTable->pIndex = pIndex->pNext; + }else{ + Index *p; + for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} + if( p && p->pNext==pIndex ){ + p->pNext = pIndex->pNext; + } + } + freeIndex(pIndex); + } + db->flags |= SQLITE_InternChanges; +} + +/* +** Erase all schema information from the in-memory hash tables of +** a single database. This routine is called to reclaim memory +** before the database closes. It is also called during a rollback +** if there were schema changes during the transaction or if a +** schema-cookie mismatch occurs. +** +** If iDb<=0 then reset the internal schema tables for all database +** files. If iDb>=2 then reset the internal schema for only the +** single file indicated. +*/ +SQLITE_PRIVATE void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ + int i, j; + assert( iDb>=0 && iDb<db->nDb ); + + if( iDb==0 ){ + sqlite3BtreeEnterAll(db); + } + for(i=iDb; i<db->nDb; i++){ + Db *pDb = &db->aDb[i]; + if( pDb->pSchema ){ + assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt))); + sqlite3SchemaFree(pDb->pSchema); + } + if( iDb>0 ) return; + } + assert( iDb==0 ); + db->flags &= ~SQLITE_InternChanges; + sqlite3BtreeLeaveAll(db); + + /* If one or more of the auxiliary database files has been closed, + ** then remove them from the auxiliary database list. We take the + ** opportunity to do this here since we have just deleted all of the + ** schema hash tables and therefore do not have to make any changes + ** to any of those tables. + */ + for(i=0; i<db->nDb; i++){ + struct Db *pDb = &db->aDb[i]; + if( pDb->pBt==0 ){ + if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); + pDb->pAux = 0; + } + } + for(i=j=2; i<db->nDb; i++){ + struct Db *pDb = &db->aDb[i]; + if( pDb->pBt==0 ){ + sqlite3_free(pDb->zName); + pDb->zName = 0; + continue; + } + if( j<i ){ + db->aDb[j] = db->aDb[i]; + } + j++; + } + memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); + db->nDb = j; + if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ + memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); + sqlite3_free(db->aDb); + db->aDb = db->aDbStatic; + } +} + +/* +** This routine is called when a commit occurs. +*/ +SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){ + db->flags &= ~SQLITE_InternChanges; +} + +/* +** Clear the column names from a table or view. +*/ +static void sqliteResetColumnNames(Table *pTable){ + int i; + Column *pCol; + assert( pTable!=0 ); + if( (pCol = pTable->aCol)!=0 ){ + for(i=0; i<pTable->nCol; i++, pCol++){ + sqlite3_free(pCol->zName); + sqlite3ExprDelete(pCol->pDflt); + sqlite3_free(pCol->zType); + sqlite3_free(pCol->zColl); + } + sqlite3_free(pTable->aCol); + } + pTable->aCol = 0; + pTable->nCol = 0; +} + +/* +** Remove the memory data structures associated with the given +** Table. No changes are made to disk by this routine. +** +** This routine just deletes the data structure. It does not unlink +** the table data structure from the hash table. Nor does it remove +** foreign keys from the sqlite.aFKey hash table. But it does destroy +** memory structures of the indices and foreign keys associated with +** the table. +*/ +SQLITE_PRIVATE void sqlite3DeleteTable(Table *pTable){ + Index *pIndex, *pNext; + FKey *pFKey, *pNextFKey; + + if( pTable==0 ) return; + + /* Do not delete the table until the reference count reaches zero. */ + pTable->nRef--; + if( pTable->nRef>0 ){ + return; + } + assert( pTable->nRef==0 ); + + /* Delete all indices associated with this table + */ + for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ + pNext = pIndex->pNext; + assert( pIndex->pSchema==pTable->pSchema ); + sqliteDeleteIndex(pIndex); + } + +#ifndef SQLITE_OMIT_FOREIGN_KEY + /* Delete all foreign keys associated with this table. The keys + ** should have already been unlinked from the pSchema->aFKey hash table + */ + for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ + pNextFKey = pFKey->pNextFrom; + assert( sqlite3HashFind(&pTable->pSchema->aFKey, + pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); + sqlite3_free(pFKey); + } +#endif + + /* Delete the Table structure itself. + */ + sqliteResetColumnNames(pTable); + sqlite3_free(pTable->zName); + sqlite3_free(pTable->zColAff); + sqlite3SelectDelete(pTable->pSelect); +#ifndef SQLITE_OMIT_CHECK + sqlite3ExprDelete(pTable->pCheck); +#endif + sqlite3VtabClear(pTable); + sqlite3_free(pTable); +} + +/* +** Unlink the given table from the hash tables and the delete the +** table structure with all its indices and foreign keys. +*/ +SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ + Table *p; + FKey *pF1, *pF2; + Db *pDb; + + assert( db!=0 ); + assert( iDb>=0 && iDb<db->nDb ); + assert( zTabName && zTabName[0] ); + pDb = &db->aDb[iDb]; + p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); + if( p ){ +#ifndef SQLITE_OMIT_FOREIGN_KEY + for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ + int nTo = strlen(pF1->zTo) + 1; + pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); + if( pF2==pF1 ){ + sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); + }else{ + while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } + if( pF2 ){ + pF2->pNextTo = pF1->pNextTo; + } + } + } +#endif + sqlite3DeleteTable(p); + } + db->flags |= SQLITE_InternChanges; +} + +/* +** Given a token, return a string that consists of the text of that +** token with any quotations removed. Space to hold the returned string +** is obtained from sqliteMalloc() and must be freed by the calling +** function. +** +** Tokens are often just pointers into the original SQL text and so +** are not \000 terminated and are not persistent. The returned string +** is \000 terminated and is persistent. +*/ +SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ + char *zName; + if( pName ){ + zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); + sqlite3Dequote(zName); + }else{ + zName = 0; + } + return zName; +} + +/* +** Open the sqlite_master table stored in database number iDb for +** writing. The table is opened using cursor 0. +*/ +SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *p, int iDb){ + Vdbe *v = sqlite3GetVdbe(p); + sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */ + sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); +} + +/* +** The token *pName contains the name of a database (either "main" or +** "temp" or the name of an attached db). This routine returns the +** index of the named database in db->aDb[], or -1 if the named db +** does not exist. +*/ +SQLITE_PRIVATE int sqlite3FindDb(sqlite3 *db, Token *pName){ + int i = -1; /* Database number */ + int n; /* Number of characters in the name */ + Db *pDb; /* A database whose name space is being searched */ + char *zName; /* Name we are searching for */ + + zName = sqlite3NameFromToken(db, pName); + if( zName ){ + n = strlen(zName); + for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ + if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && + 0==sqlite3StrICmp(pDb->zName, zName) ){ + break; + } + } + sqlite3_free(zName); + } + return i; +} + +/* The table or view or trigger name is passed to this routine via tokens +** pName1 and pName2. If the table name was fully qualified, for example: +** +** CREATE TABLE xxx.yyy (...); +** +** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if +** the table name is not fully qualified, i.e.: +** +** CREATE TABLE yyy(...); +** +** Then pName1 is set to "yyy" and pName2 is "". +** +** This routine sets the *ppUnqual pointer to point at the token (pName1 or +** pName2) that stores the unqualified table name. The index of the +** database "xxx" is returned. +*/ +SQLITE_PRIVATE int sqlite3TwoPartName( + Parse *pParse, /* Parsing and code generating context */ + Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ + Token *pName2, /* The "yyy" in the name "xxx.yyy" */ + Token **pUnqual /* Write the unqualified object name here */ +){ + int iDb; /* Database holding the object */ + sqlite3 *db = pParse->db; + + if( pName2 && pName2->n>0 ){ + assert( !db->init.busy ); + *pUnqual = pName2; + iDb = sqlite3FindDb(db, pName1); + if( iDb<0 ){ + sqlite3ErrorMsg(pParse, "unknown database %T", pName1); + pParse->nErr++; + return -1; + } + }else{ + assert( db->init.iDb==0 || db->init.busy ); + iDb = db->init.iDb; + *pUnqual = pName1; + } + return iDb; +} + +/* +** This routine is used to check if the UTF-8 string zName is a legal +** unqualified name for a new schema object (table, index, view or +** trigger). All names are legal except those that begin with the string +** "sqlite_" (in upper, lower or mixed case). This portion of the namespace +** is reserved for internal use. +*/ +SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){ + if( !pParse->db->init.busy && pParse->nested==0 + && (pParse->db->flags & SQLITE_WriteSchema)==0 + && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ + sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); + return SQLITE_ERROR; + } + return SQLITE_OK; +} + +/* +** Begin constructing a new table representation in memory. This is +** the first of several action routines that get called in response +** to a CREATE TABLE statement. In particular, this routine is called +** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp +** flag is true if the table should be stored in the auxiliary database +** file instead of in the main database file. This is normally the case +** when the "TEMP" or "TEMPORARY" keyword occurs in between +** CREATE and TABLE. +** +** The new table record is initialized and put in pParse->pNewTable. +** As more of the CREATE TABLE statement is parsed, additional action +** routines will be called to add more information to this record. +** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine +** is called to complete the construction of the new table record. +*/ +SQLITE_PRIVATE void sqlite3StartTable( + Parse *pParse, /* Parser context */ + Token *pName1, /* First part of the name of the table or view */ + Token *pName2, /* Second part of the name of the table or view */ + int isTemp, /* True if this is a TEMP table */ + int isView, /* True if this is a VIEW */ + int isVirtual, /* True if this is a VIRTUAL table */ + int noErr /* Do nothing if table already exists */ +){ + Table *pTable; + char *zName = 0; /* The name of the new table */ + sqlite3 *db = pParse->db; + Vdbe *v; + int iDb; /* Database number to create the table in */ + Token *pName; /* Unqualified name of the table to create */ + + /* The table or view name to create is passed to this routine via tokens + ** pName1 and pName2. If the table name was fully qualified, for example: + ** + ** CREATE TABLE xxx.yyy (...); + ** + ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if + ** the table name is not fully qualified, i.e.: + ** + ** CREATE TABLE yyy(...); + ** + ** Then pName1 is set to "yyy" and pName2 is "". + ** + ** The call below sets the pName pointer to point at the token (pName1 or + ** pName2) that stores the unqualified table name. The variable iDb is + ** set to the index of the database that the table or view is to be + ** created in. + */ + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); + if( iDb<0 ) return; + if( !OMIT_TEMPDB && isTemp && iDb>1 ){ + /* If creating a temp table, the name may not be qualified */ + sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); + return; + } + if( !OMIT_TEMPDB && isTemp ) iDb = 1; + + pParse->sNameToken = *pName; + zName = sqlite3NameFromToken(db, pName); + if( zName==0 ) return; + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ + goto begin_table_error; + } + if( db->init.iDb==1 ) isTemp = 1; +#ifndef SQLITE_OMIT_AUTHORIZATION + assert( (isTemp & 1)==isTemp ); + { + int code; + char *zDb = db->aDb[iDb].zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ + goto begin_table_error; + } + if( isView ){ + if( !OMIT_TEMPDB && isTemp ){ + code = SQLITE_CREATE_TEMP_VIEW; + }else{ + code = SQLITE_CREATE_VIEW; + } + }else{ + if( !OMIT_TEMPDB && isTemp ){ + code = SQLITE_CREATE_TEMP_TABLE; + }else{ + code = SQLITE_CREATE_TABLE; + } + } + if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ + goto begin_table_error; + } + } +#endif + + /* Make sure the new table name does not collide with an existing + ** index or table name in the same database. Issue an error message if + ** it does. The exception is if the statement being parsed was passed + ** to an sqlite3_declare_vtab() call. In that case only the column names + ** and types will be used, so there is no need to test for namespace + ** collisions. + */ + if( !IN_DECLARE_VTAB ){ + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + goto begin_table_error; + } + pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); + if( pTable ){ + if( !noErr ){ + sqlite3ErrorMsg(pParse, "table %T already exists", pName); + } + goto begin_table_error; + } + if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ + sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); + goto begin_table_error; + } + } + + pTable = sqlite3DbMallocZero(db, sizeof(Table)); + if( pTable==0 ){ + db->mallocFailed = 1; + pParse->rc = SQLITE_NOMEM; + pParse->nErr++; + goto begin_table_error; + } + pTable->zName = zName; + pTable->iPKey = -1; + pTable->pSchema = db->aDb[iDb].pSchema; + pTable->nRef = 1; + if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable); + pParse->pNewTable = pTable; + + /* If this is the magic sqlite_sequence table used by autoincrement, + ** then record a pointer to this table in the main database structure + ** so that INSERT can find the table easily. + */ +#ifndef SQLITE_OMIT_AUTOINCREMENT + if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ + pTable->pSchema->pSeqTab = pTable; + } +#endif + + /* Begin generating the code that will insert the table record into + ** the SQLITE_MASTER table. Note in particular that we must go ahead + ** and allocate the record number for the table entry now. Before any + ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause + ** indices to be created and the table record must come before the + ** indices. Hence, the record number for the table must be allocated + ** now. + */ + if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ + int j1; + int fileFormat; + int reg1, reg2, reg3; + sqlite3BeginWriteOperation(pParse, 0, iDb); + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( isVirtual ){ + sqlite3VdbeAddOp0(v, OP_VBegin); + } +#endif + + /* If the file format and encoding in the database have not been set, + ** set them now. + */ + reg1 = pParse->regRowid = ++pParse->nMem; + reg2 = pParse->regRoot = ++pParse->nMem; + reg3 = ++pParse->nMem; + sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */ + sqlite3VdbeUsesBtree(v, iDb); + j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); + fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? + 1 : SQLITE_MAX_FILE_FORMAT; + sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3); + sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3); + sqlite3VdbeJumpHere(v, j1); + + /* This just creates a place-holder record in the sqlite_master table. + ** The record created does not contain anything yet. It will be replaced + ** by the real entry in code generated at sqlite3EndTable(). + ** + ** The rowid for the new entry is left on the top of the stack. + ** The rowid value is needed by the code that sqlite3EndTable will + ** generate. + */ +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) + if( isView || isVirtual ){ + sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); + }else +#endif + { + sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); + } + sqlite3OpenMasterTable(pParse, iDb); + sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); + sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); + sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + sqlite3VdbeAddOp0(v, OP_Close); + } + + /* Normal (non-error) return. */ + return; + + /* If an error occurs, we jump here */ +begin_table_error: + sqlite3_free(zName); + return; +} + +/* +** This macro is used to compare two strings in a case-insensitive manner. +** It is slightly faster than calling sqlite3StrICmp() directly, but +** produces larger code. +** +** WARNING: This macro is not compatible with the strcmp() family. It +** returns true if the two strings are equal, otherwise false. +*/ +#define STRICMP(x, y) (\ +sqlite3UpperToLower[*(unsigned char *)(x)]== \ +sqlite3UpperToLower[*(unsigned char *)(y)] \ +&& sqlite3StrICmp((x)+1,(y)+1)==0 ) + +/* +** Add a new column to the table currently being constructed. +** +** The parser calls this routine once for each column declaration +** in a CREATE TABLE statement. sqlite3StartTable() gets called +** first to get things going. Then this routine is called for each +** column. +*/ +SQLITE_PRIVATE void sqlite3AddColumn(Parse *pParse, Token *pName){ + Table *p; + int i; + char *z; + Column *pCol; + sqlite3 *db = pParse->db; + if( (p = pParse->pNewTable)==0 ) return; +#if SQLITE_MAX_COLUMN + if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ + sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); + return; + } +#endif + z = sqlite3NameFromToken(pParse->db, pName); + if( z==0 ) return; + for(i=0; i<p->nCol; i++){ + if( STRICMP(z, p->aCol[i].zName) ){ + sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); + sqlite3_free(z); + return; + } + } + if( (p->nCol & 0x7)==0 ){ + Column *aNew; + aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); + if( aNew==0 ){ + sqlite3_free(z); + return; + } + p->aCol = aNew; + } + pCol = &p->aCol[p->nCol]; + memset(pCol, 0, sizeof(p->aCol[0])); + pCol->zName = z; + + /* If there is no type specified, columns have the default affinity + ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will + ** be called next to set pCol->affinity correctly. + */ + pCol->affinity = SQLITE_AFF_NONE; + p->nCol++; +} + +/* +** This routine is called by the parser while in the middle of +** parsing a CREATE TABLE statement. A "NOT NULL" constraint has +** been seen on a column. This routine sets the notNull flag on +** the column currently under construction. +*/ +SQLITE_PRIVATE void sqlite3AddNotNull(Parse *pParse, int onError){ + Table *p; + int i; + if( (p = pParse->pNewTable)==0 ) return; + i = p->nCol-1; + if( i>=0 ) p->aCol[i].notNull = onError; +} + +/* +** Scan the column type name zType (length nType) and return the +** associated affinity type. +** +** This routine does a case-independent search of zType for the +** substrings in the following table. If one of the substrings is +** found, the corresponding affinity is returned. If zType contains +** more than one of the substrings, entries toward the top of +** the table take priority. For example, if zType is 'BLOBINT', +** SQLITE_AFF_INTEGER is returned. +** +** Substring | Affinity +** -------------------------------- +** 'INT' | SQLITE_AFF_INTEGER +** 'CHAR' | SQLITE_AFF_TEXT +** 'CLOB' | SQLITE_AFF_TEXT +** 'TEXT' | SQLITE_AFF_TEXT +** 'BLOB' | SQLITE_AFF_NONE +** 'REAL' | SQLITE_AFF_REAL +** 'FLOA' | SQLITE_AFF_REAL +** 'DOUB' | SQLITE_AFF_REAL +** +** If none of the substrings in the above table are found, +** SQLITE_AFF_NUMERIC is returned. +*/ +SQLITE_PRIVATE char sqlite3AffinityType(const Token *pType){ + u32 h = 0; + char aff = SQLITE_AFF_NUMERIC; + const unsigned char *zIn = pType->z; + const unsigned char *zEnd = &pType->z[pType->n]; + + while( zIn!=zEnd ){ + h = (h<<8) + sqlite3UpperToLower[*zIn]; + zIn++; + if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ + aff = SQLITE_AFF_TEXT; + }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ + aff = SQLITE_AFF_TEXT; + }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ + aff = SQLITE_AFF_TEXT; + }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ + && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ + aff = SQLITE_AFF_NONE; +#ifndef SQLITE_OMIT_FLOATING_POINT + }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ + && aff==SQLITE_AFF_NUMERIC ){ + aff = SQLITE_AFF_REAL; + }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ + && aff==SQLITE_AFF_NUMERIC ){ + aff = SQLITE_AFF_REAL; + }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ + && aff==SQLITE_AFF_NUMERIC ){ + aff = SQLITE_AFF_REAL; +#endif + }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ + aff = SQLITE_AFF_INTEGER; + break; + } + } + + return aff; +} + +/* +** This routine is called by the parser while in the middle of +** parsing a CREATE TABLE statement. The pFirst token is the first +** token in the sequence of tokens that describe the type of the +** column currently under construction. pLast is the last token +** in the sequence. Use this information to construct a string +** that contains the typename of the column and store that string +** in zType. +*/ +SQLITE_PRIVATE void sqlite3AddColumnType(Parse *pParse, Token *pType){ + Table *p; + int i; + Column *pCol; + + if( (p = pParse->pNewTable)==0 ) return; + i = p->nCol-1; + if( i<0 ) return; + pCol = &p->aCol[i]; + sqlite3_free(pCol->zType); + pCol->zType = sqlite3NameFromToken(pParse->db, pType); + pCol->affinity = sqlite3AffinityType(pType); +} + +/* +** The expression is the default value for the most recently added column +** of the table currently under construction. +** +** Default value expressions must be constant. Raise an exception if this +** is not the case. +** +** This routine is called by the parser while in the middle of +** parsing a CREATE TABLE statement. +*/ +SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ + Table *p; + Column *pCol; + if( (p = pParse->pNewTable)!=0 ){ + pCol = &(p->aCol[p->nCol-1]); + if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ + sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", + pCol->zName); + }else{ + Expr *pCopy; + sqlite3 *db = pParse->db; + sqlite3ExprDelete(pCol->pDflt); + pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr); + if( pCopy ){ + sqlite3TokenCopy(db, &pCopy->span, &pExpr->span); + } + } + } + sqlite3ExprDelete(pExpr); +} + +/* +** Designate the PRIMARY KEY for the table. pList is a list of names +** of columns that form the primary key. If pList is NULL, then the +** most recently added column of the table is the primary key. +** +** A table can have at most one primary key. If the table already has +** a primary key (and this is the second primary key) then create an +** error. +** +** If the PRIMARY KEY is on a single column whose datatype is INTEGER, +** then we will try to use that column as the rowid. Set the Table.iPKey +** field of the table under construction to be the index of the +** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is +** no INTEGER PRIMARY KEY. +** +** If the key is not an INTEGER PRIMARY KEY, then create a unique +** index for the key. No index is created for INTEGER PRIMARY KEYs. +*/ +SQLITE_PRIVATE void sqlite3AddPrimaryKey( + Parse *pParse, /* Parsing context */ + ExprList *pList, /* List of field names to be indexed */ + int onError, /* What to do with a uniqueness conflict */ + int autoInc, /* True if the AUTOINCREMENT keyword is present */ + int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ +){ + Table *pTab = pParse->pNewTable; + char *zType = 0; + int iCol = -1, i; + if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; + if( pTab->hasPrimKey ){ + sqlite3ErrorMsg(pParse, + "table \"%s\" has more than one primary key", pTab->zName); + goto primary_key_exit; + } + pTab->hasPrimKey = 1; + if( pList==0 ){ + iCol = pTab->nCol - 1; + pTab->aCol[iCol].isPrimKey = 1; + }else{ + for(i=0; i<pList->nExpr; i++){ + for(iCol=0; iCol<pTab->nCol; iCol++){ + if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ + break; + } + } + if( iCol<pTab->nCol ){ + pTab->aCol[iCol].isPrimKey = 1; + } + } + if( pList->nExpr>1 ) iCol = -1; + } + if( iCol>=0 && iCol<pTab->nCol ){ + zType = pTab->aCol[iCol].zType; + } + if( zType && sqlite3StrICmp(zType, "INTEGER")==0 + && sortOrder==SQLITE_SO_ASC ){ + pTab->iPKey = iCol; + pTab->keyConf = onError; + pTab->autoInc = autoInc; + }else if( autoInc ){ +#ifndef SQLITE_OMIT_AUTOINCREMENT + sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " + "INTEGER PRIMARY KEY"); +#endif + }else{ + sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); + pList = 0; + } + +primary_key_exit: + sqlite3ExprListDelete(pList); + return; +} + +/* +** Add a new CHECK constraint to the table currently under construction. +*/ +SQLITE_PRIVATE void sqlite3AddCheckConstraint( + Parse *pParse, /* Parsing context */ + Expr *pCheckExpr /* The check expression */ +){ +#ifndef SQLITE_OMIT_CHECK + Table *pTab = pParse->pNewTable; + sqlite3 *db = pParse->db; + if( pTab && !IN_DECLARE_VTAB ){ + /* The CHECK expression must be duplicated so that tokens refer + ** to malloced space and not the (ephemeral) text of the CREATE TABLE + ** statement */ + pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, + sqlite3ExprDup(db, pCheckExpr)); + } +#endif + sqlite3ExprDelete(pCheckExpr); +} + +/* +** Set the collation function of the most recently parsed table column +** to the CollSeq given. +*/ +SQLITE_PRIVATE void sqlite3AddCollateType(Parse *pParse, Token *pToken){ + Table *p; + int i; + char *zColl; /* Dequoted name of collation sequence */ + + if( (p = pParse->pNewTable)==0 ) return; + i = p->nCol-1; + + zColl = sqlite3NameFromToken(pParse->db, pToken); + if( !zColl ) return; + + if( sqlite3LocateCollSeq(pParse, zColl, -1) ){ + Index *pIdx; + p->aCol[i].zColl = zColl; + + /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", + ** then an index may have been created on this column before the + ** collation type was added. Correct this if it is the case. + */ + for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ + assert( pIdx->nColumn==1 ); + if( pIdx->aiColumn[0]==i ){ + pIdx->azColl[0] = p->aCol[i].zColl; + } + } + }else{ + sqlite3_free(zColl); + } +} + +/* +** This function returns the collation sequence for database native text +** encoding identified by the string zName, length nName. +** +** If the requested collation sequence is not available, or not available +** in the database native encoding, the collation factory is invoked to +** request it. If the collation factory does not supply such a sequence, +** and the sequence is available in another text encoding, then that is +** returned instead. +** +** If no versions of the requested collations sequence are available, or +** another error occurs, NULL is returned and an error message written into +** pParse. +** +** This routine is a wrapper around sqlite3FindCollSeq(). This routine +** invokes the collation factory if the named collation cannot be found +** and generates an error message. +*/ +SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ + sqlite3 *db = pParse->db; + u8 enc = ENC(db); + u8 initbusy = db->init.busy; + CollSeq *pColl; + + pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); + if( !initbusy && (!pColl || !pColl->xCmp) ){ + pColl = sqlite3GetCollSeq(db, pColl, zName, nName); + if( !pColl ){ + if( nName<0 ){ + nName = strlen(zName); + } + sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); + pColl = 0; + } + } + + return pColl; +} + + +/* +** Generate code that will increment the schema cookie. +** +** The schema cookie is used to determine when the schema for the +** database changes. After each schema change, the cookie value +** changes. When a process first reads the schema it records the +** cookie. Thereafter, whenever it goes to access the database, +** it checks the cookie to make sure the schema has not changed +** since it was last read. +** +** This plan is not completely bullet-proof. It is possible for +** the schema to change multiple times and for the cookie to be +** set back to prior value. But schema changes are infrequent +** and the probability of hitting the same cookie value is only +** 1 chance in 2^32. So we're safe enough. +*/ +SQLITE_PRIVATE void sqlite3ChangeCookie(Parse *pParse, int iDb){ + int r1 = sqlite3GetTempReg(pParse); + sqlite3 *db = pParse->db; + Vdbe *v = pParse->pVdbe; + sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1); + sqlite3ReleaseTempReg(pParse, r1); +} + +/* +** Measure the number of characters needed to output the given +** identifier. The number returned includes any quotes used +** but does not include the null terminator. +** +** The estimate is conservative. It might be larger that what is +** really needed. +*/ +static int identLength(const char *z){ + int n; + for(n=0; *z; n++, z++){ + if( *z=='"' ){ n++; } + } + return n + 2; +} + +/* +** Write an identifier onto the end of the given string. Add +** quote characters as needed. +*/ +static void identPut(char *z, int *pIdx, char *zSignedIdent){ + unsigned char *zIdent = (unsigned char*)zSignedIdent; + int i, j, needQuote; + i = *pIdx; + for(j=0; zIdent[j]; j++){ + if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; + } + needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) + || sqlite3KeywordCode(zIdent, j)!=TK_ID; + if( needQuote ) z[i++] = '"'; + for(j=0; zIdent[j]; j++){ + z[i++] = zIdent[j]; + if( zIdent[j]=='"' ) z[i++] = '"'; + } + if( needQuote ) z[i++] = '"'; + z[i] = 0; + *pIdx = i; +} + +/* +** Generate a CREATE TABLE statement appropriate for the given +** table. Memory to hold the text of the statement is obtained +** from sqliteMalloc() and must be freed by the calling function. +*/ +static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){ + int i, k, n; + char *zStmt; + char *zSep, *zSep2, *zEnd, *z; + Column *pCol; + n = 0; + for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ + n += identLength(pCol->zName); + z = pCol->zType; + if( z ){ + n += (strlen(z) + 1); + } + } + n += identLength(p->zName); + if( n<50 ){ + zSep = ""; + zSep2 = ","; + zEnd = ")"; + }else{ + zSep = "\n "; + zSep2 = ",\n "; + zEnd = "\n)"; + } + n += 35 + 6*p->nCol; + zStmt = sqlite3_malloc( n ); + if( zStmt==0 ){ + db->mallocFailed = 1; + return 0; + } + sqlite3_snprintf(n, zStmt, + !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); + k = strlen(zStmt); + identPut(zStmt, &k, p->zName); + zStmt[k++] = '('; + for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ + sqlite3_snprintf(n-k, &zStmt[k], zSep); + k += strlen(&zStmt[k]); + zSep = zSep2; + identPut(zStmt, &k, pCol->zName); + if( (z = pCol->zType)!=0 ){ + zStmt[k++] = ' '; + assert( strlen(z)+k+1<=n ); + sqlite3_snprintf(n-k, &zStmt[k], "%s", z); + k += strlen(z); + } + } + sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); + return zStmt; +} + +/* +** This routine is called to report the final ")" that terminates +** a CREATE TABLE statement. +** +** The table structure that other action routines have been building +** is added to the internal hash tables, assuming no errors have +** occurred. +** +** An entry for the table is made in the master table on disk, unless +** this is a temporary table or db->init.busy==1. When db->init.busy==1 +** it means we are reading the sqlite_master table because we just +** connected to the database or because the sqlite_master table has +** recently changed, so the entry for this table already exists in +** the sqlite_master table. We do not want to create it again. +** +** If the pSelect argument is not NULL, it means that this routine +** was called to create a table generated from a +** "CREATE TABLE ... AS SELECT ..." statement. The column names of +** the new table will match the result set of the SELECT. +*/ +SQLITE_PRIVATE void sqlite3EndTable( + Parse *pParse, /* Parse context */ + Token *pCons, /* The ',' token after the last column defn. */ + Token *pEnd, /* The final ')' token in the CREATE TABLE */ + Select *pSelect /* Select from a "CREATE ... AS SELECT" */ +){ + Table *p; + sqlite3 *db = pParse->db; + int iDb; + + if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) { + return; + } + p = pParse->pNewTable; + if( p==0 ) return; + + assert( !db->init.busy || !pSelect ); + + iDb = sqlite3SchemaToIndex(db, p->pSchema); + +#ifndef SQLITE_OMIT_CHECK + /* Resolve names in all CHECK constraint expressions. + */ + if( p->pCheck ){ + SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ + NameContext sNC; /* Name context for pParse->pNewTable */ + + memset(&sNC, 0, sizeof(sNC)); + memset(&sSrc, 0, sizeof(sSrc)); + sSrc.nSrc = 1; + sSrc.a[0].zName = p->zName; + sSrc.a[0].pTab = p; + sSrc.a[0].iCursor = -1; + sNC.pParse = pParse; + sNC.pSrcList = &sSrc; + sNC.isCheck = 1; + if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){ + return; + } + } +#endif /* !defined(SQLITE_OMIT_CHECK) */ + + /* If the db->init.busy is 1 it means we are reading the SQL off the + ** "sqlite_master" or "sqlite_temp_master" table on the disk. + ** So do not write to the disk again. Extract the root page number + ** for the table from the db->init.newTnum field. (The page number + ** should have been put there by the sqliteOpenCb routine.) + */ + if( db->init.busy ){ + p->tnum = db->init.newTnum; + } + + /* If not initializing, then create a record for the new table + ** in the SQLITE_MASTER table of the database. The record number + ** for the new table entry should already be on the stack. + ** + ** If this is a TEMPORARY table, write the entry into the auxiliary + ** file instead of into the main database file. + */ + if( !db->init.busy ){ + int n; + Vdbe *v; + char *zType; /* "view" or "table" */ + char *zType2; /* "VIEW" or "TABLE" */ + char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ + + v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + + sqlite3VdbeAddOp1(v, OP_Close, 0); + + /* Create the rootpage for the new table and push it onto the stack. + ** A view has no rootpage, so just push a zero onto the stack for + ** views. Initialize zType at the same time. + */ + if( p->pSelect==0 ){ + /* A regular table */ + zType = "table"; + zType2 = "TABLE"; +#ifndef SQLITE_OMIT_VIEW + }else{ + /* A view */ + zType = "view"; + zType2 = "VIEW"; +#endif + } + + /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT + ** statement to populate the new table. The root-page number for the + ** new table is on the top of the vdbe stack. + ** + ** Once the SELECT has been coded by sqlite3Select(), it is in a + ** suitable state to query for the column names and types to be used + ** by the new table. + ** + ** A shared-cache write-lock is not required to write to the new table, + ** as a schema-lock must have already been obtained to create it. Since + ** a schema-lock excludes all other database users, the write-lock would + ** be redundant. + */ + if( pSelect ){ + SelectDest dest; + Table *pSelTab; + + sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); + sqlite3VdbeChangeP5(v, 1); + pParse->nTab = 2; + sqlite3SelectDestInit(&dest, SRT_Table, 1); + sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0); + sqlite3VdbeAddOp1(v, OP_Close, 1); + if( pParse->nErr==0 ){ + pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); + if( pSelTab==0 ) return; + assert( p->aCol==0 ); + p->nCol = pSelTab->nCol; + p->aCol = pSelTab->aCol; + pSelTab->nCol = 0; + pSelTab->aCol = 0; + sqlite3DeleteTable(pSelTab); + } + } + + /* Compute the complete text of the CREATE statement */ + if( pSelect ){ + zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema); + }else{ + n = pEnd->z - pParse->sNameToken.z + 1; + zStmt = sqlite3MPrintf(db, + "CREATE %s %.*s", zType2, n, pParse->sNameToken.z + ); + } + + /* A slot for the record has already been allocated in the + ** SQLITE_MASTER table. We just need to update that slot with all + ** the information we've collected. The rowid for the preallocated + ** slot is the 2nd item on the stack. The top of the stack is the + ** root page for the new table (or a 0 if this is a view). + */ + sqlite3NestedParse(pParse, + "UPDATE %Q.%s " + "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " + "WHERE rowid=#%d", + db->aDb[iDb].zName, SCHEMA_TABLE(iDb), + zType, + p->zName, + p->zName, + pParse->regRoot, + zStmt, + pParse->regRowid + ); + sqlite3_free(zStmt); + sqlite3ChangeCookie(pParse, iDb); + +#ifndef SQLITE_OMIT_AUTOINCREMENT + /* Check to see if we need to create an sqlite_sequence table for + ** keeping track of autoincrement keys. + */ + if( p->autoInc ){ + Db *pDb = &db->aDb[iDb]; + if( pDb->pSchema->pSeqTab==0 ){ + sqlite3NestedParse(pParse, + "CREATE TABLE %Q.sqlite_sequence(name,seq)", + pDb->zName + ); + } + } +#endif + + /* Reparse everything to update our internal data structures */ + sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, + sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); + } + + + /* Add the table to the in-memory representation of the database. + */ + if( db->init.busy && pParse->nErr==0 ){ + Table *pOld; + FKey *pFKey; + Schema *pSchema = p->pSchema; + pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); + if( pOld ){ + assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ + db->mallocFailed = 1; + return; + } +#ifndef SQLITE_OMIT_FOREIGN_KEY + for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ + void *data; + int nTo = strlen(pFKey->zTo) + 1; + pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); + data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); + if( data==(void *)pFKey ){ + db->mallocFailed = 1; + } + } +#endif + pParse->pNewTable = 0; + db->nTable++; + db->flags |= SQLITE_InternChanges; + +#ifndef SQLITE_OMIT_ALTERTABLE + if( !p->pSelect ){ + const char *zName = (const char *)pParse->sNameToken.z; + int nName; + assert( !pSelect && pCons && pEnd ); + if( pCons->z==0 ){ + pCons = pEnd; + } + nName = (const char *)pCons->z - zName; + p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); + } +#endif + } +} + +#ifndef SQLITE_OMIT_VIEW +/* +** The parser calls this routine in order to create a new VIEW +*/ +SQLITE_PRIVATE void sqlite3CreateView( + Parse *pParse, /* The parsing context */ + Token *pBegin, /* The CREATE token that begins the statement */ + Token *pName1, /* The token that holds the name of the view */ + Token *pName2, /* The token that holds the name of the view */ + Select *pSelect, /* A SELECT statement that will become the new view */ + int isTemp, /* TRUE for a TEMPORARY view */ + int noErr /* Suppress error messages if VIEW already exists */ +){ + Table *p; + int n; + const unsigned char *z; + Token sEnd; + DbFixer sFix; + Token *pName; + int iDb; + sqlite3 *db = pParse->db; + + if( pParse->nVar>0 ){ + sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); + sqlite3SelectDelete(pSelect); + return; + } + sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); + p = pParse->pNewTable; + if( p==0 || pParse->nErr ){ + sqlite3SelectDelete(pSelect); + return; + } + sqlite3TwoPartName(pParse, pName1, pName2, &pName); + iDb = sqlite3SchemaToIndex(db, p->pSchema); + if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) + && sqlite3FixSelect(&sFix, pSelect) + ){ + sqlite3SelectDelete(pSelect); + return; + } + + /* Make a copy of the entire SELECT statement that defines the view. + ** This will force all the Expr.token.z values to be dynamically + ** allocated rather than point to the input string - which means that + ** they will persist after the current sqlite3_exec() call returns. + */ + p->pSelect = sqlite3SelectDup(db, pSelect); + sqlite3SelectDelete(pSelect); + if( db->mallocFailed ){ + return; + } + if( !db->init.busy ){ + sqlite3ViewGetColumnNames(pParse, p); + } + + /* Locate the end of the CREATE VIEW statement. Make sEnd point to + ** the end. + */ + sEnd = pParse->sLastToken; + if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ + sEnd.z += sEnd.n; + } + sEnd.n = 0; + n = sEnd.z - pBegin->z; + z = (const unsigned char*)pBegin->z; + while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } + sEnd.z = &z[n-1]; + sEnd.n = 1; + + /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ + sqlite3EndTable(pParse, 0, &sEnd, 0); + return; +} +#endif /* SQLITE_OMIT_VIEW */ + +#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) +/* +** The Table structure pTable is really a VIEW. Fill in the names of +** the columns of the view in the pTable structure. Return the number +** of errors. If an error is seen leave an error message in pParse->zErrMsg. +*/ +SQLITE_PRIVATE int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ + Table *pSelTab; /* A fake table from which we get the result set */ + Select *pSel; /* Copy of the SELECT that implements the view */ + int nErr = 0; /* Number of errors encountered */ + int n; /* Temporarily holds the number of cursors assigned */ + sqlite3 *db = pParse->db; /* Database connection for malloc errors */ + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); + + assert( pTable ); + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( sqlite3VtabCallConnect(pParse, pTable) ){ + return SQLITE_ERROR; + } + if( IsVirtual(pTable) ) return 0; +#endif + +#ifndef SQLITE_OMIT_VIEW + /* A positive nCol means the columns names for this view are + ** already known. + */ + if( pTable->nCol>0 ) return 0; + + /* A negative nCol is a special marker meaning that we are currently + ** trying to compute the column names. If we enter this routine with + ** a negative nCol, it means two or more views form a loop, like this: + ** + ** CREATE VIEW one AS SELECT * FROM two; + ** CREATE VIEW two AS SELECT * FROM one; + ** + ** Actually, this error is caught previously and so the following test + ** should always fail. But we will leave it in place just to be safe. + */ + if( pTable->nCol<0 ){ + sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); + return 1; + } + assert( pTable->nCol>=0 ); + + /* If we get this far, it means we need to compute the table names. + ** Note that the call to sqlite3ResultSetOfSelect() will expand any + ** "*" elements in the results set of the view and will assign cursors + ** to the elements of the FROM clause. But we do not want these changes + ** to be permanent. So the computation is done on a copy of the SELECT + ** statement that defines the view. + */ + assert( pTable->pSelect ); + pSel = sqlite3SelectDup(db, pTable->pSelect); + if( pSel ){ + n = pParse->nTab; + sqlite3SrcListAssignCursors(pParse, pSel->pSrc); + pTable->nCol = -1; +#ifndef SQLITE_OMIT_AUTHORIZATION + xAuth = db->xAuth; + db->xAuth = 0; + pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); + db->xAuth = xAuth; +#else + pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); +#endif + pParse->nTab = n; + if( pSelTab ){ + assert( pTable->aCol==0 ); + pTable->nCol = pSelTab->nCol; + pTable->aCol = pSelTab->aCol; + pSelTab->nCol = 0; + pSelTab->aCol = 0; + sqlite3DeleteTable(pSelTab); + pTable->pSchema->flags |= DB_UnresetViews; + }else{ + pTable->nCol = 0; + nErr++; + } + sqlite3SelectDelete(pSel); + } else { + nErr++; + } +#endif /* SQLITE_OMIT_VIEW */ + return nErr; +} +#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ + +#ifndef SQLITE_OMIT_VIEW +/* +** Clear the column names from every VIEW in database idx. +*/ +static void sqliteViewResetAll(sqlite3 *db, int idx){ + HashElem *i; + if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; + for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ + Table *pTab = sqliteHashData(i); + if( pTab->pSelect ){ + sqliteResetColumnNames(pTab); + } + } + DbClearProperty(db, idx, DB_UnresetViews); +} +#else +# define sqliteViewResetAll(A,B) +#endif /* SQLITE_OMIT_VIEW */ + +/* +** This function is called by the VDBE to adjust the internal schema +** used by SQLite when the btree layer moves a table root page. The +** root-page of a table or index in database iDb has changed from iFrom +** to iTo. +** +** Ticket #1728: The symbol table might still contain information +** on tables and/or indices that are the process of being deleted. +** If you are unlucky, one of those deleted indices or tables might +** have the same rootpage number as the real table or index that is +** being moved. So we cannot stop searching after the first match +** because the first match might be for one of the deleted indices +** or tables and not the table/index that is actually being moved. +** We must continue looping until all tables and indices with +** rootpage==iFrom have been converted to have a rootpage of iTo +** in order to be certain that we got the right one. +*/ +#ifndef SQLITE_OMIT_AUTOVACUUM +SQLITE_PRIVATE void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ + HashElem *pElem; + Hash *pHash; + + pHash = &pDb->pSchema->tblHash; + for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ + Table *pTab = sqliteHashData(pElem); + if( pTab->tnum==iFrom ){ + pTab->tnum = iTo; + } + } + pHash = &pDb->pSchema->idxHash; + for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ + Index *pIdx = sqliteHashData(pElem); + if( pIdx->tnum==iFrom ){ + pIdx->tnum = iTo; + } + } +} +#endif + +/* +** Write code to erase the table with root-page iTable from database iDb. +** Also write code to modify the sqlite_master table and internal schema +** if a root-page of another table is moved by the btree-layer whilst +** erasing iTable (this can happen with an auto-vacuum database). +*/ +static void destroyRootPage(Parse *pParse, int iTable, int iDb){ + Vdbe *v = sqlite3GetVdbe(pParse); + int r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); +#ifndef SQLITE_OMIT_AUTOVACUUM + /* OP_Destroy stores an in integer r1. If this integer + ** is non-zero, then it is the root page number of a table moved to + ** location iTable. The following code modifies the sqlite_master table to + ** reflect this. + ** + ** The "#%d" in the SQL is a special constant that means whatever value + ** is on the top of the stack. See sqlite3RegisterExpr(). + */ + sqlite3NestedParse(pParse, + "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", + pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); +#endif + sqlite3ReleaseTempReg(pParse, r1); +} + +/* +** Write VDBE code to erase table pTab and all associated indices on disk. +** Code to update the sqlite_master tables and internal schema definitions +** in case a root-page belonging to another table is moved by the btree layer +** is also added (this can happen with an auto-vacuum database). +*/ +static void destroyTable(Parse *pParse, Table *pTab){ +#ifdef SQLITE_OMIT_AUTOVACUUM + Index *pIdx; + int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + destroyRootPage(pParse, pTab->tnum, iDb); + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + destroyRootPage(pParse, pIdx->tnum, iDb); + } +#else + /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM + ** is not defined), then it is important to call OP_Destroy on the + ** table and index root-pages in order, starting with the numerically + ** largest root-page number. This guarantees that none of the root-pages + ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the + ** following were coded: + ** + ** OP_Destroy 4 0 + ** ... + ** OP_Destroy 5 0 + ** + ** and root page 5 happened to be the largest root-page number in the + ** database, then root page 5 would be moved to page 4 by the + ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit + ** a free-list page. + */ + int iTab = pTab->tnum; + int iDestroyed = 0; + + while( 1 ){ + Index *pIdx; + int iLargest = 0; + + if( iDestroyed==0 || iTab<iDestroyed ){ + iLargest = iTab; + } + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int iIdx = pIdx->tnum; + assert( pIdx->pSchema==pTab->pSchema ); + if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ + iLargest = iIdx; + } + } + if( iLargest==0 ){ + return; + }else{ + int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + destroyRootPage(pParse, iLargest, iDb); + iDestroyed = iLargest; + } + } +#endif +} + +/* +** This routine is called to do the work of a DROP TABLE statement. +** pName is the name of the table to be dropped. +*/ +SQLITE_PRIVATE void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ + Table *pTab; + Vdbe *v; + sqlite3 *db = pParse->db; + int iDb; + + if( pParse->nErr || db->mallocFailed ){ + goto exit_drop_table; + } + assert( pName->nSrc==1 ); + pTab = sqlite3LocateTable(pParse, isView, + pName->a[0].zName, pName->a[0].zDatabase); + + if( pTab==0 ){ + if( noErr ){ + sqlite3ErrorClear(pParse); + } + goto exit_drop_table; + } + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDb>=0 && iDb<db->nDb ); + + /* If pTab is a virtual table, call ViewGetColumnNames() to ensure + ** it is initialized. + */ + if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto exit_drop_table; + } +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code; + const char *zTab = SCHEMA_TABLE(iDb); + const char *zDb = db->aDb[iDb].zName; + const char *zArg2 = 0; + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ + goto exit_drop_table; + } + if( isView ){ + if( !OMIT_TEMPDB && iDb==1 ){ + code = SQLITE_DROP_TEMP_VIEW; + }else{ + code = SQLITE_DROP_VIEW; + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + }else if( IsVirtual(pTab) ){ + code = SQLITE_DROP_VTABLE; + zArg2 = pTab->pMod->zName; +#endif + }else{ + if( !OMIT_TEMPDB && iDb==1 ){ + code = SQLITE_DROP_TEMP_TABLE; + }else{ + code = SQLITE_DROP_TABLE; + } + } + if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ + goto exit_drop_table; + } + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ + goto exit_drop_table; + } + } +#endif + if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ + sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); + goto exit_drop_table; + } + +#ifndef SQLITE_OMIT_VIEW + /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used + ** on a table. + */ + if( isView && pTab->pSelect==0 ){ + sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); + goto exit_drop_table; + } + if( !isView && pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); + goto exit_drop_table; + } +#endif + + /* Generate code to remove the table from the master table + ** on disk. + */ + v = sqlite3GetVdbe(pParse); + if( v ){ + Trigger *pTrigger; + Db *pDb = &db->aDb[iDb]; + sqlite3BeginWriteOperation(pParse, 1, iDb); + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + Vdbe *v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp0(v, OP_VBegin); + } + } +#endif + + /* Drop all triggers associated with the table being dropped. Code + ** is generated to remove entries from sqlite_master and/or + ** sqlite_temp_master if required. + */ + pTrigger = pTab->pTrigger; + while( pTrigger ){ + assert( pTrigger->pSchema==pTab->pSchema || + pTrigger->pSchema==db->aDb[1].pSchema ); + sqlite3DropTriggerPtr(pParse, pTrigger); + pTrigger = pTrigger->pNext; + } + +#ifndef SQLITE_OMIT_AUTOINCREMENT + /* Remove any entries of the sqlite_sequence table associated with + ** the table being dropped. This is done before the table is dropped + ** at the btree level, in case the sqlite_sequence table needs to + ** move as a result of the drop (can happen in auto-vacuum mode). + */ + if( pTab->autoInc ){ + sqlite3NestedParse(pParse, + "DELETE FROM %s.sqlite_sequence WHERE name=%Q", + pDb->zName, pTab->zName + ); + } +#endif + + /* Drop all SQLITE_MASTER table and index entries that refer to the + ** table. The program name loops through the master table and deletes + ** every row that refers to a table of the same name as the one being + ** dropped. Triggers are handled seperately because a trigger can be + ** created in the temp database that refers to a table in another + ** database. + */ + sqlite3NestedParse(pParse, + "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", + pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); + + /* Drop any statistics from the sqlite_stat1 table, if it exists */ + if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ + sqlite3NestedParse(pParse, + "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName + ); + } + + if( !isView && !IsVirtual(pTab) ){ + destroyTable(pParse, pTab); + } + + /* Remove the table entry from SQLite's internal schema and modify + ** the schema cookie. + */ + if( IsVirtual(pTab) ){ + sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); + } + sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); + sqlite3ChangeCookie(pParse, iDb); + } + sqliteViewResetAll(db, iDb); + +exit_drop_table: + sqlite3SrcListDelete(pName); +} + +/* +** This routine is called to create a new foreign key on the table +** currently under construction. pFromCol determines which columns +** in the current table point to the foreign key. If pFromCol==0 then +** connect the key to the last column inserted. pTo is the name of +** the table referred to. pToCol is a list of tables in the other +** pTo table that the foreign key points to. flags contains all +** information about the conflict resolution algorithms specified +** in the ON DELETE, ON UPDATE and ON INSERT clauses. +** +** An FKey structure is created and added to the table currently +** under construction in the pParse->pNewTable field. The new FKey +** is not linked into db->aFKey at this point - that does not happen +** until sqlite3EndTable(). +** +** The foreign key is set for IMMEDIATE processing. A subsequent call +** to sqlite3DeferForeignKey() might change this to DEFERRED. +*/ +SQLITE_PRIVATE void sqlite3CreateForeignKey( + Parse *pParse, /* Parsing context */ + ExprList *pFromCol, /* Columns in this table that point to other table */ + Token *pTo, /* Name of the other table */ + ExprList *pToCol, /* Columns in the other table */ + int flags /* Conflict resolution algorithms. */ +){ +#ifndef SQLITE_OMIT_FOREIGN_KEY + FKey *pFKey = 0; + Table *p = pParse->pNewTable; + int nByte; + int i; + int nCol; + char *z; + + assert( pTo!=0 ); + if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; + if( pFromCol==0 ){ + int iCol = p->nCol-1; + if( iCol<0 ) goto fk_end; + if( pToCol && pToCol->nExpr!=1 ){ + sqlite3ErrorMsg(pParse, "foreign key on %s" + " should reference only one column of table %T", + p->aCol[iCol].zName, pTo); + goto fk_end; + } + nCol = 1; + }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ + sqlite3ErrorMsg(pParse, + "number of columns in foreign key does not match the number of " + "columns in the referenced table"); + goto fk_end; + }else{ + nCol = pFromCol->nExpr; + } + nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; + if( pToCol ){ + for(i=0; i<pToCol->nExpr; i++){ + nByte += strlen(pToCol->a[i].zName) + 1; + } + } + pFKey = sqlite3DbMallocZero(pParse->db, nByte ); + if( pFKey==0 ){ + goto fk_end; + } + pFKey->pFrom = p; + pFKey->pNextFrom = p->pFKey; + z = (char*)&pFKey[1]; + pFKey->aCol = (struct sColMap*)z; + z += sizeof(struct sColMap)*nCol; + pFKey->zTo = z; + memcpy(z, pTo->z, pTo->n); + z[pTo->n] = 0; + z += pTo->n+1; + pFKey->pNextTo = 0; + pFKey->nCol = nCol; + if( pFromCol==0 ){ + pFKey->aCol[0].iFrom = p->nCol-1; + }else{ + for(i=0; i<nCol; i++){ + int j; + for(j=0; j<p->nCol; j++){ + if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ + pFKey->aCol[i].iFrom = j; + break; + } + } + if( j>=p->nCol ){ + sqlite3ErrorMsg(pParse, + "unknown column \"%s\" in foreign key definition", + pFromCol->a[i].zName); + goto fk_end; + } + } + } + if( pToCol ){ + for(i=0; i<nCol; i++){ + int n = strlen(pToCol->a[i].zName); + pFKey->aCol[i].zCol = z; + memcpy(z, pToCol->a[i].zName, n); + z[n] = 0; + z += n+1; + } + } + pFKey->isDeferred = 0; + pFKey->deleteConf = flags & 0xff; + pFKey->updateConf = (flags >> 8 ) & 0xff; + pFKey->insertConf = (flags >> 16 ) & 0xff; + + /* Link the foreign key to the table as the last step. + */ + p->pFKey = pFKey; + pFKey = 0; + +fk_end: + sqlite3_free(pFKey); +#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ + sqlite3ExprListDelete(pFromCol); + sqlite3ExprListDelete(pToCol); +} + +/* +** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED +** clause is seen as part of a foreign key definition. The isDeferred +** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. +** The behavior of the most recently created foreign key is adjusted +** accordingly. +*/ +SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ +#ifndef SQLITE_OMIT_FOREIGN_KEY + Table *pTab; + FKey *pFKey; + if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; + pFKey->isDeferred = isDeferred; +#endif +} + +/* +** Generate code that will erase and refill index *pIdx. This is +** used to initialize a newly created index or to recompute the +** content of an index in response to a REINDEX command. +** +** if memRootPage is not negative, it means that the index is newly +** created. The register specified by memRootPage contains the +** root page number of the index. If memRootPage is negative, then +** the index already exists and must be cleared before being refilled and +** the root page number of the index is taken from pIndex->tnum. +*/ +static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ + Table *pTab = pIndex->pTable; /* The table that is indexed */ + int iTab = pParse->nTab; /* Btree cursor used for pTab */ + int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ + int addr1; /* Address of top of loop */ + int tnum; /* Root page of index */ + Vdbe *v; /* Generate code into this virtual machine */ + KeyInfo *pKey; /* KeyInfo for index */ + int regIdxKey; /* Registers containing the index key */ + int regRecord; /* Register holding assemblied index record */ + sqlite3 *db = pParse->db; /* The database connection */ + int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); + +#ifndef SQLITE_OMIT_AUTHORIZATION + if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, + db->aDb[iDb].zName ) ){ + return; + } +#endif + + /* Require a write-lock on the table to perform this operation */ + sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); + + v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + if( memRootPage>=0 ){ + tnum = memRootPage; + }else{ + tnum = pIndex->tnum; + sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); + } + pKey = sqlite3IndexKeyinfo(pParse, pIndex); + sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, + (char *)pKey, P4_KEYINFO_HANDOFF); + if( memRootPage>=0 ){ + sqlite3VdbeChangeP5(v, 1); + } + sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); + regRecord = sqlite3GetTempReg(pParse); + regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); + if( pIndex->onError!=OE_None ){ + int j1, j2; + int regRowid; + + regRowid = regIdxKey + pIndex->nColumn; + j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn); + j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, + 0, regRowid, (char*)regRecord, P4_INT32); + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0, + "indexed columns are not unique", P4_STATIC); + sqlite3VdbeJumpHere(v, j1); + sqlite3VdbeJumpHere(v, j2); + } + sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); + sqlite3ReleaseTempReg(pParse, regRecord); + sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); + sqlite3VdbeJumpHere(v, addr1); + sqlite3VdbeAddOp1(v, OP_Close, iTab); + sqlite3VdbeAddOp1(v, OP_Close, iIdx); +} + +/* +** Create a new index for an SQL table. pName1.pName2 is the name of the index +** and pTblList is the name of the table that is to be indexed. Both will +** be NULL for a primary key or an index that is created to satisfy a +** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable +** as the table to be indexed. pParse->pNewTable is a table that is +** currently being constructed by a CREATE TABLE statement. +** +** pList is a list of columns to be indexed. pList will be NULL if this +** is a primary key or unique-constraint on the most recent column added +** to the table currently under construction. +*/ +SQLITE_PRIVATE void sqlite3CreateIndex( + Parse *pParse, /* All information about this parse */ + Token *pName1, /* First part of index name. May be NULL */ + Token *pName2, /* Second part of index name. May be NULL */ + SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ + ExprList *pList, /* A list of columns to be indexed */ + int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ + Token *pStart, /* The CREATE token that begins this statement */ + Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ + int sortOrder, /* Sort order of primary key when pList==NULL */ + int ifNotExist /* Omit error if index already exists */ +){ + Table *pTab = 0; /* Table to be indexed */ + Index *pIndex = 0; /* The index to be created */ + char *zName = 0; /* Name of the index */ + int nName; /* Number of characters in zName */ + int i, j; + Token nullId; /* Fake token for an empty ID list */ + DbFixer sFix; /* For assigning database names to pTable */ + int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ + sqlite3 *db = pParse->db; + Db *pDb; /* The specific table containing the indexed database */ + int iDb; /* Index of the database that is being written */ + Token *pName = 0; /* Unqualified name of the index to create */ + struct ExprList_item *pListItem; /* For looping over pList */ + int nCol; + int nExtra = 0; + char *zExtra; + + if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){ + goto exit_create_index; + } + + /* + ** Find the table that is to be indexed. Return early if not found. + */ + if( pTblName!=0 ){ + + /* Use the two-part index name to determine the database + ** to search for the table. 'Fix' the table name to this db + ** before looking up the table. + */ + assert( pName1 && pName2 ); + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); + if( iDb<0 ) goto exit_create_index; + +#ifndef SQLITE_OMIT_TEMPDB + /* If the index name was unqualified, check if the the table + ** is a temp table. If so, set the database to 1. Do not do this + ** if initialising a database schema. + */ + if( !db->init.busy ){ + pTab = sqlite3SrcListLookup(pParse, pTblName); + if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ + iDb = 1; + } + } +#endif + + if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && + sqlite3FixSrcList(&sFix, pTblName) + ){ + /* Because the parser constructs pTblName from a single identifier, + ** sqlite3FixSrcList can never fail. */ + assert(0); + } + pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, + pTblName->a[0].zDatabase); + if( !pTab ) goto exit_create_index; + assert( db->aDb[iDb].pSchema==pTab->pSchema ); + }else{ + assert( pName==0 ); + pTab = pParse->pNewTable; + if( !pTab ) goto exit_create_index; + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + } + pDb = &db->aDb[iDb]; + + if( pTab==0 || pParse->nErr ) goto exit_create_index; + if( pTab->readOnly ){ + sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); + goto exit_create_index; + } +#ifndef SQLITE_OMIT_VIEW + if( pTab->pSelect ){ + sqlite3ErrorMsg(pParse, "views may not be indexed"); + goto exit_create_index; + } +#endif +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); + goto exit_create_index; + } +#endif + + /* + ** Find the name of the index. Make sure there is not already another + ** index or table with the same name. + ** + ** Exception: If we are reading the names of permanent indices from the + ** sqlite_master table (because some other process changed the schema) and + ** one of the index names collides with the name of a temporary table or + ** index, then we will continue to process this index. + ** + ** If pName==0 it means that we are + ** dealing with a primary key or UNIQUE constraint. We have to invent our + ** own name. + */ + if( pName ){ + zName = sqlite3NameFromToken(db, pName); + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; + if( zName==0 ) goto exit_create_index; + if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ + goto exit_create_index; + } + if( !db->init.busy ){ + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; + if( sqlite3FindTable(db, zName, 0)!=0 ){ + sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); + goto exit_create_index; + } + } + if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ + if( !ifNotExist ){ + sqlite3ErrorMsg(pParse, "index %s already exists", zName); + } + goto exit_create_index; + } + }else{ + char zBuf[30]; + int n; + Index *pLoop; + for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} + sqlite3_snprintf(sizeof(zBuf),zBuf,"_%d",n); + zName = 0; + sqlite3SetString(&zName, "sqlite_autoindex_", pTab->zName, zBuf, (char*)0); + if( zName==0 ){ + db->mallocFailed = 1; + goto exit_create_index; + } + } + + /* Check for authorization to create an index. + */ +#ifndef SQLITE_OMIT_AUTHORIZATION + { + const char *zDb = pDb->zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ + goto exit_create_index; + } + i = SQLITE_CREATE_INDEX; + if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; + if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ + goto exit_create_index; + } + } +#endif + + /* If pList==0, it means this routine was called to make a primary + ** key out of the last column added to the table under construction. + ** So create a fake list to simulate this. + */ + if( pList==0 ){ + nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; + nullId.n = strlen((char*)nullId.z); + pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId); + if( pList==0 ) goto exit_create_index; + pList->a[0].sortOrder = sortOrder; + } + + /* Figure out how many bytes of space are required to store explicitly + ** specified collation sequence names. + */ + for(i=0; i<pList->nExpr; i++){ + Expr *pExpr = pList->a[i].pExpr; + if( pExpr ){ + nExtra += (1 + strlen(pExpr->pColl->zName)); + } + } + + /* + ** Allocate the index structure. + */ + nName = strlen(zName); + nCol = pList->nExpr; + pIndex = sqlite3DbMallocZero(db, + sizeof(Index) + /* Index structure */ + sizeof(int)*nCol + /* Index.aiColumn */ + sizeof(int)*(nCol+1) + /* Index.aiRowEst */ + sizeof(char *)*nCol + /* Index.azColl */ + sizeof(u8)*nCol + /* Index.aSortOrder */ + nName + 1 + /* Index.zName */ + nExtra /* Collation sequence names */ + ); + if( db->mallocFailed ){ + goto exit_create_index; + } + pIndex->azColl = (char**)(&pIndex[1]); + pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); + pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); + pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); + pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); + zExtra = (char *)(&pIndex->zName[nName+1]); + memcpy(pIndex->zName, zName, nName+1); + pIndex->pTable = pTab; + pIndex->nColumn = pList->nExpr; + pIndex->onError = onError; + pIndex->autoIndex = pName==0; + pIndex->pSchema = db->aDb[iDb].pSchema; + + /* Check to see if we should honor DESC requests on index columns + */ + if( pDb->pSchema->file_format>=4 ){ + sortOrderMask = -1; /* Honor DESC */ + }else{ + sortOrderMask = 0; /* Ignore DESC */ + } + + /* Scan the names of the columns of the table to be indexed and + ** load the column indices into the Index structure. Report an error + ** if any column is not found. + */ + for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ + const char *zColName = pListItem->zName; + Column *pTabCol; + int requestedSortOrder; + char *zColl; /* Collation sequence name */ + + for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ + if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; + } + if( j>=pTab->nCol ){ + sqlite3ErrorMsg(pParse, "table %s has no column named %s", + pTab->zName, zColName); + goto exit_create_index; + } + /* TODO: Add a test to make sure that the same column is not named + ** more than once within the same index. Only the first instance of + ** the column will ever be used by the optimizer. Note that using the + ** same column more than once cannot be an error because that would + ** break backwards compatibility - it needs to be a warning. + */ + pIndex->aiColumn[i] = j; + if( pListItem->pExpr ){ + assert( pListItem->pExpr->pColl ); + zColl = zExtra; + sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName); + zExtra += (strlen(zColl) + 1); + }else{ + zColl = pTab->aCol[j].zColl; + if( !zColl ){ + zColl = db->pDfltColl->zName; + } + } + if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ + goto exit_create_index; + } + pIndex->azColl[i] = zColl; + requestedSortOrder = pListItem->sortOrder & sortOrderMask; + pIndex->aSortOrder[i] = requestedSortOrder; + } + sqlite3DefaultRowEst(pIndex); + + if( pTab==pParse->pNewTable ){ + /* This routine has been called to create an automatic index as a + ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or + ** a PRIMARY KEY or UNIQUE clause following the column definitions. + ** i.e. one of: + ** + ** CREATE TABLE t(x PRIMARY KEY, y); + ** CREATE TABLE t(x, y, UNIQUE(x, y)); + ** + ** Either way, check to see if the table already has such an index. If + ** so, don't bother creating this one. This only applies to + ** automatically created indices. Users can do as they wish with + ** explicit indices. + */ + Index *pIdx; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + int k; + assert( pIdx->onError!=OE_None ); + assert( pIdx->autoIndex ); + assert( pIndex->onError!=OE_None ); + + if( pIdx->nColumn!=pIndex->nColumn ) continue; + for(k=0; k<pIdx->nColumn; k++){ + const char *z1 = pIdx->azColl[k]; + const char *z2 = pIndex->azColl[k]; + if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; + if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; + if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; + } + if( k==pIdx->nColumn ){ + if( pIdx->onError!=pIndex->onError ){ + /* This constraint creates the same index as a previous + ** constraint specified somewhere in the CREATE TABLE statement. + ** However the ON CONFLICT clauses are different. If both this + ** constraint and the previous equivalent constraint have explicit + ** ON CONFLICT clauses this is an error. Otherwise, use the + ** explicitly specified behaviour for the index. + */ + if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ + sqlite3ErrorMsg(pParse, + "conflicting ON CONFLICT clauses specified", 0); + } + if( pIdx->onError==OE_Default ){ + pIdx->onError = pIndex->onError; + } + } + goto exit_create_index; + } + } + } + + /* Link the new Index structure to its table and to the other + ** in-memory database structures. + */ + if( db->init.busy ){ + Index *p; + p = sqlite3HashInsert(&pIndex->pSchema->idxHash, + pIndex->zName, strlen(pIndex->zName)+1, pIndex); + if( p ){ + assert( p==pIndex ); /* Malloc must have failed */ + db->mallocFailed = 1; + goto exit_create_index; + } + db->flags |= SQLITE_InternChanges; + if( pTblName!=0 ){ + pIndex->tnum = db->init.newTnum; + } + } + + /* If the db->init.busy is 0 then create the index on disk. This + ** involves writing the index into the master table and filling in the + ** index with the current table contents. + ** + ** The db->init.busy is 0 when the user first enters a CREATE INDEX + ** command. db->init.busy is 1 when a database is opened and + ** CREATE INDEX statements are read out of the master table. In + ** the latter case the index already exists on disk, which is why + ** we don't want to recreate it. + ** + ** If pTblName==0 it means this index is generated as a primary key + ** or UNIQUE constraint of a CREATE TABLE statement. Since the table + ** has just been created, it contains no data and the index initialization + ** step can be skipped. + */ + else if( db->init.busy==0 ){ + Vdbe *v; + char *zStmt; + int iMem = ++pParse->nMem; + + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto exit_create_index; + + + /* Create the rootpage for the index + */ + sqlite3BeginWriteOperation(pParse, 1, iDb); + sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); + + /* Gather the complete text of the CREATE INDEX statement into + ** the zStmt variable + */ + if( pStart && pEnd ){ + /* A named index with an explicit CREATE INDEX statement */ + zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", + onError==OE_None ? "" : " UNIQUE", + pEnd->z - pName->z + 1, + pName->z); + }else{ + /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ + /* zStmt = sqlite3MPrintf(""); */ + zStmt = 0; + } + + /* Add an entry in sqlite_master for this index + */ + sqlite3NestedParse(pParse, + "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", + db->aDb[iDb].zName, SCHEMA_TABLE(iDb), + pIndex->zName, + pTab->zName, + iMem, + zStmt + ); + sqlite3_free(zStmt); + + /* Fill the index with data and reparse the schema. Code an OP_Expire + ** to invalidate all pre-compiled statements. + */ + if( pTblName ){ + sqlite3RefillIndex(pParse, pIndex, iMem); + sqlite3ChangeCookie(pParse, iDb); + sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, + sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC); + sqlite3VdbeAddOp1(v, OP_Expire, 0); + } + } + + /* When adding an index to the list of indices for a table, make + ** sure all indices labeled OE_Replace come after all those labeled + ** OE_Ignore. This is necessary for the correct operation of UPDATE + ** and INSERT. + */ + if( db->init.busy || pTblName==0 ){ + if( onError!=OE_Replace || pTab->pIndex==0 + || pTab->pIndex->onError==OE_Replace){ + pIndex->pNext = pTab->pIndex; + pTab->pIndex = pIndex; + }else{ + Index *pOther = pTab->pIndex; + while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ + pOther = pOther->pNext; + } + pIndex->pNext = pOther->pNext; + pOther->pNext = pIndex; + } + pIndex = 0; + } + + /* Clean up before exiting */ +exit_create_index: + if( pIndex ){ + freeIndex(pIndex); + } + sqlite3ExprListDelete(pList); + sqlite3SrcListDelete(pTblName); + sqlite3_free(zName); + return; +} + +/* +** Generate code to make sure the file format number is at least minFormat. +** The generated code will increase the file format number if necessary. +*/ +SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ + Vdbe *v; + v = sqlite3GetVdbe(pParse); + if( v ){ + int r1 = sqlite3GetTempReg(pParse); + int r2 = sqlite3GetTempReg(pParse); + int j1; + sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1); + sqlite3VdbeUsesBtree(v, iDb); + sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); + j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2); + sqlite3VdbeJumpHere(v, j1); + sqlite3ReleaseTempReg(pParse, r1); + sqlite3ReleaseTempReg(pParse, r2); + } +} + +/* +** Fill the Index.aiRowEst[] array with default information - information +** to be used when we have not run the ANALYZE command. +** +** aiRowEst[0] is suppose to contain the number of elements in the index. +** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the +** number of rows in the table that match any particular value of the +** first column of the index. aiRowEst[2] is an estimate of the number +** of rows that match any particular combiniation of the first 2 columns +** of the index. And so forth. It must always be the case that +* +** aiRowEst[N]<=aiRowEst[N-1] +** aiRowEst[N]>=1 +** +** Apart from that, we have little to go on besides intuition as to +** how aiRowEst[] should be initialized. The numbers generated here +** are based on typical values found in actual indices. +*/ +SQLITE_PRIVATE void sqlite3DefaultRowEst(Index *pIdx){ + unsigned *a = pIdx->aiRowEst; + int i; + assert( a!=0 ); + a[0] = 1000000; + for(i=pIdx->nColumn; i>=5; i--){ + a[i] = 5; + } + while( i>=1 ){ + a[i] = 11 - i; + i--; + } + if( pIdx->onError!=OE_None ){ + a[pIdx->nColumn] = 1; + } +} + +/* +** This routine will drop an existing named index. This routine +** implements the DROP INDEX statement. +*/ +SQLITE_PRIVATE void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ + Index *pIndex; + Vdbe *v; + sqlite3 *db = pParse->db; + int iDb; + + if( pParse->nErr || db->mallocFailed ){ + goto exit_drop_index; + } + assert( pName->nSrc==1 ); + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + goto exit_drop_index; + } + pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); + if( pIndex==0 ){ + if( !ifExists ){ + sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); + } + pParse->checkSchema = 1; + goto exit_drop_index; + } + if( pIndex->autoIndex ){ + sqlite3ErrorMsg(pParse, "index associated with UNIQUE " + "or PRIMARY KEY constraint cannot be dropped", 0); + goto exit_drop_index; + } + iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code = SQLITE_DROP_INDEX; + Table *pTab = pIndex->pTable; + const char *zDb = db->aDb[iDb].zName; + const char *zTab = SCHEMA_TABLE(iDb); + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ + goto exit_drop_index; + } + if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; + if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ + goto exit_drop_index; + } + } +#endif + + /* Generate code to remove the index and from the master table */ + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3BeginWriteOperation(pParse, 1, iDb); + sqlite3NestedParse(pParse, + "DELETE FROM %Q.%s WHERE name=%Q", + db->aDb[iDb].zName, SCHEMA_TABLE(iDb), + pIndex->zName + ); + if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ + sqlite3NestedParse(pParse, + "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", + db->aDb[iDb].zName, pIndex->zName + ); + } + sqlite3ChangeCookie(pParse, iDb); + destroyRootPage(pParse, pIndex->tnum, iDb); + sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); + } + +exit_drop_index: + sqlite3SrcListDelete(pName); +} + +/* +** pArray is a pointer to an array of objects. Each object in the +** array is szEntry bytes in size. This routine allocates a new +** object on the end of the array. +** +** *pnEntry is the number of entries already in use. *pnAlloc is +** the previously allocated size of the array. initSize is the +** suggested initial array size allocation. +** +** The index of the new entry is returned in *pIdx. +** +** This routine returns a pointer to the array of objects. This +** might be the same as the pArray parameter or it might be a different +** pointer if the array was resized. +*/ +SQLITE_PRIVATE void *sqlite3ArrayAllocate( + sqlite3 *db, /* Connection to notify of malloc failures */ + void *pArray, /* Array of objects. Might be reallocated */ + int szEntry, /* Size of each object in the array */ + int initSize, /* Suggested initial allocation, in elements */ + int *pnEntry, /* Number of objects currently in use */ + int *pnAlloc, /* Current size of the allocation, in elements */ + int *pIdx /* Write the index of a new slot here */ +){ + char *z; + if( *pnEntry >= *pnAlloc ){ + void *pNew; + int newSize; + newSize = (*pnAlloc)*2 + initSize; + pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); + if( pNew==0 ){ + *pIdx = -1; + return pArray; + } + *pnAlloc = newSize; + pArray = pNew; + } + z = (char*)pArray; + memset(&z[*pnEntry * szEntry], 0, szEntry); + *pIdx = *pnEntry; + ++*pnEntry; + return pArray; +} + +/* +** Append a new element to the given IdList. Create a new IdList if +** need be. +** +** A new IdList is returned, or NULL if malloc() fails. +*/ +SQLITE_PRIVATE IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ + int i; + if( pList==0 ){ + pList = sqlite3DbMallocZero(db, sizeof(IdList) ); + if( pList==0 ) return 0; + pList->nAlloc = 0; + } + pList->a = sqlite3ArrayAllocate( + db, + pList->a, + sizeof(pList->a[0]), + 5, + &pList->nId, + &pList->nAlloc, + &i + ); + if( i<0 ){ + sqlite3IdListDelete(pList); + return 0; + } + pList->a[i].zName = sqlite3NameFromToken(db, pToken); + return pList; +} + +/* +** Delete an IdList. +*/ +SQLITE_PRIVATE void sqlite3IdListDelete(IdList *pList){ + int i; + if( pList==0 ) return; + for(i=0; i<pList->nId; i++){ + sqlite3_free(pList->a[i].zName); + } + sqlite3_free(pList->a); + sqlite3_free(pList); +} + +/* +** Return the index in pList of the identifier named zId. Return -1 +** if not found. +*/ +SQLITE_PRIVATE int sqlite3IdListIndex(IdList *pList, const char *zName){ + int i; + if( pList==0 ) return -1; + for(i=0; i<pList->nId; i++){ + if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; + } + return -1; +} + +/* +** Append a new table name to the given SrcList. Create a new SrcList if +** need be. A new entry is created in the SrcList even if pToken is NULL. +** +** A new SrcList is returned, or NULL if malloc() fails. +** +** If pDatabase is not null, it means that the table has an optional +** database name prefix. Like this: "database.table". The pDatabase +** points to the table name and the pTable points to the database name. +** The SrcList.a[].zName field is filled with the table name which might +** come from pTable (if pDatabase is NULL) or from pDatabase. +** SrcList.a[].zDatabase is filled with the database name from pTable, +** or with NULL if no database is specified. +** +** In other words, if call like this: +** +** sqlite3SrcListAppend(D,A,B,0); +** +** Then B is a table name and the database name is unspecified. If called +** like this: +** +** sqlite3SrcListAppend(D,A,B,C); +** +** Then C is the table name and B is the database name. +*/ +SQLITE_PRIVATE SrcList *sqlite3SrcListAppend( + sqlite3 *db, /* Connection to notify of malloc failures */ + SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ + Token *pTable, /* Table to append */ + Token *pDatabase /* Database of the table */ +){ + struct SrcList_item *pItem; + if( pList==0 ){ + pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); + if( pList==0 ) return 0; + pList->nAlloc = 1; + } + if( pList->nSrc>=pList->nAlloc ){ + SrcList *pNew; + pList->nAlloc *= 2; + pNew = sqlite3DbRealloc(db, pList, + sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); + if( pNew==0 ){ + sqlite3SrcListDelete(pList); + return 0; + } + pList = pNew; + } + pItem = &pList->a[pList->nSrc]; + memset(pItem, 0, sizeof(pList->a[0])); + if( pDatabase && pDatabase->z==0 ){ + pDatabase = 0; + } + if( pDatabase && pTable ){ + Token *pTemp = pDatabase; + pDatabase = pTable; + pTable = pTemp; + } + pItem->zName = sqlite3NameFromToken(db, pTable); + pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); + pItem->iCursor = -1; + pItem->isPopulated = 0; + pList->nSrc++; + return pList; +} + +/* +** Assign cursors to all tables in a SrcList +*/ +SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ + int i; + struct SrcList_item *pItem; + assert(pList || pParse->db->mallocFailed ); + if( pList ){ + for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ + if( pItem->iCursor>=0 ) break; + pItem->iCursor = pParse->nTab++; + if( pItem->pSelect ){ + sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); + } + } + } +} + +/* +** Delete an entire SrcList including all its substructure. +*/ +SQLITE_PRIVATE void sqlite3SrcListDelete(SrcList *pList){ + int i; + struct SrcList_item *pItem; + if( pList==0 ) return; + for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ + sqlite3_free(pItem->zDatabase); + sqlite3_free(pItem->zName); + sqlite3_free(pItem->zAlias); + sqlite3DeleteTable(pItem->pTab); + sqlite3SelectDelete(pItem->pSelect); + sqlite3ExprDelete(pItem->pOn); + sqlite3IdListDelete(pItem->pUsing); + } + sqlite3_free(pList); +} + +/* +** This routine is called by the parser to add a new term to the +** end of a growing FROM clause. The "p" parameter is the part of +** the FROM clause that has already been constructed. "p" is NULL +** if this is the first term of the FROM clause. pTable and pDatabase +** are the name of the table and database named in the FROM clause term. +** pDatabase is NULL if the database name qualifier is missing - the +** usual case. If the term has a alias, then pAlias points to the +** alias token. If the term is a subquery, then pSubquery is the +** SELECT statement that the subquery encodes. The pTable and +** pDatabase parameters are NULL for subqueries. The pOn and pUsing +** parameters are the content of the ON and USING clauses. +** +** Return a new SrcList which encodes is the FROM with the new +** term added. +*/ +SQLITE_PRIVATE SrcList *sqlite3SrcListAppendFromTerm( + Parse *pParse, /* Parsing context */ + SrcList *p, /* The left part of the FROM clause already seen */ + Token *pTable, /* Name of the table to add to the FROM clause */ + Token *pDatabase, /* Name of the database containing pTable */ + Token *pAlias, /* The right-hand side of the AS subexpression */ + Select *pSubquery, /* A subquery used in place of a table name */ + Expr *pOn, /* The ON clause of a join */ + IdList *pUsing /* The USING clause of a join */ +){ + struct SrcList_item *pItem; + sqlite3 *db = pParse->db; + p = sqlite3SrcListAppend(db, p, pTable, pDatabase); + if( p==0 || p->nSrc==0 ){ + sqlite3ExprDelete(pOn); + sqlite3IdListDelete(pUsing); + sqlite3SelectDelete(pSubquery); + return p; + } + pItem = &p->a[p->nSrc-1]; + if( pAlias && pAlias->n ){ + pItem->zAlias = sqlite3NameFromToken(db, pAlias); + } + pItem->pSelect = pSubquery; + pItem->pOn = pOn; + pItem->pUsing = pUsing; + return p; +} + +/* +** When building up a FROM clause in the parser, the join operator +** is initially attached to the left operand. But the code generator +** expects the join operator to be on the right operand. This routine +** Shifts all join operators from left to right for an entire FROM +** clause. +** +** Example: Suppose the join is like this: +** +** A natural cross join B +** +** The operator is "natural cross join". The A and B operands are stored +** in p->a[0] and p->a[1], respectively. The parser initially stores the +** operator with A. This routine shifts that operator over to B. +*/ +SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList *p){ + if( p && p->a ){ + int i; + for(i=p->nSrc-1; i>0; i--){ + p->a[i].jointype = p->a[i-1].jointype; + } + p->a[0].jointype = 0; + } +} + +/* +** Begin a transaction +*/ +SQLITE_PRIVATE void sqlite3BeginTransaction(Parse *pParse, int type){ + sqlite3 *db; + Vdbe *v; + int i; + + if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; + if( pParse->nErr || db->mallocFailed ) return; + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; + + v = sqlite3GetVdbe(pParse); + if( !v ) return; + if( type!=TK_DEFERRED ){ + for(i=0; i<db->nDb; i++){ + sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); + sqlite3VdbeUsesBtree(v, i); + } + } + sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); +} + +/* +** Commit a transaction +*/ +SQLITE_PRIVATE void sqlite3CommitTransaction(Parse *pParse){ + sqlite3 *db; + Vdbe *v; + + if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; + if( pParse->nErr || db->mallocFailed ) return; + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; + + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); + } +} + +/* +** Rollback a transaction +*/ +SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse *pParse){ + sqlite3 *db; + Vdbe *v; + + if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; + if( pParse->nErr || db->mallocFailed ) return; + if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; + + v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); + } +} + +/* +** Make sure the TEMP database is open and available for use. Return +** the number of errors. Leave any error messages in the pParse structure. +*/ +SQLITE_PRIVATE int sqlite3OpenTempDatabase(Parse *pParse){ + sqlite3 *db = pParse->db; + if( db->aDb[1].pBt==0 && !pParse->explain ){ + int rc; + static const int flags = + SQLITE_OPEN_READWRITE | + SQLITE_OPEN_CREATE | + SQLITE_OPEN_EXCLUSIVE | + SQLITE_OPEN_DELETEONCLOSE | + SQLITE_OPEN_TEMP_DB; + + rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags, + &db->aDb[1].pBt); + if( rc!=SQLITE_OK ){ + sqlite3ErrorMsg(pParse, "unable to open a temporary database " + "file for storing temporary tables"); + pParse->rc = rc; + return 1; + } + assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit ); + assert( db->aDb[1].pSchema ); + sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt), + db->dfltJournalMode); + } + return 0; +} + +/* +** Generate VDBE code that will verify the schema cookie and start +** a read-transaction for all named database files. +** +** It is important that all schema cookies be verified and all +** read transactions be started before anything else happens in +** the VDBE program. But this routine can be called after much other +** code has been generated. So here is what we do: +** +** The first time this routine is called, we code an OP_Goto that +** will jump to a subroutine at the end of the program. Then we +** record every database that needs its schema verified in the +** pParse->cookieMask field. Later, after all other code has been +** generated, the subroutine that does the cookie verifications and +** starts the transactions will be coded and the OP_Goto P2 value +** will be made to point to that subroutine. The generation of the +** cookie verification subroutine code happens in sqlite3FinishCoding(). +** +** If iDb<0 then code the OP_Goto only - don't set flag to verify the +** schema on any databases. This can be used to position the OP_Goto +** early in the code, before we know if any database tables will be used. +*/ +SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ + sqlite3 *db; + Vdbe *v; + int mask; + + v = sqlite3GetVdbe(pParse); + if( v==0 ) return; /* This only happens if there was a prior error */ + db = pParse->db; + if( pParse->cookieGoto==0 ){ + pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; + } + if( iDb>=0 ){ + assert( iDb<db->nDb ); + assert( db->aDb[iDb].pBt!=0 || iDb==1 ); + assert( iDb<SQLITE_MAX_ATTACHED+2 ); + mask = 1<<iDb; + if( (pParse->cookieMask & mask)==0 ){ + pParse->cookieMask |= mask; + pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; + if( !OMIT_TEMPDB && iDb==1 ){ + sqlite3OpenTempDatabase(pParse); + } + } + } +} + +/* +** Generate VDBE code that prepares for doing an operation that +** might change the database. +** +** This routine starts a new transaction if we are not already within +** a transaction. If we are already within a transaction, then a checkpoint +** is set if the setStatement parameter is true. A checkpoint should +** be set for operations that might fail (due to a constraint) part of +** the way through and which will need to undo some writes without having to +** rollback the whole transaction. For operations where all constraints +** can be checked before any changes are made to the database, it is never +** necessary to undo a write and the checkpoint should not be set. +** +** Only database iDb and the temp database are made writable by this call. +** If iDb==0, then the main and temp databases are made writable. If +** iDb==1 then only the temp database is made writable. If iDb>1 then the +** specified auxiliary database and the temp database are made writable. +*/ +SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ + Vdbe *v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + sqlite3CodeVerifySchema(pParse, iDb); + pParse->writeMask |= 1<<iDb; + if( setStatement && pParse->nested==0 ){ + sqlite3VdbeAddOp1(v, OP_Statement, iDb); + } + if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ + sqlite3BeginWriteOperation(pParse, setStatement, 1); + } +} + +/* +** Check to see if pIndex uses the collating sequence pColl. Return +** true if it does and false if it does not. +*/ +#ifndef SQLITE_OMIT_REINDEX +static int collationMatch(const char *zColl, Index *pIndex){ + int i; + for(i=0; i<pIndex->nColumn; i++){ + const char *z = pIndex->azColl[i]; + if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ + return 1; + } + } + return 0; +} +#endif + +/* +** Recompute all indices of pTab that use the collating sequence pColl. +** If pColl==0 then recompute all indices of pTab. +*/ +#ifndef SQLITE_OMIT_REINDEX +static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ + Index *pIndex; /* An index associated with pTab */ + + for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ + if( zColl==0 || collationMatch(zColl, pIndex) ){ + int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3RefillIndex(pParse, pIndex, -1); + } + } +} +#endif + +/* +** Recompute all indices of all tables in all databases where the +** indices use the collating sequence pColl. If pColl==0 then recompute +** all indices everywhere. +*/ +#ifndef SQLITE_OMIT_REINDEX +static void reindexDatabases(Parse *pParse, char const *zColl){ + Db *pDb; /* A single database */ + int iDb; /* The database index number */ + sqlite3 *db = pParse->db; /* The database connection */ + HashElem *k; /* For looping over tables in pDb */ + Table *pTab; /* A table in the database */ + + for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ + assert( pDb!=0 ); + for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ + pTab = (Table*)sqliteHashData(k); + reindexTable(pParse, pTab, zColl); + } + } +} +#endif + +/* +** Generate code for the REINDEX command. +** +** REINDEX -- 1 +** REINDEX <collation> -- 2 +** REINDEX ?<database>.?<tablename> -- 3 +** REINDEX ?<database>.?<indexname> -- 4 +** +** Form 1 causes all indices in all attached databases to be rebuilt. +** Form 2 rebuilds all indices in all databases that use the named +** collating function. Forms 3 and 4 rebuild the named index or all +** indices associated with the named table. +*/ +#ifndef SQLITE_OMIT_REINDEX +SQLITE_PRIVATE void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ + CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ + char *z; /* Name of a table or index */ + const char *zDb; /* Name of the database */ + Table *pTab; /* A table in the database */ + Index *pIndex; /* An index associated with pTab */ + int iDb; /* The database index number */ + sqlite3 *db = pParse->db; /* The database connection */ + Token *pObjName; /* Name of the table or index to be reindexed */ + + /* Read the database schema. If an error occurs, leave an error message + ** and code in pParse and return NULL. */ + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + return; + } + + if( pName1==0 || pName1->z==0 ){ + reindexDatabases(pParse, 0); + return; + }else if( pName2==0 || pName2->z==0 ){ + char *zColl; + assert( pName1->z ); + zColl = sqlite3NameFromToken(pParse->db, pName1); + if( !zColl ) return; + pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0); + if( pColl ){ + if( zColl ){ + reindexDatabases(pParse, zColl); + sqlite3_free(zColl); + } + return; + } + sqlite3_free(zColl); + } + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); + if( iDb<0 ) return; + z = sqlite3NameFromToken(db, pObjName); + if( z==0 ) return; + zDb = db->aDb[iDb].zName; + pTab = sqlite3FindTable(db, z, zDb); + if( pTab ){ + reindexTable(pParse, pTab, 0); + sqlite3_free(z); + return; + } + pIndex = sqlite3FindIndex(db, z, zDb); + sqlite3_free(z); + if( pIndex ){ + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3RefillIndex(pParse, pIndex, -1); + return; + } + sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); +} +#endif + +/* +** Return a dynamicly allocated KeyInfo structure that can be used +** with OP_OpenRead or OP_OpenWrite to access database index pIdx. +** +** If successful, a pointer to the new structure is returned. In this case +** the caller is responsible for calling sqlite3_free() on the returned +** pointer. If an error occurs (out of memory or missing collation +** sequence), NULL is returned and the state of pParse updated to reflect +** the error. +*/ +SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ + int i; + int nCol = pIdx->nColumn; + int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; + KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(pParse->db, nBytes); + + if( pKey ){ + pKey->db = pParse->db; + pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); + assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); + for(i=0; i<nCol; i++){ + char *zColl = pIdx->azColl[i]; + assert( zColl ); + pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); + pKey->aSortOrder[i] = pIdx->aSortOrder[i]; + } + pKey->nField = nCol; + } + + if( pParse->nErr ){ + sqlite3_free(pKey); + pKey = 0; + } + return pKey; +} + +/************** End of build.c ***********************************************/ +/************** Begin file callback.c ****************************************/ +/* +** 2005 May 23 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** This file contains functions used to access the internal hash tables +** of user defined functions and collation sequences. +** +** $Id: callback.c,v 1.23 2007/08/29 12:31:26 danielk1977 Exp $ +*/ + + +/* +** Invoke the 'collation needed' callback to request a collation sequence +** in the database text encoding of name zName, length nName. +** If the collation sequence +*/ +static void callCollNeeded(sqlite3 *db, const char *zName, int nName){ + assert( !db->xCollNeeded || !db->xCollNeeded16 ); + if( nName<0 ) nName = strlen(zName); + if( db->xCollNeeded ){ + char *zExternal = sqlite3DbStrNDup(db, zName, nName); + if( !zExternal ) return; + db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal); + sqlite3_free(zExternal); + } +#ifndef SQLITE_OMIT_UTF16 + if( db->xCollNeeded16 ){ + char const *zExternal; + sqlite3_value *pTmp = sqlite3ValueNew(db); + sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC); + zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); + if( zExternal ){ + db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal); + } + sqlite3ValueFree(pTmp); + } +#endif +} + +/* +** This routine is called if the collation factory fails to deliver a +** collation function in the best encoding but there may be other versions +** of this collation function (for other text encodings) available. Use one +** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if +** possible. +*/ +static int synthCollSeq(sqlite3 *db, CollSeq *pColl){ + CollSeq *pColl2; + char *z = pColl->zName; + int n = strlen(z); + int i; + static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 }; + for(i=0; i<3; i++){ + pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0); + if( pColl2->xCmp!=0 ){ + memcpy(pColl, pColl2, sizeof(CollSeq)); + pColl->xDel = 0; /* Do not copy the destructor */ + return SQLITE_OK; + } + } + return SQLITE_ERROR; +} + +/* +** This function is responsible for invoking the collation factory callback +** or substituting a collation sequence of a different encoding when the +** requested collation sequence is not available in the database native +** encoding. +** +** If it is not NULL, then pColl must point to the database native encoding +** collation sequence with name zName, length nName. +** +** The return value is either the collation sequence to be used in database +** db for collation type name zName, length nName, or NULL, if no collation +** sequence can be found. +*/ +SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq( + sqlite3* db, + CollSeq *pColl, + const char *zName, + int nName +){ + CollSeq *p; + + p = pColl; + if( !p ){ + p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0); + } + if( !p || !p->xCmp ){ + /* No collation sequence of this type for this encoding is registered. + ** Call the collation factory to see if it can supply us with one. + */ + callCollNeeded(db, zName, nName); + p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0); + } + if( p && !p->xCmp && synthCollSeq(db, p) ){ + p = 0; + } + assert( !p || p->xCmp ); + return p; +} + +/* +** This routine is called on a collation sequence before it is used to +** check that it is defined. An undefined collation sequence exists when +** a database is loaded that contains references to collation sequences +** that have not been defined by sqlite3_create_collation() etc. +** +** If required, this routine calls the 'collation needed' callback to +** request a definition of the collating sequence. If this doesn't work, +** an equivalent collating sequence that uses a text encoding different +** from the main database is substituted, if one is available. +*/ +SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ + if( pColl ){ + const char *zName = pColl->zName; + CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1); + if( !p ){ + if( pParse->nErr==0 ){ + sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); + } + pParse->nErr++; + return SQLITE_ERROR; + } + assert( p==pColl ); + } + return SQLITE_OK; +} + + + +/* +** Locate and return an entry from the db.aCollSeq hash table. If the entry +** specified by zName and nName is not found and parameter 'create' is +** true, then create a new entry. Otherwise return NULL. +** +** Each pointer stored in the sqlite3.aCollSeq hash table contains an +** array of three CollSeq structures. The first is the collation sequence +** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be. +** +** Stored immediately after the three collation sequences is a copy of +** the collation sequence name. A pointer to this string is stored in +** each collation sequence structure. +*/ +static CollSeq *findCollSeqEntry( + sqlite3 *db, + const char *zName, + int nName, + int create +){ + CollSeq *pColl; + if( nName<0 ) nName = strlen(zName); + pColl = sqlite3HashFind(&db->aCollSeq, zName, nName); + + if( 0==pColl && create ){ + pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 ); + if( pColl ){ + CollSeq *pDel = 0; + pColl[0].zName = (char*)&pColl[3]; + pColl[0].enc = SQLITE_UTF8; + pColl[1].zName = (char*)&pColl[3]; + pColl[1].enc = SQLITE_UTF16LE; + pColl[2].zName = (char*)&pColl[3]; + pColl[2].enc = SQLITE_UTF16BE; + memcpy(pColl[0].zName, zName, nName); + pColl[0].zName[nName] = 0; + pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl); + + /* If a malloc() failure occured in sqlite3HashInsert(), it will + ** return the pColl pointer to be deleted (because it wasn't added + ** to the hash table). + */ + assert( pDel==0 || pDel==pColl ); + if( pDel!=0 ){ + db->mallocFailed = 1; + sqlite3_free(pDel); + pColl = 0; + } + } + } + return pColl; +} + +/* +** Parameter zName points to a UTF-8 encoded string nName bytes long. +** Return the CollSeq* pointer for the collation sequence named zName +** for the encoding 'enc' from the database 'db'. +** +** If the entry specified is not found and 'create' is true, then create a +** new entry. Otherwise return NULL. +** +** A separate function sqlite3LocateCollSeq() is a wrapper around +** this routine. sqlite3LocateCollSeq() invokes the collation factory +** if necessary and generates an error message if the collating sequence +** cannot be found. +*/ +SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq( + sqlite3 *db, + u8 enc, + const char *zName, + int nName, + int create +){ + CollSeq *pColl; + if( zName ){ + pColl = findCollSeqEntry(db, zName, nName, create); + }else{ + pColl = db->pDfltColl; + } + assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); + assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE ); + if( pColl ) pColl += enc-1; + return pColl; +} + +/* +** Locate a user function given a name, a number of arguments and a flag +** indicating whether the function prefers UTF-16 over UTF-8. Return a +** pointer to the FuncDef structure that defines that function, or return +** NULL if the function does not exist. +** +** If the createFlag argument is true, then a new (blank) FuncDef +** structure is created and liked into the "db" structure if a +** no matching function previously existed. When createFlag is true +** and the nArg parameter is -1, then only a function that accepts +** any number of arguments will be returned. +** +** If createFlag is false and nArg is -1, then the first valid +** function found is returned. A function is valid if either xFunc +** or xStep is non-zero. +** +** If createFlag is false, then a function with the required name and +** number of arguments may be returned even if the eTextRep flag does not +** match that requested. +*/ +SQLITE_PRIVATE FuncDef *sqlite3FindFunction( + sqlite3 *db, /* An open database */ + const char *zName, /* Name of the function. Not null-terminated */ + int nName, /* Number of characters in the name */ + int nArg, /* Number of arguments. -1 means any number */ + u8 enc, /* Preferred text encoding */ + int createFlag /* Create new entry if true and does not otherwise exist */ +){ + FuncDef *p; /* Iterator variable */ + FuncDef *pFirst; /* First function with this name */ + FuncDef *pBest = 0; /* Best match found so far */ + int bestmatch = 0; + + + assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); + if( nArg<-1 ) nArg = -1; + + pFirst = (FuncDef*)sqlite3HashFind(&db->aFunc, zName, nName); + for(p=pFirst; p; p=p->pNext){ + /* During the search for the best function definition, bestmatch is set + ** as follows to indicate the quality of the match with the definition + ** pointed to by pBest: + ** + ** 0: pBest is NULL. No match has been found. + ** 1: A variable arguments function that prefers UTF-8 when a UTF-16 + ** encoding is requested, or vice versa. + ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is + ** requested, or vice versa. + ** 3: A variable arguments function using the same text encoding. + ** 4: A function with the exact number of arguments requested that + ** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa. + ** 5: A function with the exact number of arguments requested that + ** prefers UTF-16LE when UTF-16BE is requested, or vice versa. + ** 6: An exact match. + ** + ** A larger value of 'matchqual' indicates a more desirable match. + */ + if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){ + int match = 1; /* Quality of this match */ + if( p->nArg==nArg || nArg==-1 ){ + match = 4; + } + if( enc==p->iPrefEnc ){ + match += 2; + } + else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) || + (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){ + match += 1; + } + + if( match>bestmatch ){ + pBest = p; + bestmatch = match; + } + } + } + + /* If the createFlag parameter is true, and the seach did not reveal an + ** exact match for the name, number of arguments and encoding, then add a + ** new entry to the hash table and return it. + */ + if( createFlag && bestmatch<6 && + (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName))!=0 ){ + pBest->nArg = nArg; + pBest->pNext = pFirst; + pBest->iPrefEnc = enc; + memcpy(pBest->zName, zName, nName); + pBest->zName[nName] = 0; + if( pBest==sqlite3HashInsert(&db->aFunc,pBest->zName,nName,(void*)pBest) ){ + db->mallocFailed = 1; + sqlite3_free(pBest); + return 0; + } + } + + if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){ + return pBest; + } + return 0; +} + +/* +** Free all resources held by the schema structure. The void* argument points +** at a Schema struct. This function does not call sqlite3_free() on the +** pointer itself, it just cleans up subsiduary resources (i.e. the contents +** of the schema hash tables). +*/ +SQLITE_PRIVATE void sqlite3SchemaFree(void *p){ + Hash temp1; + Hash temp2; + HashElem *pElem; + Schema *pSchema = (Schema *)p; + + temp1 = pSchema->tblHash; + temp2 = pSchema->trigHash; + sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0); + sqlite3HashClear(&pSchema->aFKey); + sqlite3HashClear(&pSchema->idxHash); + for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ + sqlite3DeleteTrigger((Trigger*)sqliteHashData(pElem)); + } + sqlite3HashClear(&temp2); + sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0); + for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ + Table *pTab = sqliteHashData(pElem); + sqlite3DeleteTable(pTab); + } + sqlite3HashClear(&temp1); + pSchema->pSeqTab = 0; + pSchema->flags &= ~DB_SchemaLoaded; +} + +/* +** Find and return the schema associated with a BTree. Create +** a new one if necessary. +*/ +SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ + Schema * p; + if( pBt ){ + p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree); + }else{ + p = (Schema *)sqlite3MallocZero(sizeof(Schema)); + } + if( !p ){ + db->mallocFailed = 1; + }else if ( 0==p->file_format ){ + sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1); + p->enc = SQLITE_UTF8; + } + return p; +} + +/************** End of callback.c ********************************************/ +/************** Begin file delete.c ******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** in order to generate code for DELETE FROM statements. +** +** $Id: delete.c,v 1.169 2008/04/28 18:46:43 drh Exp $ +*/ + +/* +** Look up every table that is named in pSrc. If any table is not found, +** add an error message to pParse->zErrMsg and return NULL. If all tables +** are found, return a pointer to the last table. +*/ +SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse *pParse, SrcList *pSrc){ + Table *pTab = 0; + int i; + struct SrcList_item *pItem; + for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ + pTab = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); + sqlite3DeleteTable(pItem->pTab); + pItem->pTab = pTab; + if( pTab ){ + pTab->nRef++; + } + } + return pTab; +} + +/* +** Check to make sure the given table is writable. If it is not +** writable, generate an error message and return 1. If it is +** writable return 0; +*/ +SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){ + if( (pTab->readOnly && (pParse->db->flags & SQLITE_WriteSchema)==0 + && pParse->nested==0) +#ifndef SQLITE_OMIT_VIRTUALTABLE + || (pTab->pMod && pTab->pMod->pModule->xUpdate==0) +#endif + ){ + sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName); + return 1; + } +#ifndef SQLITE_OMIT_VIEW + if( !viewOk && pTab->pSelect ){ + sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName); + return 1; + } +#endif + return 0; +} + +/* +** Generate code that will open a table for reading. +*/ +SQLITE_PRIVATE void sqlite3OpenTable( + Parse *p, /* Generate code into this VDBE */ + int iCur, /* The cursor number of the table */ + int iDb, /* The database index in sqlite3.aDb[] */ + Table *pTab, /* The table to be opened */ + int opcode /* OP_OpenRead or OP_OpenWrite */ +){ + Vdbe *v; + if( IsVirtual(pTab) ) return; + v = sqlite3GetVdbe(p); + assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); + sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite), pTab->zName); + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol); + sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); + VdbeComment((v, "%s", pTab->zName)); +} + + +#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) +/* +** Evaluate a view and store its result in an ephemeral table. The +** pWhere argument is an optional WHERE clause that restricts the +** set of rows in the view that are to be added to the ephemeral table. +*/ +SQLITE_PRIVATE void sqlite3MaterializeView( + Parse *pParse, /* Parsing context */ + Select *pView, /* View definition */ + Expr *pWhere, /* Optional WHERE clause to be added */ + int iCur /* Cursor number for ephemerial table */ +){ + SelectDest dest; + Select *pDup; + sqlite3 *db = pParse->db; + + pDup = sqlite3SelectDup(db, pView); + if( pWhere ){ + SrcList *pFrom; + + pWhere = sqlite3ExprDup(db, pWhere); + pFrom = sqlite3SrcListAppendFromTerm(pParse, 0, 0, 0, 0, pDup, 0, 0); + pDup = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0); + } + sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur); + sqlite3Select(pParse, pDup, &dest, 0, 0, 0, 0); + sqlite3SelectDelete(pDup); +} +#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */ + + +/* +** Generate code for a DELETE FROM statement. +** +** DELETE FROM table_wxyz WHERE a<5 AND b NOT NULL; +** \________/ \________________/ +** pTabList pWhere +*/ +SQLITE_PRIVATE void sqlite3DeleteFrom( + Parse *pParse, /* The parser context */ + SrcList *pTabList, /* The table from which we should delete things */ + Expr *pWhere /* The WHERE clause. May be null */ +){ + Vdbe *v; /* The virtual database engine */ + Table *pTab; /* The table from which records will be deleted */ + const char *zDb; /* Name of database holding pTab */ + int end, addr = 0; /* A couple addresses of generated code */ + int i; /* Loop counter */ + WhereInfo *pWInfo; /* Information about the WHERE clause */ + Index *pIdx; /* For looping over indices of the table */ + int iCur; /* VDBE Cursor number for pTab */ + sqlite3 *db; /* Main database structure */ + AuthContext sContext; /* Authorization context */ + int oldIdx = -1; /* Cursor for the OLD table of AFTER triggers */ + NameContext sNC; /* Name context to resolve expressions in */ + int iDb; /* Database number */ + int memCnt = 0; /* Memory cell used for change counting */ + +#ifndef SQLITE_OMIT_TRIGGER + int isView; /* True if attempting to delete from a view */ + int triggers_exist = 0; /* True if any triggers exist */ +#endif + int iBeginAfterTrigger; /* Address of after trigger program */ + int iEndAfterTrigger; /* Exit of after trigger program */ + int iBeginBeforeTrigger; /* Address of before trigger program */ + int iEndBeforeTrigger; /* Exit of before trigger program */ + u32 old_col_mask = 0; /* Mask of OLD.* columns in use */ + + sContext.pParse = 0; + db = pParse->db; + if( pParse->nErr || db->mallocFailed ){ + goto delete_from_cleanup; + } + assert( pTabList->nSrc==1 ); + + /* Locate the table which we want to delete. This table has to be + ** put in an SrcList structure because some of the subroutines we + ** will be calling are designed to work with multiple tables and expect + ** an SrcList* parameter instead of just a Table* parameter. + */ + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ) goto delete_from_cleanup; + + /* Figure out if we have any triggers and if the table being + ** deleted from is a view + */ +#ifndef SQLITE_OMIT_TRIGGER + triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0); + isView = pTab->pSelect!=0; +#else +# define triggers_exist 0 +# define isView 0 +#endif +#ifdef SQLITE_OMIT_VIEW +# undef isView +# define isView 0 +#endif + + if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ + goto delete_from_cleanup; + } + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDb<db->nDb ); + zDb = db->aDb[iDb].zName; + if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ + goto delete_from_cleanup; + } + + /* If pTab is really a view, make sure it has been initialized. + */ + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto delete_from_cleanup; + } + + /* Allocate a cursor used to store the old.* data for a trigger. + */ + if( triggers_exist ){ + oldIdx = pParse->nTab++; + } + + /* Assign cursor number to the table and all its indices. + */ + assert( pTabList->nSrc==1 ); + iCur = pTabList->a[0].iCursor = pParse->nTab++; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + pParse->nTab++; + } + + /* Start the view context + */ + if( isView ){ + sqlite3AuthContextPush(pParse, &sContext, pTab->zName); + } + + /* Begin generating code. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ){ + goto delete_from_cleanup; + } + if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, triggers_exist, iDb); + + if( triggers_exist ){ + int orconf = ((pParse->trigStack)?pParse->trigStack->orconf:OE_Default); + int iGoto = sqlite3VdbeAddOp0(v, OP_Goto); + addr = sqlite3VdbeMakeLabel(v); + + iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v); + (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_BEFORE, pTab, + -1, oldIdx, orconf, addr, &old_col_mask, 0); + iEndBeforeTrigger = sqlite3VdbeAddOp0(v, OP_Goto); + + iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v); + (void)sqlite3CodeRowTrigger(pParse, TK_DELETE, 0, TRIGGER_AFTER, pTab, -1, + oldIdx, orconf, addr, &old_col_mask, 0); + iEndAfterTrigger = sqlite3VdbeAddOp0(v, OP_Goto); + + sqlite3VdbeJumpHere(v, iGoto); + } + + /* If we are trying to delete from a view, realize that view into + ** a ephemeral table. + */ + if( isView ){ + sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur); + } + + /* Resolve the column names in the WHERE clause. + */ + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + sNC.pSrcList = pTabList; + if( sqlite3ExprResolveNames(&sNC, pWhere) ){ + goto delete_from_cleanup; + } + + /* Initialize the counter of the number of rows deleted, if + ** we are counting rows. + */ + if( db->flags & SQLITE_CountRows ){ + memCnt = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, memCnt); + } + + /* Special case: A DELETE without a WHERE clause deletes everything. + ** It is easier just to erase the whole table. Note, however, that + ** this means that the row change count will be incorrect. + */ + if( pWhere==0 && !triggers_exist && !IsVirtual(pTab) ){ + if( db->flags & SQLITE_CountRows ){ + /* If counting rows deleted, just count the total number of + ** entries in the table. */ + int addr2; + if( !isView ){ + sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); + } + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, sqlite3VdbeCurrentAddr(v)+2); + addr2 = sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); + sqlite3VdbeAddOp2(v, OP_Next, iCur, addr2); + sqlite3VdbeAddOp1(v, OP_Close, iCur); + } + if( !isView ){ + sqlite3VdbeAddOp2(v, OP_Clear, pTab->tnum, iDb); + if( !pParse->nested ){ + sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); + } + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + assert( pIdx->pSchema==pTab->pSchema ); + sqlite3VdbeAddOp2(v, OP_Clear, pIdx->tnum, iDb); + } + } + } + /* The usual case: There is a WHERE clause so we have to scan through + ** the table and pick which records to delete. + */ + else{ + int iRowid = ++pParse->nMem; /* Used for storing rowid values. */ + + /* Begin the database scan + */ + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0); + if( pWInfo==0 ) goto delete_from_cleanup; + + /* Remember the rowid of every item to be deleted. + */ + sqlite3VdbeAddOp2(v, IsVirtual(pTab) ? OP_VRowid : OP_Rowid, iCur, iRowid); + sqlite3VdbeAddOp1(v, OP_FifoWrite, iRowid); + if( db->flags & SQLITE_CountRows ){ + sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); + } + + /* End the database scan loop. + */ + sqlite3WhereEnd(pWInfo); + + /* Open the pseudo-table used to store OLD if there are triggers. + */ + if( triggers_exist ){ + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol); + sqlite3VdbeAddOp1(v, OP_OpenPseudo, oldIdx); + } + + /* Delete every item whose key was written to the list during the + ** database scan. We have to delete items after the scan is complete + ** because deleting an item can change the scan order. + */ + end = sqlite3VdbeMakeLabel(v); + + if( !isView ){ + /* Open cursors for the table we are deleting from and + ** all its indices. + */ + sqlite3OpenTableAndIndices(pParse, pTab, iCur, OP_OpenWrite); + } + + /* This is the beginning of the delete loop. If a trigger encounters + ** an IGNORE constraint, it jumps back to here. + */ + if( triggers_exist ){ + sqlite3VdbeResolveLabel(v, addr); + } + addr = sqlite3VdbeAddOp2(v, OP_FifoRead, iRowid, end); + + if( triggers_exist ){ + int iData = ++pParse->nMem; /* For storing row data of OLD table */ + + /* If the record is no longer present in the table, jump to the + ** next iteration of the loop through the contents of the fifo. + */ + sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, iRowid); + + /* Populate the OLD.* pseudo-table */ + if( old_col_mask ){ + sqlite3VdbeAddOp2(v, OP_RowData, iCur, iData); + }else{ + sqlite3VdbeAddOp2(v, OP_Null, 0, iData); + } + sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, iData, iRowid); + + /* Jump back and run the BEFORE triggers */ + sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger); + sqlite3VdbeJumpHere(v, iEndBeforeTrigger); + } + + if( !isView ){ + /* Delete the row */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + const char *pVtab = (const char *)pTab->pVtab; + sqlite3VtabMakeWritable(pParse, pTab); + sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iRowid, pVtab, P4_VTAB); + }else +#endif + { + sqlite3GenerateRowDelete(pParse, pTab, iCur, iRowid, pParse->nested==0); + } + } + + /* If there are row triggers, close all cursors then invoke + ** the AFTER triggers + */ + if( triggers_exist ){ + /* Jump back and run the AFTER triggers */ + sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger); + sqlite3VdbeJumpHere(v, iEndAfterTrigger); + } + + /* End of the delete loop */ + sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); + sqlite3VdbeResolveLabel(v, end); + + /* Close the cursors after the loop if there are no row triggers */ + if( !isView && !IsVirtual(pTab) ){ + for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ + sqlite3VdbeAddOp2(v, OP_Close, iCur + i, pIdx->tnum); + } + sqlite3VdbeAddOp1(v, OP_Close, iCur); + } + } + + /* + ** Return the number of rows that were deleted. If this routine is + ** generating code because of a call to sqlite3NestedParse(), do not + ** invoke the callback function. + */ + if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ + sqlite3VdbeAddOp2(v, OP_ResultRow, memCnt, 1); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows deleted", P4_STATIC); + } + +delete_from_cleanup: + sqlite3AuthContextPop(&sContext); + sqlite3SrcListDelete(pTabList); + sqlite3ExprDelete(pWhere); + return; +} + +/* +** This routine generates VDBE code that causes a single row of a +** single table to be deleted. +** +** The VDBE must be in a particular state when this routine is called. +** These are the requirements: +** +** 1. A read/write cursor pointing to pTab, the table containing the row +** to be deleted, must be opened as cursor number "base". +** +** 2. Read/write cursors for all indices of pTab must be open as +** cursor number base+i for the i-th index. +** +** 3. The record number of the row to be deleted must be stored in +** memory cell iRowid. +** +** This routine pops the top of the stack to remove the record number +** and then generates code to remove both the table record and all index +** entries that point to that record. +*/ +SQLITE_PRIVATE void sqlite3GenerateRowDelete( + Parse *pParse, /* Parsing context */ + Table *pTab, /* Table containing the row to be deleted */ + int iCur, /* Cursor number for the table */ + int iRowid, /* Memory cell that contains the rowid to delete */ + int count /* Increment the row change counter */ +){ + int addr; + Vdbe *v; + + v = pParse->pVdbe; + addr = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowid); + sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, 0); + sqlite3VdbeAddOp2(v, OP_Delete, iCur, (count?OPFLAG_NCHANGE:0)); + if( count ){ + sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); + } + sqlite3VdbeJumpHere(v, addr); +} + +/* +** This routine generates VDBE code that causes the deletion of all +** index entries associated with a single row of a single table. +** +** The VDBE must be in a particular state when this routine is called. +** These are the requirements: +** +** 1. A read/write cursor pointing to pTab, the table containing the row +** to be deleted, must be opened as cursor number "iCur". +** +** 2. Read/write cursors for all indices of pTab must be open as +** cursor number iCur+i for the i-th index. +** +** 3. The "iCur" cursor must be pointing to the row that is to be +** deleted. +*/ +SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete( + Parse *pParse, /* Parsing and code generating context */ + Table *pTab, /* Table containing the row to be deleted */ + int iCur, /* Cursor number for the table */ + int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */ +){ + int i; + Index *pIdx; + int r1; + + for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ + if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue; + r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0); + sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1); + } +} + +/* +** Generate code that will assemble an index key and put it in register +** regOut. The key with be for index pIdx which is an index on pTab. +** iCur is the index of a cursor open on the pTab table and pointing to +** the entry that needs indexing. +** +** Return a register number which is the first in a block of +** registers that holds the elements of the index key. The +** block of registers has already been deallocated by the time +** this routine returns. +*/ +SQLITE_PRIVATE int sqlite3GenerateIndexKey( + Parse *pParse, /* Parsing context */ + Index *pIdx, /* The index for which to generate a key */ + int iCur, /* Cursor number for the pIdx->pTable table */ + int regOut, /* Write the new index key to this register */ + int doMakeRec /* Run the OP_MakeRecord instruction if true */ +){ + Vdbe *v = pParse->pVdbe; + int j; + Table *pTab = pIdx->pTable; + int regBase; + int nCol; + + nCol = pIdx->nColumn; + regBase = sqlite3GetTempRange(pParse, nCol+1); + sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol); + for(j=0; j<nCol; j++){ + int idx = pIdx->aiColumn[j]; + if( idx==pTab->iPKey ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j); + }else{ + sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); + sqlite3ColumnDefault(v, pTab, idx); + } + } + if( doMakeRec ){ + sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); + sqlite3IndexAffinityStr(v, pIdx); + sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1); + } + sqlite3ReleaseTempRange(pParse, regBase, nCol+1); + return regBase; +} + +/* Make sure "isView" gets undefined in case this file becomes part of +** the amalgamation - so that subsequent files do not see isView as a +** macro. */ +#undef isView + +/************** End of delete.c **********************************************/ +/************** Begin file func.c ********************************************/ +/* +** 2002 February 23 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement various SQL +** functions of SQLite. +** +** There is only one exported symbol in this file - the function +** sqliteRegisterBuildinFunctions() found at the bottom of the file. +** All other code has file scope. +** +** $Id: func.c,v 1.192 2008/04/27 18:40:12 drh Exp $ +*/ + + +/* +** Return the collating function associated with a function. +*/ +static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ + return context->pColl; +} + +/* +** Implementation of the non-aggregate min() and max() functions +*/ +static void minmaxFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i; + int mask; /* 0 for min() or 0xffffffff for max() */ + int iBest; + CollSeq *pColl; + + if( argc==0 ) return; + mask = sqlite3_user_data(context)==0 ? 0 : -1; + pColl = sqlite3GetFuncCollSeq(context); + assert( pColl ); + assert( mask==-1 || mask==0 ); + iBest = 0; + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + for(i=1; i<argc; i++){ + if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return; + if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){ + iBest = i; + } + } + sqlite3_result_value(context, argv[iBest]); +} + +/* +** Return the type of the argument. +*/ +static void typeofFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const char *z = 0; + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_NULL: z = "null"; break; + case SQLITE_INTEGER: z = "integer"; break; + case SQLITE_TEXT: z = "text"; break; + case SQLITE_FLOAT: z = "real"; break; + case SQLITE_BLOB: z = "blob"; break; + } + sqlite3_result_text(context, z, -1, SQLITE_STATIC); +} + + +/* +** Implementation of the length() function +*/ +static void lengthFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int len; + + assert( argc==1 ); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_BLOB: + case SQLITE_INTEGER: + case SQLITE_FLOAT: { + sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); + break; + } + case SQLITE_TEXT: { + const unsigned char *z = sqlite3_value_text(argv[0]); + if( z==0 ) return; + len = 0; + while( *z ){ + len++; + SQLITE_SKIP_UTF8(z); + } + sqlite3_result_int(context, len); + break; + } + default: { + sqlite3_result_null(context); + break; + } + } +} + +/* +** Implementation of the abs() function +*/ +static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + assert( argc==1 ); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_INTEGER: { + i64 iVal = sqlite3_value_int64(argv[0]); + if( iVal<0 ){ + if( (iVal<<1)==0 ){ + sqlite3_result_error(context, "integer overflow", -1); + return; + } + iVal = -iVal; + } + sqlite3_result_int64(context, iVal); + break; + } + case SQLITE_NULL: { + sqlite3_result_null(context); + break; + } + default: { + double rVal = sqlite3_value_double(argv[0]); + if( rVal<0 ) rVal = -rVal; + sqlite3_result_double(context, rVal); + break; + } + } +} + +/* +** Implementation of the substr() function. +** +** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. +** p1 is 1-indexed. So substr(x,1,1) returns the first character +** of x. If x is text, then we actually count UTF-8 characters. +** If x is a blob, then we count bytes. +** +** If p1 is negative, then we begin abs(p1) from the end of x[]. +*/ +static void substrFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *z; + const unsigned char *z2; + int len; + int p0type; + i64 p1, p2; + + assert( argc==3 || argc==2 ); + p0type = sqlite3_value_type(argv[0]); + if( p0type==SQLITE_BLOB ){ + len = sqlite3_value_bytes(argv[0]); + z = sqlite3_value_blob(argv[0]); + if( z==0 ) return; + assert( len==sqlite3_value_bytes(argv[0]) ); + }else{ + z = sqlite3_value_text(argv[0]); + if( z==0 ) return; + len = 0; + for(z2=z; *z2; len++){ + SQLITE_SKIP_UTF8(z2); + } + } + p1 = sqlite3_value_int(argv[1]); + if( argc==3 ){ + p2 = sqlite3_value_int(argv[2]); + }else{ + p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; + } + if( p1<0 ){ + p1 += len; + if( p1<0 ){ + p2 += p1; + p1 = 0; + } + }else if( p1>0 ){ + p1--; + } + if( p1+p2>len ){ + p2 = len-p1; + } + if( p0type!=SQLITE_BLOB ){ + while( *z && p1 ){ + SQLITE_SKIP_UTF8(z); + p1--; + } + for(z2=z; *z2 && p2; p2--){ + SQLITE_SKIP_UTF8(z2); + } + sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT); + }else{ + if( p2<0 ) p2 = 0; + sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT); + } +} + +/* +** Implementation of the round() function +*/ +static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + int n = 0; + double r; + char zBuf[500]; /* larger than the %f representation of the largest double */ + assert( argc==1 || argc==2 ); + if( argc==2 ){ + if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; + n = sqlite3_value_int(argv[1]); + if( n>30 ) n = 30; + if( n<0 ) n = 0; + } + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + r = sqlite3_value_double(argv[0]); + sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r); + sqlite3AtoF(zBuf, &r); + sqlite3_result_double(context, r); +} + +/* +** Allocate nByte bytes of space using sqlite3_malloc(). If the +** allocation fails, call sqlite3_result_error_nomem() to notify +** the database handle that malloc() has failed. +*/ +static void *contextMalloc(sqlite3_context *context, i64 nByte){ + char *z; + if( nByte>sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH] ){ + sqlite3_result_error_toobig(context); + z = 0; + }else{ + z = sqlite3_malloc(nByte); + if( !z && nByte>0 ){ + sqlite3_result_error_nomem(context); + } + } + return z; +} + +/* +** Implementation of the upper() and lower() SQL functions. +*/ +static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + char *z1; + const char *z2; + int i, n; + if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; + z2 = (char*)sqlite3_value_text(argv[0]); + n = sqlite3_value_bytes(argv[0]); + /* Verify that the call to _bytes() does not invalidate the _text() pointer */ + assert( z2==(char*)sqlite3_value_text(argv[0]) ); + if( z2 ){ + z1 = contextMalloc(context, ((i64)n)+1); + if( z1 ){ + memcpy(z1, z2, n+1); + for(i=0; z1[i]; i++){ + z1[i] = toupper(z1[i]); + } + sqlite3_result_text(context, z1, -1, sqlite3_free); + } + } +} +static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + char *z1; + const char *z2; + int i, n; + if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; + z2 = (char*)sqlite3_value_text(argv[0]); + n = sqlite3_value_bytes(argv[0]); + /* Verify that the call to _bytes() does not invalidate the _text() pointer */ + assert( z2==(char*)sqlite3_value_text(argv[0]) ); + if( z2 ){ + z1 = contextMalloc(context, ((i64)n)+1); + if( z1 ){ + memcpy(z1, z2, n+1); + for(i=0; z1[i]; i++){ + z1[i] = tolower(z1[i]); + } + sqlite3_result_text(context, z1, -1, sqlite3_free); + } + } +} + +/* +** Implementation of the IFNULL(), NVL(), and COALESCE() functions. +** All three do the same thing. They return the first non-NULL +** argument. +*/ +static void ifnullFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i; + for(i=0; i<argc; i++){ + if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){ + sqlite3_result_value(context, argv[i]); + break; + } + } +} + +/* +** Implementation of random(). Return a random integer. +*/ +static void randomFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite_int64 r; + sqlite3_randomness(sizeof(r), &r); + if( (r<<1)==0 ) r = 0; /* Prevent 0x8000.... as the result so that we */ + /* can always do abs() of the result */ + sqlite3_result_int64(context, r); +} + +/* +** Implementation of randomblob(N). Return a random blob +** that is N bytes long. +*/ +static void randomBlob( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int n; + unsigned char *p; + assert( argc==1 ); + n = sqlite3_value_int(argv[0]); + if( n<1 ){ + n = 1; + } + p = contextMalloc(context, n); + if( p ){ + sqlite3_randomness(n, p); + sqlite3_result_blob(context, (char*)p, n, sqlite3_free); + } +} + +/* +** Implementation of the last_insert_rowid() SQL function. The return +** value is the same as the sqlite3_last_insert_rowid() API function. +*/ +static void last_insert_rowid( + sqlite3_context *context, + int arg, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_context_db_handle(context); + sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); +} + +/* +** Implementation of the changes() SQL function. The return value is the +** same as the sqlite3_changes() API function. +*/ +static void changes( + sqlite3_context *context, + int arg, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_context_db_handle(context); + sqlite3_result_int(context, sqlite3_changes(db)); +} + +/* +** Implementation of the total_changes() SQL function. The return value is +** the same as the sqlite3_total_changes() API function. +*/ +static void total_changes( + sqlite3_context *context, + int arg, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_context_db_handle(context); + sqlite3_result_int(context, sqlite3_total_changes(db)); +} + +/* +** A structure defining how to do GLOB-style comparisons. +*/ +struct compareInfo { + u8 matchAll; + u8 matchOne; + u8 matchSet; + u8 noCase; +}; + +/* +** For LIKE and GLOB matching on EBCDIC machines, assume that every +** character is exactly one byte in size. Also, all characters are +** able to participate in upper-case-to-lower-case mappings in EBCDIC +** whereas only characters less than 0x80 do in ASCII. +*/ +#if defined(SQLITE_EBCDIC) +# define sqlite3Utf8Read(A,B,C) (*(A++)) +# define GlogUpperToLower(A) A = sqlite3UpperToLower[A] +#else +# define GlogUpperToLower(A) if( A<0x80 ){ A = sqlite3UpperToLower[A]; } +#endif + +static const struct compareInfo globInfo = { '*', '?', '[', 0 }; +/* The correct SQL-92 behavior is for the LIKE operator to ignore +** case. Thus 'a' LIKE 'A' would be true. */ +static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; +/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator +** is case sensitive causing 'a' LIKE 'A' to be false */ +static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; + +/* +** Compare two UTF-8 strings for equality where the first string can +** potentially be a "glob" expression. Return true (1) if they +** are the same and false (0) if they are different. +** +** Globbing rules: +** +** '*' Matches any sequence of zero or more characters. +** +** '?' Matches exactly one character. +** +** [...] Matches one character from the enclosed list of +** characters. +** +** [^...] Matches one character not in the enclosed list. +** +** With the [...] and [^...] matching, a ']' character can be included +** in the list by making it the first character after '[' or '^'. A +** range of characters can be specified using '-'. Example: +** "[a-z]" matches any single lower-case letter. To match a '-', make +** it the last character in the list. +** +** This routine is usually quick, but can be N**2 in the worst case. +** +** Hints: to match '*' or '?', put them in "[]". Like this: +** +** abc[*]xyz Matches "abc*xyz" only +*/ +static int patternCompare( + const u8 *zPattern, /* The glob pattern */ + const u8 *zString, /* The string to compare against the glob */ + const struct compareInfo *pInfo, /* Information about how to do the compare */ + const int esc /* The escape character */ +){ + int c, c2; + int invert; + int seen; + u8 matchOne = pInfo->matchOne; + u8 matchAll = pInfo->matchAll; + u8 matchSet = pInfo->matchSet; + u8 noCase = pInfo->noCase; + int prevEscape = 0; /* True if the previous character was 'escape' */ + + while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){ + if( !prevEscape && c==matchAll ){ + while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll + || c == matchOne ){ + if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){ + return 0; + } + } + if( c==0 ){ + return 1; + }else if( c==esc ){ + c = sqlite3Utf8Read(zPattern, 0, &zPattern); + if( c==0 ){ + return 0; + } + }else if( c==matchSet ){ + assert( esc==0 ); /* This is GLOB, not LIKE */ + assert( matchSet<0x80 ); /* '[' is a single-byte character */ + while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){ + SQLITE_SKIP_UTF8(zString); + } + return *zString!=0; + } + while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){ + if( noCase ){ + GlogUpperToLower(c2); + GlogUpperToLower(c); + while( c2 != 0 && c2 != c ){ + c2 = sqlite3Utf8Read(zString, 0, &zString); + GlogUpperToLower(c2); + } + }else{ + while( c2 != 0 && c2 != c ){ + c2 = sqlite3Utf8Read(zString, 0, &zString); + } + } + if( c2==0 ) return 0; + if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; + } + return 0; + }else if( !prevEscape && c==matchOne ){ + if( sqlite3Utf8Read(zString, 0, &zString)==0 ){ + return 0; + } + }else if( c==matchSet ){ + int prior_c = 0; + assert( esc==0 ); /* This only occurs for GLOB, not LIKE */ + seen = 0; + invert = 0; + c = sqlite3Utf8Read(zString, 0, &zString); + if( c==0 ) return 0; + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + if( c2=='^' ){ + invert = 1; + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + } + if( c2==']' ){ + if( c==']' ) seen = 1; + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + } + while( c2 && c2!=']' ){ + if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + if( c>=prior_c && c<=c2 ) seen = 1; + prior_c = 0; + }else{ + if( c==c2 ){ + seen = 1; + } + prior_c = c2; + } + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + } + if( c2==0 || (seen ^ invert)==0 ){ + return 0; + } + }else if( esc==c && !prevEscape ){ + prevEscape = 1; + }else{ + c2 = sqlite3Utf8Read(zString, 0, &zString); + if( noCase ){ + GlogUpperToLower(c); + GlogUpperToLower(c2); + } + if( c!=c2 ){ + return 0; + } + prevEscape = 0; + } + } + return *zString==0; +} + +/* +** Count the number of times that the LIKE operator (or GLOB which is +** just a variation of LIKE) gets called. This is used for testing +** only. +*/ +#ifdef SQLITE_TEST +SQLITE_API int sqlite3_like_count = 0; +#endif + + +/* +** Implementation of the like() SQL function. This function implements +** the build-in LIKE operator. The first argument to the function is the +** pattern and the second argument is the string. So, the SQL statements: +** +** A LIKE B +** +** is implemented as like(B,A). +** +** This same function (with a different compareInfo structure) computes +** the GLOB operator. +*/ +static void likeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zA, *zB; + int escape = 0; + sqlite3 *db = sqlite3_context_db_handle(context); + + zB = sqlite3_value_text(argv[0]); + zA = sqlite3_value_text(argv[1]); + + /* Limit the length of the LIKE or GLOB pattern to avoid problems + ** of deep recursion and N*N behavior in patternCompare(). + */ + if( sqlite3_value_bytes(argv[0]) > + db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ + sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); + return; + } + assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */ + + if( argc==3 ){ + /* The escape character string must consist of a single UTF-8 character. + ** Otherwise, return an error. + */ + const unsigned char *zEsc = sqlite3_value_text(argv[2]); + if( zEsc==0 ) return; + if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ + sqlite3_result_error(context, + "ESCAPE expression must be a single character", -1); + return; + } + escape = sqlite3Utf8Read(zEsc, 0, &zEsc); + } + if( zA && zB ){ + struct compareInfo *pInfo = sqlite3_user_data(context); +#ifdef SQLITE_TEST + sqlite3_like_count++; +#endif + + sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)); + } +} + +/* +** Implementation of the NULLIF(x,y) function. The result is the first +** argument if the arguments are different. The result is NULL if the +** arguments are equal to each other. +*/ +static void nullifFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + CollSeq *pColl = sqlite3GetFuncCollSeq(context); + if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ + sqlite3_result_value(context, argv[0]); + } +} + +/* +** Implementation of the VERSION(*) function. The result is the version +** of the SQLite library that is running. +*/ +static void versionFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC); +} + +/* Array for converting from half-bytes (nybbles) into ASCII hex +** digits. */ +static const char hexdigits[] = { + '0', '1', '2', '3', '4', '5', '6', '7', + '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' +}; + +/* +** EXPERIMENTAL - This is not an official function. The interface may +** change. This function may disappear. Do not write code that depends +** on this function. +** +** Implementation of the QUOTE() function. This function takes a single +** argument. If the argument is numeric, the return value is the same as +** the argument. If the argument is NULL, the return value is the string +** "NULL". Otherwise, the argument is enclosed in single quotes with +** single-quote escapes. +*/ +static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + if( argc<1 ) return; + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_NULL: { + sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); + break; + } + case SQLITE_INTEGER: + case SQLITE_FLOAT: { + sqlite3_result_value(context, argv[0]); + break; + } + case SQLITE_BLOB: { + char *zText = 0; + char const *zBlob = sqlite3_value_blob(argv[0]); + int nBlob = sqlite3_value_bytes(argv[0]); + assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ + zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4); + if( zText ){ + int i; + for(i=0; i<nBlob; i++){ + zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; + zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; + } + zText[(nBlob*2)+2] = '\''; + zText[(nBlob*2)+3] = '\0'; + zText[0] = 'X'; + zText[1] = '\''; + sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); + sqlite3_free(zText); + } + break; + } + case SQLITE_TEXT: { + int i,j; + u64 n; + const unsigned char *zArg = sqlite3_value_text(argv[0]); + char *z; + + if( zArg==0 ) return; + for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } + z = contextMalloc(context, ((i64)i)+((i64)n)+3); + if( z ){ + z[0] = '\''; + for(i=0, j=1; zArg[i]; i++){ + z[j++] = zArg[i]; + if( zArg[i]=='\'' ){ + z[j++] = '\''; + } + } + z[j++] = '\''; + z[j] = 0; + sqlite3_result_text(context, z, j, sqlite3_free); + } + } + } +} + +/* +** The hex() function. Interpret the argument as a blob. Return +** a hexadecimal rendering as text. +*/ +static void hexFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i, n; + const unsigned char *pBlob; + char *zHex, *z; + assert( argc==1 ); + pBlob = sqlite3_value_blob(argv[0]); + n = sqlite3_value_bytes(argv[0]); + assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ + z = zHex = contextMalloc(context, ((i64)n)*2 + 1); + if( zHex ){ + for(i=0; i<n; i++, pBlob++){ + unsigned char c = *pBlob; + *(z++) = hexdigits[(c>>4)&0xf]; + *(z++) = hexdigits[c&0xf]; + } + *z = 0; + sqlite3_result_text(context, zHex, n*2, sqlite3_free); + } +} + +/* +** The zeroblob(N) function returns a zero-filled blob of size N bytes. +*/ +static void zeroblobFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + i64 n; + assert( argc==1 ); + n = sqlite3_value_int64(argv[0]); + if( n>SQLITE_MAX_LENGTH ){ + sqlite3_result_error_toobig(context); + }else{ + sqlite3_result_zeroblob(context, n); + } +} + +/* +** The replace() function. Three arguments are all strings: call +** them A, B, and C. The result is also a string which is derived +** from A by replacing every occurance of B with C. The match +** must be exact. Collating sequences are not used. +*/ +static void replaceFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zStr; /* The input string A */ + const unsigned char *zPattern; /* The pattern string B */ + const unsigned char *zRep; /* The replacement string C */ + unsigned char *zOut; /* The output */ + int nStr; /* Size of zStr */ + int nPattern; /* Size of zPattern */ + int nRep; /* Size of zRep */ + i64 nOut; /* Maximum size of zOut */ + int loopLimit; /* Last zStr[] that might match zPattern[] */ + int i, j; /* Loop counters */ + + assert( argc==3 ); + zStr = sqlite3_value_text(argv[0]); + if( zStr==0 ) return; + nStr = sqlite3_value_bytes(argv[0]); + assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ + zPattern = sqlite3_value_text(argv[1]); + if( zPattern==0 || zPattern[0]==0 ) return; + nPattern = sqlite3_value_bytes(argv[1]); + assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ + zRep = sqlite3_value_text(argv[2]); + if( zRep==0 ) return; + nRep = sqlite3_value_bytes(argv[2]); + assert( zRep==sqlite3_value_text(argv[2]) ); + nOut = nStr + 1; + assert( nOut<SQLITE_MAX_LENGTH ); + zOut = contextMalloc(context, (i64)nOut); + if( zOut==0 ){ + return; + } + loopLimit = nStr - nPattern; + for(i=j=0; i<=loopLimit; i++){ + if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){ + zOut[j++] = zStr[i]; + }else{ + u8 *zOld; + sqlite3 *db = sqlite3_context_db_handle(context); + nOut += nRep - nPattern; + if( nOut>=db->aLimit[SQLITE_LIMIT_LENGTH] ){ + sqlite3_result_error_toobig(context); + sqlite3_free(zOut); + return; + } + zOld = zOut; + zOut = sqlite3_realloc(zOut, (int)nOut); + if( zOut==0 ){ + sqlite3_result_error_nomem(context); + sqlite3_free(zOld); + return; + } + memcpy(&zOut[j], zRep, nRep); + j += nRep; + i += nPattern-1; + } + } + assert( j+nStr-i+1==nOut ); + memcpy(&zOut[j], &zStr[i], nStr-i); + j += nStr - i; + assert( j<=nOut ); + zOut[j] = 0; + sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); +} + +/* +** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. +** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. +*/ +static void trimFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zIn; /* Input string */ + const unsigned char *zCharSet; /* Set of characters to trim */ + int nIn; /* Number of bytes in input */ + int flags; /* 1: trimleft 2: trimright 3: trim */ + int i; /* Loop counter */ + unsigned char *aLen; /* Length of each character in zCharSet */ + unsigned char **azChar; /* Individual characters in zCharSet */ + int nChar; /* Number of characters in zCharSet */ + + if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ + return; + } + zIn = sqlite3_value_text(argv[0]); + if( zIn==0 ) return; + nIn = sqlite3_value_bytes(argv[0]); + assert( zIn==sqlite3_value_text(argv[0]) ); + if( argc==1 ){ + static const unsigned char lenOne[] = { 1 }; + static const unsigned char *azOne[] = { (u8*)" " }; + nChar = 1; + aLen = (u8*)lenOne; + azChar = (unsigned char **)azOne; + zCharSet = 0; + }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ + return; + }else{ + const unsigned char *z; + for(z=zCharSet, nChar=0; *z; nChar++){ + SQLITE_SKIP_UTF8(z); + } + if( nChar>0 ){ + azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1)); + if( azChar==0 ){ + return; + } + aLen = (unsigned char*)&azChar[nChar]; + for(z=zCharSet, nChar=0; *z; nChar++){ + azChar[nChar] = (unsigned char *)z; + SQLITE_SKIP_UTF8(z); + aLen[nChar] = z - azChar[nChar]; + } + } + } + if( nChar>0 ){ + flags = (int)sqlite3_user_data(context); + if( flags & 1 ){ + while( nIn>0 ){ + int len; + for(i=0; i<nChar; i++){ + len = aLen[i]; + if( memcmp(zIn, azChar[i], len)==0 ) break; + } + if( i>=nChar ) break; + zIn += len; + nIn -= len; + } + } + if( flags & 2 ){ + while( nIn>0 ){ + int len; + for(i=0; i<nChar; i++){ + len = aLen[i]; + if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break; + } + if( i>=nChar ) break; + nIn -= len; + } + } + if( zCharSet ){ + sqlite3_free(azChar); + } + } + sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); +} + +#ifdef SQLITE_SOUNDEX +/* +** Compute the soundex encoding of a word. +*/ +static void soundexFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + char zResult[8]; + const u8 *zIn; + int i, j; + static const unsigned char iCode[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, + 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, + 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, + 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, + }; + assert( argc==1 ); + zIn = (u8*)sqlite3_value_text(argv[0]); + if( zIn==0 ) zIn = (u8*)""; + for(i=0; zIn[i] && !isalpha(zIn[i]); i++){} + if( zIn[i] ){ + u8 prevcode = iCode[zIn[i]&0x7f]; + zResult[0] = toupper(zIn[i]); + for(j=1; j<4 && zIn[i]; i++){ + int code = iCode[zIn[i]&0x7f]; + if( code>0 ){ + if( code!=prevcode ){ + prevcode = code; + zResult[j++] = code + '0'; + } + }else{ + prevcode = 0; + } + } + while( j<4 ){ + zResult[j++] = '0'; + } + zResult[j] = 0; + sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); + }else{ + sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); + } +} +#endif + +#ifndef SQLITE_OMIT_LOAD_EXTENSION +/* +** A function that loads a shared-library extension then returns NULL. +*/ +static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ + const char *zFile = (const char *)sqlite3_value_text(argv[0]); + const char *zProc; + sqlite3 *db = sqlite3_context_db_handle(context); + char *zErrMsg = 0; + + if( argc==2 ){ + zProc = (const char *)sqlite3_value_text(argv[1]); + }else{ + zProc = 0; + } + if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ + sqlite3_result_error(context, zErrMsg, -1); + sqlite3_free(zErrMsg); + } +} +#endif + + +/* +** An instance of the following structure holds the context of a +** sum() or avg() aggregate computation. +*/ +typedef struct SumCtx SumCtx; +struct SumCtx { + double rSum; /* Floating point sum */ + i64 iSum; /* Integer sum */ + i64 cnt; /* Number of elements summed */ + u8 overflow; /* True if integer overflow seen */ + u8 approx; /* True if non-integer value was input to the sum */ +}; + +/* +** Routines used to compute the sum, average, and total. +** +** The SUM() function follows the (broken) SQL standard which means +** that it returns NULL if it sums over no inputs. TOTAL returns +** 0.0 in that case. In addition, TOTAL always returns a float where +** SUM might return an integer if it never encounters a floating point +** value. TOTAL never fails, but SUM might through an exception if +** it overflows an integer. +*/ +static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + SumCtx *p; + int type; + assert( argc==1 ); + p = sqlite3_aggregate_context(context, sizeof(*p)); + type = sqlite3_value_numeric_type(argv[0]); + if( p && type!=SQLITE_NULL ){ + p->cnt++; + if( type==SQLITE_INTEGER ){ + i64 v = sqlite3_value_int64(argv[0]); + p->rSum += v; + if( (p->approx|p->overflow)==0 ){ + i64 iNewSum = p->iSum + v; + int s1 = p->iSum >> (sizeof(i64)*8-1); + int s2 = v >> (sizeof(i64)*8-1); + int s3 = iNewSum >> (sizeof(i64)*8-1); + p->overflow = (s1&s2&~s3) | (~s1&~s2&s3); + p->iSum = iNewSum; + } + }else{ + p->rSum += sqlite3_value_double(argv[0]); + p->approx = 1; + } + } +} +static void sumFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, 0); + if( p && p->cnt>0 ){ + if( p->overflow ){ + sqlite3_result_error(context,"integer overflow",-1); + }else if( p->approx ){ + sqlite3_result_double(context, p->rSum); + }else{ + sqlite3_result_int64(context, p->iSum); + } + } +} +static void avgFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, 0); + if( p && p->cnt>0 ){ + sqlite3_result_double(context, p->rSum/(double)p->cnt); + } +} +static void totalFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, 0); + sqlite3_result_double(context, p ? p->rSum : 0.0); +} + +/* +** The following structure keeps track of state information for the +** count() aggregate function. +*/ +typedef struct CountCtx CountCtx; +struct CountCtx { + i64 n; +}; + +/* +** Routines to implement the count() aggregate function. +*/ +static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + CountCtx *p; + p = sqlite3_aggregate_context(context, sizeof(*p)); + if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ + p->n++; + } +} +static void countFinalize(sqlite3_context *context){ + CountCtx *p; + p = sqlite3_aggregate_context(context, 0); + sqlite3_result_int64(context, p ? p->n : 0); +} + +/* +** Routines to implement min() and max() aggregate functions. +*/ +static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + Mem *pArg = (Mem *)argv[0]; + Mem *pBest; + + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); + if( !pBest ) return; + + if( pBest->flags ){ + int max; + int cmp; + CollSeq *pColl = sqlite3GetFuncCollSeq(context); + /* This step function is used for both the min() and max() aggregates, + ** the only difference between the two being that the sense of the + ** comparison is inverted. For the max() aggregate, the + ** sqlite3_user_data() function returns (void *)-1. For min() it + ** returns (void *)db, where db is the sqlite3* database pointer. + ** Therefore the next statement sets variable 'max' to 1 for the max() + ** aggregate, or 0 for min(). + */ + max = sqlite3_user_data(context)!=0; + cmp = sqlite3MemCompare(pBest, pArg, pColl); + if( (max && cmp<0) || (!max && cmp>0) ){ + sqlite3VdbeMemCopy(pBest, pArg); + } + }else{ + sqlite3VdbeMemCopy(pBest, pArg); + } +} +static void minMaxFinalize(sqlite3_context *context){ + sqlite3_value *pRes; + pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); + if( pRes ){ + if( pRes->flags ){ + sqlite3_result_value(context, pRes); + } + sqlite3VdbeMemRelease(pRes); + } +} + +/* +** group_concat(EXPR, ?SEPARATOR?) +*/ +static void groupConcatStep( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const char *zVal; + StrAccum *pAccum; + const char *zSep; + int nVal, nSep; + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); + + if( pAccum ){ + sqlite3 *db = sqlite3_context_db_handle(context); + pAccum->useMalloc = 1; + pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; + if( pAccum->nChar ){ + if( argc==2 ){ + zSep = (char*)sqlite3_value_text(argv[1]); + nSep = sqlite3_value_bytes(argv[1]); + }else{ + zSep = ","; + nSep = 1; + } + sqlite3StrAccumAppend(pAccum, zSep, nSep); + } + zVal = (char*)sqlite3_value_text(argv[0]); + nVal = sqlite3_value_bytes(argv[0]); + sqlite3StrAccumAppend(pAccum, zVal, nVal); + } +} +static void groupConcatFinalize(sqlite3_context *context){ + StrAccum *pAccum; + pAccum = sqlite3_aggregate_context(context, 0); + if( pAccum ){ + if( pAccum->tooBig ){ + sqlite3_result_error_toobig(context); + }else if( pAccum->mallocFailed ){ + sqlite3_result_error_nomem(context); + }else{ + sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, + sqlite3_free); + } + } +} + +/* +** This function registered all of the above C functions as SQL +** functions. This should be the only routine in this file with +** external linkage. +*/ +SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ + static const struct { + char *zName; + signed char nArg; + u8 argType; /* 1: 0, 2: 1, 3: 2,... N: N-1. */ + u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */ + u8 needCollSeq; + void (*xFunc)(sqlite3_context*,int,sqlite3_value **); + } aFuncs[] = { + { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc }, + { "min", 0, 0, SQLITE_UTF8, 1, 0 }, + { "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc }, + { "max", 0, 1, SQLITE_UTF8, 1, 0 }, + { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc }, + { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc }, + { "substr", 2, 0, SQLITE_UTF8, 0, substrFunc }, + { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc }, + { "abs", 1, 0, SQLITE_UTF8, 0, absFunc }, + { "round", 1, 0, SQLITE_UTF8, 0, roundFunc }, + { "round", 2, 0, SQLITE_UTF8, 0, roundFunc }, + { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc }, + { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc }, + { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc }, + { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 }, + { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 }, + { "hex", 1, 0, SQLITE_UTF8, 0, hexFunc }, + { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc }, + { "random", -1, 0, SQLITE_UTF8, 0, randomFunc }, + { "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob }, + { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc }, + { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc}, + { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc }, + { "last_insert_rowid", 0, 0, SQLITE_UTF8, 0, last_insert_rowid }, + { "changes", 0, 0, SQLITE_UTF8, 0, changes }, + { "total_changes", 0, 0, SQLITE_UTF8, 0, total_changes }, + { "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc }, + { "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc }, + { "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc }, + { "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc }, + { "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc }, + { "trim", 1, 3, SQLITE_UTF8, 0, trimFunc }, + { "trim", 2, 3, SQLITE_UTF8, 0, trimFunc }, + { "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc }, +#ifdef SQLITE_SOUNDEX + { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc}, +#endif +#ifndef SQLITE_OMIT_LOAD_EXTENSION + { "load_extension", 1, 0, SQLITE_UTF8, 0, loadExt }, + { "load_extension", 2, 0, SQLITE_UTF8, 0, loadExt }, +#endif + }; + static const struct { + char *zName; + signed char nArg; + u8 argType; + u8 needCollSeq; + void (*xStep)(sqlite3_context*,int,sqlite3_value**); + void (*xFinalize)(sqlite3_context*); + } aAggs[] = { + { "min", 1, 0, 1, minmaxStep, minMaxFinalize }, + { "max", 1, 1, 1, minmaxStep, minMaxFinalize }, + { "sum", 1, 0, 0, sumStep, sumFinalize }, + { "total", 1, 0, 0, sumStep, totalFinalize }, + { "avg", 1, 0, 0, sumStep, avgFinalize }, + { "count", 0, 0, 0, countStep, countFinalize }, + { "count", 1, 0, 0, countStep, countFinalize }, + { "group_concat", 1, 0, 0, groupConcatStep, groupConcatFinalize }, + { "group_concat", 2, 0, 0, groupConcatStep, groupConcatFinalize }, + }; + int i; + + for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ + void *pArg; + u8 argType = aFuncs[i].argType; + pArg = (void*)(int)argType; + sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg, + aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0); + if( aFuncs[i].needCollSeq ){ + FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName, + strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0); + if( pFunc && aFuncs[i].needCollSeq ){ + pFunc->needCollSeq = 1; + } + } + } +#ifndef SQLITE_OMIT_ALTERTABLE + sqlite3AlterFunctions(db); +#endif +#ifndef SQLITE_OMIT_PARSER + sqlite3AttachFunctions(db); +#endif + for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){ + void *pArg = (void*)(int)aAggs[i].argType; + sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8, + pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize); + if( aAggs[i].needCollSeq ){ + FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName, + strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0); + if( pFunc && aAggs[i].needCollSeq ){ + pFunc->needCollSeq = 1; + } + } + } + sqlite3RegisterDateTimeFunctions(db); + if( !db->mallocFailed ){ + int rc = sqlite3_overload_function(db, "MATCH", 2); + assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); + if( rc==SQLITE_NOMEM ){ + db->mallocFailed = 1; + } + } +#ifdef SQLITE_SSE + (void)sqlite3SseFunctions(db); +#endif +#ifdef SQLITE_CASE_SENSITIVE_LIKE + sqlite3RegisterLikeFunctions(db, 1); +#else + sqlite3RegisterLikeFunctions(db, 0); +#endif +} + +/* +** Set the LIKEOPT flag on the 2-argument function with the given name. +*/ +static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){ + FuncDef *pDef; + pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0); + if( pDef ){ + pDef->flags = flagVal; + } +} + +/* +** Register the built-in LIKE and GLOB functions. The caseSensitive +** parameter determines whether or not the LIKE operator is case +** sensitive. GLOB is always case sensitive. +*/ +SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ + struct compareInfo *pInfo; + if( caseSensitive ){ + pInfo = (struct compareInfo*)&likeInfoAlt; + }else{ + pInfo = (struct compareInfo*)&likeInfoNorm; + } + sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0); + sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0); + sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, + (struct compareInfo*)&globInfo, likeFunc, 0,0); + setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); + setLikeOptFlag(db, "like", + caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE); +} + +/* +** pExpr points to an expression which implements a function. If +** it is appropriate to apply the LIKE optimization to that function +** then set aWc[0] through aWc[2] to the wildcard characters and +** return TRUE. If the function is not a LIKE-style function then +** return FALSE. +*/ +SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ + FuncDef *pDef; + if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){ + return 0; + } + if( pExpr->pList->nExpr!=2 ){ + return 0; + } + pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2, + SQLITE_UTF8, 0); + if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){ + return 0; + } + + /* The memcpy() statement assumes that the wildcard characters are + ** the first three statements in the compareInfo structure. The + ** asserts() that follow verify that assumption + */ + memcpy(aWc, pDef->pUserData, 3); + assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); + assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); + assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); + *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0; + return 1; +} + +/************** End of func.c ************************************************/ +/************** Begin file insert.c ******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle INSERT statements in SQLite. +** +** $Id: insert.c,v 1.238 2008/04/28 18:46:43 drh Exp $ +*/ + +/* +** Set P4 of the most recently inserted opcode to a column affinity +** string for index pIdx. A column affinity string has one character +** for each column in the table, according to the affinity of the column: +** +** Character Column affinity +** ------------------------------ +** 'a' TEXT +** 'b' NONE +** 'c' NUMERIC +** 'd' INTEGER +** 'e' REAL +** +** An extra 'b' is appended to the end of the string to cover the +** rowid that appears as the last column in every index. +*/ +SQLITE_PRIVATE void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ + if( !pIdx->zColAff ){ + /* The first time a column affinity string for a particular index is + ** required, it is allocated and populated here. It is then stored as + ** a member of the Index structure for subsequent use. + ** + ** The column affinity string will eventually be deleted by + ** sqliteDeleteIndex() when the Index structure itself is cleaned + ** up. + */ + int n; + Table *pTab = pIdx->pTable; + sqlite3 *db = sqlite3VdbeDb(v); + pIdx->zColAff = (char *)sqlite3DbMallocRaw(db, pIdx->nColumn+2); + if( !pIdx->zColAff ){ + return; + } + for(n=0; n<pIdx->nColumn; n++){ + pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; + } + pIdx->zColAff[n++] = SQLITE_AFF_NONE; + pIdx->zColAff[n] = 0; + } + + sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0); +} + +/* +** Set P4 of the most recently inserted opcode to a column affinity +** string for table pTab. A column affinity string has one character +** for each column indexed by the index, according to the affinity of the +** column: +** +** Character Column affinity +** ------------------------------ +** 'a' TEXT +** 'b' NONE +** 'c' NUMERIC +** 'd' INTEGER +** 'e' REAL +*/ +SQLITE_PRIVATE void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ + /* The first time a column affinity string for a particular table + ** is required, it is allocated and populated here. It is then + ** stored as a member of the Table structure for subsequent use. + ** + ** The column affinity string will eventually be deleted by + ** sqlite3DeleteTable() when the Table structure itself is cleaned up. + */ + if( !pTab->zColAff ){ + char *zColAff; + int i; + sqlite3 *db = sqlite3VdbeDb(v); + + zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); + if( !zColAff ){ + return; + } + + for(i=0; i<pTab->nCol; i++){ + zColAff[i] = pTab->aCol[i].affinity; + } + zColAff[pTab->nCol] = '\0'; + + pTab->zColAff = zColAff; + } + + sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0); +} + +/* +** Return non-zero if the table pTab in database iDb or any of its indices +** have been opened at any point in the VDBE program beginning at location +** iStartAddr throught the end of the program. This is used to see if +** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can +** run without using temporary table for the results of the SELECT. +*/ +static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){ + int i; + int iEnd = sqlite3VdbeCurrentAddr(v); + for(i=iStartAddr; i<iEnd; i++){ + VdbeOp *pOp = sqlite3VdbeGetOp(v, i); + assert( pOp!=0 ); + if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ + Index *pIndex; + int tnum = pOp->p2; + if( tnum==pTab->tnum ){ + return 1; + } + for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ + if( tnum==pIndex->tnum ){ + return 1; + } + } + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){ + assert( pOp->p4.pVtab!=0 ); + assert( pOp->p4type==P4_VTAB ); + return 1; + } +#endif + } + return 0; +} + +#ifndef SQLITE_OMIT_AUTOINCREMENT +/* +** Write out code to initialize the autoincrement logic. This code +** looks up the current autoincrement value in the sqlite_sequence +** table and stores that value in a register. Code generated by +** autoIncStep() will keep that register holding the largest +** rowid value. Code generated by autoIncEnd() will write the new +** largest value of the counter back into the sqlite_sequence table. +** +** This routine returns the index of the mem[] cell that contains +** the maximum rowid counter. +** +** Three consecutive registers are allocated by this routine. The +** first two hold the name of the target table and the maximum rowid +** inserted into the target table, respectively. +** The third holds the rowid in sqlite_sequence where we will +** write back the revised maximum rowid. This routine returns the +** index of the second of these three registers. +*/ +static int autoIncBegin( + Parse *pParse, /* Parsing context */ + int iDb, /* Index of the database holding pTab */ + Table *pTab /* The table we are writing to */ +){ + int memId = 0; /* Register holding maximum rowid */ + if( pTab->autoInc ){ + Vdbe *v = pParse->pVdbe; + Db *pDb = &pParse->db->aDb[iDb]; + int iCur = pParse->nTab; + int addr; /* Address of the top of the loop */ + assert( v ); + pParse->nMem++; /* Holds name of table */ + memId = ++pParse->nMem; + pParse->nMem++; + sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead); + addr = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0); + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+8); + sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId); + sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); + sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); + sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1); + sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+8); + sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2); + sqlite3VdbeAddOp2(v, OP_Close, iCur, 0); + } + return memId; +} + +/* +** Update the maximum rowid for an autoincrement calculation. +** +** This routine should be called when the top of the stack holds a +** new rowid that is about to be inserted. If that new rowid is +** larger than the maximum rowid in the memId memory cell, then the +** memory cell is updated. The stack is unchanged. +*/ +static void autoIncStep(Parse *pParse, int memId, int regRowid){ + if( memId>0 ){ + sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); + } +} + +/* +** After doing one or more inserts, the maximum rowid is stored +** in reg[memId]. Generate code to write this value back into the +** the sqlite_sequence table. +*/ +static void autoIncEnd( + Parse *pParse, /* The parsing context */ + int iDb, /* Index of the database holding pTab */ + Table *pTab, /* Table we are inserting into */ + int memId /* Memory cell holding the maximum rowid */ +){ + if( pTab->autoInc ){ + int iCur = pParse->nTab; + Vdbe *v = pParse->pVdbe; + Db *pDb = &pParse->db->aDb[iDb]; + int j1; + int iRec = ++pParse->nMem; /* Memory cell used for record */ + + assert( v ); + sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); + sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1); + sqlite3VdbeJumpHere(v, j1); + sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); + sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + sqlite3VdbeAddOp1(v, OP_Close, iCur); + } +} +#else +/* +** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines +** above are all no-ops +*/ +# define autoIncBegin(A,B,C) (0) +# define autoIncStep(A,B,C) +# define autoIncEnd(A,B,C,D) +#endif /* SQLITE_OMIT_AUTOINCREMENT */ + + +/* Forward declaration */ +static int xferOptimization( + Parse *pParse, /* Parser context */ + Table *pDest, /* The table we are inserting into */ + Select *pSelect, /* A SELECT statement to use as the data source */ + int onError, /* How to handle constraint errors */ + int iDbDest /* The database of pDest */ +); + +/* +** This routine is call to handle SQL of the following forms: +** +** insert into TABLE (IDLIST) values(EXPRLIST) +** insert into TABLE (IDLIST) select +** +** The IDLIST following the table name is always optional. If omitted, +** then a list of all columns for the table is substituted. The IDLIST +** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. +** +** The pList parameter holds EXPRLIST in the first form of the INSERT +** statement above, and pSelect is NULL. For the second form, pList is +** NULL and pSelect is a pointer to the select statement used to generate +** data for the insert. +** +** The code generated follows one of four templates. For a simple +** select with data coming from a VALUES clause, the code executes +** once straight down through. The template looks like this: +** +** open write cursor to <table> and its indices +** puts VALUES clause expressions onto the stack +** write the resulting record into <table> +** cleanup +** +** The three remaining templates assume the statement is of the form +** +** INSERT INTO <table> SELECT ... +** +** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - +** in other words if the SELECT pulls all columns from a single table +** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and +** if <table2> and <table1> are distinct tables but have identical +** schemas, including all the same indices, then a special optimization +** is invoked that copies raw records from <table2> over to <table1>. +** See the xferOptimization() function for the implementation of this +** template. This is the second template. +** +** open a write cursor to <table> +** open read cursor on <table2> +** transfer all records in <table2> over to <table> +** close cursors +** foreach index on <table> +** open a write cursor on the <table> index +** open a read cursor on the corresponding <table2> index +** transfer all records from the read to the write cursors +** close cursors +** end foreach +** +** The third template is for when the second template does not apply +** and the SELECT clause does not read from <table> at any time. +** The generated code follows this template: +** +** goto B +** A: setup for the SELECT +** loop over the rows in the SELECT +** gosub C +** end loop +** cleanup after the SELECT +** goto D +** B: open write cursor to <table> and its indices +** goto A +** C: insert the select result into <table> +** return +** D: cleanup +** +** The fourth template is used if the insert statement takes its +** values from a SELECT but the data is being inserted into a table +** that is also read as part of the SELECT. In the third form, +** we have to use a intermediate table to store the results of +** the select. The template is like this: +** +** goto B +** A: setup for the SELECT +** loop over the tables in the SELECT +** gosub C +** end loop +** cleanup after the SELECT +** goto D +** C: insert the select result into the intermediate table +** return +** B: open a cursor to an intermediate table +** goto A +** D: open write cursor to <table> and its indices +** loop over the intermediate table +** transfer values form intermediate table into <table> +** end the loop +** cleanup +*/ +SQLITE_PRIVATE void sqlite3Insert( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* Name of table into which we are inserting */ + ExprList *pList, /* List of values to be inserted */ + Select *pSelect, /* A SELECT statement to use as the data source */ + IdList *pColumn, /* Column names corresponding to IDLIST. */ + int onError /* How to handle constraint errors */ +){ + sqlite3 *db; /* The main database structure */ + Table *pTab; /* The table to insert into. aka TABLE */ + char *zTab; /* Name of the table into which we are inserting */ + const char *zDb; /* Name of the database holding this table */ + int i, j, idx; /* Loop counters */ + Vdbe *v; /* Generate code into this virtual machine */ + Index *pIdx; /* For looping over indices of the table */ + int nColumn; /* Number of columns in the data */ + int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ + int baseCur = 0; /* VDBE Cursor number for pTab */ + int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ + int endOfLoop; /* Label for the end of the insertion loop */ + int useTempTable = 0; /* Store SELECT results in intermediate table */ + int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ + int iCont=0,iBreak=0; /* Beginning and end of the loop over srcTab */ + int iSelectLoop = 0; /* Address of code that implements the SELECT */ + int iCleanup = 0; /* Address of the cleanup code */ + int iInsertBlock = 0; /* Address of the subroutine used to insert data */ + int newIdx = -1; /* Cursor for the NEW pseudo-table */ + int iDb; /* Index of database holding TABLE */ + Db *pDb; /* The database containing table being inserted into */ + int appendFlag = 0; /* True if the insert is likely to be an append */ + + /* Register allocations */ + int regFromSelect; /* Base register for data coming from SELECT */ + int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ + int regRowCount = 0; /* Memory cell used for the row counter */ + int regIns; /* Block of regs holding rowid+data being inserted */ + int regRowid; /* registers holding insert rowid */ + int regData; /* register holding first column to insert */ + int regRecord; /* Holds the assemblied row record */ + int *aRegIdx = 0; /* One register allocated to each index */ + + +#ifndef SQLITE_OMIT_TRIGGER + int isView; /* True if attempting to insert into a view */ + int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ +#endif + + db = pParse->db; + if( pParse->nErr || db->mallocFailed ){ + goto insert_cleanup; + } + + /* Locate the table into which we will be inserting new information. + */ + assert( pTabList->nSrc==1 ); + zTab = pTabList->a[0].zName; + if( zTab==0 ) goto insert_cleanup; + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ){ + goto insert_cleanup; + } + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDb<db->nDb ); + pDb = &db->aDb[iDb]; + zDb = pDb->zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ + goto insert_cleanup; + } + + /* Figure out if we have any triggers and if the table being + ** inserted into is a view + */ +#ifndef SQLITE_OMIT_TRIGGER + triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0); + isView = pTab->pSelect!=0; +#else +# define triggers_exist 0 +# define isView 0 +#endif +#ifdef SQLITE_OMIT_VIEW +# undef isView +# define isView 0 +#endif + + /* Ensure that: + * (a) the table is not read-only, + * (b) that if it is a view then ON INSERT triggers exist + */ + if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ + goto insert_cleanup; + } + assert( pTab!=0 ); + + /* If pTab is really a view, make sure it has been initialized. + ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual + ** module table). + */ + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto insert_cleanup; + } + + /* Allocate a VDBE + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto insert_cleanup; + if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb); + + /* if there are row triggers, allocate a temp table for new.* references. */ + if( triggers_exist ){ + newIdx = pParse->nTab++; + } + +#ifndef SQLITE_OMIT_XFER_OPT + /* If the statement is of the form + ** + ** INSERT INTO <table1> SELECT * FROM <table2>; + ** + ** Then special optimizations can be applied that make the transfer + ** very fast and which reduce fragmentation of indices. + */ + if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ + assert( !triggers_exist ); + assert( pList==0 ); + goto insert_cleanup; + } +#endif /* SQLITE_OMIT_XFER_OPT */ + + /* If this is an AUTOINCREMENT table, look up the sequence number in the + ** sqlite_sequence table and store it in memory cell regAutoinc. + */ + regAutoinc = autoIncBegin(pParse, iDb, pTab); + + /* Figure out how many columns of data are supplied. If the data + ** is coming from a SELECT statement, then this step also generates + ** all the code to implement the SELECT statement and invoke a subroutine + ** to process each row of the result. (Template 2.) If the SELECT + ** statement uses the the table that is being inserted into, then the + ** subroutine is also coded here. That subroutine stores the SELECT + ** results in a temporary table. (Template 3.) + */ + if( pSelect ){ + /* Data is coming from a SELECT. Generate code to implement that SELECT + */ + SelectDest dest; + int rc, iInitCode; + + iInitCode = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); + iSelectLoop = sqlite3VdbeCurrentAddr(v); + iInsertBlock = sqlite3VdbeMakeLabel(v); + sqlite3SelectDestInit(&dest, SRT_Subroutine, iInsertBlock); + + /* Resolve the expressions in the SELECT statement and execute it. */ + rc = sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0); + if( rc || pParse->nErr || db->mallocFailed ){ + goto insert_cleanup; + } + + regFromSelect = dest.iMem; + iCleanup = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp2(v, OP_Goto, 0, iCleanup); + assert( pSelect->pEList ); + nColumn = pSelect->pEList->nExpr; + + /* Set useTempTable to TRUE if the result of the SELECT statement + ** should be written into a temporary table. Set to FALSE if each + ** row of the SELECT can be written directly into the result table. + ** + ** A temp table must be used if the table being updated is also one + ** of the tables being read by the SELECT statement. Also use a + ** temp table in the case of row triggers. + */ + if( triggers_exist || readsTable(v, iSelectLoop, iDb, pTab) ){ + useTempTable = 1; + } + + if( useTempTable ){ + /* Generate the subroutine that SELECT calls to process each row of + ** the result. Store the result in a temporary table + */ + int regRec, regRowid; + + srcTab = pParse->nTab++; + regRec = sqlite3GetTempReg(pParse); + regRowid = sqlite3GetTempReg(pParse); + sqlite3VdbeResolveLabel(v, iInsertBlock); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); + sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid); + sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid); + sqlite3VdbeAddOp2(v, OP_Return, 0, 0); + sqlite3ReleaseTempReg(pParse, regRec); + sqlite3ReleaseTempReg(pParse, regRowid); + + /* The following code runs first because the GOTO at the very top + ** of the program jumps to it. Create the temporary table, then jump + ** back up and execute the SELECT code above. + */ + sqlite3VdbeJumpHere(v, iInitCode); + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); + sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop); + sqlite3VdbeResolveLabel(v, iCleanup); + }else{ + sqlite3VdbeJumpHere(v, iInitCode); + } + }else{ + /* This is the case if the data for the INSERT is coming from a VALUES + ** clause + */ + NameContext sNC; + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + srcTab = -1; + assert( useTempTable==0 ); + nColumn = pList ? pList->nExpr : 0; + for(i=0; i<nColumn; i++){ + if( sqlite3ExprResolveNames(&sNC, pList->a[i].pExpr) ){ + goto insert_cleanup; + } + } + } + + /* Make sure the number of columns in the source data matches the number + ** of columns to be inserted into the table. + */ + if( IsVirtual(pTab) ){ + for(i=0; i<pTab->nCol; i++){ + nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); + } + } + if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ + sqlite3ErrorMsg(pParse, + "table %S has %d columns but %d values were supplied", + pTabList, 0, pTab->nCol, nColumn); + goto insert_cleanup; + } + if( pColumn!=0 && nColumn!=pColumn->nId ){ + sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); + goto insert_cleanup; + } + + /* If the INSERT statement included an IDLIST term, then make sure + ** all elements of the IDLIST really are columns of the table and + ** remember the column indices. + ** + ** If the table has an INTEGER PRIMARY KEY column and that column + ** is named in the IDLIST, then record in the keyColumn variable + ** the index into IDLIST of the primary key column. keyColumn is + ** the index of the primary key as it appears in IDLIST, not as + ** is appears in the original table. (The index of the primary + ** key in the original table is pTab->iPKey.) + */ + if( pColumn ){ + for(i=0; i<pColumn->nId; i++){ + pColumn->a[i].idx = -1; + } + for(i=0; i<pColumn->nId; i++){ + for(j=0; j<pTab->nCol; j++){ + if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ + pColumn->a[i].idx = j; + if( j==pTab->iPKey ){ + keyColumn = i; + } + break; + } + } + if( j>=pTab->nCol ){ + if( sqlite3IsRowid(pColumn->a[i].zName) ){ + keyColumn = i; + }else{ + sqlite3ErrorMsg(pParse, "table %S has no column named %s", + pTabList, 0, pColumn->a[i].zName); + pParse->nErr++; + goto insert_cleanup; + } + } + } + } + + /* If there is no IDLIST term but the table has an integer primary + ** key, the set the keyColumn variable to the primary key column index + ** in the original table definition. + */ + if( pColumn==0 && nColumn>0 ){ + keyColumn = pTab->iPKey; + } + + /* Open the temp table for FOR EACH ROW triggers + */ + if( triggers_exist ){ + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol); + sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0); + } + + /* Initialize the count of rows to be inserted + */ + if( db->flags & SQLITE_CountRows ){ + regRowCount = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); + } + + /* If this is not a view, open the table and and all indices */ + if( !isView ){ + int nIdx; + int i; + + baseCur = pParse->nTab; + nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); + aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); + if( aRegIdx==0 ){ + goto insert_cleanup; + } + for(i=0; i<nIdx; i++){ + aRegIdx[i] = ++pParse->nMem; + } + } + + /* If the data source is a temporary table, then we have to create + ** a loop because there might be multiple rows of data. If the data + ** source is a subroutine call from the SELECT statement, then we need + ** to launch the SELECT statement processing. + */ + if( useTempTable ){ + iBreak = sqlite3VdbeMakeLabel(v); + sqlite3VdbeAddOp2(v, OP_Rewind, srcTab, iBreak); + iCont = sqlite3VdbeCurrentAddr(v); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, iSelectLoop); + sqlite3VdbeResolveLabel(v, iInsertBlock); + } + + /* Allocate registers for holding the rowid of the new row, + ** the content of the new row, and the assemblied row record. + */ + regRecord = ++pParse->nMem; + regRowid = regIns = pParse->nMem+1; + pParse->nMem += pTab->nCol + 1; + if( IsVirtual(pTab) ){ + regRowid++; + pParse->nMem++; + } + regData = regRowid+1; + + /* Run the BEFORE and INSTEAD OF triggers, if there are any + */ + endOfLoop = sqlite3VdbeMakeLabel(v); + if( triggers_exist & TRIGGER_BEFORE ){ + int regRowid; + int regCols; + int regRec; + + /* build the NEW.* reference row. Note that if there is an INTEGER + ** PRIMARY KEY into which a NULL is being inserted, that NULL will be + ** translated into a unique ID for the row. But on a BEFORE trigger, + ** we do not know what the unique ID will be (because the insert has + ** not happened yet) so we substitute a rowid of -1 + */ + regRowid = sqlite3GetTempReg(pParse); + if( keyColumn<0 ){ + sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); + }else if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); + }else{ + int j1; + assert( pSelect==0 ); /* Otherwise useTempTable is true */ + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); + sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); + sqlite3VdbeJumpHere(v, j1); + sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); + } + + /* Cannot have triggers on a virtual table. If it were possible, + ** this block would have to account for hidden column. + */ + assert(!IsVirtual(pTab)); + + /* Create the new column data + */ + regCols = sqlite3GetTempRange(pParse, pTab->nCol); + for(i=0; i<pTab->nCol; i++){ + if( pColumn==0 ){ + j = i; + }else{ + for(j=0; j<pColumn->nId; j++){ + if( pColumn->a[j].idx==i ) break; + } + } + if( pColumn && j>=pColumn->nId ){ + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i); + }else if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i); + }else{ + assert( pSelect==0 ); /* Otherwise useTempTable is true */ + sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i); + } + } + regRec = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec); + + /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, + ** do not attempt any conversions before assembling the record. + ** If this is a real table, attempt conversions as required by the + ** table column affinities. + */ + if( !isView ){ + sqlite3TableAffinityStr(v, pTab); + } + sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid); + sqlite3ReleaseTempReg(pParse, regRec); + sqlite3ReleaseTempReg(pParse, regRowid); + sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol); + + /* Fire BEFORE or INSTEAD OF triggers */ + if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, + newIdx, -1, onError, endOfLoop, 0, 0) ){ + goto insert_cleanup; + } + } + + /* Push the record number for the new entry onto the stack. The + ** record number is a randomly generate integer created by NewRowid + ** except when the table has an INTEGER PRIMARY KEY column, in which + ** case the record number is the same as that column. + */ + if( !isView ){ + if( IsVirtual(pTab) ){ + /* The row that the VUpdate opcode will delete: none */ + sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); + } + if( keyColumn>=0 ){ + if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); + }else{ + VdbeOp *pOp; + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); + pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1); + if( pOp && pOp->opcode==OP_Null ){ + appendFlag = 1; + pOp->opcode = OP_NewRowid; + pOp->p1 = baseCur; + pOp->p2 = regRowid; + pOp->p3 = regAutoinc; + } + } + /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid + ** to generate a unique primary key value. + */ + if( !appendFlag ){ + int j1; + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); + sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); + sqlite3VdbeJumpHere(v, j1); + sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); + } + }else if( IsVirtual(pTab) ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); + }else{ + sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); + appendFlag = 1; + } + autoIncStep(pParse, regAutoinc, regRowid); + + /* Push onto the stack, data for all columns of the new entry, beginning + ** with the first column. + */ + nHidden = 0; + for(i=0; i<pTab->nCol; i++){ + int iRegStore = regRowid+1+i; + if( i==pTab->iPKey ){ + /* The value of the INTEGER PRIMARY KEY column is always a NULL. + ** Whenever this column is read, the record number will be substituted + ** in its place. So will fill this column with a NULL to avoid + ** taking up data space with information that will never be used. */ + sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); + continue; + } + if( pColumn==0 ){ + if( IsHiddenColumn(&pTab->aCol[i]) ){ + assert( IsVirtual(pTab) ); + j = -1; + nHidden++; + }else{ + j = i - nHidden; + } + }else{ + for(j=0; j<pColumn->nId; j++){ + if( pColumn->a[j].idx==i ) break; + } + } + if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); + }else if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); + }else{ + sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); + } + } + + /* Generate code to check constraints and generate index keys and + ** do the insertion. + */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + sqlite3VtabMakeWritable(pParse, pTab); + sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, + (const char*)pTab->pVtab, P4_VTAB); + }else +#endif + { + sqlite3GenerateConstraintChecks( + pParse, + pTab, + baseCur, + regIns, + aRegIdx, + keyColumn>=0, + 0, + onError, + endOfLoop + ); + sqlite3CompleteInsertion( + pParse, + pTab, + baseCur, + regIns, + aRegIdx, + 0, + 0, + (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1, + appendFlag + ); + } + } + + /* Update the count of rows that are inserted + */ + if( (db->flags & SQLITE_CountRows)!=0 ){ + sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); + } + + if( triggers_exist ){ + /* Code AFTER triggers */ + if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab, + newIdx, -1, onError, endOfLoop, 0, 0) ){ + goto insert_cleanup; + } + } + + /* The bottom of the loop, if the data source is a SELECT statement + */ + sqlite3VdbeResolveLabel(v, endOfLoop); + if( useTempTable ){ + sqlite3VdbeAddOp2(v, OP_Next, srcTab, iCont); + sqlite3VdbeResolveLabel(v, iBreak); + sqlite3VdbeAddOp2(v, OP_Close, srcTab, 0); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_Return, 0, 0); + sqlite3VdbeResolveLabel(v, iCleanup); + } + + if( !IsVirtual(pTab) && !isView ){ + /* Close all tables opened */ + sqlite3VdbeAddOp2(v, OP_Close, baseCur, 0); + for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ + sqlite3VdbeAddOp2(v, OP_Close, idx+baseCur, 0); + } + } + + /* Update the sqlite_sequence table by storing the content of the + ** counter value in memory regAutoinc back into the sqlite_sequence + ** table. + */ + autoIncEnd(pParse, iDb, pTab, regAutoinc); + + /* + ** Return the number of rows inserted. If this routine is + ** generating code because of a call to sqlite3NestedParse(), do not + ** invoke the callback function. + */ + if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ + sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC); + } + +insert_cleanup: + sqlite3SrcListDelete(pTabList); + sqlite3ExprListDelete(pList); + sqlite3SelectDelete(pSelect); + sqlite3IdListDelete(pColumn); + sqlite3_free(aRegIdx); +} + +/* +** Generate code to do constraint checks prior to an INSERT or an UPDATE. +** +** The input is a range of consecutive registers as follows: +** +** 1. The rowid of the row to be updated before the update. This +** value is omitted unless we are doing an UPDATE that involves a +** change to the record number or writing to a virtual table. +** +** 2. The rowid of the row after the update. +** +** 3. The data in the first column of the entry after the update. +** +** i. Data from middle columns... +** +** N. The data in the last column of the entry after the update. +** +** The regRowid parameter is the index of the register containing (2). +** +** The old rowid shown as entry (1) above is omitted unless both isUpdate +** and rowidChng are 1. isUpdate is true for UPDATEs and false for +** INSERTs. RowidChng means that the new rowid is explicitly specified by +** the update or insert statement. If rowidChng is false, it means that +** the rowid is computed automatically in an insert or that the rowid value +** is not modified by the update. +** +** The code generated by this routine store new index entries into +** registers identified by aRegIdx[]. No index entry is created for +** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is +** the same as the order of indices on the linked list of indices +** attached to the table. +** +** This routine also generates code to check constraints. NOT NULL, +** CHECK, and UNIQUE constraints are all checked. If a constraint fails, +** then the appropriate action is performed. There are five possible +** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. +** +** Constraint type Action What Happens +** --------------- ---------- ---------------------------------------- +** any ROLLBACK The current transaction is rolled back and +** sqlite3_exec() returns immediately with a +** return code of SQLITE_CONSTRAINT. +** +** any ABORT Back out changes from the current command +** only (do not do a complete rollback) then +** cause sqlite3_exec() to return immediately +** with SQLITE_CONSTRAINT. +** +** any FAIL Sqlite_exec() returns immediately with a +** return code of SQLITE_CONSTRAINT. The +** transaction is not rolled back and any +** prior changes are retained. +** +** any IGNORE The record number and data is popped from +** the stack and there is an immediate jump +** to label ignoreDest. +** +** NOT NULL REPLACE The NULL value is replace by the default +** value for that column. If the default value +** is NULL, the action is the same as ABORT. +** +** UNIQUE REPLACE The other row that conflicts with the row +** being inserted is removed. +** +** CHECK REPLACE Illegal. The results in an exception. +** +** Which action to take is determined by the overrideError parameter. +** Or if overrideError==OE_Default, then the pParse->onError parameter +** is used. Or if pParse->onError==OE_Default then the onError value +** for the constraint is used. +** +** The calling routine must open a read/write cursor for pTab with +** cursor number "baseCur". All indices of pTab must also have open +** read/write cursors with cursor number baseCur+i for the i-th cursor. +** Except, if there is no possibility of a REPLACE action then +** cursors do not need to be open for indices where aRegIdx[i]==0. +*/ +SQLITE_PRIVATE void sqlite3GenerateConstraintChecks( + Parse *pParse, /* The parser context */ + Table *pTab, /* the table into which we are inserting */ + int baseCur, /* Index of a read/write cursor pointing at pTab */ + int regRowid, /* Index of the range of input registers */ + int *aRegIdx, /* Register used by each index. 0 for unused indices */ + int rowidChng, /* True if the rowid might collide with existing entry */ + int isUpdate, /* True for UPDATE, False for INSERT */ + int overrideError, /* Override onError to this if not OE_Default */ + int ignoreDest /* Jump to this label on an OE_Ignore resolution */ +){ + int i; + Vdbe *v; + int nCol; + int onError; + int j1, j2, j3; /* Addresses of jump instructions */ + int regData; /* Register containing first data column */ + int iCur; + Index *pIdx; + int seenReplace = 0; + int hasTwoRowids = (isUpdate && rowidChng); + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + assert( pTab->pSelect==0 ); /* This table is not a VIEW */ + nCol = pTab->nCol; + regData = regRowid + 1; + + + /* Test all NOT NULL constraints. + */ + for(i=0; i<nCol; i++){ + if( i==pTab->iPKey ){ + continue; + } + onError = pTab->aCol[i].notNull; + if( onError==OE_None ) continue; + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ + onError = OE_Abort; + } + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail + || onError==OE_Ignore || onError==OE_Replace ); + switch( onError ){ + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + char *zMsg = 0; + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError); + sqlite3SetString(&zMsg, pTab->zName, ".", pTab->aCol[i].zName, + " may not be NULL", (char*)0); + sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); + break; + } + case OE_Ignore: { + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + break; + } + case OE_Replace: { + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); + break; + } + } + sqlite3VdbeJumpHere(v, j1); + } + + /* Test all CHECK constraints + */ +#ifndef SQLITE_OMIT_CHECK + if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ + int allOk = sqlite3VdbeMakeLabel(v); + pParse->ckBase = regData; + sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); + onError = overrideError!=OE_Default ? overrideError : OE_Abort; + if( onError==OE_Ignore ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + }else{ + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError); + } + sqlite3VdbeResolveLabel(v, allOk); + } +#endif /* !defined(SQLITE_OMIT_CHECK) */ + + /* If we have an INTEGER PRIMARY KEY, make sure the primary key + ** of the new record does not previously exist. Except, if this + ** is an UPDATE and the primary key is not changing, that is OK. + */ + if( rowidChng ){ + onError = pTab->keyConf; + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + + if( onError!=OE_Replace || pTab->pIndex ){ + if( isUpdate ){ + j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1); + } + j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); + switch( onError ){ + default: { + onError = OE_Abort; + /* Fall thru into the next case */ + } + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, + "PRIMARY KEY must be unique", P4_STATIC); + break; + } + case OE_Replace: { + sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); + seenReplace = 1; + break; + } + case OE_Ignore: { + assert( seenReplace==0 ); + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + break; + } + } + sqlite3VdbeJumpHere(v, j3); + if( isUpdate ){ + sqlite3VdbeJumpHere(v, j2); + } + } + } + + /* Test all UNIQUE constraints by creating entries for each UNIQUE + ** index and making sure that duplicate entries do not already exist. + ** Add the new records to the indices as we go. + */ + for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ + int regIdx; + int regR; + + if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ + + /* Create a key for accessing the index entry */ + regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); + for(i=0; i<pIdx->nColumn; i++){ + int idx = pIdx->aiColumn[i]; + if( idx==pTab->iPKey ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); + }else{ + sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); + } + } + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); + sqlite3IndexAffinityStr(v, pIdx); + sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); + sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); + + /* Find out what action to take in case there is an indexing conflict */ + onError = pIdx->onError; + if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + if( seenReplace ){ + if( onError==OE_Ignore ) onError = OE_Replace; + else if( onError==OE_Fail ) onError = OE_Abort; + } + + + /* Check to see if the new index entry will be unique */ + j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn); + regR = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR); + j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, + regR, (char*)aRegIdx[iCur], + P4_INT32); + + /* Generate code that executes if the new index entry is not unique */ + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail + || onError==OE_Ignore || onError==OE_Replace ); + switch( onError ){ + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + int j, n1, n2; + char zErrMsg[200]; + sqlite3_snprintf(sizeof(zErrMsg), zErrMsg, + pIdx->nColumn>1 ? "columns " : "column "); + n1 = strlen(zErrMsg); + for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){ + char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; + n2 = strlen(zCol); + if( j>0 ){ + sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", "); + n1 += 2; + } + if( n1+n2>sizeof(zErrMsg)-30 ){ + sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "..."); + n1 += 3; + break; + }else{ + sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol); + n1 += n2; + } + } + sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], + pIdx->nColumn>1 ? " are not unique" : " is not unique"); + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0); + break; + } + case OE_Ignore: { + assert( seenReplace==0 ); + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + break; + } + case OE_Replace: { + sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0); + seenReplace = 1; + break; + } + } + sqlite3VdbeJumpHere(v, j2); + sqlite3VdbeJumpHere(v, j3); + sqlite3ReleaseTempReg(pParse, regR); + } +} + +/* +** This routine generates code to finish the INSERT or UPDATE operation +** that was started by a prior call to sqlite3GenerateConstraintChecks. +** A consecutive range of registers starting at regRowid contains the +** rowid and the content to be inserted. +** +** The arguments to this routine should be the same as the first six +** arguments to sqlite3GenerateConstraintChecks. +*/ +SQLITE_PRIVATE void sqlite3CompleteInsertion( + Parse *pParse, /* The parser context */ + Table *pTab, /* the table into which we are inserting */ + int baseCur, /* Index of a read/write cursor pointing at pTab */ + int regRowid, /* Range of content */ + int *aRegIdx, /* Register used by each index. 0 for unused indices */ + int rowidChng, /* True if the record number will change */ + int isUpdate, /* True for UPDATE, False for INSERT */ + int newIdx, /* Index of NEW table for triggers. -1 if none */ + int appendBias /* True if this is likely to be an append */ +){ + int i; + Vdbe *v; + int nIdx; + Index *pIdx; + int pik_flags; + int regData; + int regRec; + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + assert( pTab->pSelect==0 ); /* This table is not a VIEW */ + for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} + for(i=nIdx-1; i>=0; i--){ + if( aRegIdx[i]==0 ) continue; + sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); + } + regData = regRowid + 1; + regRec = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); + sqlite3TableAffinityStr(v, pTab); + sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); +#ifndef SQLITE_OMIT_TRIGGER + if( newIdx>=0 ){ + sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid); + } +#endif + if( pParse->nested ){ + pik_flags = 0; + }else{ + pik_flags = OPFLAG_NCHANGE; + pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); + } + if( appendBias ){ + pik_flags |= OPFLAG_APPEND; + } + sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); + if( !pParse->nested ){ + sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); + } + sqlite3VdbeChangeP5(v, pik_flags); +} + +/* +** Generate code that will open cursors for a table and for all +** indices of that table. The "baseCur" parameter is the cursor number used +** for the table. Indices are opened on subsequent cursors. +** +** Return the number of indices on the table. +*/ +SQLITE_PRIVATE int sqlite3OpenTableAndIndices( + Parse *pParse, /* Parsing context */ + Table *pTab, /* Table to be opened */ + int baseCur, /* Cursor number assigned to the table */ + int op /* OP_OpenRead or OP_OpenWrite */ +){ + int i; + int iDb; + Index *pIdx; + Vdbe *v; + + if( IsVirtual(pTab) ) return 0; + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); + for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); + assert( pIdx->pSchema==pTab->pSchema ); + sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pIdx->zName)); + } + if( pParse->nTab<=baseCur+i ){ + pParse->nTab = baseCur+i; + } + return i-1; +} + + +#ifdef SQLITE_TEST +/* +** The following global variable is incremented whenever the +** transfer optimization is used. This is used for testing +** purposes only - to make sure the transfer optimization really +** is happening when it is suppose to. +*/ +SQLITE_API int sqlite3_xferopt_count; +#endif /* SQLITE_TEST */ + + +#ifndef SQLITE_OMIT_XFER_OPT +/* +** Check to collation names to see if they are compatible. +*/ +static int xferCompatibleCollation(const char *z1, const char *z2){ + if( z1==0 ){ + return z2==0; + } + if( z2==0 ){ + return 0; + } + return sqlite3StrICmp(z1, z2)==0; +} + + +/* +** Check to see if index pSrc is compatible as a source of data +** for index pDest in an insert transfer optimization. The rules +** for a compatible index: +** +** * The index is over the same set of columns +** * The same DESC and ASC markings occurs on all columns +** * The same onError processing (OE_Abort, OE_Ignore, etc) +** * The same collating sequence on each column +*/ +static int xferCompatibleIndex(Index *pDest, Index *pSrc){ + int i; + assert( pDest && pSrc ); + assert( pDest->pTable!=pSrc->pTable ); + if( pDest->nColumn!=pSrc->nColumn ){ + return 0; /* Different number of columns */ + } + if( pDest->onError!=pSrc->onError ){ + return 0; /* Different conflict resolution strategies */ + } + for(i=0; i<pSrc->nColumn; i++){ + if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ + return 0; /* Different columns indexed */ + } + if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ + return 0; /* Different sort orders */ + } + if( pSrc->azColl[i]!=pDest->azColl[i] ){ + return 0; /* Different collating sequences */ + } + } + + /* If no test above fails then the indices must be compatible */ + return 1; +} + +/* +** Attempt the transfer optimization on INSERTs of the form +** +** INSERT INTO tab1 SELECT * FROM tab2; +** +** This optimization is only attempted if +** +** (1) tab1 and tab2 have identical schemas including all the +** same indices and constraints +** +** (2) tab1 and tab2 are different tables +** +** (3) There must be no triggers on tab1 +** +** (4) The result set of the SELECT statement is "*" +** +** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, +** or LIMIT clause. +** +** (6) The SELECT statement is a simple (not a compound) select that +** contains only tab2 in its FROM clause +** +** This method for implementing the INSERT transfers raw records from +** tab2 over to tab1. The columns are not decoded. Raw records from +** the indices of tab2 are transfered to tab1 as well. In so doing, +** the resulting tab1 has much less fragmentation. +** +** This routine returns TRUE if the optimization is attempted. If any +** of the conditions above fail so that the optimization should not +** be attempted, then this routine returns FALSE. +*/ +static int xferOptimization( + Parse *pParse, /* Parser context */ + Table *pDest, /* The table we are inserting into */ + Select *pSelect, /* A SELECT statement to use as the data source */ + int onError, /* How to handle constraint errors */ + int iDbDest /* The database of pDest */ +){ + ExprList *pEList; /* The result set of the SELECT */ + Table *pSrc; /* The table in the FROM clause of SELECT */ + Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ + struct SrcList_item *pItem; /* An element of pSelect->pSrc */ + int i; /* Loop counter */ + int iDbSrc; /* The database of pSrc */ + int iSrc, iDest; /* Cursors from source and destination */ + int addr1, addr2; /* Loop addresses */ + int emptyDestTest; /* Address of test for empty pDest */ + int emptySrcTest; /* Address of test for empty pSrc */ + Vdbe *v; /* The VDBE we are building */ + KeyInfo *pKey; /* Key information for an index */ + int regAutoinc; /* Memory register used by AUTOINC */ + int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ + int regData, regRowid; /* Registers holding data and rowid */ + + if( pSelect==0 ){ + return 0; /* Must be of the form INSERT INTO ... SELECT ... */ + } + if( pDest->pTrigger ){ + return 0; /* tab1 must not have triggers */ + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pDest->isVirtual ){ + return 0; /* tab1 must not be a virtual table */ + } +#endif + if( onError==OE_Default ){ + onError = OE_Abort; + } + if( onError!=OE_Abort && onError!=OE_Rollback ){ + return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ + } + assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ + if( pSelect->pSrc->nSrc!=1 ){ + return 0; /* FROM clause must have exactly one term */ + } + if( pSelect->pSrc->a[0].pSelect ){ + return 0; /* FROM clause cannot contain a subquery */ + } + if( pSelect->pWhere ){ + return 0; /* SELECT may not have a WHERE clause */ + } + if( pSelect->pOrderBy ){ + return 0; /* SELECT may not have an ORDER BY clause */ + } + /* Do not need to test for a HAVING clause. If HAVING is present but + ** there is no ORDER BY, we will get an error. */ + if( pSelect->pGroupBy ){ + return 0; /* SELECT may not have a GROUP BY clause */ + } + if( pSelect->pLimit ){ + return 0; /* SELECT may not have a LIMIT clause */ + } + assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ + if( pSelect->pPrior ){ + return 0; /* SELECT may not be a compound query */ + } + if( pSelect->isDistinct ){ + return 0; /* SELECT may not be DISTINCT */ + } + pEList = pSelect->pEList; + assert( pEList!=0 ); + if( pEList->nExpr!=1 ){ + return 0; /* The result set must have exactly one column */ + } + assert( pEList->a[0].pExpr ); + if( pEList->a[0].pExpr->op!=TK_ALL ){ + return 0; /* The result set must be the special operator "*" */ + } + + /* At this point we have established that the statement is of the + ** correct syntactic form to participate in this optimization. Now + ** we have to check the semantics. + */ + pItem = pSelect->pSrc->a; + pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); + if( pSrc==0 ){ + return 0; /* FROM clause does not contain a real table */ + } + if( pSrc==pDest ){ + return 0; /* tab1 and tab2 may not be the same table */ + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pSrc->isVirtual ){ + return 0; /* tab2 must not be a virtual table */ + } +#endif + if( pSrc->pSelect ){ + return 0; /* tab2 may not be a view */ + } + if( pDest->nCol!=pSrc->nCol ){ + return 0; /* Number of columns must be the same in tab1 and tab2 */ + } + if( pDest->iPKey!=pSrc->iPKey ){ + return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ + } + for(i=0; i<pDest->nCol; i++){ + if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ + return 0; /* Affinity must be the same on all columns */ + } + if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ + return 0; /* Collating sequence must be the same on all columns */ + } + if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ + return 0; /* tab2 must be NOT NULL if tab1 is */ + } + } + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ + if( pDestIdx->onError!=OE_None ){ + destHasUniqueIdx = 1; + } + for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; + } + if( pSrcIdx==0 ){ + return 0; /* pDestIdx has no corresponding index in pSrc */ + } + } +#ifndef SQLITE_OMIT_CHECK + if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ + return 0; /* Tables have different CHECK constraints. Ticket #2252 */ + } +#endif + + /* If we get this far, it means either: + ** + ** * We can always do the transfer if the table contains an + ** an integer primary key + ** + ** * We can conditionally do the transfer if the destination + ** table is empty. + */ +#ifdef SQLITE_TEST + sqlite3_xferopt_count++; +#endif + iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); + v = sqlite3GetVdbe(pParse); + sqlite3CodeVerifySchema(pParse, iDbSrc); + iSrc = pParse->nTab++; + iDest = pParse->nTab++; + regAutoinc = autoIncBegin(pParse, iDbDest, pDest); + sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); + if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ + /* If tables do not have an INTEGER PRIMARY KEY and there + ** are indices to be copied and the destination is not empty, + ** we have to disallow the transfer optimization because the + ** the rowids might change which will mess up indexing. + ** + ** Or if the destination has a UNIQUE index and is not empty, + ** we also disallow the transfer optimization because we cannot + ** insure that all entries in the union of DEST and SRC will be + ** unique. + */ + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); + emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); + sqlite3VdbeJumpHere(v, addr1); + }else{ + emptyDestTest = 0; + } + sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); + emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); + regData = sqlite3GetTempReg(pParse); + regRowid = sqlite3GetTempReg(pParse); + if( pDest->iPKey>=0 ){ + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); + addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, + "PRIMARY KEY must be unique", P4_STATIC); + sqlite3VdbeJumpHere(v, addr2); + autoIncStep(pParse, regAutoinc, regRowid); + }else if( pDest->pIndex==0 ){ + addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); + }else{ + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); + assert( pDest->autoInc==0 ); + } + sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); + sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); + sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); + sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); + autoIncEnd(pParse, iDbDest, pDest, regAutoinc); + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ + for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; + } + assert( pSrcIdx ); + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); + sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pSrcIdx->zName)); + pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); + sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pDestIdx->zName)); + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); + sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); + sqlite3VdbeJumpHere(v, addr1); + } + sqlite3VdbeJumpHere(v, emptySrcTest); + sqlite3ReleaseTempReg(pParse, regRowid); + sqlite3ReleaseTempReg(pParse, regData); + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + if( emptyDestTest ){ + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); + sqlite3VdbeJumpHere(v, emptyDestTest); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + return 0; + }else{ + return 1; + } +} +#endif /* SQLITE_OMIT_XFER_OPT */ + +/* Make sure "isView" gets undefined in case this file becomes part of +** the amalgamation - so that subsequent files do not see isView as a +** macro. */ +#undef isView + +/************** End of insert.c **********************************************/ +/************** Begin file legacy.c ******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Main file for the SQLite library. The routines in this file +** implement the programmer interface to the library. Routines in +** other files are for internal use by SQLite and should not be +** accessed by users of the library. +** +** $Id: legacy.c,v 1.24 2008/03/21 18:01:14 drh Exp $ +*/ + + +/* +** Execute SQL code. Return one of the SQLITE_ success/failure +** codes. Also write an error message into memory obtained from +** malloc() and make *pzErrMsg point to that message. +** +** If the SQL is a query, then for each row in the query result +** the xCallback() function is called. pArg becomes the first +** argument to xCallback(). If xCallback=NULL then no callback +** is invoked, even for queries. +*/ +SQLITE_API int sqlite3_exec( + sqlite3 *db, /* The database on which the SQL executes */ + const char *zSql, /* The SQL to be executed */ + sqlite3_callback xCallback, /* Invoke this callback routine */ + void *pArg, /* First argument to xCallback() */ + char **pzErrMsg /* Write error messages here */ +){ + int rc = SQLITE_OK; + const char *zLeftover; + sqlite3_stmt *pStmt = 0; + char **azCols = 0; + + int nRetry = 0; + int nCallback; + + if( zSql==0 ) return SQLITE_OK; + + sqlite3_mutex_enter(db->mutex); + while( (rc==SQLITE_OK || (rc==SQLITE_SCHEMA && (++nRetry)<2)) && zSql[0] ){ + int nCol; + char **azVals = 0; + + pStmt = 0; + rc = sqlite3_prepare(db, zSql, -1, &pStmt, &zLeftover); + assert( rc==SQLITE_OK || pStmt==0 ); + if( rc!=SQLITE_OK ){ + continue; + } + if( !pStmt ){ + /* this happens for a comment or white-space */ + zSql = zLeftover; + continue; + } + + nCallback = 0; + nCol = sqlite3_column_count(pStmt); + + while( 1 ){ + int i; + rc = sqlite3_step(pStmt); + + /* Invoke the callback function if required */ + if( xCallback && (SQLITE_ROW==rc || + (SQLITE_DONE==rc && !nCallback && db->flags&SQLITE_NullCallback)) ){ + if( 0==nCallback ){ + if( azCols==0 ){ + azCols = sqlite3DbMallocZero(db, 2*nCol*sizeof(const char*) + 1); + if( azCols==0 ){ + goto exec_out; + } + } + for(i=0; i<nCol; i++){ + azCols[i] = (char *)sqlite3_column_name(pStmt, i); + if( !azCols[i] ){ + db->mallocFailed = 1; + goto exec_out; + } + } + nCallback++; + } + if( rc==SQLITE_ROW ){ + azVals = &azCols[nCol]; + for(i=0; i<nCol; i++){ + azVals[i] = (char *)sqlite3_column_text(pStmt, i); + if( !azVals[i] && sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){ + db->mallocFailed = 1; + goto exec_out; + } + } + } + if( xCallback(pArg, nCol, azVals, azCols) ){ + rc = SQLITE_ABORT; + goto exec_out; + } + } + + if( rc!=SQLITE_ROW ){ + rc = sqlite3_finalize(pStmt); + pStmt = 0; + if( rc!=SQLITE_SCHEMA ){ + nRetry = 0; + zSql = zLeftover; + while( isspace((unsigned char)zSql[0]) ) zSql++; + } + break; + } + } + + sqlite3_free(azCols); + azCols = 0; + } + +exec_out: + if( pStmt ) sqlite3_finalize(pStmt); + if( azCols ) sqlite3_free(azCols); + + rc = sqlite3ApiExit(db, rc); + if( rc!=SQLITE_OK && rc==sqlite3_errcode(db) && pzErrMsg ){ + int nErrMsg = 1 + strlen(sqlite3_errmsg(db)); + *pzErrMsg = sqlite3_malloc(nErrMsg); + if( *pzErrMsg ){ + memcpy(*pzErrMsg, sqlite3_errmsg(db), nErrMsg); + } + }else if( pzErrMsg ){ + *pzErrMsg = 0; + } + + assert( (rc&db->errMask)==rc ); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/************** End of legacy.c **********************************************/ +/************** Begin file loadext.c *****************************************/ +/* +** 2006 June 7 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to dynamically load extensions into +** the SQLite library. +*/ + +#ifndef SQLITE_CORE + #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ +#endif +/************** Include sqlite3ext.h in the middle of loadext.c **************/ +/************** Begin file sqlite3ext.h **************************************/ +/* +** 2006 June 7 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This header file defines the SQLite interface for use by +** shared libraries that want to be imported as extensions into +** an SQLite instance. Shared libraries that intend to be loaded +** as extensions by SQLite should #include this file instead of +** sqlite3.h. +** +** @(#) $Id: sqlite3ext.h,v 1.21 2008/03/19 21:45:51 drh Exp $ +*/ +#ifndef _SQLITE3EXT_H_ +#define _SQLITE3EXT_H_ + +typedef struct sqlite3_api_routines sqlite3_api_routines; + +/* +** The following structure holds pointers to all of the SQLite API +** routines. +** +** WARNING: In order to maintain backwards compatibility, add new +** interfaces to the end of this structure only. If you insert new +** interfaces in the middle of this structure, then older different +** versions of SQLite will not be able to load each others' shared +** libraries! +*/ +struct sqlite3_api_routines { + void * (*aggregate_context)(sqlite3_context*,int nBytes); + int (*aggregate_count)(sqlite3_context*); + int (*bind_blob)(sqlite3_stmt*,int,const void*,int n,void(*)(void*)); + int (*bind_double)(sqlite3_stmt*,int,double); + int (*bind_int)(sqlite3_stmt*,int,int); + int (*bind_int64)(sqlite3_stmt*,int,sqlite_int64); + int (*bind_null)(sqlite3_stmt*,int); + int (*bind_parameter_count)(sqlite3_stmt*); + int (*bind_parameter_index)(sqlite3_stmt*,const char*zName); + const char * (*bind_parameter_name)(sqlite3_stmt*,int); + int (*bind_text)(sqlite3_stmt*,int,const char*,int n,void(*)(void*)); + int (*bind_text16)(sqlite3_stmt*,int,const void*,int,void(*)(void*)); + int (*bind_value)(sqlite3_stmt*,int,const sqlite3_value*); + int (*busy_handler)(sqlite3*,int(*)(void*,int),void*); + int (*busy_timeout)(sqlite3*,int ms); + int (*changes)(sqlite3*); + int (*close)(sqlite3*); + int (*collation_needed)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const char*)); + int (*collation_needed16)(sqlite3*,void*,void(*)(void*,sqlite3*,int eTextRep,const void*)); + const void * (*column_blob)(sqlite3_stmt*,int iCol); + int (*column_bytes)(sqlite3_stmt*,int iCol); + int (*column_bytes16)(sqlite3_stmt*,int iCol); + int (*column_count)(sqlite3_stmt*pStmt); + const char * (*column_database_name)(sqlite3_stmt*,int); + const void * (*column_database_name16)(sqlite3_stmt*,int); + const char * (*column_decltype)(sqlite3_stmt*,int i); + const void * (*column_decltype16)(sqlite3_stmt*,int); + double (*column_double)(sqlite3_stmt*,int iCol); + int (*column_int)(sqlite3_stmt*,int iCol); + sqlite_int64 (*column_int64)(sqlite3_stmt*,int iCol); + const char * (*column_name)(sqlite3_stmt*,int); + const void * (*column_name16)(sqlite3_stmt*,int); + const char * (*column_origin_name)(sqlite3_stmt*,int); + const void * (*column_origin_name16)(sqlite3_stmt*,int); + const char * (*column_table_name)(sqlite3_stmt*,int); + const void * (*column_table_name16)(sqlite3_stmt*,int); + const unsigned char * (*column_text)(sqlite3_stmt*,int iCol); + const void * (*column_text16)(sqlite3_stmt*,int iCol); + int (*column_type)(sqlite3_stmt*,int iCol); + sqlite3_value* (*column_value)(sqlite3_stmt*,int iCol); + void * (*commit_hook)(sqlite3*,int(*)(void*),void*); + int (*complete)(const char*sql); + int (*complete16)(const void*sql); + int (*create_collation)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*)); + int (*create_collation16)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*)); + int (*create_function)(sqlite3*,const char*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*)); + int (*create_function16)(sqlite3*,const void*,int,int,void*,void (*xFunc)(sqlite3_context*,int,sqlite3_value**),void (*xStep)(sqlite3_context*,int,sqlite3_value**),void (*xFinal)(sqlite3_context*)); + int (*create_module)(sqlite3*,const char*,const sqlite3_module*,void*); + int (*data_count)(sqlite3_stmt*pStmt); + sqlite3 * (*db_handle)(sqlite3_stmt*); + int (*declare_vtab)(sqlite3*,const char*); + int (*enable_shared_cache)(int); + int (*errcode)(sqlite3*db); + const char * (*errmsg)(sqlite3*); + const void * (*errmsg16)(sqlite3*); + int (*exec)(sqlite3*,const char*,sqlite3_callback,void*,char**); + int (*expired)(sqlite3_stmt*); + int (*finalize)(sqlite3_stmt*pStmt); + void (*free)(void*); + void (*free_table)(char**result); + int (*get_autocommit)(sqlite3*); + void * (*get_auxdata)(sqlite3_context*,int); + int (*get_table)(sqlite3*,const char*,char***,int*,int*,char**); + int (*global_recover)(void); + void (*interruptx)(sqlite3*); + sqlite_int64 (*last_insert_rowid)(sqlite3*); + const char * (*libversion)(void); + int (*libversion_number)(void); + void *(*malloc)(int); + char * (*mprintf)(const char*,...); + int (*open)(const char*,sqlite3**); + int (*open16)(const void*,sqlite3**); + int (*prepare)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); + int (*prepare16)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); + void * (*profile)(sqlite3*,void(*)(void*,const char*,sqlite_uint64),void*); + void (*progress_handler)(sqlite3*,int,int(*)(void*),void*); + void *(*realloc)(void*,int); + int (*reset)(sqlite3_stmt*pStmt); + void (*result_blob)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_double)(sqlite3_context*,double); + void (*result_error)(sqlite3_context*,const char*,int); + void (*result_error16)(sqlite3_context*,const void*,int); + void (*result_int)(sqlite3_context*,int); + void (*result_int64)(sqlite3_context*,sqlite_int64); + void (*result_null)(sqlite3_context*); + void (*result_text)(sqlite3_context*,const char*,int,void(*)(void*)); + void (*result_text16)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_text16be)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_text16le)(sqlite3_context*,const void*,int,void(*)(void*)); + void (*result_value)(sqlite3_context*,sqlite3_value*); + void * (*rollback_hook)(sqlite3*,void(*)(void*),void*); + int (*set_authorizer)(sqlite3*,int(*)(void*,int,const char*,const char*,const char*,const char*),void*); + void (*set_auxdata)(sqlite3_context*,int,void*,void (*)(void*)); + char * (*snprintf)(int,char*,const char*,...); + int (*step)(sqlite3_stmt*); + int (*table_column_metadata)(sqlite3*,const char*,const char*,const char*,char const**,char const**,int*,int*,int*); + void (*thread_cleanup)(void); + int (*total_changes)(sqlite3*); + void * (*trace)(sqlite3*,void(*xTrace)(void*,const char*),void*); + int (*transfer_bindings)(sqlite3_stmt*,sqlite3_stmt*); + void * (*update_hook)(sqlite3*,void(*)(void*,int ,char const*,char const*,sqlite_int64),void*); + void * (*user_data)(sqlite3_context*); + const void * (*value_blob)(sqlite3_value*); + int (*value_bytes)(sqlite3_value*); + int (*value_bytes16)(sqlite3_value*); + double (*value_double)(sqlite3_value*); + int (*value_int)(sqlite3_value*); + sqlite_int64 (*value_int64)(sqlite3_value*); + int (*value_numeric_type)(sqlite3_value*); + const unsigned char * (*value_text)(sqlite3_value*); + const void * (*value_text16)(sqlite3_value*); + const void * (*value_text16be)(sqlite3_value*); + const void * (*value_text16le)(sqlite3_value*); + int (*value_type)(sqlite3_value*); + char *(*vmprintf)(const char*,va_list); + /* Added ??? */ + int (*overload_function)(sqlite3*, const char *zFuncName, int nArg); + /* Added by 3.3.13 */ + int (*prepare_v2)(sqlite3*,const char*,int,sqlite3_stmt**,const char**); + int (*prepare16_v2)(sqlite3*,const void*,int,sqlite3_stmt**,const void**); + int (*clear_bindings)(sqlite3_stmt*); + /* Added by 3.4.1 */ + int (*create_module_v2)(sqlite3*,const char*,const sqlite3_module*,void*,void (*xDestroy)(void *)); + /* Added by 3.5.0 */ + int (*bind_zeroblob)(sqlite3_stmt*,int,int); + int (*blob_bytes)(sqlite3_blob*); + int (*blob_close)(sqlite3_blob*); + int (*blob_open)(sqlite3*,const char*,const char*,const char*,sqlite3_int64,int,sqlite3_blob**); + int (*blob_read)(sqlite3_blob*,void*,int,int); + int (*blob_write)(sqlite3_blob*,const void*,int,int); + int (*create_collation_v2)(sqlite3*,const char*,int,void*,int(*)(void*,int,const void*,int,const void*),void(*)(void*)); + int (*file_control)(sqlite3*,const char*,int,void*); + sqlite3_int64 (*memory_highwater)(int); + sqlite3_int64 (*memory_used)(void); + sqlite3_mutex *(*mutex_alloc)(int); + void (*mutex_enter)(sqlite3_mutex*); + void (*mutex_free)(sqlite3_mutex*); + void (*mutex_leave)(sqlite3_mutex*); + int (*mutex_try)(sqlite3_mutex*); + int (*open_v2)(const char*,sqlite3**,int,const char*); + int (*release_memory)(int); + void (*result_error_nomem)(sqlite3_context*); + void (*result_error_toobig)(sqlite3_context*); + int (*sleep)(int); + void (*soft_heap_limit)(int); + sqlite3_vfs *(*vfs_find)(const char*); + int (*vfs_register)(sqlite3_vfs*,int); + int (*vfs_unregister)(sqlite3_vfs*); + int (*xthreadsafe)(void); + void (*result_zeroblob)(sqlite3_context*,int); + void (*result_error_code)(sqlite3_context*,int); + int (*test_control)(int, ...); + void (*randomness)(int,void*); + sqlite3 *(*context_db_handle)(sqlite3_context*); +}; + +/* +** The following macros redefine the API routines so that they are +** redirected throught the global sqlite3_api structure. +** +** This header file is also used by the loadext.c source file +** (part of the main SQLite library - not an extension) so that +** it can get access to the sqlite3_api_routines structure +** definition. But the main library does not want to redefine +** the API. So the redefinition macros are only valid if the +** SQLITE_CORE macros is undefined. +*/ +#ifndef SQLITE_CORE +#define sqlite3_aggregate_context sqlite3_api->aggregate_context +#define sqlite3_aggregate_count sqlite3_api->aggregate_count +#define sqlite3_bind_blob sqlite3_api->bind_blob +#define sqlite3_bind_double sqlite3_api->bind_double +#define sqlite3_bind_int sqlite3_api->bind_int +#define sqlite3_bind_int64 sqlite3_api->bind_int64 +#define sqlite3_bind_null sqlite3_api->bind_null +#define sqlite3_bind_parameter_count sqlite3_api->bind_parameter_count +#define sqlite3_bind_parameter_index sqlite3_api->bind_parameter_index +#define sqlite3_bind_parameter_name sqlite3_api->bind_parameter_name +#define sqlite3_bind_text sqlite3_api->bind_text +#define sqlite3_bind_text16 sqlite3_api->bind_text16 +#define sqlite3_bind_value sqlite3_api->bind_value +#define sqlite3_busy_handler sqlite3_api->busy_handler +#define sqlite3_busy_timeout sqlite3_api->busy_timeout +#define sqlite3_changes sqlite3_api->changes +#define sqlite3_close sqlite3_api->close +#define sqlite3_collation_needed sqlite3_api->collation_needed +#define sqlite3_collation_needed16 sqlite3_api->collation_needed16 +#define sqlite3_column_blob sqlite3_api->column_blob +#define sqlite3_column_bytes sqlite3_api->column_bytes +#define sqlite3_column_bytes16 sqlite3_api->column_bytes16 +#define sqlite3_column_count sqlite3_api->column_count +#define sqlite3_column_database_name sqlite3_api->column_database_name +#define sqlite3_column_database_name16 sqlite3_api->column_database_name16 +#define sqlite3_column_decltype sqlite3_api->column_decltype +#define sqlite3_column_decltype16 sqlite3_api->column_decltype16 +#define sqlite3_column_double sqlite3_api->column_double +#define sqlite3_column_int sqlite3_api->column_int +#define sqlite3_column_int64 sqlite3_api->column_int64 +#define sqlite3_column_name sqlite3_api->column_name +#define sqlite3_column_name16 sqlite3_api->column_name16 +#define sqlite3_column_origin_name sqlite3_api->column_origin_name +#define sqlite3_column_origin_name16 sqlite3_api->column_origin_name16 +#define sqlite3_column_table_name sqlite3_api->column_table_name +#define sqlite3_column_table_name16 sqlite3_api->column_table_name16 +#define sqlite3_column_text sqlite3_api->column_text +#define sqlite3_column_text16 sqlite3_api->column_text16 +#define sqlite3_column_type sqlite3_api->column_type +#define sqlite3_column_value sqlite3_api->column_value +#define sqlite3_commit_hook sqlite3_api->commit_hook +#define sqlite3_complete sqlite3_api->complete +#define sqlite3_complete16 sqlite3_api->complete16 +#define sqlite3_create_collation sqlite3_api->create_collation +#define sqlite3_create_collation16 sqlite3_api->create_collation16 +#define sqlite3_create_function sqlite3_api->create_function +#define sqlite3_create_function16 sqlite3_api->create_function16 +#define sqlite3_create_module sqlite3_api->create_module +#define sqlite3_create_module_v2 sqlite3_api->create_module_v2 +#define sqlite3_data_count sqlite3_api->data_count +#define sqlite3_db_handle sqlite3_api->db_handle +#define sqlite3_declare_vtab sqlite3_api->declare_vtab +#define sqlite3_enable_shared_cache sqlite3_api->enable_shared_cache +#define sqlite3_errcode sqlite3_api->errcode +#define sqlite3_errmsg sqlite3_api->errmsg +#define sqlite3_errmsg16 sqlite3_api->errmsg16 +#define sqlite3_exec sqlite3_api->exec +#define sqlite3_expired sqlite3_api->expired +#define sqlite3_finalize sqlite3_api->finalize +#define sqlite3_free sqlite3_api->free +#define sqlite3_free_table sqlite3_api->free_table +#define sqlite3_get_autocommit sqlite3_api->get_autocommit +#define sqlite3_get_auxdata sqlite3_api->get_auxdata +#define sqlite3_get_table sqlite3_api->get_table +#define sqlite3_global_recover sqlite3_api->global_recover +#define sqlite3_interrupt sqlite3_api->interruptx +#define sqlite3_last_insert_rowid sqlite3_api->last_insert_rowid +#define sqlite3_libversion sqlite3_api->libversion +#define sqlite3_libversion_number sqlite3_api->libversion_number +#define sqlite3_malloc sqlite3_api->malloc +#define sqlite3_mprintf sqlite3_api->mprintf +#define sqlite3_open sqlite3_api->open +#define sqlite3_open16 sqlite3_api->open16 +#define sqlite3_prepare sqlite3_api->prepare +#define sqlite3_prepare16 sqlite3_api->prepare16 +#define sqlite3_prepare_v2 sqlite3_api->prepare_v2 +#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 +#define sqlite3_profile sqlite3_api->profile +#define sqlite3_progress_handler sqlite3_api->progress_handler +#define sqlite3_realloc sqlite3_api->realloc +#define sqlite3_reset sqlite3_api->reset +#define sqlite3_result_blob sqlite3_api->result_blob +#define sqlite3_result_double sqlite3_api->result_double +#define sqlite3_result_error sqlite3_api->result_error +#define sqlite3_result_error16 sqlite3_api->result_error16 +#define sqlite3_result_int sqlite3_api->result_int +#define sqlite3_result_int64 sqlite3_api->result_int64 +#define sqlite3_result_null sqlite3_api->result_null +#define sqlite3_result_text sqlite3_api->result_text +#define sqlite3_result_text16 sqlite3_api->result_text16 +#define sqlite3_result_text16be sqlite3_api->result_text16be +#define sqlite3_result_text16le sqlite3_api->result_text16le +#define sqlite3_result_value sqlite3_api->result_value +#define sqlite3_rollback_hook sqlite3_api->rollback_hook +#define sqlite3_set_authorizer sqlite3_api->set_authorizer +#define sqlite3_set_auxdata sqlite3_api->set_auxdata +#define sqlite3_snprintf sqlite3_api->snprintf +#define sqlite3_step sqlite3_api->step +#define sqlite3_table_column_metadata sqlite3_api->table_column_metadata +#define sqlite3_thread_cleanup sqlite3_api->thread_cleanup +#define sqlite3_total_changes sqlite3_api->total_changes +#define sqlite3_trace sqlite3_api->trace +#define sqlite3_transfer_bindings sqlite3_api->transfer_bindings +#define sqlite3_update_hook sqlite3_api->update_hook +#define sqlite3_user_data sqlite3_api->user_data +#define sqlite3_value_blob sqlite3_api->value_blob +#define sqlite3_value_bytes sqlite3_api->value_bytes +#define sqlite3_value_bytes16 sqlite3_api->value_bytes16 +#define sqlite3_value_double sqlite3_api->value_double +#define sqlite3_value_int sqlite3_api->value_int +#define sqlite3_value_int64 sqlite3_api->value_int64 +#define sqlite3_value_numeric_type sqlite3_api->value_numeric_type +#define sqlite3_value_text sqlite3_api->value_text +#define sqlite3_value_text16 sqlite3_api->value_text16 +#define sqlite3_value_text16be sqlite3_api->value_text16be +#define sqlite3_value_text16le sqlite3_api->value_text16le +#define sqlite3_value_type sqlite3_api->value_type +#define sqlite3_vmprintf sqlite3_api->vmprintf +#define sqlite3_overload_function sqlite3_api->overload_function +#define sqlite3_prepare_v2 sqlite3_api->prepare_v2 +#define sqlite3_prepare16_v2 sqlite3_api->prepare16_v2 +#define sqlite3_clear_bindings sqlite3_api->clear_bindings +#define sqlite3_bind_zeroblob sqlite3_api->bind_zeroblob +#define sqlite3_blob_bytes sqlite3_api->blob_bytes +#define sqlite3_blob_close sqlite3_api->blob_close +#define sqlite3_blob_open sqlite3_api->blob_open +#define sqlite3_blob_read sqlite3_api->blob_read +#define sqlite3_blob_write sqlite3_api->blob_write +#define sqlite3_create_collation_v2 sqlite3_api->create_collation_v2 +#define sqlite3_file_control sqlite3_api->file_control +#define sqlite3_memory_highwater sqlite3_api->memory_highwater +#define sqlite3_memory_used sqlite3_api->memory_used +#define sqlite3_mutex_alloc sqlite3_api->mutex_alloc +#define sqlite3_mutex_enter sqlite3_api->mutex_enter +#define sqlite3_mutex_free sqlite3_api->mutex_free +#define sqlite3_mutex_leave sqlite3_api->mutex_leave +#define sqlite3_mutex_try sqlite3_api->mutex_try +#define sqlite3_open_v2 sqlite3_api->open_v2 +#define sqlite3_release_memory sqlite3_api->release_memory +#define sqlite3_result_error_nomem sqlite3_api->result_error_nomem +#define sqlite3_result_error_toobig sqlite3_api->result_error_toobig +#define sqlite3_sleep sqlite3_api->sleep +#define sqlite3_soft_heap_limit sqlite3_api->soft_heap_limit +#define sqlite3_vfs_find sqlite3_api->vfs_find +#define sqlite3_vfs_register sqlite3_api->vfs_register +#define sqlite3_vfs_unregister sqlite3_api->vfs_unregister +#define sqlite3_threadsafe sqlite3_api->xthreadsafe +#define sqlite3_result_zeroblob sqlite3_api->result_zeroblob +#define sqlite3_result_error_code sqlite3_api->result_error_code +#define sqlite3_test_control sqlite3_api->test_control +#define sqlite3_randomness sqlite3_api->randomness +#define sqlite3_context_db_handle sqlite3_api->context_db_handle +#endif /* SQLITE_CORE */ + +#define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api; +#define SQLITE_EXTENSION_INIT2(v) sqlite3_api = v; + +#endif /* _SQLITE3EXT_H_ */ + +/************** End of sqlite3ext.h ******************************************/ +/************** Continuing where we left off in loadext.c ********************/ + +#ifndef SQLITE_OMIT_LOAD_EXTENSION + +/* +** Some API routines are omitted when various features are +** excluded from a build of SQLite. Substitute a NULL pointer +** for any missing APIs. +*/ +#ifndef SQLITE_ENABLE_COLUMN_METADATA +# define sqlite3_column_database_name 0 +# define sqlite3_column_database_name16 0 +# define sqlite3_column_table_name 0 +# define sqlite3_column_table_name16 0 +# define sqlite3_column_origin_name 0 +# define sqlite3_column_origin_name16 0 +# define sqlite3_table_column_metadata 0 +#endif + +#ifdef SQLITE_OMIT_AUTHORIZATION +# define sqlite3_set_authorizer 0 +#endif + +#ifdef SQLITE_OMIT_UTF16 +# define sqlite3_bind_text16 0 +# define sqlite3_collation_needed16 0 +# define sqlite3_column_decltype16 0 +# define sqlite3_column_name16 0 +# define sqlite3_column_text16 0 +# define sqlite3_complete16 0 +# define sqlite3_create_collation16 0 +# define sqlite3_create_function16 0 +# define sqlite3_errmsg16 0 +# define sqlite3_open16 0 +# define sqlite3_prepare16 0 +# define sqlite3_prepare16_v2 0 +# define sqlite3_result_error16 0 +# define sqlite3_result_text16 0 +# define sqlite3_result_text16be 0 +# define sqlite3_result_text16le 0 +# define sqlite3_value_text16 0 +# define sqlite3_value_text16be 0 +# define sqlite3_value_text16le 0 +# define sqlite3_column_database_name16 0 +# define sqlite3_column_table_name16 0 +# define sqlite3_column_origin_name16 0 +#endif + +#ifdef SQLITE_OMIT_COMPLETE +# define sqlite3_complete 0 +# define sqlite3_complete16 0 +#endif + +#ifdef SQLITE_OMIT_PROGRESS_CALLBACK +# define sqlite3_progress_handler 0 +#endif + +#ifdef SQLITE_OMIT_VIRTUALTABLE +# define sqlite3_create_module 0 +# define sqlite3_create_module_v2 0 +# define sqlite3_declare_vtab 0 +#endif + +#ifdef SQLITE_OMIT_SHARED_CACHE +# define sqlite3_enable_shared_cache 0 +#endif + +#ifdef SQLITE_OMIT_TRACE +# define sqlite3_profile 0 +# define sqlite3_trace 0 +#endif + +#ifdef SQLITE_OMIT_GET_TABLE +# define sqlite3_free_table 0 +# define sqlite3_get_table 0 +#endif + +#ifdef SQLITE_OMIT_INCRBLOB +#define sqlite3_bind_zeroblob 0 +#define sqlite3_blob_bytes 0 +#define sqlite3_blob_close 0 +#define sqlite3_blob_open 0 +#define sqlite3_blob_read 0 +#define sqlite3_blob_write 0 +#endif + +/* +** The following structure contains pointers to all SQLite API routines. +** A pointer to this structure is passed into extensions when they are +** loaded so that the extension can make calls back into the SQLite +** library. +** +** When adding new APIs, add them to the bottom of this structure +** in order to preserve backwards compatibility. +** +** Extensions that use newer APIs should first call the +** sqlite3_libversion_number() to make sure that the API they +** intend to use is supported by the library. Extensions should +** also check to make sure that the pointer to the function is +** not NULL before calling it. +*/ +static const sqlite3_api_routines sqlite3Apis = { + sqlite3_aggregate_context, + sqlite3_aggregate_count, + sqlite3_bind_blob, + sqlite3_bind_double, + sqlite3_bind_int, + sqlite3_bind_int64, + sqlite3_bind_null, + sqlite3_bind_parameter_count, + sqlite3_bind_parameter_index, + sqlite3_bind_parameter_name, + sqlite3_bind_text, + sqlite3_bind_text16, + sqlite3_bind_value, + sqlite3_busy_handler, + sqlite3_busy_timeout, + sqlite3_changes, + sqlite3_close, + sqlite3_collation_needed, + sqlite3_collation_needed16, + sqlite3_column_blob, + sqlite3_column_bytes, + sqlite3_column_bytes16, + sqlite3_column_count, + sqlite3_column_database_name, + sqlite3_column_database_name16, + sqlite3_column_decltype, + sqlite3_column_decltype16, + sqlite3_column_double, + sqlite3_column_int, + sqlite3_column_int64, + sqlite3_column_name, + sqlite3_column_name16, + sqlite3_column_origin_name, + sqlite3_column_origin_name16, + sqlite3_column_table_name, + sqlite3_column_table_name16, + sqlite3_column_text, + sqlite3_column_text16, + sqlite3_column_type, + sqlite3_column_value, + sqlite3_commit_hook, + sqlite3_complete, + sqlite3_complete16, + sqlite3_create_collation, + sqlite3_create_collation16, + sqlite3_create_function, + sqlite3_create_function16, + sqlite3_create_module, + sqlite3_data_count, + sqlite3_db_handle, + sqlite3_declare_vtab, + sqlite3_enable_shared_cache, + sqlite3_errcode, + sqlite3_errmsg, + sqlite3_errmsg16, + sqlite3_exec, + sqlite3_expired, + sqlite3_finalize, + sqlite3_free, + sqlite3_free_table, + sqlite3_get_autocommit, + sqlite3_get_auxdata, + sqlite3_get_table, + 0, /* Was sqlite3_global_recover(), but that function is deprecated */ + sqlite3_interrupt, + sqlite3_last_insert_rowid, + sqlite3_libversion, + sqlite3_libversion_number, + sqlite3_malloc, + sqlite3_mprintf, + sqlite3_open, + sqlite3_open16, + sqlite3_prepare, + sqlite3_prepare16, + sqlite3_profile, + sqlite3_progress_handler, + sqlite3_realloc, + sqlite3_reset, + sqlite3_result_blob, + sqlite3_result_double, + sqlite3_result_error, + sqlite3_result_error16, + sqlite3_result_int, + sqlite3_result_int64, + sqlite3_result_null, + sqlite3_result_text, + sqlite3_result_text16, + sqlite3_result_text16be, + sqlite3_result_text16le, + sqlite3_result_value, + sqlite3_rollback_hook, + sqlite3_set_authorizer, + sqlite3_set_auxdata, + sqlite3_snprintf, + sqlite3_step, + sqlite3_table_column_metadata, + sqlite3_thread_cleanup, + sqlite3_total_changes, + sqlite3_trace, + sqlite3_transfer_bindings, + sqlite3_update_hook, + sqlite3_user_data, + sqlite3_value_blob, + sqlite3_value_bytes, + sqlite3_value_bytes16, + sqlite3_value_double, + sqlite3_value_int, + sqlite3_value_int64, + sqlite3_value_numeric_type, + sqlite3_value_text, + sqlite3_value_text16, + sqlite3_value_text16be, + sqlite3_value_text16le, + sqlite3_value_type, + sqlite3_vmprintf, + /* + ** The original API set ends here. All extensions can call any + ** of the APIs above provided that the pointer is not NULL. But + ** before calling APIs that follow, extension should check the + ** sqlite3_libversion_number() to make sure they are dealing with + ** a library that is new enough to support that API. + ************************************************************************* + */ + sqlite3_overload_function, + + /* + ** Added after 3.3.13 + */ + sqlite3_prepare_v2, + sqlite3_prepare16_v2, + sqlite3_clear_bindings, + + /* + ** Added for 3.4.1 + */ + sqlite3_create_module_v2, + + /* + ** Added for 3.5.0 + */ + sqlite3_bind_zeroblob, + sqlite3_blob_bytes, + sqlite3_blob_close, + sqlite3_blob_open, + sqlite3_blob_read, + sqlite3_blob_write, + sqlite3_create_collation_v2, + sqlite3_file_control, + sqlite3_memory_highwater, + sqlite3_memory_used, +#ifdef SQLITE_MUTEX_NOOP + 0, + 0, + 0, + 0, + 0, +#else + sqlite3_mutex_alloc, + sqlite3_mutex_enter, + sqlite3_mutex_free, + sqlite3_mutex_leave, + sqlite3_mutex_try, +#endif + sqlite3_open_v2, + sqlite3_release_memory, + sqlite3_result_error_nomem, + sqlite3_result_error_toobig, + sqlite3_sleep, + sqlite3_soft_heap_limit, + sqlite3_vfs_find, + sqlite3_vfs_register, + sqlite3_vfs_unregister, + + /* + ** Added for 3.5.8 + */ + sqlite3_threadsafe, + sqlite3_result_zeroblob, + sqlite3_result_error_code, + sqlite3_test_control, + sqlite3_randomness, + sqlite3_context_db_handle, +}; + +/* +** Attempt to load an SQLite extension library contained in the file +** zFile. The entry point is zProc. zProc may be 0 in which case a +** default entry point name (sqlite3_extension_init) is used. Use +** of the default name is recommended. +** +** Return SQLITE_OK on success and SQLITE_ERROR if something goes wrong. +** +** If an error occurs and pzErrMsg is not 0, then fill *pzErrMsg with +** error message text. The calling function should free this memory +** by calling sqlite3_free(). +*/ +static int sqlite3LoadExtension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +){ + sqlite3_vfs *pVfs = db->pVfs; + void *handle; + int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*); + char *zErrmsg = 0; + void **aHandle; + + /* Ticket #1863. To avoid a creating security problems for older + ** applications that relink against newer versions of SQLite, the + ** ability to run load_extension is turned off by default. One + ** must call sqlite3_enable_load_extension() to turn on extension + ** loading. Otherwise you get the following error. + */ + if( (db->flags & SQLITE_LoadExtension)==0 ){ + if( pzErrMsg ){ + *pzErrMsg = sqlite3_mprintf("not authorized"); + } + return SQLITE_ERROR; + } + + if( zProc==0 ){ + zProc = "sqlite3_extension_init"; + } + + handle = sqlite3OsDlOpen(pVfs, zFile); + if( handle==0 ){ + if( pzErrMsg ){ + char zErr[256]; + zErr[sizeof(zErr)-1] = '\0'; + sqlite3_snprintf(sizeof(zErr)-1, zErr, + "unable to open shared library [%s]", zFile); + sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr); + *pzErrMsg = sqlite3DbStrDup(db, zErr); + } + return SQLITE_ERROR; + } + xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) + sqlite3OsDlSym(pVfs, handle, zProc); + if( xInit==0 ){ + if( pzErrMsg ){ + char zErr[256]; + zErr[sizeof(zErr)-1] = '\0'; + sqlite3_snprintf(sizeof(zErr)-1, zErr, + "no entry point [%s] in shared library [%s]", zProc,zFile); + sqlite3OsDlError(pVfs, sizeof(zErr)-1, zErr); + *pzErrMsg = sqlite3DbStrDup(db, zErr); + sqlite3OsDlClose(pVfs, handle); + } + return SQLITE_ERROR; + }else if( xInit(db, &zErrmsg, &sqlite3Apis) ){ + if( pzErrMsg ){ + *pzErrMsg = sqlite3_mprintf("error during initialization: %s", zErrmsg); + } + sqlite3_free(zErrmsg); + sqlite3OsDlClose(pVfs, handle); + return SQLITE_ERROR; + } + + /* Append the new shared library handle to the db->aExtension array. */ + db->nExtension++; + aHandle = sqlite3DbMallocZero(db, sizeof(handle)*db->nExtension); + if( aHandle==0 ){ + return SQLITE_NOMEM; + } + if( db->nExtension>0 ){ + memcpy(aHandle, db->aExtension, sizeof(handle)*(db->nExtension-1)); + } + sqlite3_free(db->aExtension); + db->aExtension = aHandle; + + db->aExtension[db->nExtension-1] = handle; + return SQLITE_OK; +} +SQLITE_API int sqlite3_load_extension( + sqlite3 *db, /* Load the extension into this database connection */ + const char *zFile, /* Name of the shared library containing extension */ + const char *zProc, /* Entry point. Use "sqlite3_extension_init" if 0 */ + char **pzErrMsg /* Put error message here if not 0 */ +){ + int rc; + sqlite3_mutex_enter(db->mutex); + rc = sqlite3LoadExtension(db, zFile, zProc, pzErrMsg); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Call this routine when the database connection is closing in order +** to clean up loaded extensions +*/ +SQLITE_PRIVATE void sqlite3CloseExtensions(sqlite3 *db){ + int i; + assert( sqlite3_mutex_held(db->mutex) ); + for(i=0; i<db->nExtension; i++){ + sqlite3OsDlClose(db->pVfs, db->aExtension[i]); + } + sqlite3_free(db->aExtension); +} + +/* +** Enable or disable extension loading. Extension loading is disabled by +** default so as not to open security holes in older applications. +*/ +SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){ + sqlite3_mutex_enter(db->mutex); + if( onoff ){ + db->flags |= SQLITE_LoadExtension; + }else{ + db->flags &= ~SQLITE_LoadExtension; + } + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +#endif /* SQLITE_OMIT_LOAD_EXTENSION */ + +/* +** The auto-extension code added regardless of whether or not extension +** loading is supported. We need a dummy sqlite3Apis pointer for that +** code if regular extension loading is not available. This is that +** dummy pointer. +*/ +#ifdef SQLITE_OMIT_LOAD_EXTENSION +static const sqlite3_api_routines sqlite3Apis = { 0 }; +#endif + + +/* +** The following object holds the list of automatically loaded +** extensions. +** +** This list is shared across threads. The SQLITE_MUTEX_STATIC_MASTER +** mutex must be held while accessing this list. +*/ +static struct { + int nExt; /* Number of entries in aExt[] */ + void **aExt; /* Pointers to the extension init functions */ +} autoext = { 0, 0 }; + + +/* +** Register a statically linked extension that is automatically +** loaded by every new database connection. +*/ +SQLITE_API int sqlite3_auto_extension(void *xInit){ + int i; + int rc = SQLITE_OK; +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + sqlite3_mutex_enter(mutex); + for(i=0; i<autoext.nExt; i++){ + if( autoext.aExt[i]==xInit ) break; + } + if( i==autoext.nExt ){ + int nByte = (autoext.nExt+1)*sizeof(autoext.aExt[0]); + void **aNew; + aNew = sqlite3_realloc(autoext.aExt, nByte); + if( aNew==0 ){ + rc = SQLITE_NOMEM; + }else{ + autoext.aExt = aNew; + autoext.aExt[autoext.nExt] = xInit; + autoext.nExt++; + } + } + sqlite3_mutex_leave(mutex); + assert( (rc&0xff)==rc ); + return rc; +} + +/* +** Reset the automatic extension loading mechanism. +*/ +SQLITE_API void sqlite3_reset_auto_extension(void){ +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + sqlite3_mutex_enter(mutex); + sqlite3_free(autoext.aExt); + autoext.aExt = 0; + autoext.nExt = 0; + sqlite3_mutex_leave(mutex); +} + +/* +** Load all automatic extensions. +*/ +SQLITE_PRIVATE int sqlite3AutoLoadExtensions(sqlite3 *db){ + int i; + int go = 1; + int rc = SQLITE_OK; + int (*xInit)(sqlite3*,char**,const sqlite3_api_routines*); + + if( autoext.nExt==0 ){ + /* Common case: early out without every having to acquire a mutex */ + return SQLITE_OK; + } + for(i=0; go; i++){ + char *zErrmsg = 0; +#ifndef SQLITE_MUTEX_NOOP + sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); +#endif + sqlite3_mutex_enter(mutex); + if( i>=autoext.nExt ){ + xInit = 0; + go = 0; + }else{ + xInit = (int(*)(sqlite3*,char**,const sqlite3_api_routines*)) + autoext.aExt[i]; + } + sqlite3_mutex_leave(mutex); + if( xInit && xInit(db, &zErrmsg, &sqlite3Apis) ){ + sqlite3Error(db, SQLITE_ERROR, + "automatic extension loading failed: %s", zErrmsg); + go = 0; + rc = SQLITE_ERROR; + sqlite3_free(zErrmsg); + } + } + return rc; +} + +/************** End of loadext.c *********************************************/ +/************** Begin file pragma.c ******************************************/ +/* +** 2003 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the PRAGMA command. +** +** $Id: pragma.c,v 1.176 2008/04/17 20:59:38 drh Exp $ +*/ + +/* Ignore this whole file if pragmas are disabled +*/ +#if !defined(SQLITE_OMIT_PRAGMA) && !defined(SQLITE_OMIT_PARSER) + +/* +** Interpret the given string as a safety level. Return 0 for OFF, +** 1 for ON or NORMAL and 2 for FULL. Return 1 for an empty or +** unrecognized string argument. +** +** Note that the values returned are one less that the values that +** should be passed into sqlite3BtreeSetSafetyLevel(). The is done +** to support legacy SQL code. The safety level used to be boolean +** and older scripts may have used numbers 0 for OFF and 1 for ON. +*/ +static int getSafetyLevel(const char *z){ + /* 123456789 123456789 */ + static const char zText[] = "onoffalseyestruefull"; + static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 16}; + static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 4}; + static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 2}; + int i, n; + if( isdigit(*z) ){ + return atoi(z); + } + n = strlen(z); + for(i=0; i<sizeof(iLength); i++){ + if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0 ){ + return iValue[i]; + } + } + return 1; +} + +/* +** Interpret the given string as a boolean value. +*/ +static int getBoolean(const char *z){ + return getSafetyLevel(z)&1; +} + +/* +** Interpret the given string as a locking mode value. +*/ +static int getLockingMode(const char *z){ + if( z ){ + if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE; + if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL; + } + return PAGER_LOCKINGMODE_QUERY; +} + +#ifndef SQLITE_OMIT_AUTOVACUUM +/* +** Interpret the given string as an auto-vacuum mode value. +** +** The following strings, "none", "full" and "incremental" are +** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively. +*/ +static int getAutoVacuum(const char *z){ + int i; + if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE; + if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL; + if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR; + i = atoi(z); + return ((i>=0&&i<=2)?i:0); +} +#endif /* ifndef SQLITE_OMIT_AUTOVACUUM */ + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +/* +** Interpret the given string as a temp db location. Return 1 for file +** backed temporary databases, 2 for the Red-Black tree in memory database +** and 0 to use the compile-time default. +*/ +static int getTempStore(const char *z){ + if( z[0]>='0' && z[0]<='2' ){ + return z[0] - '0'; + }else if( sqlite3StrICmp(z, "file")==0 ){ + return 1; + }else if( sqlite3StrICmp(z, "memory")==0 ){ + return 2; + }else{ + return 0; + } +} +#endif /* SQLITE_PAGER_PRAGMAS */ + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +/* +** Invalidate temp storage, either when the temp storage is changed +** from default, or when 'file' and the temp_store_directory has changed +*/ +static int invalidateTempStorage(Parse *pParse){ + sqlite3 *db = pParse->db; + if( db->aDb[1].pBt!=0 ){ + if( !db->autoCommit ){ + sqlite3ErrorMsg(pParse, "temporary storage cannot be changed " + "from within a transaction"); + return SQLITE_ERROR; + } + sqlite3BtreeClose(db->aDb[1].pBt); + db->aDb[1].pBt = 0; + sqlite3ResetInternalSchema(db, 0); + } + return SQLITE_OK; +} +#endif /* SQLITE_PAGER_PRAGMAS */ + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS +/* +** If the TEMP database is open, close it and mark the database schema +** as needing reloading. This must be done when using the TEMP_STORE +** or DEFAULT_TEMP_STORE pragmas. +*/ +static int changeTempStorage(Parse *pParse, const char *zStorageType){ + int ts = getTempStore(zStorageType); + sqlite3 *db = pParse->db; + if( db->temp_store==ts ) return SQLITE_OK; + if( invalidateTempStorage( pParse ) != SQLITE_OK ){ + return SQLITE_ERROR; + } + db->temp_store = ts; + return SQLITE_OK; +} +#endif /* SQLITE_PAGER_PRAGMAS */ + +/* +** Generate code to return a single integer value. +*/ +static void returnSingleInt(Parse *pParse, const char *zLabel, int value){ + Vdbe *v = sqlite3GetVdbe(pParse); + int mem = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, value, mem); + if( pParse->explain==0 ){ + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, P4_STATIC); + } + sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1); +} + +#ifndef SQLITE_OMIT_FLAG_PRAGMAS +/* +** Check to see if zRight and zLeft refer to a pragma that queries +** or changes one of the flags in db->flags. Return 1 if so and 0 if not. +** Also, implement the pragma. +*/ +static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){ + static const struct sPragmaType { + const char *zName; /* Name of the pragma */ + int mask; /* Mask for the db->flags value */ + } aPragma[] = { + { "full_column_names", SQLITE_FullColNames }, + { "short_column_names", SQLITE_ShortColNames }, + { "count_changes", SQLITE_CountRows }, + { "empty_result_callbacks", SQLITE_NullCallback }, + { "legacy_file_format", SQLITE_LegacyFileFmt }, + { "fullfsync", SQLITE_FullFSync }, +#ifdef SQLITE_DEBUG + { "sql_trace", SQLITE_SqlTrace }, + { "vdbe_listing", SQLITE_VdbeListing }, + { "vdbe_trace", SQLITE_VdbeTrace }, +#endif +#ifndef SQLITE_OMIT_CHECK + { "ignore_check_constraints", SQLITE_IgnoreChecks }, +#endif + /* The following is VERY experimental */ + { "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode }, + { "omit_readlock", SQLITE_NoReadlock }, + + /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted + ** flag if there are any active statements. */ + { "read_uncommitted", SQLITE_ReadUncommitted }, + }; + int i; + const struct sPragmaType *p; + for(i=0, p=aPragma; i<sizeof(aPragma)/sizeof(aPragma[0]); i++, p++){ + if( sqlite3StrICmp(zLeft, p->zName)==0 ){ + sqlite3 *db = pParse->db; + Vdbe *v; + v = sqlite3GetVdbe(pParse); + if( v ){ + if( zRight==0 ){ + returnSingleInt(pParse, p->zName, (db->flags & p->mask)!=0 ); + }else{ + if( getBoolean(zRight) ){ + db->flags |= p->mask; + }else{ + db->flags &= ~p->mask; + } + + /* Many of the flag-pragmas modify the code generated by the SQL + ** compiler (eg. count_changes). So add an opcode to expire all + ** compiled SQL statements after modifying a pragma value. + */ + sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); + } + } + + return 1; + } + } + return 0; +} +#endif /* SQLITE_OMIT_FLAG_PRAGMAS */ + +/* +** Process a pragma statement. +** +** Pragmas are of this form: +** +** PRAGMA [database.]id [= value] +** +** The identifier might also be a string. The value is a string, and +** identifier, or a number. If minusFlag is true, then the value is +** a number that was preceded by a minus sign. +** +** If the left side is "database.id" then pId1 is the database name +** and pId2 is the id. If the left side is just "id" then pId1 is the +** id and pId2 is any empty string. +*/ +SQLITE_PRIVATE void sqlite3Pragma( + Parse *pParse, + Token *pId1, /* First part of [database.]id field */ + Token *pId2, /* Second part of [database.]id field, or NULL */ + Token *pValue, /* Token for <value>, or NULL */ + int minusFlag /* True if a '-' sign preceded <value> */ +){ + char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */ + char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */ + const char *zDb = 0; /* The database name */ + Token *pId; /* Pointer to <id> token */ + int iDb; /* Database index for <database> */ + sqlite3 *db = pParse->db; + Db *pDb; + Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(db); + if( v==0 ) return; + pParse->nMem = 2; + + /* Interpret the [database.] part of the pragma statement. iDb is the + ** index of the database this pragma is being applied to in db.aDb[]. */ + iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId); + if( iDb<0 ) return; + pDb = &db->aDb[iDb]; + + /* If the temp database has been explicitly named as part of the + ** pragma, make sure it is open. + */ + if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){ + return; + } + + zLeft = sqlite3NameFromToken(db, pId); + if( !zLeft ) return; + if( minusFlag ){ + zRight = sqlite3MPrintf(db, "-%T", pValue); + }else{ + zRight = sqlite3NameFromToken(db, pValue); + } + + zDb = ((iDb>0)?pDb->zName:0); + if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){ + goto pragma_out; + } + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS + /* + ** PRAGMA [database.]default_cache_size + ** PRAGMA [database.]default_cache_size=N + ** + ** The first form reports the current persistent setting for the + ** page cache size. The value returned is the maximum number of + ** pages in the page cache. The second form sets both the current + ** page cache size value and the persistent page cache size value + ** stored in the database file. + ** + ** The default cache size is stored in meta-value 2 of page 1 of the + ** database file. The cache size is actually the absolute value of + ** this memory location. The sign of meta-value 2 determines the + ** synchronous setting. A negative value means synchronous is off + ** and a positive value means synchronous is on. + */ + if( sqlite3StrICmp(zLeft,"default_cache_size")==0 ){ + static const VdbeOpList getCacheSize[] = { + { OP_ReadCookie, 0, 1, 2}, /* 0 */ + { OP_IfPos, 1, 6, 0}, + { OP_Integer, 0, 2, 0}, + { OP_Subtract, 1, 2, 1}, + { OP_IfPos, 1, 6, 0}, + { OP_Integer, 0, 1, 0}, /* 5 */ + { OP_ResultRow, 1, 1, 0}, + }; + int addr; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeUsesBtree(v, iDb); + if( !zRight ){ + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cache_size", P4_STATIC); + pParse->nMem += 2; + addr = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize); + sqlite3VdbeChangeP1(v, addr, iDb); + sqlite3VdbeChangeP1(v, addr+5, SQLITE_DEFAULT_CACHE_SIZE); + }else{ + int size = atoi(zRight); + if( size<0 ) size = -size; + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3VdbeAddOp2(v, OP_Integer, size, 1); + sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, 2, 2); + addr = sqlite3VdbeAddOp2(v, OP_IfPos, 2, 0); + sqlite3VdbeAddOp2(v, OP_Integer, -size, 1); + sqlite3VdbeJumpHere(v, addr); + sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 2, 1); + pDb->pSchema->cache_size = size; + sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); + } + }else + + /* + ** PRAGMA [database.]page_size + ** PRAGMA [database.]page_size=N + ** + ** The first form reports the current setting for the + ** database page size in bytes. The second form sets the + ** database page size value. The value can only be set if + ** the database has not yet been created. + */ + if( sqlite3StrICmp(zLeft,"page_size")==0 ){ + Btree *pBt = pDb->pBt; + if( !zRight ){ + int size = pBt ? sqlite3BtreeGetPageSize(pBt) : 0; + returnSingleInt(pParse, "page_size", size); + }else{ + /* Malloc may fail when setting the page-size, as there is an internal + ** buffer that the pager module resizes using sqlite3_realloc(). + */ + db->nextPagesize = atoi(zRight); + if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1) ){ + db->mallocFailed = 1; + } + } + }else + + /* + ** PRAGMA [database.]max_page_count + ** PRAGMA [database.]max_page_count=N + ** + ** The first form reports the current setting for the + ** maximum number of pages in the database file. The + ** second form attempts to change this setting. Both + ** forms return the current setting. + */ + if( sqlite3StrICmp(zLeft,"max_page_count")==0 ){ + Btree *pBt = pDb->pBt; + int newMax = 0; + if( zRight ){ + newMax = atoi(zRight); + } + if( pBt ){ + newMax = sqlite3BtreeMaxPageCount(pBt, newMax); + } + returnSingleInt(pParse, "max_page_count", newMax); + }else + + /* + ** PRAGMA [database.]locking_mode + ** PRAGMA [database.]locking_mode = (normal|exclusive) + */ + if( sqlite3StrICmp(zLeft,"locking_mode")==0 ){ + const char *zRet = "normal"; + int eMode = getLockingMode(zRight); + + if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){ + /* Simple "PRAGMA locking_mode;" statement. This is a query for + ** the current default locking mode (which may be different to + ** the locking-mode of the main database). + */ + eMode = db->dfltLockMode; + }else{ + Pager *pPager; + if( pId2->n==0 ){ + /* This indicates that no database name was specified as part + ** of the PRAGMA command. In this case the locking-mode must be + ** set on all attached databases, as well as the main db file. + ** + ** Also, the sqlite3.dfltLockMode variable is set so that + ** any subsequently attached databases also use the specified + ** locking mode. + */ + int ii; + assert(pDb==&db->aDb[0]); + for(ii=2; ii<db->nDb; ii++){ + pPager = sqlite3BtreePager(db->aDb[ii].pBt); + sqlite3PagerLockingMode(pPager, eMode); + } + db->dfltLockMode = eMode; + } + pPager = sqlite3BtreePager(pDb->pBt); + eMode = sqlite3PagerLockingMode(pPager, eMode); + } + + assert(eMode==PAGER_LOCKINGMODE_NORMAL||eMode==PAGER_LOCKINGMODE_EXCLUSIVE); + if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){ + zRet = "exclusive"; + } + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "locking_mode", P4_STATIC); + sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, zRet, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + }else + + /* + ** PRAGMA [database.]journal_mode + ** PRAGMA [database.]journal_mode = (delete|persist|off) + */ + if( sqlite3StrICmp(zLeft,"journal_mode")==0 ){ + int eMode; + static const char *azModeName[] = {"delete", "persist", "off"}; + + if( zRight==0 ){ + eMode = PAGER_JOURNALMODE_QUERY; + }else{ + int n = strlen(zRight); + eMode = 2; + while( eMode>=0 && sqlite3StrNICmp(zRight, azModeName[eMode], n)!=0 ){ + eMode--; + } + } + if( pId2->n==0 && eMode==PAGER_JOURNALMODE_QUERY ){ + /* Simple "PRAGMA persistent_journal;" statement. This is a query for + ** the current default journal mode (which may be different to + ** the journal-mode of the main database). + */ + eMode = db->dfltJournalMode; + }else{ + Pager *pPager; + if( pId2->n==0 ){ + /* This indicates that no database name was specified as part + ** of the PRAGMA command. In this case the journal-mode must be + ** set on all attached databases, as well as the main db file. + ** + ** Also, the sqlite3.dfltJournalMode variable is set so that + ** any subsequently attached databases also use the specified + ** journal mode. + */ + int ii; + assert(pDb==&db->aDb[0]); + for(ii=1; ii<db->nDb; ii++){ + if( db->aDb[ii].pBt ){ + pPager = sqlite3BtreePager(db->aDb[ii].pBt); + sqlite3PagerJournalMode(pPager, eMode); + } + } + db->dfltJournalMode = eMode; + } + pPager = sqlite3BtreePager(pDb->pBt); + eMode = sqlite3PagerJournalMode(pPager, eMode); + } + assert( eMode==PAGER_JOURNALMODE_DELETE + || eMode==PAGER_JOURNALMODE_PERSIST + || eMode==PAGER_JOURNALMODE_OFF ); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "journal_mode", P4_STATIC); + sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, + azModeName[eMode], P4_STATIC); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + }else +#endif /* SQLITE_OMIT_PAGER_PRAGMAS */ + + /* + ** PRAGMA [database.]auto_vacuum + ** PRAGMA [database.]auto_vacuum=N + ** + ** Get or set the (boolean) value of the database 'auto-vacuum' parameter. + */ +#ifndef SQLITE_OMIT_AUTOVACUUM + if( sqlite3StrICmp(zLeft,"auto_vacuum")==0 ){ + Btree *pBt = pDb->pBt; + if( sqlite3ReadSchema(pParse) ){ + goto pragma_out; + } + if( !zRight ){ + int auto_vacuum = + pBt ? sqlite3BtreeGetAutoVacuum(pBt) : SQLITE_DEFAULT_AUTOVACUUM; + returnSingleInt(pParse, "auto_vacuum", auto_vacuum); + }else{ + int eAuto = getAutoVacuum(zRight); + db->nextAutovac = eAuto; + if( eAuto>=0 ){ + /* Call SetAutoVacuum() to set initialize the internal auto and + ** incr-vacuum flags. This is required in case this connection + ** creates the database file. It is important that it is created + ** as an auto-vacuum capable db. + */ + int rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto); + if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){ + /* When setting the auto_vacuum mode to either "full" or + ** "incremental", write the value of meta[6] in the database + ** file. Before writing to meta[6], check that meta[3] indicates + ** that this really is an auto-vacuum capable database. + */ + static const VdbeOpList setMeta6[] = { + { OP_Transaction, 0, 1, 0}, /* 0 */ + { OP_ReadCookie, 0, 1, 3}, /* 1 */ + { OP_If, 1, 0, 0}, /* 2 */ + { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */ + { OP_Integer, 0, 1, 0}, /* 4 */ + { OP_SetCookie, 0, 6, 1}, /* 5 */ + }; + int iAddr; + iAddr = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6); + sqlite3VdbeChangeP1(v, iAddr, iDb); + sqlite3VdbeChangeP1(v, iAddr+1, iDb); + sqlite3VdbeChangeP2(v, iAddr+2, iAddr+4); + sqlite3VdbeChangeP1(v, iAddr+4, eAuto-1); + sqlite3VdbeChangeP1(v, iAddr+5, iDb); + sqlite3VdbeUsesBtree(v, iDb); + } + } + } + }else +#endif + + /* + ** PRAGMA [database.]incremental_vacuum(N) + ** + ** Do N steps of incremental vacuuming on a database. + */ +#ifndef SQLITE_OMIT_AUTOVACUUM + if( sqlite3StrICmp(zLeft,"incremental_vacuum")==0 ){ + int iLimit, addr; + if( sqlite3ReadSchema(pParse) ){ + goto pragma_out; + } + if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){ + iLimit = 0x7fffffff; + } + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1); + addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); + sqlite3VdbeAddOp1(v, OP_ResultRow, 1); + sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1); + sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); + sqlite3VdbeJumpHere(v, addr); + }else +#endif + +#ifndef SQLITE_OMIT_PAGER_PRAGMAS + /* + ** PRAGMA [database.]cache_size + ** PRAGMA [database.]cache_size=N + ** + ** The first form reports the current local setting for the + ** page cache size. The local setting can be different from + ** the persistent cache size value that is stored in the database + ** file itself. The value returned is the maximum number of + ** pages in the page cache. The second form sets the local + ** page cache size value. It does not change the persistent + ** cache size stored on the disk so the cache size will revert + ** to its default value when the database is closed and reopened. + ** N should be a positive integer. + */ + if( sqlite3StrICmp(zLeft,"cache_size")==0 ){ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + if( !zRight ){ + returnSingleInt(pParse, "cache_size", pDb->pSchema->cache_size); + }else{ + int size = atoi(zRight); + if( size<0 ) size = -size; + pDb->pSchema->cache_size = size; + sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); + } + }else + + /* + ** PRAGMA temp_store + ** PRAGMA temp_store = "default"|"memory"|"file" + ** + ** Return or set the local value of the temp_store flag. Changing + ** the local value does not make changes to the disk file and the default + ** value will be restored the next time the database is opened. + ** + ** Note that it is possible for the library compile-time options to + ** override this setting + */ + if( sqlite3StrICmp(zLeft, "temp_store")==0 ){ + if( !zRight ){ + returnSingleInt(pParse, "temp_store", db->temp_store); + }else{ + changeTempStorage(pParse, zRight); + } + }else + + /* + ** PRAGMA temp_store_directory + ** PRAGMA temp_store_directory = ""|"directory_name" + ** + ** Return or set the local value of the temp_store_directory flag. Changing + ** the value sets a specific directory to be used for temporary files. + ** Setting to a null string reverts to the default temporary directory search. + ** If temporary directory is changed, then invalidateTempStorage. + ** + */ + if( sqlite3StrICmp(zLeft, "temp_store_directory")==0 ){ + if( !zRight ){ + if( sqlite3_temp_directory ){ + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, + "temp_store_directory", P4_STATIC); + sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, sqlite3_temp_directory, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + } + }else{ + if( zRight[0] + && sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE)==0 + ){ + sqlite3ErrorMsg(pParse, "not a writable directory"); + goto pragma_out; + } + if( TEMP_STORE==0 + || (TEMP_STORE==1 && db->temp_store<=1) + || (TEMP_STORE==2 && db->temp_store==1) + ){ + invalidateTempStorage(pParse); + } + sqlite3_free(sqlite3_temp_directory); + if( zRight[0] ){ + sqlite3_temp_directory = zRight; + zRight = 0; + }else{ + sqlite3_temp_directory = 0; + } + } + }else + + /* + ** PRAGMA [database.]synchronous + ** PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL + ** + ** Return or set the local value of the synchronous flag. Changing + ** the local value does not make changes to the disk file and the + ** default value will be restored the next time the database is + ** opened. + */ + if( sqlite3StrICmp(zLeft,"synchronous")==0 ){ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + if( !zRight ){ + returnSingleInt(pParse, "synchronous", pDb->safety_level-1); + }else{ + if( !db->autoCommit ){ + sqlite3ErrorMsg(pParse, + "Safety level may not be changed inside a transaction"); + }else{ + pDb->safety_level = getSafetyLevel(zRight)+1; + } + } + }else +#endif /* SQLITE_OMIT_PAGER_PRAGMAS */ + +#ifndef SQLITE_OMIT_FLAG_PRAGMAS + if( flagPragma(pParse, zLeft, zRight) ){ + /* The flagPragma() subroutine also generates any necessary code + ** there is nothing more to do here */ + }else +#endif /* SQLITE_OMIT_FLAG_PRAGMAS */ + +#ifndef SQLITE_OMIT_SCHEMA_PRAGMAS + /* + ** PRAGMA table_info(<table>) + ** + ** Return a single row for each column of the named table. The columns of + ** the returned data set are: + ** + ** cid: Column id (numbered from left to right, starting at 0) + ** name: Column name + ** type: Column declaration type. + ** notnull: True if 'NOT NULL' is part of column declaration + ** dflt_value: The default value for the column, if any. + */ + if( sqlite3StrICmp(zLeft, "table_info")==0 && zRight ){ + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pTab = sqlite3FindTable(db, zRight, zDb); + if( pTab ){ + int i; + int nHidden = 0; + Column *pCol; + sqlite3VdbeSetNumCols(v, 6); + pParse->nMem = 6; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "cid", P4_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "type", P4_STATIC); + sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "notnull", P4_STATIC); + sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "dflt_value", P4_STATIC); + sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "pk", P4_STATIC); + sqlite3ViewGetColumnNames(pParse, pTab); + for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ + const Token *pDflt; + if( IsHiddenColumn(pCol) ){ + nHidden++; + continue; + } + sqlite3VdbeAddOp2(v, OP_Integer, i-nHidden, 1); + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pCol->zName, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, + pCol->zType ? pCol->zType : "", 0); + sqlite3VdbeAddOp2(v, OP_Integer, pCol->notNull, 4); + if( pCol->pDflt && (pDflt = &pCol->pDflt->span)->z ){ + sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, (char*)pDflt->z, pDflt->n); + }else{ + sqlite3VdbeAddOp2(v, OP_Null, 0, 5); + } + sqlite3VdbeAddOp2(v, OP_Integer, pCol->isPrimKey, 6); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 6); + } + } + }else + + if( sqlite3StrICmp(zLeft, "index_info")==0 && zRight ){ + Index *pIdx; + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pIdx = sqlite3FindIndex(db, zRight, zDb); + if( pIdx ){ + int i; + pTab = pIdx->pTable; + sqlite3VdbeSetNumCols(v, 3); + pParse->nMem = 3; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", P4_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", P4_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", P4_STATIC); + for(i=0; i<pIdx->nColumn; i++){ + int cnum = pIdx->aiColumn[i]; + sqlite3VdbeAddOp2(v, OP_Integer, i, 1); + sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2); + assert( pTab->nCol>cnum ); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); + } + } + }else + + if( sqlite3StrICmp(zLeft, "index_list")==0 && zRight ){ + Index *pIdx; + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pTab = sqlite3FindTable(db, zRight, zDb); + if( pTab ){ + v = sqlite3GetVdbe(pParse); + pIdx = pTab->pIndex; + if( pIdx ){ + int i = 0; + sqlite3VdbeSetNumCols(v, 3); + pParse->nMem = 3; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", P4_STATIC); + while(pIdx){ + sqlite3VdbeAddOp2(v, OP_Integer, i, 1); + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0); + sqlite3VdbeAddOp2(v, OP_Integer, pIdx->onError!=OE_None, 3); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); + ++i; + pIdx = pIdx->pNext; + } + } + } + }else + + if( sqlite3StrICmp(zLeft, "database_list")==0 ){ + int i; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeSetNumCols(v, 3); + pParse->nMem = 3; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "file", P4_STATIC); + for(i=0; i<db->nDb; i++){ + if( db->aDb[i].pBt==0 ) continue; + assert( db->aDb[i].zName!=0 ); + sqlite3VdbeAddOp2(v, OP_Integer, i, 1); + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, db->aDb[i].zName, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, + sqlite3BtreeGetFilename(db->aDb[i].pBt), 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3); + } + }else + + if( sqlite3StrICmp(zLeft, "collation_list")==0 ){ + int i = 0; + HashElem *p; + sqlite3VdbeSetNumCols(v, 2); + pParse->nMem = 2; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", P4_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", P4_STATIC); + for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){ + CollSeq *pColl = (CollSeq *)sqliteHashData(p); + sqlite3VdbeAddOp2(v, OP_Integer, i++, 1); + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pColl->zName, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); + } + }else +#endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */ + +#ifndef SQLITE_OMIT_FOREIGN_KEY + if( sqlite3StrICmp(zLeft, "foreign_key_list")==0 && zRight ){ + FKey *pFK; + Table *pTab; + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pTab = sqlite3FindTable(db, zRight, zDb); + if( pTab ){ + v = sqlite3GetVdbe(pParse); + pFK = pTab->pFKey; + if( pFK ){ + int i = 0; + sqlite3VdbeSetNumCols(v, 5); + pParse->nMem = 5; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "id", P4_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "seq", P4_STATIC); + sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "table", P4_STATIC); + sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "from", P4_STATIC); + sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "to", P4_STATIC); + while(pFK){ + int j; + for(j=0; j<pFK->nCol; j++){ + char *zCol = pFK->aCol[j].zCol; + sqlite3VdbeAddOp2(v, OP_Integer, i, 1); + sqlite3VdbeAddOp2(v, OP_Integer, j, 2); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pFK->zTo, 0); + sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, + pTab->aCol[pFK->aCol[j].iFrom].zName, 0); + sqlite3VdbeAddOp4(v, zCol ? OP_String8 : OP_Null, 0, 5, 0, zCol, 0); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5); + } + ++i; + pFK = pFK->pNextFrom; + } + } + } + }else +#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ + +#ifndef NDEBUG + if( sqlite3StrICmp(zLeft, "parser_trace")==0 ){ + if( zRight ){ + if( getBoolean(zRight) ){ + sqlite3ParserTrace(stderr, "parser: "); + }else{ + sqlite3ParserTrace(0, 0); + } + } + }else +#endif + + /* Reinstall the LIKE and GLOB functions. The variant of LIKE + ** used will be case sensitive or not depending on the RHS. + */ + if( sqlite3StrICmp(zLeft, "case_sensitive_like")==0 ){ + if( zRight ){ + sqlite3RegisterLikeFunctions(db, getBoolean(zRight)); + } + }else + +#ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX +# define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 +#endif + +#ifndef SQLITE_OMIT_INTEGRITY_CHECK + /* Pragma "quick_check" is an experimental reduced version of + ** integrity_check designed to detect most database corruption + ** without most of the overhead of a full integrity-check. + */ + if( sqlite3StrICmp(zLeft, "integrity_check")==0 + || sqlite3StrICmp(zLeft, "quick_check")==0 + ){ + int i, j, addr, mxErr; + + /* Code that appears at the end of the integrity check. If no error + ** messages have been generated, output OK. Otherwise output the + ** error message + */ + static const VdbeOpList endCode[] = { + { OP_AddImm, 1, 0, 0}, /* 0 */ + { OP_IfNeg, 1, 0, 0}, /* 1 */ + { OP_String8, 0, 3, 0}, /* 2 */ + { OP_ResultRow, 3, 1, 0}, + }; + + int isQuick = (zLeft[0]=='q'); + + /* Initialize the VDBE program */ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + pParse->nMem = 6; + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", P4_STATIC); + + /* Set the maximum error count */ + mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; + if( zRight ){ + mxErr = atoi(zRight); + if( mxErr<=0 ){ + mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX; + } + } + sqlite3VdbeAddOp2(v, OP_Integer, mxErr, 1); /* reg[1] holds errors left */ + + /* Do an integrity check on each database file */ + for(i=0; i<db->nDb; i++){ + HashElem *x; + Hash *pTbls; + int cnt = 0; + + if( OMIT_TEMPDB && i==1 ) continue; + + sqlite3CodeVerifySchema(pParse, i); + addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */ + sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); + sqlite3VdbeJumpHere(v, addr); + + /* Do an integrity check of the B-Tree + ** + ** Begin by filling registers 2, 3, ... with the root pages numbers + ** for all tables and indices in the database. + */ + pTbls = &db->aDb[i].pSchema->tblHash; + for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){ + Table *pTab = sqliteHashData(x); + Index *pIdx; + sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt); + cnt++; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt); + cnt++; + } + } + if( cnt==0 ) continue; + + /* Make sure sufficient number of registers have been allocated */ + if( pParse->nMem < cnt+4 ){ + pParse->nMem = cnt+4; + } + + /* Do the b-tree integrity checks */ + sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); + sqlite3VdbeChangeP5(v, i); + addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); + sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, + sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName), + P4_DYNAMIC); + sqlite3VdbeAddOp2(v, OP_Move, 2, 4); + sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 2); + sqlite3VdbeAddOp2(v, OP_ResultRow, 2, 1); + sqlite3VdbeJumpHere(v, addr); + + /* Make sure all the indices are constructed correctly. + */ + for(x=sqliteHashFirst(pTbls); x && !isQuick; x=sqliteHashNext(x)){ + Table *pTab = sqliteHashData(x); + Index *pIdx; + int loopTop; + + if( pTab->pIndex==0 ) continue; + addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ + sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); + sqlite3VdbeJumpHere(v, addr); + sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead); + sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */ + loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0); + sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */ + for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ + int jmp2; + static const VdbeOpList idxErr[] = { + { OP_AddImm, 1, -1, 0}, + { OP_String8, 0, 3, 0}, /* 1 */ + { OP_Rowid, 1, 4, 0}, + { OP_String8, 0, 5, 0}, /* 3 */ + { OP_String8, 0, 6, 0}, /* 4 */ + { OP_Concat, 4, 3, 3}, + { OP_Concat, 5, 3, 3}, + { OP_Concat, 6, 3, 3}, + { OP_ResultRow, 3, 1, 0}, + { OP_IfPos, 1, 0, 0}, /* 9 */ + { OP_Halt, 0, 0, 0}, + }; + sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 1); + jmp2 = sqlite3VdbeAddOp3(v, OP_Found, j+2, 0, 3); + addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); + sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC); + sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC); + sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_STATIC); + sqlite3VdbeJumpHere(v, addr+9); + sqlite3VdbeJumpHere(v, jmp2); + } + sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1); + sqlite3VdbeJumpHere(v, loopTop); + for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ + static const VdbeOpList cntIdx[] = { + { OP_Integer, 0, 3, 0}, + { OP_Rewind, 0, 0, 0}, /* 1 */ + { OP_AddImm, 3, 1, 0}, + { OP_Next, 0, 0, 0}, /* 3 */ + { OP_Eq, 2, 0, 3}, /* 4 */ + { OP_AddImm, 1, -1, 0}, + { OP_String8, 0, 2, 0}, /* 6 */ + { OP_String8, 0, 3, 0}, /* 7 */ + { OP_Concat, 3, 2, 2}, + { OP_ResultRow, 2, 1, 0}, + }; + if( pIdx->tnum==0 ) continue; + addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); + sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); + sqlite3VdbeJumpHere(v, addr); + addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx); + sqlite3VdbeChangeP1(v, addr+1, j+2); + sqlite3VdbeChangeP2(v, addr+1, addr+4); + sqlite3VdbeChangeP1(v, addr+3, j+2); + sqlite3VdbeChangeP2(v, addr+3, addr+2); + sqlite3VdbeJumpHere(v, addr+4); + sqlite3VdbeChangeP4(v, addr+6, + "wrong # of entries in index ", P4_STATIC); + sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_STATIC); + } + } + } + addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode); + sqlite3VdbeChangeP2(v, addr, -mxErr); + sqlite3VdbeJumpHere(v, addr+1); + sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC); + }else +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ + +#ifndef SQLITE_OMIT_UTF16 + /* + ** PRAGMA encoding + ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be" + ** + ** In its first form, this pragma returns the encoding of the main + ** database. If the database is not initialized, it is initialized now. + ** + ** The second form of this pragma is a no-op if the main database file + ** has not already been initialized. In this case it sets the default + ** encoding that will be used for the main database file if a new file + ** is created. If an existing main database file is opened, then the + ** default text encoding for the existing database is used. + ** + ** In all cases new databases created using the ATTACH command are + ** created to use the same default text encoding as the main database. If + ** the main database has not been initialized and/or created when ATTACH + ** is executed, this is done before the ATTACH operation. + ** + ** In the second form this pragma sets the text encoding to be used in + ** new database files created using this database handle. It is only + ** useful if invoked immediately after the main database i + */ + if( sqlite3StrICmp(zLeft, "encoding")==0 ){ + static const struct EncName { + char *zName; + u8 enc; + } encnames[] = { + { "UTF-8", SQLITE_UTF8 }, + { "UTF8", SQLITE_UTF8 }, + { "UTF-16le", SQLITE_UTF16LE }, + { "UTF16le", SQLITE_UTF16LE }, + { "UTF-16be", SQLITE_UTF16BE }, + { "UTF16be", SQLITE_UTF16BE }, + { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */ + { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */ + { 0, 0 } + }; + const struct EncName *pEnc; + if( !zRight ){ /* "PRAGMA encoding" */ + if( sqlite3ReadSchema(pParse) ) goto pragma_out; + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "encoding", P4_STATIC); + sqlite3VdbeAddOp2(v, OP_String8, 0, 1); + for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ + if( pEnc->enc==ENC(pParse->db) ){ + sqlite3VdbeChangeP4(v, -1, pEnc->zName, P4_STATIC); + break; + } + } + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1); + }else{ /* "PRAGMA encoding = XXX" */ + /* Only change the value of sqlite.enc if the database handle is not + ** initialized. If the main database exists, the new sqlite.enc value + ** will be overwritten when the schema is next loaded. If it does not + ** already exists, it will be created to use the new encoding value. + */ + if( + !(DbHasProperty(db, 0, DB_SchemaLoaded)) || + DbHasProperty(db, 0, DB_Empty) + ){ + for(pEnc=&encnames[0]; pEnc->zName; pEnc++){ + if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){ + ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE; + break; + } + } + if( !pEnc->zName ){ + sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight); + } + } + } + }else +#endif /* SQLITE_OMIT_UTF16 */ + +#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS + /* + ** PRAGMA [database.]schema_version + ** PRAGMA [database.]schema_version = <integer> + ** + ** PRAGMA [database.]user_version + ** PRAGMA [database.]user_version = <integer> + ** + ** The pragma's schema_version and user_version are used to set or get + ** the value of the schema-version and user-version, respectively. Both + ** the schema-version and the user-version are 32-bit signed integers + ** stored in the database header. + ** + ** The schema-cookie is usually only manipulated internally by SQLite. It + ** is incremented by SQLite whenever the database schema is modified (by + ** creating or dropping a table or index). The schema version is used by + ** SQLite each time a query is executed to ensure that the internal cache + ** of the schema used when compiling the SQL query matches the schema of + ** the database against which the compiled query is actually executed. + ** Subverting this mechanism by using "PRAGMA schema_version" to modify + ** the schema-version is potentially dangerous and may lead to program + ** crashes or database corruption. Use with caution! + ** + ** The user-version is not used internally by SQLite. It may be used by + ** applications for any purpose. + */ + if( sqlite3StrICmp(zLeft, "schema_version")==0 + || sqlite3StrICmp(zLeft, "user_version")==0 + || sqlite3StrICmp(zLeft, "freelist_count")==0 + ){ + + int iCookie; /* Cookie index. 0 for schema-cookie, 6 for user-cookie. */ + sqlite3VdbeUsesBtree(v, iDb); + switch( zLeft[0] ){ + case 's': case 'S': + iCookie = 0; + break; + case 'f': case 'F': + iCookie = 1; + iDb = (-1*(iDb+1)); + assert(iDb<=0); + break; + default: + iCookie = 5; + break; + } + + if( zRight && iDb>=0 ){ + /* Write the specified cookie value */ + static const VdbeOpList setCookie[] = { + { OP_Transaction, 0, 1, 0}, /* 0 */ + { OP_Integer, 0, 1, 0}, /* 1 */ + { OP_SetCookie, 0, 0, 1}, /* 2 */ + }; + int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie); + sqlite3VdbeChangeP1(v, addr, iDb); + sqlite3VdbeChangeP1(v, addr+1, atoi(zRight)); + sqlite3VdbeChangeP1(v, addr+2, iDb); + sqlite3VdbeChangeP2(v, addr+2, iCookie); + }else{ + /* Read the specified cookie value */ + static const VdbeOpList readCookie[] = { + { OP_ReadCookie, 0, 1, 0}, /* 0 */ + { OP_ResultRow, 1, 1, 0} + }; + int addr = sqlite3VdbeAddOpList(v, ArraySize(readCookie), readCookie); + sqlite3VdbeChangeP1(v, addr, iDb); + sqlite3VdbeChangeP3(v, addr, iCookie); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, P4_TRANSIENT); + } + }else +#endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */ + +#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) + /* + ** Report the current state of file logs for all databases + */ + if( sqlite3StrICmp(zLeft, "lock_status")==0 ){ + static const char *const azLockName[] = { + "unlocked", "shared", "reserved", "pending", "exclusive" + }; + int i; + Vdbe *v = sqlite3GetVdbe(pParse); + sqlite3VdbeSetNumCols(v, 2); + pParse->nMem = 2; + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "database", P4_STATIC); + sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "status", P4_STATIC); + for(i=0; i<db->nDb; i++){ + Btree *pBt; + Pager *pPager; + const char *zState = "unknown"; + int j; + if( db->aDb[i].zName==0 ) continue; + sqlite3VdbeAddOp4(v, OP_String8, 0, 1, 0, db->aDb[i].zName, P4_STATIC); + pBt = db->aDb[i].pBt; + if( pBt==0 || (pPager = sqlite3BtreePager(pBt))==0 ){ + zState = "closed"; + }else if( sqlite3_file_control(db, i ? db->aDb[i].zName : 0, + SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){ + zState = azLockName[j]; + } + sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, zState, P4_STATIC); + sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 2); + } + }else +#endif + +#ifdef SQLITE_SSE + /* + ** Check to see if the sqlite_statements table exists. Create it + ** if it does not. + */ + if( sqlite3StrICmp(zLeft, "create_sqlite_statement_table")==0 ){ + extern int sqlite3CreateStatementsTable(Parse*); + sqlite3CreateStatementsTable(pParse); + }else +#endif + +#if SQLITE_HAS_CODEC + if( sqlite3StrICmp(zLeft, "key")==0 ){ + sqlite3_key(db, zRight, strlen(zRight)); + }else +#endif +#if SQLITE_HAS_CODEC || defined(SQLITE_ENABLE_CEROD) + if( sqlite3StrICmp(zLeft, "activate_extensions")==0 ){ +#if SQLITE_HAS_CODEC + if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ + extern void sqlite3_activate_see(const char*); + sqlite3_activate_see(&zRight[4]); + } +#endif +#ifdef SQLITE_ENABLE_CEROD + if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){ + extern void sqlite3_activate_cerod(const char*); + sqlite3_activate_cerod(&zRight[6]); + } +#endif + } +#endif + + {} + + if( v ){ + /* Code an OP_Expire at the end of each PRAGMA program to cause + ** the VDBE implementing the pragma to expire. Most (all?) pragmas + ** are only valid for a single execution. + */ + sqlite3VdbeAddOp2(v, OP_Expire, 1, 0); + + /* + ** Reset the safety level, in case the fullfsync flag or synchronous + ** setting changed. + */ +#ifndef SQLITE_OMIT_PAGER_PRAGMAS + if( db->autoCommit ){ + sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level, + (db->flags&SQLITE_FullFSync)!=0); + } +#endif + } +pragma_out: + sqlite3_free(zLeft); + sqlite3_free(zRight); +} + +#endif /* SQLITE_OMIT_PRAGMA || SQLITE_OMIT_PARSER */ + +/************** End of pragma.c **********************************************/ +/************** Begin file prepare.c *****************************************/ +/* +** 2005 May 25 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the implementation of the sqlite3_prepare() +** interface, and routines that contribute to loading the database schema +** from disk. +** +** $Id: prepare.c,v 1.83 2008/04/03 14:36:26 danielk1977 Exp $ +*/ + +/* +** Fill the InitData structure with an error message that indicates +** that the database is corrupt. +*/ +static void corruptSchema( + InitData *pData, /* Initialization context */ + const char *zObj, /* Object being parsed at the point of error */ + const char *zExtra /* Error information */ +){ + if( !pData->db->mallocFailed ){ + if( zObj==0 ) zObj = "?"; + sqlite3SetString(pData->pzErrMsg, "malformed database schema (", zObj, ")", + zExtra!=0 && zExtra[0]!=0 ? " - " : (char*)0, zExtra, (char*)0); + } + pData->rc = SQLITE_CORRUPT; +} + +/* +** This is the callback routine for the code that initializes the +** database. See sqlite3Init() below for additional information. +** This routine is also called from the OP_ParseSchema opcode of the VDBE. +** +** Each callback contains the following information: +** +** argv[0] = name of thing being created +** argv[1] = root page number for table or index. 0 for trigger or view. +** argv[2] = SQL text for the CREATE statement. +** +*/ +SQLITE_PRIVATE int sqlite3InitCallback(void *pInit, int argc, char **argv, char **azColName){ + InitData *pData = (InitData*)pInit; + sqlite3 *db = pData->db; + int iDb = pData->iDb; + + assert( sqlite3_mutex_held(db->mutex) ); + pData->rc = SQLITE_OK; + DbClearProperty(db, iDb, DB_Empty); + if( db->mallocFailed ){ + corruptSchema(pData, argv[0], 0); + return SQLITE_NOMEM; + } + + assert( argc==3 ); + if( argv==0 ) return 0; /* Might happen if EMPTY_RESULT_CALLBACKS are on */ + if( argv[1]==0 ){ + corruptSchema(pData, argv[0], 0); + return 1; + } + assert( iDb>=0 && iDb<db->nDb ); + if( argv[2] && argv[2][0] ){ + /* Call the parser to process a CREATE TABLE, INDEX or VIEW. + ** But because db->init.busy is set to 1, no VDBE code is generated + ** or executed. All the parser does is build the internal data + ** structures that describe the table, index, or view. + */ + char *zErr; + int rc; + assert( db->init.busy ); + db->init.iDb = iDb; + db->init.newTnum = atoi(argv[1]); + rc = sqlite3_exec(db, argv[2], 0, 0, &zErr); + db->init.iDb = 0; + assert( rc!=SQLITE_OK || zErr==0 ); + if( SQLITE_OK!=rc ){ + pData->rc = rc; + if( rc==SQLITE_NOMEM ){ + db->mallocFailed = 1; + }else if( rc!=SQLITE_INTERRUPT ){ + corruptSchema(pData, argv[0], zErr); + } + sqlite3_free(zErr); + return 1; + } + }else if( argv[0]==0 ){ + corruptSchema(pData, 0, 0); + }else{ + /* If the SQL column is blank it means this is an index that + ** was created to be the PRIMARY KEY or to fulfill a UNIQUE + ** constraint for a CREATE TABLE. The index should have already + ** been created when we processed the CREATE TABLE. All we have + ** to do here is record the root page number for that index. + */ + Index *pIndex; + pIndex = sqlite3FindIndex(db, argv[0], db->aDb[iDb].zName); + if( pIndex==0 || pIndex->tnum!=0 ){ + /* This can occur if there exists an index on a TEMP table which + ** has the same name as another index on a permanent index. Since + ** the permanent table is hidden by the TEMP table, we can also + ** safely ignore the index on the permanent table. + */ + /* Do Nothing */; + }else{ + pIndex->tnum = atoi(argv[1]); + } + } + return 0; +} + +/* +** Attempt to read the database schema and initialize internal +** data structures for a single database file. The index of the +** database file is given by iDb. iDb==0 is used for the main +** database. iDb==1 should never be used. iDb>=2 is used for +** auxiliary databases. Return one of the SQLITE_ error codes to +** indicate success or failure. +*/ +static int sqlite3InitOne(sqlite3 *db, int iDb, char **pzErrMsg){ + int rc; + BtCursor *curMain; + int size; + Table *pTab; + Db *pDb; + char const *azArg[4]; + int meta[10]; + InitData initData; + char const *zMasterSchema; + char const *zMasterName = SCHEMA_TABLE(iDb); + + /* + ** The master database table has a structure like this + */ + static const char master_schema[] = + "CREATE TABLE sqlite_master(\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")" + ; +#ifndef SQLITE_OMIT_TEMPDB + static const char temp_master_schema[] = + "CREATE TEMP TABLE sqlite_temp_master(\n" + " type text,\n" + " name text,\n" + " tbl_name text,\n" + " rootpage integer,\n" + " sql text\n" + ")" + ; +#else + #define temp_master_schema 0 +#endif + + assert( iDb>=0 && iDb<db->nDb ); + assert( db->aDb[iDb].pSchema ); + assert( sqlite3_mutex_held(db->mutex) ); + assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); + + /* zMasterSchema and zInitScript are set to point at the master schema + ** and initialisation script appropriate for the database being + ** initialised. zMasterName is the name of the master table. + */ + if( !OMIT_TEMPDB && iDb==1 ){ + zMasterSchema = temp_master_schema; + }else{ + zMasterSchema = master_schema; + } + zMasterName = SCHEMA_TABLE(iDb); + + /* Construct the schema tables. */ + azArg[0] = zMasterName; + azArg[1] = "1"; + azArg[2] = zMasterSchema; + azArg[3] = 0; + initData.db = db; + initData.iDb = iDb; + initData.pzErrMsg = pzErrMsg; + (void)sqlite3SafetyOff(db); + rc = sqlite3InitCallback(&initData, 3, (char **)azArg, 0); + (void)sqlite3SafetyOn(db); + if( rc ){ + rc = initData.rc; + goto error_out; + } + pTab = sqlite3FindTable(db, zMasterName, db->aDb[iDb].zName); + if( pTab ){ + pTab->readOnly = 1; + } + + /* Create a cursor to hold the database open + */ + pDb = &db->aDb[iDb]; + if( pDb->pBt==0 ){ + if( !OMIT_TEMPDB && iDb==1 ){ + DbSetProperty(db, 1, DB_SchemaLoaded); + } + return SQLITE_OK; + } + curMain = sqlite3MallocZero(sqlite3BtreeCursorSize()); + if( !curMain ){ + rc = SQLITE_NOMEM; + goto error_out; + } + sqlite3BtreeEnter(pDb->pBt); + rc = sqlite3BtreeCursor(pDb->pBt, MASTER_ROOT, 0, 0, curMain); + if( rc!=SQLITE_OK && rc!=SQLITE_EMPTY ){ + sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); + goto leave_error_out; + } + + /* Get the database meta information. + ** + ** Meta values are as follows: + ** meta[0] Schema cookie. Changes with each schema change. + ** meta[1] File format of schema layer. + ** meta[2] Size of the page cache. + ** meta[3] Use freelist if 0. Autovacuum if greater than zero. + ** meta[4] Db text encoding. 1:UTF-8 2:UTF-16LE 3:UTF-16BE + ** meta[5] The user cookie. Used by the application. + ** meta[6] Incremental-vacuum flag. + ** meta[7] + ** meta[8] + ** meta[9] + ** + ** Note: The #defined SQLITE_UTF* symbols in sqliteInt.h correspond to + ** the possible values of meta[4]. + */ + if( rc==SQLITE_OK ){ + int i; + for(i=0; rc==SQLITE_OK && i<sizeof(meta)/sizeof(meta[0]); i++){ + rc = sqlite3BtreeGetMeta(pDb->pBt, i+1, (u32 *)&meta[i]); + } + if( rc ){ + sqlite3SetString(pzErrMsg, sqlite3ErrStr(rc), (char*)0); + goto leave_error_out; + } + }else{ + memset(meta, 0, sizeof(meta)); + } + pDb->pSchema->schema_cookie = meta[0]; + + /* If opening a non-empty database, check the text encoding. For the + ** main database, set sqlite3.enc to the encoding of the main database. + ** For an attached db, it is an error if the encoding is not the same + ** as sqlite3.enc. + */ + if( meta[4] ){ /* text encoding */ + if( iDb==0 ){ + /* If opening the main database, set ENC(db). */ + ENC(db) = (u8)meta[4]; + db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0); + }else{ + /* If opening an attached database, the encoding much match ENC(db) */ + if( meta[4]!=ENC(db) ){ + sqlite3SetString(pzErrMsg, "attached databases must use the same" + " text encoding as main database", (char*)0); + rc = SQLITE_ERROR; + goto leave_error_out; + } + } + }else{ + DbSetProperty(db, iDb, DB_Empty); + } + pDb->pSchema->enc = ENC(db); + + size = meta[2]; + if( size==0 ){ size = SQLITE_DEFAULT_CACHE_SIZE; } + if( size<0 ) size = -size; + pDb->pSchema->cache_size = size; + sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size); + + /* + ** file_format==1 Version 3.0.0. + ** file_format==2 Version 3.1.3. // ALTER TABLE ADD COLUMN + ** file_format==3 Version 3.1.4. // ditto but with non-NULL defaults + ** file_format==4 Version 3.3.0. // DESC indices. Boolean constants + */ + pDb->pSchema->file_format = meta[1]; + if( pDb->pSchema->file_format==0 ){ + pDb->pSchema->file_format = 1; + } + if( pDb->pSchema->file_format>SQLITE_MAX_FILE_FORMAT ){ + sqlite3SetString(pzErrMsg, "unsupported file format", (char*)0); + rc = SQLITE_ERROR; + goto leave_error_out; + } + + /* Ticket #2804: When we open a database in the newer file format, + ** clear the legacy_file_format pragma flag so that a VACUUM will + ** not downgrade the database and thus invalidate any descending + ** indices that the user might have created. + */ + if( iDb==0 && meta[1]>=4 ){ + db->flags &= ~SQLITE_LegacyFileFmt; + } + + /* Read the schema information out of the schema tables + */ + assert( db->init.busy ); + if( rc==SQLITE_EMPTY ){ + /* For an empty database, there is nothing to read */ + rc = SQLITE_OK; + }else{ + char *zSql; + zSql = sqlite3MPrintf(db, + "SELECT name, rootpage, sql FROM '%q'.%s", + db->aDb[iDb].zName, zMasterName); + (void)sqlite3SafetyOff(db); +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); + xAuth = db->xAuth; + db->xAuth = 0; +#endif + rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); +#ifndef SQLITE_OMIT_AUTHORIZATION + db->xAuth = xAuth; + } +#endif + if( rc==SQLITE_ABORT ) rc = initData.rc; + (void)sqlite3SafetyOn(db); + sqlite3_free(zSql); +#ifndef SQLITE_OMIT_ANALYZE + if( rc==SQLITE_OK ){ + sqlite3AnalysisLoad(db, iDb); + } +#endif + } + if( db->mallocFailed ){ + /* sqlite3SetString(pzErrMsg, "out of memory", (char*)0); */ + rc = SQLITE_NOMEM; + sqlite3ResetInternalSchema(db, 0); + } + if( rc==SQLITE_OK || (db->flags&SQLITE_RecoveryMode)){ + /* Black magic: If the SQLITE_RecoveryMode flag is set, then consider + ** the schema loaded, even if errors occured. In this situation the + ** current sqlite3_prepare() operation will fail, but the following one + ** will attempt to compile the supplied statement against whatever subset + ** of the schema was loaded before the error occured. The primary + ** purpose of this is to allow access to the sqlite_master table + ** even when its contents have been corrupted. + */ + DbSetProperty(db, iDb, DB_SchemaLoaded); + rc = SQLITE_OK; + } + + /* Jump here for an error that occurs after successfully allocating + ** curMain and calling sqlite3BtreeEnter(). For an error that occurs + ** before that point, jump to error_out. + */ +leave_error_out: + sqlite3BtreeCloseCursor(curMain); + sqlite3_free(curMain); + sqlite3BtreeLeave(pDb->pBt); + +error_out: + if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ + db->mallocFailed = 1; + } + return rc; +} + +/* +** Initialize all database files - the main database file, the file +** used to store temporary tables, and any additional database files +** created using ATTACH statements. Return a success code. If an +** error occurs, write an error message into *pzErrMsg. +** +** After a database is initialized, the DB_SchemaLoaded bit is set +** bit is set in the flags field of the Db structure. If the database +** file was of zero-length, then the DB_Empty flag is also set. +*/ +SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){ + int i, rc; + int commit_internal = !(db->flags&SQLITE_InternChanges); + + assert( sqlite3_mutex_held(db->mutex) ); + if( db->init.busy ) return SQLITE_OK; + rc = SQLITE_OK; + db->init.busy = 1; + for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ + if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue; + rc = sqlite3InitOne(db, i, pzErrMsg); + if( rc ){ + sqlite3ResetInternalSchema(db, i); + } + } + + /* Once all the other databases have been initialised, load the schema + ** for the TEMP database. This is loaded last, as the TEMP database + ** schema may contain references to objects in other databases. + */ +#ifndef SQLITE_OMIT_TEMPDB + if( rc==SQLITE_OK && db->nDb>1 && !DbHasProperty(db, 1, DB_SchemaLoaded) ){ + rc = sqlite3InitOne(db, 1, pzErrMsg); + if( rc ){ + sqlite3ResetInternalSchema(db, 1); + } + } +#endif + + db->init.busy = 0; + if( rc==SQLITE_OK && commit_internal ){ + sqlite3CommitInternalChanges(db); + } + + return rc; +} + +/* +** This routine is a no-op if the database schema is already initialised. +** Otherwise, the schema is loaded. An error code is returned. +*/ +SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse){ + int rc = SQLITE_OK; + sqlite3 *db = pParse->db; + assert( sqlite3_mutex_held(db->mutex) ); + if( !db->init.busy ){ + rc = sqlite3Init(db, &pParse->zErrMsg); + } + if( rc!=SQLITE_OK ){ + pParse->rc = rc; + pParse->nErr++; + } + return rc; +} + + +/* +** Check schema cookies in all databases. If any cookie is out +** of date, return 0. If all schema cookies are current, return 1. +*/ +static int schemaIsValid(sqlite3 *db){ + int iDb; + int rc; + BtCursor *curTemp; + int cookie; + int allOk = 1; + + curTemp = (BtCursor *)sqlite3_malloc(sqlite3BtreeCursorSize()); + if( curTemp ){ + assert( sqlite3_mutex_held(db->mutex) ); + for(iDb=0; allOk && iDb<db->nDb; iDb++){ + Btree *pBt; + pBt = db->aDb[iDb].pBt; + if( pBt==0 ) continue; + memset(curTemp, 0, sqlite3BtreeCursorSize()); + rc = sqlite3BtreeCursor(pBt, MASTER_ROOT, 0, 0, curTemp); + if( rc==SQLITE_OK ){ + rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&cookie); + if( rc==SQLITE_OK && cookie!=db->aDb[iDb].pSchema->schema_cookie ){ + allOk = 0; + } + sqlite3BtreeCloseCursor(curTemp); + } + if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ + db->mallocFailed = 1; + } + } + sqlite3_free(curTemp); + }else{ + allOk = 0; + db->mallocFailed = 1; + } + + return allOk; +} + +/* +** Convert a schema pointer into the iDb index that indicates +** which database file in db->aDb[] the schema refers to. +** +** If the same database is attached more than once, the first +** attached database is returned. +*/ +SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *pSchema){ + int i = -1000000; + + /* If pSchema is NULL, then return -1000000. This happens when code in + ** expr.c is trying to resolve a reference to a transient table (i.e. one + ** created by a sub-select). In this case the return value of this + ** function should never be used. + ** + ** We return -1000000 instead of the more usual -1 simply because using + ** -1000000 as incorrectly using -1000000 index into db->aDb[] is much + ** more likely to cause a segfault than -1 (of course there are assert() + ** statements too, but it never hurts to play the odds). + */ + assert( sqlite3_mutex_held(db->mutex) ); + if( pSchema ){ + for(i=0; i<db->nDb; i++){ + if( db->aDb[i].pSchema==pSchema ){ + break; + } + } + assert( i>=0 &&i>=0 && i<db->nDb ); + } + return i; +} + +/* +** Compile the UTF-8 encoded SQL statement zSql into a statement handle. +*/ +static int sqlite3Prepare( + sqlite3 *db, /* Database handle. */ + const char *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const char **pzTail /* OUT: End of parsed string */ +){ + Parse sParse; + char *zErrMsg = 0; + int rc = SQLITE_OK; + int i; + + assert( ppStmt ); + *ppStmt = 0; + if( sqlite3SafetyOn(db) ){ + return SQLITE_MISUSE; + } + assert( !db->mallocFailed ); + assert( sqlite3_mutex_held(db->mutex) ); + + /* If any attached database schemas are locked, do not proceed with + ** compilation. Instead return SQLITE_LOCKED immediately. + */ + for(i=0; i<db->nDb; i++) { + Btree *pBt = db->aDb[i].pBt; + if( pBt ){ + int rc; + rc = sqlite3BtreeSchemaLocked(pBt); + if( rc ){ + const char *zDb = db->aDb[i].zName; + sqlite3Error(db, SQLITE_LOCKED, "database schema is locked: %s", zDb); + (void)sqlite3SafetyOff(db); + return SQLITE_LOCKED; + } + } + } + + memset(&sParse, 0, sizeof(sParse)); + sParse.db = db; + if( nBytes>=0 && zSql[nBytes-1]!=0 ){ + char *zSqlCopy; + int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; + if( nBytes>mxLen ){ + sqlite3Error(db, SQLITE_TOOBIG, "statement too long"); + (void)sqlite3SafetyOff(db); + return SQLITE_TOOBIG; + } + zSqlCopy = sqlite3DbStrNDup(db, zSql, nBytes); + if( zSqlCopy ){ + sqlite3RunParser(&sParse, zSqlCopy, &zErrMsg); + sqlite3_free(zSqlCopy); + sParse.zTail = &zSql[sParse.zTail-zSqlCopy]; + }else{ + sParse.zTail = &zSql[nBytes]; + } + }else{ + sqlite3RunParser(&sParse, zSql, &zErrMsg); + } + + if( db->mallocFailed ){ + sParse.rc = SQLITE_NOMEM; + } + if( sParse.rc==SQLITE_DONE ) sParse.rc = SQLITE_OK; + if( sParse.checkSchema && !schemaIsValid(db) ){ + sParse.rc = SQLITE_SCHEMA; + } + if( sParse.rc==SQLITE_SCHEMA ){ + sqlite3ResetInternalSchema(db, 0); + } + if( db->mallocFailed ){ + sParse.rc = SQLITE_NOMEM; + } + if( pzTail ){ + *pzTail = sParse.zTail; + } + rc = sParse.rc; + +#ifndef SQLITE_OMIT_EXPLAIN + if( rc==SQLITE_OK && sParse.pVdbe && sParse.explain ){ + if( sParse.explain==2 ){ + sqlite3VdbeSetNumCols(sParse.pVdbe, 3); + sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "order", P4_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "from", P4_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "detail", P4_STATIC); + }else{ + sqlite3VdbeSetNumCols(sParse.pVdbe, 8); + sqlite3VdbeSetColName(sParse.pVdbe, 0, COLNAME_NAME, "addr", P4_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 1, COLNAME_NAME, "opcode", P4_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 2, COLNAME_NAME, "p1", P4_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 3, COLNAME_NAME, "p2", P4_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 4, COLNAME_NAME, "p3", P4_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 5, COLNAME_NAME, "p4", P4_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 6, COLNAME_NAME, "p5", P4_STATIC); + sqlite3VdbeSetColName(sParse.pVdbe, 7, COLNAME_NAME, "comment",P4_STATIC); + } + } +#endif + + if( sqlite3SafetyOff(db) ){ + rc = SQLITE_MISUSE; + } + + if( saveSqlFlag ){ + sqlite3VdbeSetSql(sParse.pVdbe, zSql, sParse.zTail - zSql); + } + if( rc!=SQLITE_OK || db->mallocFailed ){ + sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe); + assert(!(*ppStmt)); + }else{ + *ppStmt = (sqlite3_stmt*)sParse.pVdbe; + } + + if( zErrMsg ){ + sqlite3Error(db, rc, "%s", zErrMsg); + sqlite3_free(zErrMsg); + }else{ + sqlite3Error(db, rc, 0); + } + + rc = sqlite3ApiExit(db, rc); + assert( (rc&db->errMask)==rc ); + return rc; +} +static int sqlite3LockAndPrepare( + sqlite3 *db, /* Database handle. */ + const char *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + int saveSqlFlag, /* True to copy SQL text into the sqlite3_stmt */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const char **pzTail /* OUT: End of parsed string */ +){ + int rc; + if( !sqlite3SafetyCheckOk(db) ){ + return SQLITE_MISUSE; + } + sqlite3_mutex_enter(db->mutex); + sqlite3BtreeEnterAll(db); + rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, ppStmt, pzTail); + sqlite3BtreeLeaveAll(db); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Rerun the compilation of a statement after a schema change. +** Return true if the statement was recompiled successfully. +** Return false if there is an error of some kind. +*/ +SQLITE_PRIVATE int sqlite3Reprepare(Vdbe *p){ + int rc; + sqlite3_stmt *pNew; + const char *zSql; + sqlite3 *db; + + assert( sqlite3_mutex_held(sqlite3VdbeDb(p)->mutex) ); + zSql = sqlite3_sql((sqlite3_stmt *)p); + assert( zSql!=0 ); /* Reprepare only called for prepare_v2() statements */ + db = sqlite3VdbeDb(p); + assert( sqlite3_mutex_held(db->mutex) ); + rc = sqlite3LockAndPrepare(db, zSql, -1, 0, &pNew, 0); + if( rc ){ + if( rc==SQLITE_NOMEM ){ + db->mallocFailed = 1; + } + assert( pNew==0 ); + return 0; + }else{ + assert( pNew!=0 ); + } + sqlite3VdbeSwap((Vdbe*)pNew, p); + sqlite3_transfer_bindings(pNew, (sqlite3_stmt*)p); + sqlite3VdbeResetStepResult((Vdbe*)pNew); + sqlite3VdbeFinalize((Vdbe*)pNew); + return 1; +} + + +/* +** Two versions of the official API. Legacy and new use. In the legacy +** version, the original SQL text is not saved in the prepared statement +** and so if a schema change occurs, SQLITE_SCHEMA is returned by +** sqlite3_step(). In the new version, the original SQL text is retained +** and the statement is automatically recompiled if an schema change +** occurs. +*/ +SQLITE_API int sqlite3_prepare( + sqlite3 *db, /* Database handle. */ + const char *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const char **pzTail /* OUT: End of parsed string */ +){ + int rc; + rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,ppStmt,pzTail); + assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ + return rc; +} +SQLITE_API int sqlite3_prepare_v2( + sqlite3 *db, /* Database handle. */ + const char *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const char **pzTail /* OUT: End of parsed string */ +){ + int rc; + rc = sqlite3LockAndPrepare(db,zSql,nBytes,1,ppStmt,pzTail); + assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ + return rc; +} + + +#ifndef SQLITE_OMIT_UTF16 +/* +** Compile the UTF-16 encoded SQL statement zSql into a statement handle. +*/ +static int sqlite3Prepare16( + sqlite3 *db, /* Database handle. */ + const void *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + int saveSqlFlag, /* True to save SQL text into the sqlite3_stmt */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const void **pzTail /* OUT: End of parsed string */ +){ + /* This function currently works by first transforming the UTF-16 + ** encoded string to UTF-8, then invoking sqlite3_prepare(). The + ** tricky bit is figuring out the pointer to return in *pzTail. + */ + char *zSql8; + const char *zTail8 = 0; + int rc = SQLITE_OK; + + if( !sqlite3SafetyCheckOk(db) ){ + return SQLITE_MISUSE; + } + sqlite3_mutex_enter(db->mutex); + zSql8 = sqlite3Utf16to8(db, zSql, nBytes); + if( zSql8 ){ + rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, ppStmt, &zTail8); + } + + if( zTail8 && pzTail ){ + /* If sqlite3_prepare returns a tail pointer, we calculate the + ** equivalent pointer into the UTF-16 string by counting the unicode + ** characters between zSql8 and zTail8, and then returning a pointer + ** the same number of characters into the UTF-16 string. + */ + int chars_parsed = sqlite3Utf8CharLen(zSql8, zTail8-zSql8); + *pzTail = (u8 *)zSql + sqlite3Utf16ByteLen(zSql, chars_parsed); + } + sqlite3_free(zSql8); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Two versions of the official API. Legacy and new use. In the legacy +** version, the original SQL text is not saved in the prepared statement +** and so if a schema change occurs, SQLITE_SCHEMA is returned by +** sqlite3_step(). In the new version, the original SQL text is retained +** and the statement is automatically recompiled if an schema change +** occurs. +*/ +SQLITE_API int sqlite3_prepare16( + sqlite3 *db, /* Database handle. */ + const void *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const void **pzTail /* OUT: End of parsed string */ +){ + int rc; + rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail); + assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ + return rc; +} +SQLITE_API int sqlite3_prepare16_v2( + sqlite3 *db, /* Database handle. */ + const void *zSql, /* UTF-8 encoded SQL statement. */ + int nBytes, /* Length of zSql in bytes. */ + sqlite3_stmt **ppStmt, /* OUT: A pointer to the prepared statement */ + const void **pzTail /* OUT: End of parsed string */ +){ + int rc; + rc = sqlite3Prepare16(db,zSql,nBytes,1,ppStmt,pzTail); + assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 ); /* VERIFY: F13021 */ + return rc; +} + +#endif /* SQLITE_OMIT_UTF16 */ + +/************** End of prepare.c *********************************************/ +/************** Begin file select.c ******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle SELECT statements in SQLite. +** +** $Id: select.c,v 1.429 2008/05/01 17:03:49 drh Exp $ +*/ + + +/* +** Delete all the content of a Select structure but do not deallocate +** the select structure itself. +*/ +static void clearSelect(Select *p){ + sqlite3ExprListDelete(p->pEList); + sqlite3SrcListDelete(p->pSrc); + sqlite3ExprDelete(p->pWhere); + sqlite3ExprListDelete(p->pGroupBy); + sqlite3ExprDelete(p->pHaving); + sqlite3ExprListDelete(p->pOrderBy); + sqlite3SelectDelete(p->pPrior); + sqlite3ExprDelete(p->pLimit); + sqlite3ExprDelete(p->pOffset); +} + +/* +** Initialize a SelectDest structure. +*/ +SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ + pDest->eDest = eDest; + pDest->iParm = iParm; + pDest->affinity = 0; + pDest->iMem = 0; + pDest->nMem = 0; +} + + +/* +** Allocate a new Select structure and return a pointer to that +** structure. +*/ +SQLITE_PRIVATE Select *sqlite3SelectNew( + Parse *pParse, /* Parsing context */ + ExprList *pEList, /* which columns to include in the result */ + SrcList *pSrc, /* the FROM clause -- which tables to scan */ + Expr *pWhere, /* the WHERE clause */ + ExprList *pGroupBy, /* the GROUP BY clause */ + Expr *pHaving, /* the HAVING clause */ + ExprList *pOrderBy, /* the ORDER BY clause */ + int isDistinct, /* true if the DISTINCT keyword is present */ + Expr *pLimit, /* LIMIT value. NULL means not used */ + Expr *pOffset /* OFFSET value. NULL means no offset */ +){ + Select *pNew; + Select standin; + sqlite3 *db = pParse->db; + pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); + assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ + if( pNew==0 ){ + pNew = &standin; + memset(pNew, 0, sizeof(*pNew)); + } + if( pEList==0 ){ + pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); + } + pNew->pEList = pEList; + pNew->pSrc = pSrc; + pNew->pWhere = pWhere; + pNew->pGroupBy = pGroupBy; + pNew->pHaving = pHaving; + pNew->pOrderBy = pOrderBy; + pNew->isDistinct = isDistinct; + pNew->op = TK_SELECT; + assert( pOffset==0 || pLimit!=0 ); + pNew->pLimit = pLimit; + pNew->pOffset = pOffset; + pNew->iLimit = -1; + pNew->iOffset = -1; + pNew->addrOpenEphm[0] = -1; + pNew->addrOpenEphm[1] = -1; + pNew->addrOpenEphm[2] = -1; + if( pNew==&standin) { + clearSelect(pNew); + pNew = 0; + } + return pNew; +} + +/* +** Delete the given Select structure and all of its substructures. +*/ +SQLITE_PRIVATE void sqlite3SelectDelete(Select *p){ + if( p ){ + clearSelect(p); + sqlite3_free(p); + } +} + +/* +** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the +** type of join. Return an integer constant that expresses that type +** in terms of the following bit values: +** +** JT_INNER +** JT_CROSS +** JT_OUTER +** JT_NATURAL +** JT_LEFT +** JT_RIGHT +** +** A full outer join is the combination of JT_LEFT and JT_RIGHT. +** +** If an illegal or unsupported join type is seen, then still return +** a join type, but put an error in the pParse structure. +*/ +SQLITE_PRIVATE int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ + int jointype = 0; + Token *apAll[3]; + Token *p; + static const struct { + const char zKeyword[8]; + u8 nChar; + u8 code; + } keywords[] = { + { "natural", 7, JT_NATURAL }, + { "left", 4, JT_LEFT|JT_OUTER }, + { "right", 5, JT_RIGHT|JT_OUTER }, + { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, + { "outer", 5, JT_OUTER }, + { "inner", 5, JT_INNER }, + { "cross", 5, JT_INNER|JT_CROSS }, + }; + int i, j; + apAll[0] = pA; + apAll[1] = pB; + apAll[2] = pC; + for(i=0; i<3 && apAll[i]; i++){ + p = apAll[i]; + for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ + if( p->n==keywords[j].nChar + && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ + jointype |= keywords[j].code; + break; + } + } + if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ + jointype |= JT_ERROR; + break; + } + } + if( + (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || + (jointype & JT_ERROR)!=0 + ){ + const char *zSp1 = " "; + const char *zSp2 = " "; + if( pB==0 ){ zSp1++; } + if( pC==0 ){ zSp2++; } + sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " + "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); + jointype = JT_INNER; + }else if( jointype & JT_RIGHT ){ + sqlite3ErrorMsg(pParse, + "RIGHT and FULL OUTER JOINs are not currently supported"); + jointype = JT_INNER; + } + return jointype; +} + +/* +** Return the index of a column in a table. Return -1 if the column +** is not contained in the table. +*/ +static int columnIndex(Table *pTab, const char *zCol){ + int i; + for(i=0; i<pTab->nCol; i++){ + if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; + } + return -1; +} + +/* +** Set the value of a token to a '\000'-terminated string. +*/ +static void setToken(Token *p, const char *z){ + p->z = (u8*)z; + p->n = z ? strlen(z) : 0; + p->dyn = 0; +} + +/* +** Set the token to the double-quoted and escaped version of the string pointed +** to by z. For example; +** +** {a"bc} -> {"a""bc"} +*/ +static void setQuotedToken(Parse *pParse, Token *p, const char *z){ + + /* Check if the string contains any " characters. If it does, then + ** this function will malloc space to create a quoted version of + ** the string in. Otherwise, save a call to sqlite3MPrintf() by + ** just copying the pointer to the string. + */ + const char *z2 = z; + while( *z2 ){ + if( *z2=='"' ) break; + z2++; + } + + if( *z2 ){ + /* String contains " characters - copy and quote the string. */ + p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); + if( p->z ){ + p->n = strlen((char *)p->z); + p->dyn = 1; + } + }else{ + /* String contains no " characters - copy the pointer. */ + p->z = (u8*)z; + p->n = (z2 - z); + p->dyn = 0; + } +} + +/* +** Create an expression node for an identifier with the name of zName +*/ +SQLITE_PRIVATE Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ + Token dummy; + setToken(&dummy, zName); + return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); +} + +/* +** Add a term to the WHERE expression in *ppExpr that requires the +** zCol column to be equal in the two tables pTab1 and pTab2. +*/ +static void addWhereTerm( + Parse *pParse, /* Parsing context */ + const char *zCol, /* Name of the column */ + const Table *pTab1, /* First table */ + const char *zAlias1, /* Alias for first table. May be NULL */ + const Table *pTab2, /* Second table */ + const char *zAlias2, /* Alias for second table. May be NULL */ + int iRightJoinTable, /* VDBE cursor for the right table */ + Expr **ppExpr, /* Add the equality term to this expression */ + int isOuterJoin /* True if dealing with an OUTER join */ +){ + Expr *pE1a, *pE1b, *pE1c; + Expr *pE2a, *pE2b, *pE2c; + Expr *pE; + + pE1a = sqlite3CreateIdExpr(pParse, zCol); + pE2a = sqlite3CreateIdExpr(pParse, zCol); + if( zAlias1==0 ){ + zAlias1 = pTab1->zName; + } + pE1b = sqlite3CreateIdExpr(pParse, zAlias1); + if( zAlias2==0 ){ + zAlias2 = pTab2->zName; + } + pE2b = sqlite3CreateIdExpr(pParse, zAlias2); + pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); + pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); + pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); + if( pE && isOuterJoin ){ + ExprSetProperty(pE, EP_FromJoin); + pE->iRightJoinTable = iRightJoinTable; + } + *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); +} + +/* +** Set the EP_FromJoin property on all terms of the given expression. +** And set the Expr.iRightJoinTable to iTable for every term in the +** expression. +** +** The EP_FromJoin property is used on terms of an expression to tell +** the LEFT OUTER JOIN processing logic that this term is part of the +** join restriction specified in the ON or USING clause and not a part +** of the more general WHERE clause. These terms are moved over to the +** WHERE clause during join processing but we need to remember that they +** originated in the ON or USING clause. +** +** The Expr.iRightJoinTable tells the WHERE clause processing that the +** expression depends on table iRightJoinTable even if that table is not +** explicitly mentioned in the expression. That information is needed +** for cases like this: +** +** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 +** +** The where clause needs to defer the handling of the t1.x=5 +** term until after the t2 loop of the join. In that way, a +** NULL t2 row will be inserted whenever t1.x!=5. If we do not +** defer the handling of t1.x=5, it will be processed immediately +** after the t1 loop and rows with t1.x!=5 will never appear in +** the output, which is incorrect. +*/ +static void setJoinExpr(Expr *p, int iTable){ + while( p ){ + ExprSetProperty(p, EP_FromJoin); + p->iRightJoinTable = iTable; + setJoinExpr(p->pLeft, iTable); + p = p->pRight; + } +} + +/* +** This routine processes the join information for a SELECT statement. +** ON and USING clauses are converted into extra terms of the WHERE clause. +** NATURAL joins also create extra WHERE clause terms. +** +** The terms of a FROM clause are contained in the Select.pSrc structure. +** The left most table is the first entry in Select.pSrc. The right-most +** table is the last entry. The join operator is held in the entry to +** the left. Thus entry 0 contains the join operator for the join between +** entries 0 and 1. Any ON or USING clauses associated with the join are +** also attached to the left entry. +** +** This routine returns the number of errors encountered. +*/ +static int sqliteProcessJoin(Parse *pParse, Select *p){ + SrcList *pSrc; /* All tables in the FROM clause */ + int i, j; /* Loop counters */ + struct SrcList_item *pLeft; /* Left table being joined */ + struct SrcList_item *pRight; /* Right table being joined */ + + pSrc = p->pSrc; + pLeft = &pSrc->a[0]; + pRight = &pLeft[1]; + for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ + Table *pLeftTab = pLeft->pTab; + Table *pRightTab = pRight->pTab; + int isOuter; + + if( pLeftTab==0 || pRightTab==0 ) continue; + isOuter = (pRight->jointype & JT_OUTER)!=0; + + /* When the NATURAL keyword is present, add WHERE clause terms for + ** every column that the two tables have in common. + */ + if( pRight->jointype & JT_NATURAL ){ + if( pRight->pOn || pRight->pUsing ){ + sqlite3ErrorMsg(pParse, "a NATURAL join may not have " + "an ON or USING clause", 0); + return 1; + } + for(j=0; j<pLeftTab->nCol; j++){ + char *zName = pLeftTab->aCol[j].zName; + if( columnIndex(pRightTab, zName)>=0 ){ + addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, + pRightTab, pRight->zAlias, + pRight->iCursor, &p->pWhere, isOuter); + + } + } + } + + /* Disallow both ON and USING clauses in the same join + */ + if( pRight->pOn && pRight->pUsing ){ + sqlite3ErrorMsg(pParse, "cannot have both ON and USING " + "clauses in the same join"); + return 1; + } + + /* Add the ON clause to the end of the WHERE clause, connected by + ** an AND operator. + */ + if( pRight->pOn ){ + if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); + p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); + pRight->pOn = 0; + } + + /* Create extra terms on the WHERE clause for each column named + ** in the USING clause. Example: If the two tables to be joined are + ** A and B and the USING clause names X, Y, and Z, then add this + ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z + ** Report an error if any column mentioned in the USING clause is + ** not contained in both tables to be joined. + */ + if( pRight->pUsing ){ + IdList *pList = pRight->pUsing; + for(j=0; j<pList->nId; j++){ + char *zName = pList->a[j].zName; + if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ + sqlite3ErrorMsg(pParse, "cannot join using column %s - column " + "not present in both tables", zName); + return 1; + } + addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, + pRightTab, pRight->zAlias, + pRight->iCursor, &p->pWhere, isOuter); + } + } + } + return 0; +} + +/* +** Insert code into "v" that will push the record on the top of the +** stack into the sorter. +*/ +static void pushOntoSorter( + Parse *pParse, /* Parser context */ + ExprList *pOrderBy, /* The ORDER BY clause */ + Select *pSelect, /* The whole SELECT statement */ + int regData /* Register holding data to be sorted */ +){ + Vdbe *v = pParse->pVdbe; + int nExpr = pOrderBy->nExpr; + int regBase = sqlite3GetTempRange(pParse, nExpr+2); + int regRecord = sqlite3GetTempReg(pParse); + sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); + sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); + sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); + sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); + sqlite3ReleaseTempReg(pParse, regRecord); + sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); + if( pSelect->iLimit>=0 ){ + int addr1, addr2; + int iLimit; + if( pSelect->pOffset ){ + iLimit = pSelect->iOffset+1; + }else{ + iLimit = pSelect->iLimit; + } + addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); + sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); + addr2 = sqlite3VdbeAddOp0(v, OP_Goto); + sqlite3VdbeJumpHere(v, addr1); + sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); + sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); + sqlite3VdbeJumpHere(v, addr2); + pSelect->iLimit = -1; + } +} + +/* +** Add code to implement the OFFSET +*/ +static void codeOffset( + Vdbe *v, /* Generate code into this VM */ + Select *p, /* The SELECT statement being coded */ + int iContinue /* Jump here to skip the current record */ +){ + if( p->iOffset>=0 && iContinue!=0 ){ + int addr; + sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); + addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); + sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); + VdbeComment((v, "skip OFFSET records")); + sqlite3VdbeJumpHere(v, addr); + } +} + +/* +** Add code that will check to make sure the N registers starting at iMem +** form a distinct entry. iTab is a sorting index that holds previously +** seen combinations of the N values. A new entry is made in iTab +** if the current N values are new. +** +** A jump to addrRepeat is made and the N+1 values are popped from the +** stack if the top N elements are not distinct. +*/ +static void codeDistinct( + Parse *pParse, /* Parsing and code generating context */ + int iTab, /* A sorting index used to test for distinctness */ + int addrRepeat, /* Jump to here if not distinct */ + int N, /* Number of elements */ + int iMem /* First element */ +){ + Vdbe *v; + int r1; + + v = pParse->pVdbe; + r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); + sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); + sqlite3ReleaseTempReg(pParse, r1); +} + +/* +** Generate an error message when a SELECT is used within a subexpression +** (example: "a IN (SELECT * FROM table)") but it has more than 1 result +** column. We do this in a subroutine because the error occurs in multiple +** places. +*/ +static int checkForMultiColumnSelectError( + Parse *pParse, /* Parse context. */ + SelectDest *pDest, /* Destination of SELECT results */ + int nExpr /* Number of result columns returned by SELECT */ +){ + int eDest = pDest->eDest; + if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ + sqlite3ErrorMsg(pParse, "only a single result allowed for " + "a SELECT that is part of an expression"); + return 1; + }else{ + return 0; + } +} + +/* +** This routine generates the code for the inside of the inner loop +** of a SELECT. +** +** If srcTab and nColumn are both zero, then the pEList expressions +** are evaluated in order to get the data for this row. If nColumn>0 +** then data is pulled from srcTab and pEList is used only to get the +** datatypes for each column. +*/ +static void selectInnerLoop( + Parse *pParse, /* The parser context */ + Select *p, /* The complete select statement being coded */ + ExprList *pEList, /* List of values being extracted */ + int srcTab, /* Pull data from this table */ + int nColumn, /* Number of columns in the source table */ + ExprList *pOrderBy, /* If not NULL, sort results using this key */ + int distinct, /* If >=0, make sure results are distinct */ + SelectDest *pDest, /* How to dispose of the results */ + int iContinue, /* Jump here to continue with next row */ + int iBreak, /* Jump here to break out of the inner loop */ + char *aff /* affinity string if eDest is SRT_Union */ +){ + Vdbe *v = pParse->pVdbe; + int i; + int hasDistinct; /* True if the DISTINCT keyword is present */ + int regResult; /* Start of memory holding result set */ + int eDest = pDest->eDest; /* How to dispose of results */ + int iParm = pDest->iParm; /* First argument to disposal method */ + int nResultCol; /* Number of result columns */ + + if( v==0 ) return; + assert( pEList!=0 ); + + /* If there was a LIMIT clause on the SELECT statement, then do the check + ** to see if this row should be output. + */ + hasDistinct = distinct>=0 && pEList->nExpr>0; + if( pOrderBy==0 && !hasDistinct ){ + codeOffset(v, p, iContinue); + } + + /* Pull the requested columns. + */ + if( nColumn>0 ){ + nResultCol = nColumn; + }else{ + nResultCol = pEList->nExpr; + } + if( pDest->iMem==0 ){ + pDest->iMem = sqlite3GetTempRange(pParse, nResultCol); + pDest->nMem = nResultCol; + }else if( pDest->nMem!=nResultCol ){ + /* This happens when two SELECTs of a compound SELECT have differing + ** numbers of result columns. The error message will be generated by + ** a higher-level routine. */ + return; + } + regResult = pDest->iMem; + if( nColumn>0 ){ + for(i=0; i<nColumn; i++){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); + } + }else if( eDest!=SRT_Exists ){ + /* If the destination is an EXISTS(...) expression, the actual + ** values returned by the SELECT are not required. + */ + sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback); + } + nColumn = nResultCol; + + /* If the DISTINCT keyword was present on the SELECT statement + ** and this row has been seen before, then do not make this row + ** part of the result. + */ + if( hasDistinct ){ + assert( pEList!=0 ); + assert( pEList->nExpr==nColumn ); + codeDistinct(pParse, distinct, iContinue, nColumn, regResult); + if( pOrderBy==0 ){ + codeOffset(v, p, iContinue); + } + } + + if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ + return; + } + + switch( eDest ){ + /* In this mode, write each query result to the key of the temporary + ** table iParm. + */ +#ifndef SQLITE_OMIT_COMPOUND_SELECT + case SRT_Union: { + int r1; + r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); + if( aff ){ + sqlite3VdbeChangeP4(v, -1, aff, P4_STATIC); + } + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); + sqlite3ReleaseTempReg(pParse, r1); + break; + } + + /* Construct a record from the query result, but instead of + ** saving that record, use it as a key to delete elements from + ** the temporary table iParm. + */ + case SRT_Except: { + sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); + break; + } +#endif + + /* Store the result as data using a unique key. + */ + case SRT_Table: + case SRT_EphemTab: { + int r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); + if( pOrderBy ){ + pushOntoSorter(pParse, pOrderBy, p, r1); + }else{ + int r2 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); + sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + sqlite3ReleaseTempReg(pParse, r2); + } + sqlite3ReleaseTempReg(pParse, r1); + break; + } + +#ifndef SQLITE_OMIT_SUBQUERY + /* If we are creating a set for an "expr IN (SELECT ...)" construct, + ** then there should be a single item on the stack. Write this + ** item into the set table with bogus data. + */ + case SRT_Set: { + int addr2; + + assert( nColumn==1 ); + addr2 = sqlite3VdbeAddOp1(v, OP_IsNull, regResult); + p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); + if( pOrderBy ){ + /* At first glance you would think we could optimize out the + ** ORDER BY in this case since the order of entries in the set + ** does not matter. But there might be a LIMIT clause, in which + ** case the order does matter */ + pushOntoSorter(pParse, pOrderBy, p, regResult); + }else{ + int r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); + sqlite3ExprCacheAffinityChange(pParse, regResult, 1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); + sqlite3ReleaseTempReg(pParse, r1); + } + sqlite3VdbeJumpHere(v, addr2); + break; + } + + /* If any row exist in the result set, record that fact and abort. + */ + case SRT_Exists: { + sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); + /* The LIMIT clause will terminate the loop for us */ + break; + } + + /* If this is a scalar select that is part of an expression, then + ** store the results in the appropriate memory cell and break out + ** of the scan loop. + */ + case SRT_Mem: { + assert( nColumn==1 ); + if( pOrderBy ){ + pushOntoSorter(pParse, pOrderBy, p, regResult); + }else{ + sqlite3ExprCodeMove(pParse, regResult, iParm); + /* The LIMIT clause will jump out of the loop for us */ + } + break; + } +#endif /* #ifndef SQLITE_OMIT_SUBQUERY */ + + /* Send the data to the callback function or to a subroutine. In the + ** case of a subroutine, the subroutine itself is responsible for + ** popping the data from the stack. + */ + case SRT_Subroutine: + case SRT_Callback: { + if( pOrderBy ){ + int r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); + pushOntoSorter(pParse, pOrderBy, p, r1); + sqlite3ReleaseTempReg(pParse, r1); + }else if( eDest==SRT_Subroutine ){ + sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm); + }else{ + sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); + sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); + } + break; + } + +#if !defined(SQLITE_OMIT_TRIGGER) + /* Discard the results. This is used for SELECT statements inside + ** the body of a TRIGGER. The purpose of such selects is to call + ** user-defined functions that have side effects. We do not care + ** about the actual results of the select. + */ + default: { + assert( eDest==SRT_Discard ); + break; + } +#endif + } + + /* Jump to the end of the loop if the LIMIT is reached. + */ + if( p->iLimit>=0 && pOrderBy==0 ){ + sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); + sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); + } +} + +/* +** Given an expression list, generate a KeyInfo structure that records +** the collating sequence for each expression in that expression list. +** +** If the ExprList is an ORDER BY or GROUP BY clause then the resulting +** KeyInfo structure is appropriate for initializing a virtual index to +** implement that clause. If the ExprList is the result set of a SELECT +** then the KeyInfo structure is appropriate for initializing a virtual +** index to implement a DISTINCT test. +** +** Space to hold the KeyInfo structure is obtain from malloc. The calling +** function is responsible for seeing that this structure is eventually +** freed. Add the KeyInfo structure to the P4 field of an opcode using +** P4_KEYINFO_HANDOFF is the usual way of dealing with this. +*/ +static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ + sqlite3 *db = pParse->db; + int nExpr; + KeyInfo *pInfo; + struct ExprList_item *pItem; + int i; + + nExpr = pList->nExpr; + pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); + if( pInfo ){ + pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; + pInfo->nField = nExpr; + pInfo->enc = ENC(db); + for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ + CollSeq *pColl; + pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); + if( !pColl ){ + pColl = db->pDfltColl; + } + pInfo->aColl[i] = pColl; + pInfo->aSortOrder[i] = pItem->sortOrder; + } + } + return pInfo; +} + + +/* +** If the inner loop was generated using a non-null pOrderBy argument, +** then the results were placed in a sorter. After the loop is terminated +** we need to run the sorter and output the results. The following +** routine generates the code needed to do that. +*/ +static void generateSortTail( + Parse *pParse, /* Parsing context */ + Select *p, /* The SELECT statement */ + Vdbe *v, /* Generate code into this VDBE */ + int nColumn, /* Number of columns of data */ + SelectDest *pDest /* Write the sorted results here */ +){ + int brk = sqlite3VdbeMakeLabel(v); + int cont = sqlite3VdbeMakeLabel(v); + int addr; + int iTab; + int pseudoTab = 0; + ExprList *pOrderBy = p->pOrderBy; + + int eDest = pDest->eDest; + int iParm = pDest->iParm; + + int regRow; + int regRowid; + + iTab = pOrderBy->iECursor; + if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ + pseudoTab = pParse->nTab++; + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn); + sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback); + } + addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk); + codeOffset(v, p, cont); + regRow = sqlite3GetTempReg(pParse); + regRowid = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); + switch( eDest ){ + case SRT_Table: + case SRT_EphemTab: { + sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); + sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case SRT_Set: { + int j1; + assert( nColumn==1 ); + j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regRow); + sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); + sqlite3ExprCacheAffinityChange(pParse, regRow, 1); + sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); + sqlite3VdbeJumpHere(v, j1); + break; + } + case SRT_Mem: { + assert( nColumn==1 ); + sqlite3ExprCodeMove(pParse, regRow, iParm); + /* The LIMIT clause will terminate the loop for us */ + break; + } +#endif + case SRT_Callback: + case SRT_Subroutine: { + int i; + sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); + sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); + for(i=0; i<nColumn; i++){ + assert( regRow!=pDest->iMem+i ); + sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); + } + if( eDest==SRT_Callback ){ + sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); + sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); + }else{ + sqlite3VdbeAddOp2(v, OP_Gosub, 0, iParm); + } + break; + } + default: { + /* Do nothing */ + break; + } + } + sqlite3ReleaseTempReg(pParse, regRow); + sqlite3ReleaseTempReg(pParse, regRowid); + + /* Jump to the end of the loop when the LIMIT is reached + */ + if( p->iLimit>=0 ){ + sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); + sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, brk); + } + + /* The bottom of the loop + */ + sqlite3VdbeResolveLabel(v, cont); + sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); + sqlite3VdbeResolveLabel(v, brk); + if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ + sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); + } + +} + +/* +** Return a pointer to a string containing the 'declaration type' of the +** expression pExpr. The string may be treated as static by the caller. +** +** The declaration type is the exact datatype definition extracted from the +** original CREATE TABLE statement if the expression is a column. The +** declaration type for a ROWID field is INTEGER. Exactly when an expression +** is considered a column can be complex in the presence of subqueries. The +** result-set expression in all of the following SELECT statements is +** considered a column by this function. +** +** SELECT col FROM tbl; +** SELECT (SELECT col FROM tbl; +** SELECT (SELECT col FROM tbl); +** SELECT abc FROM (SELECT col AS abc FROM tbl); +** +** The declaration type for any expression other than a column is NULL. +*/ +static const char *columnType( + NameContext *pNC, + Expr *pExpr, + const char **pzOriginDb, + const char **pzOriginTab, + const char **pzOriginCol +){ + char const *zType = 0; + char const *zOriginDb = 0; + char const *zOriginTab = 0; + char const *zOriginCol = 0; + int j; + if( pExpr==0 || pNC->pSrcList==0 ) return 0; + + switch( pExpr->op ){ + case TK_AGG_COLUMN: + case TK_COLUMN: { + /* The expression is a column. Locate the table the column is being + ** extracted from in NameContext.pSrcList. This table may be real + ** database table or a subquery. + */ + Table *pTab = 0; /* Table structure column is extracted from */ + Select *pS = 0; /* Select the column is extracted from */ + int iCol = pExpr->iColumn; /* Index of column in pTab */ + while( pNC && !pTab ){ + SrcList *pTabList = pNC->pSrcList; + for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); + if( j<pTabList->nSrc ){ + pTab = pTabList->a[j].pTab; + pS = pTabList->a[j].pSelect; + }else{ + pNC = pNC->pNext; + } + } + + if( pTab==0 ){ + /* FIX ME: + ** This can occurs if you have something like "SELECT new.x;" inside + ** a trigger. In other words, if you reference the special "new" + ** table in the result set of a select. We do not have a good way + ** to find the actual table type, so call it "TEXT". This is really + ** something of a bug, but I do not know how to fix it. + ** + ** This code does not produce the correct answer - it just prevents + ** a segfault. See ticket #1229. + */ + zType = "TEXT"; + break; + } + + assert( pTab ); + if( pS ){ + /* The "table" is actually a sub-select or a view in the FROM clause + ** of the SELECT statement. Return the declaration type and origin + ** data for the result-set column of the sub-select. + */ + if( iCol>=0 && iCol<pS->pEList->nExpr ){ + /* If iCol is less than zero, then the expression requests the + ** rowid of the sub-select or view. This expression is legal (see + ** test case misc2.2.2) - it always evaluates to NULL. + */ + NameContext sNC; + Expr *p = pS->pEList->a[iCol].pExpr; + sNC.pSrcList = pS->pSrc; + sNC.pNext = 0; + sNC.pParse = pNC->pParse; + zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); + } + }else if( pTab->pSchema ){ + /* A real table */ + assert( !pS ); + if( iCol<0 ) iCol = pTab->iPKey; + assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); + if( iCol<0 ){ + zType = "INTEGER"; + zOriginCol = "rowid"; + }else{ + zType = pTab->aCol[iCol].zType; + zOriginCol = pTab->aCol[iCol].zName; + } + zOriginTab = pTab->zName; + if( pNC->pParse ){ + int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); + zOriginDb = pNC->pParse->db->aDb[iDb].zName; + } + } + break; + } +#ifndef SQLITE_OMIT_SUBQUERY + case TK_SELECT: { + /* The expression is a sub-select. Return the declaration type and + ** origin info for the single column in the result set of the SELECT + ** statement. + */ + NameContext sNC; + Select *pS = pExpr->pSelect; + Expr *p = pS->pEList->a[0].pExpr; + sNC.pSrcList = pS->pSrc; + sNC.pNext = pNC; + sNC.pParse = pNC->pParse; + zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); + break; + } +#endif + } + + if( pzOriginDb ){ + assert( pzOriginTab && pzOriginCol ); + *pzOriginDb = zOriginDb; + *pzOriginTab = zOriginTab; + *pzOriginCol = zOriginCol; + } + return zType; +} + +/* +** Generate code that will tell the VDBE the declaration types of columns +** in the result set. +*/ +static void generateColumnTypes( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* List of tables */ + ExprList *pEList /* Expressions defining the result set */ +){ +#ifndef SQLITE_OMIT_DECLTYPE + Vdbe *v = pParse->pVdbe; + int i; + NameContext sNC; + sNC.pSrcList = pTabList; + sNC.pParse = pParse; + for(i=0; i<pEList->nExpr; i++){ + Expr *p = pEList->a[i].pExpr; + const char *zType; +#ifdef SQLITE_ENABLE_COLUMN_METADATA + const char *zOrigDb = 0; + const char *zOrigTab = 0; + const char *zOrigCol = 0; + zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); + + /* The vdbe must make its own copy of the column-type and other + ** column specific strings, in case the schema is reset before this + ** virtual machine is deleted. + */ + sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT); + sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT); + sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT); +#else + zType = columnType(&sNC, p, 0, 0, 0); +#endif + sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT); + } +#endif /* SQLITE_OMIT_DECLTYPE */ +} + +/* +** Generate code that will tell the VDBE the names of columns +** in the result set. This information is used to provide the +** azCol[] values in the callback. +*/ +static void generateColumnNames( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* List of tables */ + ExprList *pEList /* Expressions defining the result set */ +){ + Vdbe *v = pParse->pVdbe; + int i, j; + sqlite3 *db = pParse->db; + int fullNames, shortNames; + +#ifndef SQLITE_OMIT_EXPLAIN + /* If this is an EXPLAIN, skip this step */ + if( pParse->explain ){ + return; + } +#endif + + assert( v!=0 ); + if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; + pParse->colNamesSet = 1; + fullNames = (db->flags & SQLITE_FullColNames)!=0; + shortNames = (db->flags & SQLITE_ShortColNames)!=0; + sqlite3VdbeSetNumCols(v, pEList->nExpr); + for(i=0; i<pEList->nExpr; i++){ + Expr *p; + p = pEList->a[i].pExpr; + if( p==0 ) continue; + if( pEList->a[i].zName ){ + char *zName = pEList->a[i].zName; + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); + continue; + } + if( p->op==TK_COLUMN && pTabList ){ + Table *pTab; + char *zCol; + int iCol = p->iColumn; + for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} + assert( j<pTabList->nSrc ); + pTab = pTabList->a[j].pTab; + if( iCol<0 ) iCol = pTab->iPKey; + assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); + if( iCol<0 ){ + zCol = "rowid"; + }else{ + zCol = pTab->aCol[iCol].zName; + } + if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ + sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); + }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ + char *zName = 0; + char *zTab; + + zTab = pTabList->a[j].zAlias; + if( fullNames || zTab==0 ) zTab = pTab->zName; + sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC); + }else{ + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); + } + }else if( p->span.z && p->span.z[0] ){ + sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); + /* sqlite3VdbeCompressSpace(v, addr); */ + }else{ + char zName[30]; + assert( p->op!=TK_COLUMN || pTabList==0 ); + sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1); + sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); + } + } + generateColumnTypes(pParse, pTabList, pEList); +} + +#ifndef SQLITE_OMIT_COMPOUND_SELECT +/* +** Name of the connection operator, used for error messages. +*/ +static const char *selectOpName(int id){ + char *z; + switch( id ){ + case TK_ALL: z = "UNION ALL"; break; + case TK_INTERSECT: z = "INTERSECT"; break; + case TK_EXCEPT: z = "EXCEPT"; break; + default: z = "UNION"; break; + } + return z; +} +#endif /* SQLITE_OMIT_COMPOUND_SELECT */ + +/* +** Forward declaration +*/ +static int prepSelectStmt(Parse*, Select*); + +/* +** Given a SELECT statement, generate a Table structure that describes +** the result set of that SELECT. +*/ +SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ + Table *pTab; + int i, j; + ExprList *pEList; + Column *aCol, *pCol; + sqlite3 *db = pParse->db; + + while( pSelect->pPrior ) pSelect = pSelect->pPrior; + if( prepSelectStmt(pParse, pSelect) ){ + return 0; + } + if( sqlite3SelectResolve(pParse, pSelect, 0) ){ + return 0; + } + pTab = sqlite3DbMallocZero(db, sizeof(Table) ); + if( pTab==0 ){ + return 0; + } + pTab->nRef = 1; + pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0; + pEList = pSelect->pEList; + pTab->nCol = pEList->nExpr; + assert( pTab->nCol>0 ); + pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol); + for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ + Expr *p, *pR; + char *zType; + char *zName; + int nName; + CollSeq *pColl; + int cnt; + NameContext sNC; + + /* Get an appropriate name for the column + */ + p = pEList->a[i].pExpr; + assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); + if( (zName = pEList->a[i].zName)!=0 ){ + /* If the column contains an "AS <name>" phrase, use <name> as the name */ + zName = sqlite3DbStrDup(db, zName); + }else if( p->op==TK_DOT + && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ + /* For columns of the from A.B use B as the name */ + zName = sqlite3MPrintf(db, "%T", &pR->token); + }else if( p->span.z && p->span.z[0] ){ + /* Use the original text of the column expression as its name */ + zName = sqlite3MPrintf(db, "%T", &p->span); + }else{ + /* If all else fails, make up a name */ + zName = sqlite3MPrintf(db, "column%d", i+1); + } + if( !zName || db->mallocFailed ){ + db->mallocFailed = 1; + sqlite3_free(zName); + sqlite3DeleteTable(pTab); + return 0; + } + sqlite3Dequote(zName); + + /* Make sure the column name is unique. If the name is not unique, + ** append a integer to the name so that it becomes unique. + */ + nName = strlen(zName); + for(j=cnt=0; j<i; j++){ + if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ + zName[nName] = 0; + zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt); + j = -1; + if( zName==0 ) break; + } + } + pCol->zName = zName; + + /* Get the typename, type affinity, and collating sequence for the + ** column. + */ + memset(&sNC, 0, sizeof(sNC)); + sNC.pSrcList = pSelect->pSrc; + zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); + pCol->zType = zType; + pCol->affinity = sqlite3ExprAffinity(p); + pColl = sqlite3ExprCollSeq(pParse, p); + if( pColl ){ + pCol->zColl = sqlite3DbStrDup(db, pColl->zName); + } + } + pTab->iPKey = -1; + return pTab; +} + +/* +** Prepare a SELECT statement for processing by doing the following +** things: +** +** (1) Make sure VDBE cursor numbers have been assigned to every +** element of the FROM clause. +** +** (2) Fill in the pTabList->a[].pTab fields in the SrcList that +** defines FROM clause. When views appear in the FROM clause, +** fill pTabList->a[].pSelect with a copy of the SELECT statement +** that implements the view. A copy is made of the view's SELECT +** statement so that we can freely modify or delete that statement +** without worrying about messing up the presistent representation +** of the view. +** +** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword +** on joins and the ON and USING clause of joins. +** +** (4) Scan the list of columns in the result set (pEList) looking +** for instances of the "*" operator or the TABLE.* operator. +** If found, expand each "*" to be every column in every table +** and TABLE.* to be every column in TABLE. +** +** Return 0 on success. If there are problems, leave an error message +** in pParse and return non-zero. +*/ +static int prepSelectStmt(Parse *pParse, Select *p){ + int i, j, k, rc; + SrcList *pTabList; + ExprList *pEList; + struct SrcList_item *pFrom; + sqlite3 *db = pParse->db; + + if( p==0 || p->pSrc==0 || db->mallocFailed ){ + return 1; + } + pTabList = p->pSrc; + pEList = p->pEList; + + /* Make sure cursor numbers have been assigned to all entries in + ** the FROM clause of the SELECT statement. + */ + sqlite3SrcListAssignCursors(pParse, p->pSrc); + + /* Look up every table named in the FROM clause of the select. If + ** an entry of the FROM clause is a subquery instead of a table or view, + ** then create a transient table structure to describe the subquery. + */ + for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ + Table *pTab; + if( pFrom->pTab!=0 ){ + /* This statement has already been prepared. There is no need + ** to go further. */ + assert( i==0 ); + return 0; + } + if( pFrom->zName==0 ){ +#ifndef SQLITE_OMIT_SUBQUERY + /* A sub-query in the FROM clause of a SELECT */ + assert( pFrom->pSelect!=0 ); + if( pFrom->zAlias==0 ){ + pFrom->zAlias = + sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect); + } + assert( pFrom->pTab==0 ); + pFrom->pTab = pTab = + sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); + if( pTab==0 ){ + return 1; + } + /* The isEphem flag indicates that the Table structure has been + ** dynamically allocated and may be freed at any time. In other words, + ** pTab is not pointing to a persistent table structure that defines + ** part of the schema. */ + pTab->isEphem = 1; +#endif + }else{ + /* An ordinary table or view name in the FROM clause */ + assert( pFrom->pTab==0 ); + pFrom->pTab = pTab = + sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); + if( pTab==0 ){ + return 1; + } + pTab->nRef++; +#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) + if( pTab->pSelect || IsVirtual(pTab) ){ + /* We reach here if the named table is a really a view */ + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + return 1; + } + /* If pFrom->pSelect!=0 it means we are dealing with a + ** view within a view. The SELECT structure has already been + ** copied by the outer view so we can skip the copy step here + ** in the inner view. + */ + if( pFrom->pSelect==0 ){ + pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); + } + } +#endif + } + } + + /* Process NATURAL keywords, and ON and USING clauses of joins. + */ + if( sqliteProcessJoin(pParse, p) ) return 1; + + /* For every "*" that occurs in the column list, insert the names of + ** all columns in all tables. And for every TABLE.* insert the names + ** of all columns in TABLE. The parser inserted a special expression + ** with the TK_ALL operator for each "*" that it found in the column list. + ** The following code just has to locate the TK_ALL expressions and expand + ** each one to the list of all columns in all tables. + ** + ** The first loop just checks to see if there are any "*" operators + ** that need expanding. + */ + for(k=0; k<pEList->nExpr; k++){ + Expr *pE = pEList->a[k].pExpr; + if( pE->op==TK_ALL ) break; + if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL + && pE->pLeft && pE->pLeft->op==TK_ID ) break; + } + rc = 0; + if( k<pEList->nExpr ){ + /* + ** If we get here it means the result set contains one or more "*" + ** operators that need to be expanded. Loop through each expression + ** in the result set and expand them one by one. + */ + struct ExprList_item *a = pEList->a; + ExprList *pNew = 0; + int flags = pParse->db->flags; + int longNames = (flags & SQLITE_FullColNames)!=0 && + (flags & SQLITE_ShortColNames)==0; + + for(k=0; k<pEList->nExpr; k++){ + Expr *pE = a[k].pExpr; + if( pE->op!=TK_ALL && + (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ + /* This particular expression does not need to be expanded. + */ + pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); + if( pNew ){ + pNew->a[pNew->nExpr-1].zName = a[k].zName; + }else{ + rc = 1; + } + a[k].pExpr = 0; + a[k].zName = 0; + }else{ + /* This expression is a "*" or a "TABLE.*" and needs to be + ** expanded. */ + int tableSeen = 0; /* Set to 1 when TABLE matches */ + char *zTName; /* text of name of TABLE */ + if( pE->op==TK_DOT && pE->pLeft ){ + zTName = sqlite3NameFromToken(db, &pE->pLeft->token); + }else{ + zTName = 0; + } + for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ + Table *pTab = pFrom->pTab; + char *zTabName = pFrom->zAlias; + if( zTabName==0 || zTabName[0]==0 ){ + zTabName = pTab->zName; + } + if( zTName && (zTabName==0 || zTabName[0]==0 || + sqlite3StrICmp(zTName, zTabName)!=0) ){ + continue; + } + tableSeen = 1; + for(j=0; j<pTab->nCol; j++){ + Expr *pExpr, *pRight; + char *zName = pTab->aCol[j].zName; + + /* If a column is marked as 'hidden' (currently only possible + ** for virtual tables), do not include it in the expanded + ** result-set list. + */ + if( IsHiddenColumn(&pTab->aCol[j]) ){ + assert(IsVirtual(pTab)); + continue; + } + + if( i>0 ){ + struct SrcList_item *pLeft = &pTabList->a[i-1]; + if( (pLeft[1].jointype & JT_NATURAL)!=0 && + columnIndex(pLeft->pTab, zName)>=0 ){ + /* In a NATURAL join, omit the join columns from the + ** table on the right */ + continue; + } + if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ + /* In a join with a USING clause, omit columns in the + ** using clause from the table on the right. */ + continue; + } + } + pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); + if( pRight==0 ) break; + setQuotedToken(pParse, &pRight->token, zName); + if( zTabName && (longNames || pTabList->nSrc>1) ){ + Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); + pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); + if( pExpr==0 ) break; + setQuotedToken(pParse, &pLeft->token, zTabName); + setToken(&pExpr->span, + sqlite3MPrintf(db, "%s.%s", zTabName, zName)); + pExpr->span.dyn = 1; + pExpr->token.z = 0; + pExpr->token.n = 0; + pExpr->token.dyn = 0; + }else{ + pExpr = pRight; + pExpr->span = pExpr->token; + pExpr->span.dyn = 0; + } + if( longNames ){ + pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); + }else{ + pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); + } + } + } + if( !tableSeen ){ + if( zTName ){ + sqlite3ErrorMsg(pParse, "no such table: %s", zTName); + }else{ + sqlite3ErrorMsg(pParse, "no tables specified"); + } + rc = 1; + } + sqlite3_free(zTName); + } + } + sqlite3ExprListDelete(pEList); + p->pEList = pNew; + } +#if SQLITE_MAX_COLUMN + if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ + sqlite3ErrorMsg(pParse, "too many columns in result set"); + rc = SQLITE_ERROR; + } +#endif + if( db->mallocFailed ){ + rc = SQLITE_NOMEM; + } + return rc; +} + +/* +** pE is a pointer to an expression which is a single term in +** ORDER BY or GROUP BY clause. +** +** If pE evaluates to an integer constant i, then return i. +** This is an indication to the caller that it should sort +** by the i-th column of the result set. +** +** If pE is a well-formed expression and the SELECT statement +** is not compound, then return 0. This indicates to the +** caller that it should sort by the value of the ORDER BY +** expression. +** +** If the SELECT is compound, then attempt to match pE against +** result set columns in the left-most SELECT statement. Return +** the index i of the matching column, as an indication to the +** caller that it should sort by the i-th column. If there is +** no match, return -1 and leave an error message in pParse. +*/ +static int matchOrderByTermToExprList( + Parse *pParse, /* Parsing context for error messages */ + Select *pSelect, /* The SELECT statement with the ORDER BY clause */ + Expr *pE, /* The specific ORDER BY term */ + int idx, /* When ORDER BY term is this */ + int isCompound, /* True if this is a compound SELECT */ + u8 *pHasAgg /* True if expression contains aggregate functions */ +){ + int i; /* Loop counter */ + ExprList *pEList; /* The columns of the result set */ + NameContext nc; /* Name context for resolving pE */ + + + /* If the term is an integer constant, return the value of that + ** constant */ + pEList = pSelect->pEList; + if( sqlite3ExprIsInteger(pE, &i) ){ + if( i<=0 ){ + /* If i is too small, make it too big. That way the calling + ** function still sees a value that is out of range, but does + ** not confuse the column number with 0 or -1 result code. + */ + i = pEList->nExpr+1; + } + return i; + } + + /* If the term is a simple identifier that try to match that identifier + ** against a column name in the result set. + */ + if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){ + sqlite3 *db = pParse->db; + char *zCol = sqlite3NameFromToken(db, &pE->token); + if( zCol==0 ){ + return -1; + } + for(i=0; i<pEList->nExpr; i++){ + char *zAs = pEList->a[i].zName; + if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ + sqlite3_free(zCol); + return i+1; + } + } + sqlite3_free(zCol); + } + + /* Resolve all names in the ORDER BY term expression + */ + memset(&nc, 0, sizeof(nc)); + nc.pParse = pParse; + nc.pSrcList = pSelect->pSrc; + nc.pEList = pEList; + nc.allowAgg = 1; + nc.nErr = 0; + if( sqlite3ExprResolveNames(&nc, pE) ){ + if( isCompound ){ + sqlite3ErrorClear(pParse); + return 0; + }else{ + return -1; + } + } + if( nc.hasAgg && pHasAgg ){ + *pHasAgg = 1; + } + + /* For a compound SELECT, we need to try to match the ORDER BY + ** expression against an expression in the result set + */ + if( isCompound ){ + for(i=0; i<pEList->nExpr; i++){ + if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){ + return i+1; + } + } + } + return 0; +} + + +/* +** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement. +** Return the number of errors seen. +** +** Every term of the ORDER BY or GROUP BY clause needs to be an +** expression. If any expression is an integer constant, then +** that expression is replaced by the corresponding +** expression from the result set. +*/ +static int processOrderGroupBy( + Parse *pParse, /* Parsing context. Leave error messages here */ + Select *pSelect, /* The SELECT statement containing the clause */ + ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ + int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */ + u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */ +){ + int i; + sqlite3 *db = pParse->db; + ExprList *pEList; + + if( pOrderBy==0 || pParse->db->mallocFailed ) return 0; +#if SQLITE_MAX_COLUMN + if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ + const char *zType = isOrder ? "ORDER" : "GROUP"; + sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); + return 1; + } +#endif + pEList = pSelect->pEList; + if( pEList==0 ){ + return 0; + } + for(i=0; i<pOrderBy->nExpr; i++){ + int iCol; + Expr *pE = pOrderBy->a[i].pExpr; + iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg); + if( iCol<0 ){ + return 1; + } + if( iCol>pEList->nExpr ){ + const char *zType = isOrder ? "ORDER" : "GROUP"; + sqlite3ErrorMsg(pParse, + "%r %s BY term out of range - should be " + "between 1 and %d", i+1, zType, pEList->nExpr); + return 1; + } + if( iCol>0 ){ + CollSeq *pColl = pE->pColl; + int flags = pE->flags & EP_ExpCollate; + sqlite3ExprDelete(pE); + pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr); + pOrderBy->a[i].pExpr = pE; + if( pE && pColl && flags ){ + pE->pColl = pColl; + pE->flags |= flags; + } + } + } + return 0; +} + +/* +** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return +** the number of errors seen. +** +** The processing depends on whether the SELECT is simple or compound. +** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY +** clause needs to be an expression. If any expression is an integer +** constant, then that expression is replaced by the corresponding +** expression from the result set. +** +** For compound SELECT statements, every expression needs to be of +** type TK_COLUMN with a iTable value as given in the 4th parameter. +** If any expression is an integer, that becomes the column number. +** Otherwise, match the expression against result set columns from +** the left-most SELECT. +*/ +static int processCompoundOrderBy( + Parse *pParse, /* Parsing context. Leave error messages here */ + Select *pSelect, /* The SELECT statement containing the ORDER BY */ + int iTable /* Output table for compound SELECT statements */ +){ + int i; + ExprList *pOrderBy; + ExprList *pEList; + sqlite3 *db; + int moreToDo = 1; + + pOrderBy = pSelect->pOrderBy; + if( pOrderBy==0 ) return 0; + db = pParse->db; +#if SQLITE_MAX_COLUMN + if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ + sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); + return 1; + } +#endif + for(i=0; i<pOrderBy->nExpr; i++){ + pOrderBy->a[i].done = 0; + } + while( pSelect->pPrior ){ + pSelect = pSelect->pPrior; + } + while( pSelect && moreToDo ){ + moreToDo = 0; + for(i=0; i<pOrderBy->nExpr; i++){ + int iCol = -1; + Expr *pE, *pDup; + if( pOrderBy->a[i].done ) continue; + pE = pOrderBy->a[i].pExpr; + pDup = sqlite3ExprDup(db, pE); + if( !db->mallocFailed ){ + assert(pDup); + iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0); + } + sqlite3ExprDelete(pDup); + if( iCol<0 ){ + return 1; + } + pEList = pSelect->pEList; + if( pEList==0 ){ + return 1; + } + if( iCol>pEList->nExpr ){ + sqlite3ErrorMsg(pParse, + "%r ORDER BY term out of range - should be " + "between 1 and %d", i+1, pEList->nExpr); + return 1; + } + if( iCol>0 ){ + pE->op = TK_COLUMN; + pE->iTable = iTable; + pE->iAgg = -1; + pE->iColumn = iCol-1; + pE->pTab = 0; + pOrderBy->a[i].done = 1; + }else{ + moreToDo = 1; + } + } + pSelect = pSelect->pNext; + } + for(i=0; i<pOrderBy->nExpr; i++){ + if( pOrderBy->a[i].done==0 ){ + sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " + "column in the result set", i+1); + return 1; + } + } + return 0; +} + +/* +** Get a VDBE for the given parser context. Create a new one if necessary. +** If an error occurs, return NULL and leave a message in pParse. +*/ +SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse *pParse){ + Vdbe *v = pParse->pVdbe; + if( v==0 ){ + v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); +#ifndef SQLITE_OMIT_TRACE + if( v ){ + sqlite3VdbeAddOp0(v, OP_Trace); + } +#endif + } + return v; +} + + +/* +** Compute the iLimit and iOffset fields of the SELECT based on the +** pLimit and pOffset expressions. pLimit and pOffset hold the expressions +** that appear in the original SQL statement after the LIMIT and OFFSET +** keywords. Or NULL if those keywords are omitted. iLimit and iOffset +** are the integer memory register numbers for counters used to compute +** the limit and offset. If there is no limit and/or offset, then +** iLimit and iOffset are negative. +** +** This routine changes the values of iLimit and iOffset only if +** a limit or offset is defined by pLimit and pOffset. iLimit and +** iOffset should have been preset to appropriate default values +** (usually but not always -1) prior to calling this routine. +** Only if pLimit!=0 or pOffset!=0 do the limit registers get +** redefined. The UNION ALL operator uses this property to force +** the reuse of the same limit and offset registers across multiple +** SELECT statements. +*/ +static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ + Vdbe *v = 0; + int iLimit = 0; + int iOffset; + int addr1; + + /* + ** "LIMIT -1" always shows all rows. There is some + ** contraversy about what the correct behavior should be. + ** The current implementation interprets "LIMIT 0" to mean + ** no rows. + */ + if( p->pLimit ){ + p->iLimit = iLimit = ++pParse->nMem; + v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + sqlite3ExprCode(pParse, p->pLimit, iLimit); + sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); + VdbeComment((v, "LIMIT counter")); + sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); + } + if( p->pOffset ){ + p->iOffset = iOffset = ++pParse->nMem; + if( p->pLimit ){ + pParse->nMem++; /* Allocate an extra register for limit+offset */ + } + v = sqlite3GetVdbe(pParse); + if( v==0 ) return; + sqlite3ExprCode(pParse, p->pOffset, iOffset); + sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); + VdbeComment((v, "OFFSET counter")); + addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); + sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); + sqlite3VdbeJumpHere(v, addr1); + if( p->pLimit ){ + sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); + VdbeComment((v, "LIMIT+OFFSET")); + addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); + sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); + sqlite3VdbeJumpHere(v, addr1); + } + } +} + +/* +** Allocate a virtual index to use for sorting. +*/ +static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ + if( pOrderBy ){ + int addr; + assert( pOrderBy->iECursor==0 ); + pOrderBy->iECursor = pParse->nTab++; + addr = sqlite3VdbeAddOp2(pParse->pVdbe, OP_OpenEphemeral, + pOrderBy->iECursor, pOrderBy->nExpr+1); + assert( p->addrOpenEphm[2] == -1 ); + p->addrOpenEphm[2] = addr; + } +} + +#ifndef SQLITE_OMIT_COMPOUND_SELECT +/* +** Return the appropriate collating sequence for the iCol-th column of +** the result set for the compound-select statement "p". Return NULL if +** the column has no default collating sequence. +** +** The collating sequence for the compound select is taken from the +** left-most term of the select that has a collating sequence. +*/ +static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ + CollSeq *pRet; + if( p->pPrior ){ + pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); + }else{ + pRet = 0; + } + if( pRet==0 ){ + pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); + } + return pRet; +} +#endif /* SQLITE_OMIT_COMPOUND_SELECT */ + +#ifndef SQLITE_OMIT_COMPOUND_SELECT +/* +** This routine is called to process a query that is really the union +** or intersection of two or more separate queries. +** +** "p" points to the right-most of the two queries. the query on the +** left is p->pPrior. The left query could also be a compound query +** in which case this routine will be called recursively. +** +** The results of the total query are to be written into a destination +** of type eDest with parameter iParm. +** +** Example 1: Consider a three-way compound SQL statement. +** +** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 +** +** This statement is parsed up as follows: +** +** SELECT c FROM t3 +** | +** `-----> SELECT b FROM t2 +** | +** `------> SELECT a FROM t1 +** +** The arrows in the diagram above represent the Select.pPrior pointer. +** So if this routine is called with p equal to the t3 query, then +** pPrior will be the t2 query. p->op will be TK_UNION in this case. +** +** Notice that because of the way SQLite parses compound SELECTs, the +** individual selects always group from left to right. +*/ +static int multiSelect( + Parse *pParse, /* Parsing context */ + Select *p, /* The right-most of SELECTs to be coded */ + SelectDest *pDest, /* What to do with query results */ + char *aff /* If eDest is SRT_Union, the affinity string */ +){ + int rc = SQLITE_OK; /* Success code from a subroutine */ + Select *pPrior; /* Another SELECT immediately to our left */ + Vdbe *v; /* Generate code to this VDBE */ + int nCol; /* Number of columns in the result set */ + ExprList *pOrderBy; /* The ORDER BY clause on p */ + int aSetP2[2]; /* Set P2 value of these op to number of columns */ + int nSetP2 = 0; /* Number of slots in aSetP2[] used */ + SelectDest dest; /* Alternative data destination */ + + dest = *pDest; + + /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only + ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. + */ + if( p==0 || p->pPrior==0 ){ + rc = 1; + goto multi_select_end; + } + pPrior = p->pPrior; + assert( pPrior->pRightmost!=pPrior ); + assert( pPrior->pRightmost==p->pRightmost ); + if( pPrior->pOrderBy ){ + sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", + selectOpName(p->op)); + rc = 1; + goto multi_select_end; + } + if( pPrior->pLimit ){ + sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", + selectOpName(p->op)); + rc = 1; + goto multi_select_end; + } + + /* Make sure we have a valid query engine. If not, create a new one. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ){ + rc = 1; + goto multi_select_end; + } + + /* Create the destination temporary table if necessary + */ + if( dest.eDest==SRT_EphemTab ){ + assert( p->pEList ); + assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); + aSetP2[nSetP2++] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, 0); + dest.eDest = SRT_Table; + } + + /* Generate code for the left and right SELECT statements. + */ + pOrderBy = p->pOrderBy; + switch( p->op ){ + case TK_ALL: { + if( pOrderBy==0 ){ + int addr = 0; + assert( !pPrior->pLimit ); + pPrior->pLimit = p->pLimit; + pPrior->pOffset = p->pOffset; + rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0, aff); + p->pLimit = 0; + p->pOffset = 0; + if( rc ){ + goto multi_select_end; + } + p->pPrior = 0; + p->iLimit = pPrior->iLimit; + p->iOffset = pPrior->iOffset; + if( p->iLimit>=0 ){ + addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); + VdbeComment((v, "Jump ahead if LIMIT reached")); + } + rc = sqlite3Select(pParse, p, &dest, 0, 0, 0, aff); + p->pPrior = pPrior; + if( rc ){ + goto multi_select_end; + } + if( addr ){ + sqlite3VdbeJumpHere(v, addr); + } + break; + } + /* For UNION ALL ... ORDER BY fall through to the next case */ + } + case TK_EXCEPT: + case TK_UNION: { + int unionTab; /* Cursor number of the temporary table holding result */ + int op = 0; /* One of the SRT_ operations to apply to self */ + int priorOp; /* The SRT_ operation to apply to prior selects */ + Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ + int addr; + SelectDest uniondest; + + priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; + if( dest.eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ + /* We can reuse a temporary table generated by a SELECT to our + ** right. + */ + unionTab = dest.iParm; + }else{ + /* We will need to create our own temporary table to hold the + ** intermediate results. + */ + unionTab = pParse->nTab++; + if( processCompoundOrderBy(pParse, p, unionTab) ){ + rc = 1; + goto multi_select_end; + } + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); + if( priorOp==SRT_Table ){ + assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); + aSetP2[nSetP2++] = addr; + }else{ + assert( p->addrOpenEphm[0] == -1 ); + p->addrOpenEphm[0] = addr; + p->pRightmost->usesEphm = 1; + } + createSortingIndex(pParse, p, pOrderBy); + assert( p->pEList ); + } + + /* Code the SELECT statements to our left + */ + assert( !pPrior->pOrderBy ); + sqlite3SelectDestInit(&uniondest, priorOp, unionTab); + rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0, aff); + if( rc ){ + goto multi_select_end; + } + + /* Code the current SELECT statement + */ + switch( p->op ){ + case TK_EXCEPT: op = SRT_Except; break; + case TK_UNION: op = SRT_Union; break; + case TK_ALL: op = SRT_Table; break; + } + p->pPrior = 0; + p->pOrderBy = 0; + p->disallowOrderBy = pOrderBy!=0; + pLimit = p->pLimit; + p->pLimit = 0; + pOffset = p->pOffset; + p->pOffset = 0; + uniondest.eDest = op; + rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0, aff); + /* Query flattening in sqlite3Select() might refill p->pOrderBy. + ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ + sqlite3ExprListDelete(p->pOrderBy); + p->pPrior = pPrior; + p->pOrderBy = pOrderBy; + sqlite3ExprDelete(p->pLimit); + p->pLimit = pLimit; + p->pOffset = pOffset; + p->iLimit = -1; + p->iOffset = -1; + if( rc ){ + goto multi_select_end; + } + + + /* Convert the data in the temporary table into whatever form + ** it is that we currently need. + */ + if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ + int iCont, iBreak, iStart; + assert( p->pEList ); + if( dest.eDest==SRT_Callback ){ + Select *pFirst = p; + while( pFirst->pPrior ) pFirst = pFirst->pPrior; + generateColumnNames(pParse, 0, pFirst->pEList); + } + iBreak = sqlite3VdbeMakeLabel(v); + iCont = sqlite3VdbeMakeLabel(v); + computeLimitRegisters(pParse, p, iBreak); + sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); + iStart = sqlite3VdbeCurrentAddr(v); + selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, + pOrderBy, -1, &dest, iCont, iBreak, 0); + sqlite3VdbeResolveLabel(v, iCont); + sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); + sqlite3VdbeResolveLabel(v, iBreak); + sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); + } + break; + } + case TK_INTERSECT: { + int tab1, tab2; + int iCont, iBreak, iStart; + Expr *pLimit, *pOffset; + int addr; + SelectDest intersectdest; + int r1; + + /* INTERSECT is different from the others since it requires + ** two temporary tables. Hence it has its own case. Begin + ** by allocating the tables we will need. + */ + tab1 = pParse->nTab++; + tab2 = pParse->nTab++; + if( processCompoundOrderBy(pParse, p, tab1) ){ + rc = 1; + goto multi_select_end; + } + createSortingIndex(pParse, p, pOrderBy); + + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); + assert( p->addrOpenEphm[0] == -1 ); + p->addrOpenEphm[0] = addr; + p->pRightmost->usesEphm = 1; + assert( p->pEList ); + + /* Code the SELECTs to our left into temporary table "tab1". + */ + sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); + rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0, aff); + if( rc ){ + goto multi_select_end; + } + + /* Code the current SELECT into temporary table "tab2" + */ + addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); + assert( p->addrOpenEphm[1] == -1 ); + p->addrOpenEphm[1] = addr; + p->pPrior = 0; + pLimit = p->pLimit; + p->pLimit = 0; + pOffset = p->pOffset; + p->pOffset = 0; + intersectdest.iParm = tab2; + rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0, aff); + p->pPrior = pPrior; + sqlite3ExprDelete(p->pLimit); + p->pLimit = pLimit; + p->pOffset = pOffset; + if( rc ){ + goto multi_select_end; + } + + /* Generate code to take the intersection of the two temporary + ** tables. + */ + assert( p->pEList ); + if( dest.eDest==SRT_Callback ){ + Select *pFirst = p; + while( pFirst->pPrior ) pFirst = pFirst->pPrior; + generateColumnNames(pParse, 0, pFirst->pEList); + } + iBreak = sqlite3VdbeMakeLabel(v); + iCont = sqlite3VdbeMakeLabel(v); + computeLimitRegisters(pParse, p, iBreak); + sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); + r1 = sqlite3GetTempReg(pParse); + iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); + sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); + sqlite3ReleaseTempReg(pParse, r1); + selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, + pOrderBy, -1, &dest, iCont, iBreak, 0); + sqlite3VdbeResolveLabel(v, iCont); + sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); + sqlite3VdbeResolveLabel(v, iBreak); + sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); + sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); + break; + } + } + + /* Make sure all SELECTs in the statement have the same number of elements + ** in their result sets. + */ + assert( p->pEList && pPrior->pEList ); + if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ + sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" + " do not have the same number of result columns", selectOpName(p->op)); + rc = 1; + goto multi_select_end; + } + + /* Set the number of columns in temporary tables + */ + nCol = p->pEList->nExpr; + while( nSetP2 ){ + sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); + } + + /* Compute collating sequences used by either the ORDER BY clause or + ** by any temporary tables needed to implement the compound select. + ** Attach the KeyInfo structure to all temporary tables. Invoke the + ** ORDER BY processing if there is an ORDER BY clause. + ** + ** This section is run by the right-most SELECT statement only. + ** SELECT statements to the left always skip this part. The right-most + ** SELECT might also skip this part if it has no ORDER BY clause and + ** no temp tables are required. + */ + if( pOrderBy || p->usesEphm ){ + int i; /* Loop counter */ + KeyInfo *pKeyInfo; /* Collating sequence for the result set */ + Select *pLoop; /* For looping through SELECT statements */ + int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ + CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ + CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */ + + assert( p->pRightmost==p ); + nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); + pKeyInfo = sqlite3DbMallocZero(pParse->db, + sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); + if( !pKeyInfo ){ + rc = SQLITE_NOMEM; + goto multi_select_end; + } + + pKeyInfo->enc = ENC(pParse->db); + pKeyInfo->nField = nCol; + + for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ + *apColl = multiSelectCollSeq(pParse, p, i); + if( 0==*apColl ){ + *apColl = pParse->db->pDfltColl; + } + } + + for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ + for(i=0; i<2; i++){ + int addr = pLoop->addrOpenEphm[i]; + if( addr<0 ){ + /* If [0] is unused then [1] is also unused. So we can + ** always safely abort as soon as the first unused slot is found */ + assert( pLoop->addrOpenEphm[1]<0 ); + break; + } + sqlite3VdbeChangeP2(v, addr, nCol); + sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); + pLoop->addrOpenEphm[i] = -1; + } + } + + if( pOrderBy ){ + struct ExprList_item *pOTerm = pOrderBy->a; + int nOrderByExpr = pOrderBy->nExpr; + int addr; + u8 *pSortOrder; + + /* Reuse the same pKeyInfo for the ORDER BY as was used above for + ** the compound select statements. Except we have to change out the + ** pKeyInfo->aColl[] values. Some of the aColl[] values will be + ** reused when constructing the pKeyInfo for the ORDER BY, so make + ** a copy. Sufficient space to hold both the nCol entries for + ** the compound select and the nOrderbyExpr entries for the ORDER BY + ** was allocated above. But we need to move the compound select + ** entries out of the way before constructing the ORDER BY entries. + ** Move the compound select entries into aCopy[] where they can be + ** accessed and reused when constructing the ORDER BY entries. + ** Because nCol might be greater than or less than nOrderByExpr + ** we have to use memmove() when doing the copy. + */ + aCopy = &pKeyInfo->aColl[nOrderByExpr]; + pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; + memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); + + apColl = pKeyInfo->aColl; + for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ + Expr *pExpr = pOTerm->pExpr; + if( (pExpr->flags & EP_ExpCollate) ){ + assert( pExpr->pColl!=0 ); + *apColl = pExpr->pColl; + }else{ + *apColl = aCopy[pExpr->iColumn]; + } + *pSortOrder = pOTerm->sortOrder; + } + assert( p->pRightmost==p ); + assert( p->addrOpenEphm[2]>=0 ); + addr = p->addrOpenEphm[2]; + sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2); + pKeyInfo->nField = nOrderByExpr; + sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); + pKeyInfo = 0; + generateSortTail(pParse, p, v, p->pEList->nExpr, &dest); + } + + sqlite3_free(pKeyInfo); + } + +multi_select_end: + pDest->iMem = dest.iMem; + pDest->nMem = dest.nMem; + return rc; +} +#endif /* SQLITE_OMIT_COMPOUND_SELECT */ + +#ifndef SQLITE_OMIT_VIEW +/* Forward Declarations */ +static void substExprList(sqlite3*, ExprList*, int, ExprList*); +static void substSelect(sqlite3*, Select *, int, ExprList *); + +/* +** Scan through the expression pExpr. Replace every reference to +** a column in table number iTable with a copy of the iColumn-th +** entry in pEList. (But leave references to the ROWID column +** unchanged.) +** +** This routine is part of the flattening procedure. A subquery +** whose result set is defined by pEList appears as entry in the +** FROM clause of a SELECT such that the VDBE cursor assigned to that +** FORM clause entry is iTable. This routine make the necessary +** changes to pExpr so that it refers directly to the source table +** of the subquery rather the result set of the subquery. +*/ +static void substExpr( + sqlite3 *db, /* Report malloc errors to this connection */ + Expr *pExpr, /* Expr in which substitution occurs */ + int iTable, /* Table to be substituted */ + ExprList *pEList /* Substitute expressions */ +){ + if( pExpr==0 ) return; + if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ + if( pExpr->iColumn<0 ){ + pExpr->op = TK_NULL; + }else{ + Expr *pNew; + assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); + assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); + pNew = pEList->a[pExpr->iColumn].pExpr; + assert( pNew!=0 ); + pExpr->op = pNew->op; + assert( pExpr->pLeft==0 ); + pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); + assert( pExpr->pRight==0 ); + pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); + assert( pExpr->pList==0 ); + pExpr->pList = sqlite3ExprListDup(db, pNew->pList); + pExpr->iTable = pNew->iTable; + pExpr->pTab = pNew->pTab; + pExpr->iColumn = pNew->iColumn; + pExpr->iAgg = pNew->iAgg; + sqlite3TokenCopy(db, &pExpr->token, &pNew->token); + sqlite3TokenCopy(db, &pExpr->span, &pNew->span); + pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); + pExpr->flags = pNew->flags; + } + }else{ + substExpr(db, pExpr->pLeft, iTable, pEList); + substExpr(db, pExpr->pRight, iTable, pEList); + substSelect(db, pExpr->pSelect, iTable, pEList); + substExprList(db, pExpr->pList, iTable, pEList); + } +} +static void substExprList( + sqlite3 *db, /* Report malloc errors here */ + ExprList *pList, /* List to scan and in which to make substitutes */ + int iTable, /* Table to be substituted */ + ExprList *pEList /* Substitute values */ +){ + int i; + if( pList==0 ) return; + for(i=0; i<pList->nExpr; i++){ + substExpr(db, pList->a[i].pExpr, iTable, pEList); + } +} +static void substSelect( + sqlite3 *db, /* Report malloc errors here */ + Select *p, /* SELECT statement in which to make substitutions */ + int iTable, /* Table to be replaced */ + ExprList *pEList /* Substitute values */ +){ + if( !p ) return; + substExprList(db, p->pEList, iTable, pEList); + substExprList(db, p->pGroupBy, iTable, pEList); + substExprList(db, p->pOrderBy, iTable, pEList); + substExpr(db, p->pHaving, iTable, pEList); + substExpr(db, p->pWhere, iTable, pEList); + substSelect(db, p->pPrior, iTable, pEList); +} +#endif /* !defined(SQLITE_OMIT_VIEW) */ + +#ifndef SQLITE_OMIT_VIEW +/* +** This routine attempts to flatten subqueries in order to speed +** execution. It returns 1 if it makes changes and 0 if no flattening +** occurs. +** +** To understand the concept of flattening, consider the following +** query: +** +** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 +** +** The default way of implementing this query is to execute the +** subquery first and store the results in a temporary table, then +** run the outer query on that temporary table. This requires two +** passes over the data. Furthermore, because the temporary table +** has no indices, the WHERE clause on the outer query cannot be +** optimized. +** +** This routine attempts to rewrite queries such as the above into +** a single flat select, like this: +** +** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 +** +** The code generated for this simpification gives the same result +** but only has to scan the data once. And because indices might +** exist on the table t1, a complete scan of the data might be +** avoided. +** +** Flattening is only attempted if all of the following are true: +** +** (1) The subquery and the outer query do not both use aggregates. +** +** (2) The subquery is not an aggregate or the outer query is not a join. +** +** (3) The subquery is not the right operand of a left outer join, or +** the subquery is not itself a join. (Ticket #306) +** +** (4) The subquery is not DISTINCT or the outer query is not a join. +** +** (5) The subquery is not DISTINCT or the outer query does not use +** aggregates. +** +** (6) The subquery does not use aggregates or the outer query is not +** DISTINCT. +** +** (7) The subquery has a FROM clause. +** +** (8) The subquery does not use LIMIT or the outer query is not a join. +** +** (9) The subquery does not use LIMIT or the outer query does not use +** aggregates. +** +** (10) The subquery does not use aggregates or the outer query does not +** use LIMIT. +** +** (11) The subquery and the outer query do not both have ORDER BY clauses. +** +** (12) The subquery is not the right term of a LEFT OUTER JOIN or the +** subquery has no WHERE clause. (added by ticket #350) +** +** (13) The subquery and outer query do not both use LIMIT +** +** (14) The subquery does not use OFFSET +** +** (15) The outer query is not part of a compound select or the +** subquery does not have both an ORDER BY and a LIMIT clause. +** (See ticket #2339) +** +** (16) The outer query is not an aggregate or the subquery does +** not contain ORDER BY. (Ticket #2942) This used to not matter +** until we introduced the group_concat() function. +** +** In this routine, the "p" parameter is a pointer to the outer query. +** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query +** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. +** +** If flattening is not attempted, this routine is a no-op and returns 0. +** If flattening is attempted this routine returns 1. +** +** All of the expression analysis must occur on both the outer query and +** the subquery before this routine runs. +*/ +static int flattenSubquery( + sqlite3 *db, /* Database connection */ + Select *p, /* The parent or outer SELECT statement */ + int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ + int isAgg, /* True if outer SELECT uses aggregate functions */ + int subqueryIsAgg /* True if the subquery uses aggregate functions */ +){ + Select *pSub; /* The inner query or "subquery" */ + SrcList *pSrc; /* The FROM clause of the outer query */ + SrcList *pSubSrc; /* The FROM clause of the subquery */ + ExprList *pList; /* The result set of the outer query */ + int iParent; /* VDBE cursor number of the pSub result set temp table */ + int i; /* Loop counter */ + Expr *pWhere; /* The WHERE clause */ + struct SrcList_item *pSubitem; /* The subquery */ + + /* Check to see if flattening is permitted. Return 0 if not. + */ + if( p==0 ) return 0; + pSrc = p->pSrc; + assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); + pSubitem = &pSrc->a[iFrom]; + pSub = pSubitem->pSelect; + assert( pSub!=0 ); + if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ + if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ + pSubSrc = pSub->pSrc; + assert( pSubSrc ); + /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, + ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET + ** because they could be computed at compile-time. But when LIMIT and OFFSET + ** became arbitrary expressions, we were forced to add restrictions (13) + ** and (14). */ + if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ + if( pSub->pOffset ) return 0; /* Restriction (14) */ + if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ + return 0; /* Restriction (15) */ + } + if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ + if( (pSub->isDistinct || pSub->pLimit) + && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ + return 0; + } + if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ + if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ + return 0; /* Restriction (11) */ + } + if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ + + /* Restriction 3: If the subquery is a join, make sure the subquery is + ** not used as the right operand of an outer join. Examples of why this + ** is not allowed: + ** + ** t1 LEFT OUTER JOIN (t2 JOIN t3) + ** + ** If we flatten the above, we would get + ** + ** (t1 LEFT OUTER JOIN t2) JOIN t3 + ** + ** which is not at all the same thing. + */ + if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ + return 0; + } + + /* Restriction 12: If the subquery is the right operand of a left outer + ** join, make sure the subquery has no WHERE clause. + ** An examples of why this is not allowed: + ** + ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) + ** + ** If we flatten the above, we would get + ** + ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 + ** + ** But the t2.x>0 test will always fail on a NULL row of t2, which + ** effectively converts the OUTER JOIN into an INNER JOIN. + */ + if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ + return 0; + } + + /* If we reach this point, it means flattening is permitted for the + ** iFrom-th entry of the FROM clause in the outer query. + */ + + /* Move all of the FROM elements of the subquery into the + ** the FROM clause of the outer query. Before doing this, remember + ** the cursor number for the original outer query FROM element in + ** iParent. The iParent cursor will never be used. Subsequent code + ** will scan expressions looking for iParent references and replace + ** those references with expressions that resolve to the subquery FROM + ** elements we are now copying in. + */ + iParent = pSubitem->iCursor; + { + int nSubSrc = pSubSrc->nSrc; + int jointype = pSubitem->jointype; + + sqlite3DeleteTable(pSubitem->pTab); + sqlite3_free(pSubitem->zDatabase); + sqlite3_free(pSubitem->zName); + sqlite3_free(pSubitem->zAlias); + pSubitem->pTab = 0; + pSubitem->zDatabase = 0; + pSubitem->zName = 0; + pSubitem->zAlias = 0; + if( nSubSrc>1 ){ + int extra = nSubSrc - 1; + for(i=1; i<nSubSrc; i++){ + pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0); + if( pSrc==0 ){ + p->pSrc = 0; + return 1; + } + } + p->pSrc = pSrc; + for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ + pSrc->a[i] = pSrc->a[i-extra]; + } + } + for(i=0; i<nSubSrc; i++){ + pSrc->a[i+iFrom] = pSubSrc->a[i]; + memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); + } + pSrc->a[iFrom].jointype = jointype; + } + + /* Now begin substituting subquery result set expressions for + ** references to the iParent in the outer query. + ** + ** Example: + ** + ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; + ** \ \_____________ subquery __________/ / + ** \_____________________ outer query ______________________________/ + ** + ** We look at every expression in the outer query and every place we see + ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". + */ + pList = p->pEList; + for(i=0; i<pList->nExpr; i++){ + Expr *pExpr; + if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ + pList->a[i].zName = + sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); + } + } + substExprList(db, p->pEList, iParent, pSub->pEList); + if( isAgg ){ + substExprList(db, p->pGroupBy, iParent, pSub->pEList); + substExpr(db, p->pHaving, iParent, pSub->pEList); + } + if( pSub->pOrderBy ){ + assert( p->pOrderBy==0 ); + p->pOrderBy = pSub->pOrderBy; + pSub->pOrderBy = 0; + }else if( p->pOrderBy ){ + substExprList(db, p->pOrderBy, iParent, pSub->pEList); + } + if( pSub->pWhere ){ + pWhere = sqlite3ExprDup(db, pSub->pWhere); + }else{ + pWhere = 0; + } + if( subqueryIsAgg ){ + assert( p->pHaving==0 ); + p->pHaving = p->pWhere; + p->pWhere = pWhere; + substExpr(db, p->pHaving, iParent, pSub->pEList); + p->pHaving = sqlite3ExprAnd(db, p->pHaving, + sqlite3ExprDup(db, pSub->pHaving)); + assert( p->pGroupBy==0 ); + p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); + }else{ + substExpr(db, p->pWhere, iParent, pSub->pEList); + p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere); + } + + /* The flattened query is distinct if either the inner or the + ** outer query is distinct. + */ + p->isDistinct = p->isDistinct || pSub->isDistinct; + + /* + ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; + ** + ** One is tempted to try to add a and b to combine the limits. But this + ** does not work if either limit is negative. + */ + if( pSub->pLimit ){ + p->pLimit = pSub->pLimit; + pSub->pLimit = 0; + } + + /* Finially, delete what is left of the subquery and return + ** success. + */ + sqlite3SelectDelete(pSub); + return 1; +} +#endif /* SQLITE_OMIT_VIEW */ + +/* +** Analyze the SELECT statement passed as an argument to see if it +** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if +** it is, or 0 otherwise. At present, a query is considered to be +** a min()/max() query if: +** +** 1. There is a single object in the FROM clause. +** +** 2. There is a single expression in the result set, and it is +** either min(x) or max(x), where x is a column reference. +*/ +static int minMaxQuery(Parse *pParse, Select *p){ + Expr *pExpr; + ExprList *pEList = p->pEList; + + if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; + pExpr = pEList->a[0].pExpr; + pEList = pExpr->pList; + if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; + if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; + if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; + if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ + return WHERE_ORDERBY_MIN; + }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ + return WHERE_ORDERBY_MAX; + } + return WHERE_ORDERBY_NORMAL; +} + +/* +** This routine resolves any names used in the result set of the +** supplied SELECT statement. If the SELECT statement being resolved +** is a sub-select, then pOuterNC is a pointer to the NameContext +** of the parent SELECT. +*/ +SQLITE_PRIVATE int sqlite3SelectResolve( + Parse *pParse, /* The parser context */ + Select *p, /* The SELECT statement being coded. */ + NameContext *pOuterNC /* The outer name context. May be NULL. */ +){ + ExprList *pEList; /* Result set. */ + int i; /* For-loop variable used in multiple places */ + NameContext sNC; /* Local name-context */ + ExprList *pGroupBy; /* The group by clause */ + + /* If this routine has run before, return immediately. */ + if( p->isResolved ){ + assert( !pOuterNC ); + return SQLITE_OK; + } + p->isResolved = 1; + + /* If there have already been errors, do nothing. */ + if( pParse->nErr>0 ){ + return SQLITE_ERROR; + } + + /* Prepare the select statement. This call will allocate all cursors + ** required to handle the tables and subqueries in the FROM clause. + */ + if( prepSelectStmt(pParse, p) ){ + return SQLITE_ERROR; + } + + /* Resolve the expressions in the LIMIT and OFFSET clauses. These + ** are not allowed to refer to any names, so pass an empty NameContext. + */ + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + if( sqlite3ExprResolveNames(&sNC, p->pLimit) || + sqlite3ExprResolveNames(&sNC, p->pOffset) ){ + return SQLITE_ERROR; + } + + /* Set up the local name-context to pass to ExprResolveNames() to + ** resolve the expression-list. + */ + sNC.allowAgg = 1; + sNC.pSrcList = p->pSrc; + sNC.pNext = pOuterNC; + + /* Resolve names in the result set. */ + pEList = p->pEList; + if( !pEList ) return SQLITE_ERROR; + for(i=0; i<pEList->nExpr; i++){ + Expr *pX = pEList->a[i].pExpr; + if( sqlite3ExprResolveNames(&sNC, pX) ){ + return SQLITE_ERROR; + } + } + + /* If there are no aggregate functions in the result-set, and no GROUP BY + ** expression, do not allow aggregates in any of the other expressions. + */ + assert( !p->isAgg ); + pGroupBy = p->pGroupBy; + if( pGroupBy || sNC.hasAgg ){ + p->isAgg = 1; + }else{ + sNC.allowAgg = 0; + } + + /* If a HAVING clause is present, then there must be a GROUP BY clause. + */ + if( p->pHaving && !pGroupBy ){ + sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); + return SQLITE_ERROR; + } + + /* Add the expression list to the name-context before parsing the + ** other expressions in the SELECT statement. This is so that + ** expressions in the WHERE clause (etc.) can refer to expressions by + ** aliases in the result set. + ** + ** Minor point: If this is the case, then the expression will be + ** re-evaluated for each reference to it. + */ + sNC.pEList = p->pEList; + if( sqlite3ExprResolveNames(&sNC, p->pWhere) || + sqlite3ExprResolveNames(&sNC, p->pHaving) ){ + return SQLITE_ERROR; + } + if( p->pPrior==0 ){ + if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){ + return SQLITE_ERROR; + } + } + if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){ + return SQLITE_ERROR; + } + + if( pParse->db->mallocFailed ){ + return SQLITE_NOMEM; + } + + /* Make sure the GROUP BY clause does not contain aggregate functions. + */ + if( pGroupBy ){ + struct ExprList_item *pItem; + + for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ + if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ + sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " + "the GROUP BY clause"); + return SQLITE_ERROR; + } + } + } + + /* If this is one SELECT of a compound, be sure to resolve names + ** in the other SELECTs. + */ + if( p->pPrior ){ + return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); + }else{ + return SQLITE_OK; + } +} + +/* +** Reset the aggregate accumulator. +** +** The aggregate accumulator is a set of memory cells that hold +** intermediate results while calculating an aggregate. This +** routine simply stores NULLs in all of those memory cells. +*/ +static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ + Vdbe *v = pParse->pVdbe; + int i; + struct AggInfo_func *pFunc; + if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ + return; + } + for(i=0; i<pAggInfo->nColumn; i++){ + sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); + } + for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ + sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); + if( pFunc->iDistinct>=0 ){ + Expr *pE = pFunc->pExpr; + if( pE->pList==0 || pE->pList->nExpr!=1 ){ + sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " + "by an expression"); + pFunc->iDistinct = -1; + }else{ + KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); + sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, + (char*)pKeyInfo, P4_KEYINFO_HANDOFF); + } + } + } +} + +/* +** Invoke the OP_AggFinalize opcode for every aggregate function +** in the AggInfo structure. +*/ +static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ + Vdbe *v = pParse->pVdbe; + int i; + struct AggInfo_func *pF; + for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ + ExprList *pList = pF->pExpr->pList; + sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, + (void*)pF->pFunc, P4_FUNCDEF); + } +} + +/* +** Update the accumulator memory cells for an aggregate based on +** the current cursor position. +*/ +static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ + Vdbe *v = pParse->pVdbe; + int i; + struct AggInfo_func *pF; + struct AggInfo_col *pC; + + pAggInfo->directMode = 1; + for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ + int nArg; + int addrNext = 0; + int regAgg; + ExprList *pList = pF->pExpr->pList; + if( pList ){ + nArg = pList->nExpr; + regAgg = sqlite3GetTempRange(pParse, nArg); + sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); + }else{ + nArg = 0; + regAgg = 0; + } + if( pF->iDistinct>=0 ){ + addrNext = sqlite3VdbeMakeLabel(v); + assert( nArg==1 ); + codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); + } + if( pF->pFunc->needCollSeq ){ + CollSeq *pColl = 0; + struct ExprList_item *pItem; + int j; + assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ + for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ + pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); + } + if( !pColl ){ + pColl = pParse->db->pDfltColl; + } + sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); + } + sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, + (void*)pF->pFunc, P4_FUNCDEF); + sqlite3VdbeChangeP5(v, nArg); + sqlite3ReleaseTempRange(pParse, regAgg, nArg); + sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); + if( addrNext ){ + sqlite3VdbeResolveLabel(v, addrNext); + } + } + for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ + sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); + } + pAggInfo->directMode = 0; +} + +#if 0 +/* +** This function is used when a SELECT statement is used to create a +** temporary table for iterating through when running an INSTEAD OF +** UPDATE or INSTEAD OF DELETE trigger. +** +** If possible, the SELECT statement is modified so that NULL values +** are stored in the temporary table for all columns for which the +** corresponding bit in argument mask is not set. If mask takes the +** special value 0xffffffff, then all columns are populated. +*/ +SQLITE_PRIVATE void sqlite3SelectMask(Parse *pParse, Select *p, u32 mask){ + if( p && !p->pPrior && !p->isDistinct && mask!=0xffffffff ){ + ExprList *pEList; + int i; + sqlite3SelectResolve(pParse, p, 0); + pEList = p->pEList; + for(i=0; pEList && i<pEList->nExpr && i<32; i++){ + if( !(mask&((u32)1<<i)) ){ + sqlite3ExprDelete(pEList->a[i].pExpr); + pEList->a[i].pExpr = sqlite3Expr(pParse->db, TK_NULL, 0, 0, 0); + } + } + } +} +#endif + +/* +** Generate code for the given SELECT statement. +** +** The results are distributed in various ways depending on the +** contents of the SelectDest structure pointed to by argument pDest +** as follows: +** +** pDest->eDest Result +** ------------ ------------------------------------------- +** SRT_Callback Invoke the callback for each row of the result. +** +** SRT_Mem Store first result in memory cell pDest->iParm +** +** SRT_Set Store non-null results as keys of table pDest->iParm. +** Apply the affinity pDest->affinity before storing them. +** +** SRT_Union Store results as a key in a temporary table pDest->iParm. +** +** SRT_Except Remove results from the temporary table pDest->iParm. +** +** SRT_Table Store results in temporary table pDest->iParm +** +** SRT_EphemTab Create an temporary table pDest->iParm and store +** the result there. The cursor is left open after +** returning. +** +** SRT_Subroutine For each row returned, push the results onto the +** vdbe stack and call the subroutine (via OP_Gosub) +** at address pDest->iParm. +** +** SRT_Exists Store a 1 in memory cell pDest->iParm if the result +** set is not empty. +** +** SRT_Discard Throw the results away. +** +** See the selectInnerLoop() function for a canonical listing of the +** allowed values of eDest and their meanings. +** +** This routine returns the number of errors. If any errors are +** encountered, then an appropriate error message is left in +** pParse->zErrMsg. +** +** This routine does NOT free the Select structure passed in. The +** calling function needs to do that. +** +** The pParent, parentTab, and *pParentAgg fields are filled in if this +** SELECT is a subquery. This routine may try to combine this SELECT +** with its parent to form a single flat query. In so doing, it might +** change the parent query from a non-aggregate to an aggregate query. +** For that reason, the pParentAgg flag is passed as a pointer, so it +** can be changed. +** +** Example 1: The meaning of the pParent parameter. +** +** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; +** \ \_______ subquery _______/ / +** \ / +** \____________________ outer query ___________________/ +** +** This routine is called for the outer query first. For that call, +** pParent will be NULL. During the processing of the outer query, this +** routine is called recursively to handle the subquery. For the recursive +** call, pParent will point to the outer query. Because the subquery is +** the second element in a three-way join, the parentTab parameter will +** be 1 (the 2nd value of a 0-indexed array.) +*/ +SQLITE_PRIVATE int sqlite3Select( + Parse *pParse, /* The parser context */ + Select *p, /* The SELECT statement being coded. */ + SelectDest *pDest, /* What to do with the query results */ + Select *pParent, /* Another SELECT for which this is a sub-query */ + int parentTab, /* Index in pParent->pSrc of this query */ + int *pParentAgg, /* True if pParent uses aggregate functions */ + char *aff /* If eDest is SRT_Union, the affinity string */ +){ + int i, j; /* Loop counters */ + WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ + Vdbe *v; /* The virtual machine under construction */ + int isAgg; /* True for select lists like "count(*)" */ + ExprList *pEList; /* List of columns to extract. */ + SrcList *pTabList; /* List of tables to select from */ + Expr *pWhere; /* The WHERE clause. May be NULL */ + ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ + ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ + Expr *pHaving; /* The HAVING clause. May be NULL */ + int isDistinct; /* True if the DISTINCT keyword is present */ + int distinct; /* Table to use for the distinct set */ + int rc = 1; /* Value to return from this function */ + int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ + AggInfo sAggInfo; /* Information used by aggregate queries */ + int iEnd; /* Address of the end of the query */ + sqlite3 *db; /* The database connection */ + + db = pParse->db; + if( p==0 || db->mallocFailed || pParse->nErr ){ + return 1; + } + if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; + memset(&sAggInfo, 0, sizeof(sAggInfo)); + + pOrderBy = p->pOrderBy; + if( IgnorableOrderby(pDest) ){ + p->pOrderBy = 0; + + /* In these cases the DISTINCT operator makes no difference to the + ** results, so remove it if it were specified. + */ + assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || + pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); + p->isDistinct = 0; + } + if( sqlite3SelectResolve(pParse, p, 0) ){ + goto select_end; + } + p->pOrderBy = pOrderBy; + +#ifndef SQLITE_OMIT_COMPOUND_SELECT + /* If there is are a sequence of queries, do the earlier ones first. + */ + if( p->pPrior ){ + if( p->pRightmost==0 ){ + Select *pLoop, *pRight = 0; + int cnt = 0; + int mxSelect; + for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ + pLoop->pRightmost = p; + pLoop->pNext = pRight; + pRight = pLoop; + } + mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; + if( mxSelect && cnt>mxSelect ){ + sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); + return 1; + } + } + return multiSelect(pParse, p, pDest, aff); + } +#endif + + /* Make local copies of the parameters for this query. + */ + pTabList = p->pSrc; + pWhere = p->pWhere; + pGroupBy = p->pGroupBy; + pHaving = p->pHaving; + isAgg = p->isAgg; + isDistinct = p->isDistinct; + pEList = p->pEList; + if( pEList==0 ) goto select_end; + + /* + ** Do not even attempt to generate any code if we have already seen + ** errors before this routine starts. + */ + if( pParse->nErr>0 ) goto select_end; + + /* If writing to memory or generating a set + ** only a single column may be output. + */ +#ifndef SQLITE_OMIT_SUBQUERY + if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ + goto select_end; + } +#endif + + /* ORDER BY is ignored for some destinations. + */ + if( IgnorableOrderby(pDest) ){ + pOrderBy = 0; + } + + /* Begin generating code. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto select_end; + + /* Generate code for all sub-queries in the FROM clause + */ +#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) + for(i=0; i<pTabList->nSrc; i++){ + const char *zSavedAuthContext = 0; + int needRestoreContext; + struct SrcList_item *pItem = &pTabList->a[i]; + SelectDest dest; + + if( pItem->pSelect==0 || pItem->isPopulated ) continue; + if( pItem->zName!=0 ){ + zSavedAuthContext = pParse->zAuthContext; + pParse->zAuthContext = pItem->zName; + needRestoreContext = 1; + }else{ + needRestoreContext = 0; + } + /* Increment Parse.nHeight by the height of the largest expression + ** tree refered to by this, the parent select. The child select + ** may contain expression trees of at most + ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit + ** more conservative than necessary, but much easier than enforcing + ** an exact limit. + */ + pParse->nHeight += sqlite3SelectExprHeight(p); + sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); + sqlite3Select(pParse, pItem->pSelect, &dest, p, i, &isAgg, 0); + if( db->mallocFailed ){ + goto select_end; + } + pParse->nHeight -= sqlite3SelectExprHeight(p); + if( needRestoreContext ){ + pParse->zAuthContext = zSavedAuthContext; + } + pTabList = p->pSrc; + pWhere = p->pWhere; + if( !IgnorableOrderby(pDest) ){ + pOrderBy = p->pOrderBy; + } + pGroupBy = p->pGroupBy; + pHaving = p->pHaving; + isDistinct = p->isDistinct; + } +#endif + + /* Check to see if this is a subquery that can be "flattened" into its parent. + ** If flattening is a possiblity, do so and return immediately. + */ +#ifndef SQLITE_OMIT_VIEW + if( pParent && pParentAgg && + flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){ + if( isAgg ) *pParentAgg = 1; + goto select_end; + } +#endif + + /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. + ** GROUP BY may use an index, DISTINCT never does. + */ + if( p->isDistinct && !p->isAgg && !p->pGroupBy ){ + p->pGroupBy = sqlite3ExprListDup(db, p->pEList); + pGroupBy = p->pGroupBy; + p->isDistinct = 0; + isDistinct = 0; + } + + /* If there is an ORDER BY clause, then this sorting + ** index might end up being unused if the data can be + ** extracted in pre-sorted order. If that is the case, then the + ** OP_OpenEphemeral instruction will be changed to an OP_Noop once + ** we figure out that the sorting index is not needed. The addrSortIndex + ** variable is used to facilitate that change. + */ + if( pOrderBy ){ + KeyInfo *pKeyInfo; + pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); + pOrderBy->iECursor = pParse->nTab++; + p->addrOpenEphm[2] = addrSortIndex = + sqlite3VdbeAddOp4(v, OP_OpenEphemeral, + pOrderBy->iECursor, pOrderBy->nExpr+2, 0, + (char*)pKeyInfo, P4_KEYINFO_HANDOFF); + }else{ + addrSortIndex = -1; + } + + /* If the output is destined for a temporary table, open that table. + */ + if( pDest->eDest==SRT_EphemTab ){ + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); + } + + /* Set the limiter. + */ + iEnd = sqlite3VdbeMakeLabel(v); + computeLimitRegisters(pParse, p, iEnd); + + /* Open a virtual index to use for the distinct set. + */ + if( isDistinct ){ + KeyInfo *pKeyInfo; + assert( isAgg || pGroupBy ); + distinct = pParse->nTab++; + pKeyInfo = keyInfoFromExprList(pParse, p->pEList); + sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, + (char*)pKeyInfo, P4_KEYINFO_HANDOFF); + }else{ + distinct = -1; + } + + /* Aggregate and non-aggregate queries are handled differently */ + if( !isAgg && pGroupBy==0 ){ + /* This case is for non-aggregate queries + ** Begin the database scan + */ + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); + if( pWInfo==0 ) goto select_end; + + /* If sorting index that was created by a prior OP_OpenEphemeral + ** instruction ended up not being needed, then change the OP_OpenEphemeral + ** into an OP_Noop. + */ + if( addrSortIndex>=0 && pOrderBy==0 ){ + sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); + p->addrOpenEphm[2] = -1; + } + + /* Use the standard inner loop + */ + assert(!isDistinct); + selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, + pWInfo->iContinue, pWInfo->iBreak, aff); + + /* End the database scan loop. + */ + sqlite3WhereEnd(pWInfo); + }else{ + /* This is the processing for aggregate queries */ + NameContext sNC; /* Name context for processing aggregate information */ + int iAMem; /* First Mem address for storing current GROUP BY */ + int iBMem; /* First Mem address for previous GROUP BY */ + int iUseFlag; /* Mem address holding flag indicating that at least + ** one row of the input to the aggregator has been + ** processed */ + int iAbortFlag; /* Mem address which causes query abort if positive */ + int groupBySort; /* Rows come from source in GROUP BY order */ + + + /* The following variables hold addresses or labels for parts of the + ** virtual machine program we are putting together */ + int addrOutputRow; /* Start of subroutine that outputs a result row */ + int addrSetAbort; /* Set the abort flag and return */ + int addrInitializeLoop; /* Start of code that initializes the input loop */ + int addrTopOfLoop; /* Top of the input loop */ + int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ + int addrProcessRow; /* Code to process a single input row */ + int addrEnd; /* End of all processing */ + int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ + int addrReset; /* Subroutine for resetting the accumulator */ + + addrEnd = sqlite3VdbeMakeLabel(v); + + /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in + ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the + ** SELECT statement. + */ + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + sNC.pSrcList = pTabList; + sNC.pAggInfo = &sAggInfo; + sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; + sAggInfo.pGroupBy = pGroupBy; + sqlite3ExprAnalyzeAggList(&sNC, pEList); + sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); + if( pHaving ){ + sqlite3ExprAnalyzeAggregates(&sNC, pHaving); + } + sAggInfo.nAccumulator = sAggInfo.nColumn; + for(i=0; i<sAggInfo.nFunc; i++){ + sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList); + } + if( db->mallocFailed ) goto select_end; + + /* Processing for aggregates with GROUP BY is very different and + ** much more complex than aggregates without a GROUP BY. + */ + if( pGroupBy ){ + KeyInfo *pKeyInfo; /* Keying information for the group by clause */ + + /* Create labels that we will be needing + */ + + addrInitializeLoop = sqlite3VdbeMakeLabel(v); + addrGroupByChange = sqlite3VdbeMakeLabel(v); + addrProcessRow = sqlite3VdbeMakeLabel(v); + + /* If there is a GROUP BY clause we might need a sorting index to + ** implement it. Allocate that sorting index now. If it turns out + ** that we do not need it after all, the OpenEphemeral instruction + ** will be converted into a Noop. + */ + sAggInfo.sortingIdx = pParse->nTab++; + pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); + addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, + sAggInfo.sortingIdx, sAggInfo.nSortingColumn, + 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); + + /* Initialize memory locations used by GROUP BY aggregate processing + */ + iUseFlag = ++pParse->nMem; + iAbortFlag = ++pParse->nMem; + iAMem = pParse->nMem + 1; + pParse->nMem += pGroupBy->nExpr; + iBMem = pParse->nMem + 1; + pParse->nMem += pGroupBy->nExpr; + sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); + VdbeComment((v, "clear abort flag")); + sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); + VdbeComment((v, "indicate accumulator empty")); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop); + + /* Generate a subroutine that outputs a single row of the result + ** set. This subroutine first looks at the iUseFlag. If iUseFlag + ** is less than or equal to zero, the subroutine is a no-op. If + ** the processing calls for the query to abort, this subroutine + ** increments the iAbortFlag memory location before returning in + ** order to signal the caller to abort. + */ + addrSetAbort = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); + VdbeComment((v, "set abort flag")); + sqlite3VdbeAddOp2(v, OP_Return, 0, 0); + addrOutputRow = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); + VdbeComment((v, "Groupby result generator entry point")); + sqlite3VdbeAddOp2(v, OP_Return, 0, 0); + finalizeAggFunctions(pParse, &sAggInfo); + if( pHaving ){ + sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); + } + selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, + distinct, pDest, + addrOutputRow+1, addrSetAbort, aff); + sqlite3VdbeAddOp2(v, OP_Return, 0, 0); + VdbeComment((v, "end groupby result generator")); + + /* Generate a subroutine that will reset the group-by accumulator + */ + addrReset = sqlite3VdbeCurrentAddr(v); + resetAccumulator(pParse, &sAggInfo); + sqlite3VdbeAddOp2(v, OP_Return, 0, 0); + + /* Begin a loop that will extract all source rows in GROUP BY order. + ** This might involve two separate loops with an OP_Sort in between, or + ** it might be a single loop that uses an index to extract information + ** in the right order to begin with. + */ + sqlite3VdbeResolveLabel(v, addrInitializeLoop); + sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset); + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); + if( pWInfo==0 ) goto select_end; + if( pGroupBy==0 ){ + /* The optimizer is able to deliver rows in group by order so + ** we do not have to sort. The OP_OpenEphemeral table will be + ** cancelled later because we still need to use the pKeyInfo + */ + pGroupBy = p->pGroupBy; + groupBySort = 0; + }else{ + /* Rows are coming out in undetermined order. We have to push + ** each row into a sorting index, terminate the first loop, + ** then loop over the sorting index in order to get the output + ** in sorted order + */ + int regBase; + int regRecord; + int nCol; + int nGroupBy; + + groupBySort = 1; + nGroupBy = pGroupBy->nExpr; + nCol = nGroupBy + 1; + j = nGroupBy+1; + for(i=0; i<sAggInfo.nColumn; i++){ + if( sAggInfo.aCol[i].iSorterColumn>=j ){ + nCol++; + j++; + } + } + regBase = sqlite3GetTempRange(pParse, nCol); + sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); + sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); + j = nGroupBy+1; + for(i=0; i<sAggInfo.nColumn; i++){ + struct AggInfo_col *pCol = &sAggInfo.aCol[i]; + if( pCol->iSorterColumn>=j ){ + int r1 = j + regBase; + int r2 = sqlite3ExprCodeGetColumn(pParse, + pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); + if( r1!=r2 ){ + sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); + } + j++; + } + } + regRecord = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); + sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); + sqlite3ReleaseTempReg(pParse, regRecord); + sqlite3ReleaseTempRange(pParse, regBase, nCol); + sqlite3WhereEnd(pWInfo); + sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); + VdbeComment((v, "GROUP BY sort")); + sAggInfo.useSortingIdx = 1; + } + + /* Evaluate the current GROUP BY terms and store in b0, b1, b2... + ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) + ** Then compare the current GROUP BY terms against the GROUP BY terms + ** from the previous row currently stored in a0, a1, a2... + */ + addrTopOfLoop = sqlite3VdbeCurrentAddr(v); + for(j=0; j<pGroupBy->nExpr; j++){ + if( groupBySort ){ + sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); + }else{ + sAggInfo.directMode = 1; + sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); + } + } + for(j=pGroupBy->nExpr-1; j>=0; j--){ + if( j==0 ){ + sqlite3VdbeAddOp3(v, OP_Eq, iAMem+j, addrProcessRow, iBMem+j); + }else{ + sqlite3VdbeAddOp3(v, OP_Ne, iAMem+j, addrGroupByChange, iBMem+j); + } + sqlite3VdbeChangeP4(v, -1, (void*)pKeyInfo->aColl[j], P4_COLLSEQ); + sqlite3VdbeChangeP5(v, SQLITE_NULLEQUAL); + } + + /* Generate code that runs whenever the GROUP BY changes. + ** Change in the GROUP BY are detected by the previous code + ** block. If there were no changes, this block is skipped. + ** + ** This code copies current group by terms in b0,b1,b2,... + ** over to a0,a1,a2. It then calls the output subroutine + ** and resets the aggregate accumulator registers in preparation + ** for the next GROUP BY batch. + */ + sqlite3VdbeResolveLabel(v, addrGroupByChange); + for(j=0; j<pGroupBy->nExpr; j++){ + sqlite3ExprCodeMove(pParse, iBMem+j, iAMem+j); + } + sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow); + VdbeComment((v, "output one row")); + sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); + VdbeComment((v, "check abort flag")); + sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrReset); + VdbeComment((v, "reset accumulator")); + + /* Update the aggregate accumulators based on the content of + ** the current row + */ + sqlite3VdbeResolveLabel(v, addrProcessRow); + updateAccumulator(pParse, &sAggInfo); + sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); + VdbeComment((v, "indicate data in accumulator")); + + /* End of the loop + */ + if( groupBySort ){ + sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); + }else{ + sqlite3WhereEnd(pWInfo); + sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); + } + + /* Output the final row of result + */ + sqlite3VdbeAddOp2(v, OP_Gosub, 0, addrOutputRow); + VdbeComment((v, "output final row")); + + } /* endif pGroupBy */ + else { + ExprList *pMinMax = 0; + ExprList *pDel = 0; + u8 flag; + + /* Check if the query is of one of the following forms: + ** + ** SELECT min(x) FROM ... + ** SELECT max(x) FROM ... + ** + ** If it is, then ask the code in where.c to attempt to sort results + ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. + ** If where.c is able to produce results sorted in this order, then + ** add vdbe code to break out of the processing loop after the + ** first iteration (since the first iteration of the loop is + ** guaranteed to operate on the row with the minimum or maximum + ** value of x, the only row required). + ** + ** A special flag must be passed to sqlite3WhereBegin() to slightly + ** modify behaviour as follows: + ** + ** + If the query is a "SELECT min(x)", then the loop coded by + ** where.c should not iterate over any values with a NULL value + ** for x. + ** + ** + The optimizer code in where.c (the thing that decides which + ** index or indices to use) should place a different priority on + ** satisfying the 'ORDER BY' clause than it does in other cases. + ** Refer to code and comments in where.c for details. + */ + flag = minMaxQuery(pParse, p); + if( flag ){ + pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList); + if( pMinMax && !db->mallocFailed ){ + pMinMax->a[0].sortOrder = ((flag==WHERE_ORDERBY_MIN)?0:1); + pMinMax->a[0].pExpr->op = TK_COLUMN; + } + } + + /* This case runs if the aggregate has no GROUP BY clause. The + ** processing is much simpler since there is only a single row + ** of output. + */ + resetAccumulator(pParse, &sAggInfo); + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); + if( pWInfo==0 ){ + sqlite3ExprListDelete(pDel); + goto select_end; + } + updateAccumulator(pParse, &sAggInfo); + if( !pMinMax && flag ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); + VdbeComment((v, "%s() by index", (flag==WHERE_ORDERBY_MIN?"min":"max"))); + } + sqlite3WhereEnd(pWInfo); + finalizeAggFunctions(pParse, &sAggInfo); + pOrderBy = 0; + if( pHaving ){ + sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); + } + selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, + pDest, addrEnd, addrEnd, aff); + + sqlite3ExprListDelete(pDel); + } + sqlite3VdbeResolveLabel(v, addrEnd); + + } /* endif aggregate query */ + + /* If there is an ORDER BY clause, then we need to sort the results + ** and send them to the callback one by one. + */ + if( pOrderBy ){ + generateSortTail(pParse, p, v, pEList->nExpr, pDest); + } + +#ifndef SQLITE_OMIT_SUBQUERY + /* If this was a subquery, we have now converted the subquery into a + ** temporary table. So set the SrcList_item.isPopulated flag to prevent + ** this subquery from being evaluated again and to force the use of + ** the temporary table. + */ + if( pParent ){ + assert( pParent->pSrc->nSrc>parentTab ); + assert( pParent->pSrc->a[parentTab].pSelect==p ); + pParent->pSrc->a[parentTab].isPopulated = 1; + } +#endif + + /* Jump here to skip this query + */ + sqlite3VdbeResolveLabel(v, iEnd); + + /* The SELECT was successfully coded. Set the return code to 0 + ** to indicate no errors. + */ + rc = 0; + + /* Control jumps to here if an error is encountered above, or upon + ** successful coding of the SELECT. + */ +select_end: + + /* Identify column names if we will be using them in a callback. This + ** step is skipped if the output is going to some other destination. + */ + if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){ + generateColumnNames(pParse, pTabList, pEList); + } + + sqlite3_free(sAggInfo.aCol); + sqlite3_free(sAggInfo.aFunc); + return rc; +} + +#if defined(SQLITE_DEBUG) +/* +******************************************************************************* +** The following code is used for testing and debugging only. The code +** that follows does not appear in normal builds. +** +** These routines are used to print out the content of all or part of a +** parse structures such as Select or Expr. Such printouts are useful +** for helping to understand what is happening inside the code generator +** during the execution of complex SELECT statements. +** +** These routine are not called anywhere from within the normal +** code base. Then are intended to be called from within the debugger +** or from temporary "printf" statements inserted for debugging. +*/ +SQLITE_PRIVATE void sqlite3PrintExpr(Expr *p){ + if( p->token.z && p->token.n>0 ){ + sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); + }else{ + sqlite3DebugPrintf("(%d", p->op); + } + if( p->pLeft ){ + sqlite3DebugPrintf(" "); + sqlite3PrintExpr(p->pLeft); + } + if( p->pRight ){ + sqlite3DebugPrintf(" "); + sqlite3PrintExpr(p->pRight); + } + sqlite3DebugPrintf(")"); +} +SQLITE_PRIVATE void sqlite3PrintExprList(ExprList *pList){ + int i; + for(i=0; i<pList->nExpr; i++){ + sqlite3PrintExpr(pList->a[i].pExpr); + if( i<pList->nExpr-1 ){ + sqlite3DebugPrintf(", "); + } + } +} +SQLITE_PRIVATE void sqlite3PrintSelect(Select *p, int indent){ + sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); + sqlite3PrintExprList(p->pEList); + sqlite3DebugPrintf("\n"); + if( p->pSrc ){ + char *zPrefix; + int i; + zPrefix = "FROM"; + for(i=0; i<p->pSrc->nSrc; i++){ + struct SrcList_item *pItem = &p->pSrc->a[i]; + sqlite3DebugPrintf("%*s ", indent+6, zPrefix); + zPrefix = ""; + if( pItem->pSelect ){ + sqlite3DebugPrintf("(\n"); + sqlite3PrintSelect(pItem->pSelect, indent+10); + sqlite3DebugPrintf("%*s)", indent+8, ""); + }else if( pItem->zName ){ + sqlite3DebugPrintf("%s", pItem->zName); + } + if( pItem->pTab ){ + sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); + } + if( pItem->zAlias ){ + sqlite3DebugPrintf(" AS %s", pItem->zAlias); + } + if( i<p->pSrc->nSrc-1 ){ + sqlite3DebugPrintf(","); + } + sqlite3DebugPrintf("\n"); + } + } + if( p->pWhere ){ + sqlite3DebugPrintf("%*s WHERE ", indent, ""); + sqlite3PrintExpr(p->pWhere); + sqlite3DebugPrintf("\n"); + } + if( p->pGroupBy ){ + sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); + sqlite3PrintExprList(p->pGroupBy); + sqlite3DebugPrintf("\n"); + } + if( p->pHaving ){ + sqlite3DebugPrintf("%*s HAVING ", indent, ""); + sqlite3PrintExpr(p->pHaving); + sqlite3DebugPrintf("\n"); + } + if( p->pOrderBy ){ + sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); + sqlite3PrintExprList(p->pOrderBy); + sqlite3DebugPrintf("\n"); + } +} +/* End of the structure debug printing code +*****************************************************************************/ +#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ + +/************** End of select.c **********************************************/ +/************** Begin file table.c *******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the sqlite3_get_table() and sqlite3_free_table() +** interface routines. These are just wrappers around the main +** interface routine of sqlite3_exec(). +** +** These routines are in a separate files so that they will not be linked +** if they are not used. +*/ + +#ifndef SQLITE_OMIT_GET_TABLE + +/* +** This structure is used to pass data from sqlite3_get_table() through +** to the callback function is uses to build the result. +*/ +typedef struct TabResult { + char **azResult; + char *zErrMsg; + int nResult; + int nAlloc; + int nRow; + int nColumn; + int nData; + int rc; +} TabResult; + +/* +** This routine is called once for each row in the result table. Its job +** is to fill in the TabResult structure appropriately, allocating new +** memory as necessary. +*/ +static int sqlite3_get_table_cb(void *pArg, int nCol, char **argv, char **colv){ + TabResult *p = (TabResult*)pArg; + int need; + int i; + char *z; + + /* Make sure there is enough space in p->azResult to hold everything + ** we need to remember from this invocation of the callback. + */ + if( p->nRow==0 && argv!=0 ){ + need = nCol*2; + }else{ + need = nCol; + } + if( p->nData + need >= p->nAlloc ){ + char **azNew; + p->nAlloc = p->nAlloc*2 + need + 1; + azNew = sqlite3_realloc( p->azResult, sizeof(char*)*p->nAlloc ); + if( azNew==0 ) goto malloc_failed; + p->azResult = azNew; + } + + /* If this is the first row, then generate an extra row containing + ** the names of all columns. + */ + if( p->nRow==0 ){ + p->nColumn = nCol; + for(i=0; i<nCol; i++){ + z = sqlite3_mprintf("%s", colv[i]); + if( z==0 ) goto malloc_failed; + p->azResult[p->nData++] = z; + } + }else if( p->nColumn!=nCol ){ + sqlite3_free(p->zErrMsg); + p->zErrMsg = sqlite3_mprintf( + "sqlite3_get_table() called with two or more incompatible queries" + ); + p->rc = SQLITE_ERROR; + return 1; + } + + /* Copy over the row data + */ + if( argv!=0 ){ + for(i=0; i<nCol; i++){ + if( argv[i]==0 ){ + z = 0; + }else{ + int n = strlen(argv[i])+1; + z = sqlite3_malloc( n ); + if( z==0 ) goto malloc_failed; + memcpy(z, argv[i], n); + } + p->azResult[p->nData++] = z; + } + p->nRow++; + } + return 0; + +malloc_failed: + p->rc = SQLITE_NOMEM; + return 1; +} + +/* +** Query the database. But instead of invoking a callback for each row, +** malloc() for space to hold the result and return the entire results +** at the conclusion of the call. +** +** The result that is written to ***pazResult is held in memory obtained +** from malloc(). But the caller cannot free this memory directly. +** Instead, the entire table should be passed to sqlite3_free_table() when +** the calling procedure is finished using it. +*/ +SQLITE_API int sqlite3_get_table( + sqlite3 *db, /* The database on which the SQL executes */ + const char *zSql, /* The SQL to be executed */ + char ***pazResult, /* Write the result table here */ + int *pnRow, /* Write the number of rows in the result here */ + int *pnColumn, /* Write the number of columns of result here */ + char **pzErrMsg /* Write error messages here */ +){ + int rc; + TabResult res; + + *pazResult = 0; + if( pnColumn ) *pnColumn = 0; + if( pnRow ) *pnRow = 0; + res.zErrMsg = 0; + res.nResult = 0; + res.nRow = 0; + res.nColumn = 0; + res.nData = 1; + res.nAlloc = 20; + res.rc = SQLITE_OK; + res.azResult = sqlite3_malloc(sizeof(char*)*res.nAlloc ); + if( res.azResult==0 ){ + db->errCode = SQLITE_NOMEM; + return SQLITE_NOMEM; + } + res.azResult[0] = 0; + rc = sqlite3_exec(db, zSql, sqlite3_get_table_cb, &res, pzErrMsg); + assert( sizeof(res.azResult[0])>= sizeof(res.nData) ); + res.azResult[0] = (char*)res.nData; + if( (rc&0xff)==SQLITE_ABORT ){ + sqlite3_free_table(&res.azResult[1]); + if( res.zErrMsg ){ + if( pzErrMsg ){ + sqlite3_free(*pzErrMsg); + *pzErrMsg = sqlite3_mprintf("%s",res.zErrMsg); + } + sqlite3_free(res.zErrMsg); + } + db->errCode = res.rc; /* Assume 32-bit assignment is atomic */ + return res.rc; + } + sqlite3_free(res.zErrMsg); + if( rc!=SQLITE_OK ){ + sqlite3_free_table(&res.azResult[1]); + return rc; + } + if( res.nAlloc>res.nData ){ + char **azNew; + azNew = sqlite3_realloc( res.azResult, sizeof(char*)*(res.nData+1) ); + if( azNew==0 ){ + sqlite3_free_table(&res.azResult[1]); + db->errCode = SQLITE_NOMEM; + return SQLITE_NOMEM; + } + res.nAlloc = res.nData+1; + res.azResult = azNew; + } + *pazResult = &res.azResult[1]; + if( pnColumn ) *pnColumn = res.nColumn; + if( pnRow ) *pnRow = res.nRow; + return rc; +} + +/* +** This routine frees the space the sqlite3_get_table() malloced. +*/ +SQLITE_API void sqlite3_free_table( + char **azResult /* Result returned from from sqlite3_get_table() */ +){ + if( azResult ){ + int i, n; + azResult--; + assert( azResult!=0 ); + n = (int)azResult[0]; + for(i=1; i<n; i++){ if( azResult[i] ) sqlite3_free(azResult[i]); } + sqlite3_free(azResult); + } +} + +#endif /* SQLITE_OMIT_GET_TABLE */ + +/************** End of table.c ***********************************************/ +/************** Begin file trigger.c *****************************************/ +/* +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +* +*/ + +#ifndef SQLITE_OMIT_TRIGGER +/* +** Delete a linked list of TriggerStep structures. +*/ +SQLITE_PRIVATE void sqlite3DeleteTriggerStep(TriggerStep *pTriggerStep){ + while( pTriggerStep ){ + TriggerStep * pTmp = pTriggerStep; + pTriggerStep = pTriggerStep->pNext; + + if( pTmp->target.dyn ) sqlite3_free((char*)pTmp->target.z); + sqlite3ExprDelete(pTmp->pWhere); + sqlite3ExprListDelete(pTmp->pExprList); + sqlite3SelectDelete(pTmp->pSelect); + sqlite3IdListDelete(pTmp->pIdList); + + sqlite3_free(pTmp); + } +} + +/* +** This is called by the parser when it sees a CREATE TRIGGER statement +** up to the point of the BEGIN before the trigger actions. A Trigger +** structure is generated based on the information available and stored +** in pParse->pNewTrigger. After the trigger actions have been parsed, the +** sqlite3FinishTrigger() function is called to complete the trigger +** construction process. +*/ +SQLITE_PRIVATE void sqlite3BeginTrigger( + Parse *pParse, /* The parse context of the CREATE TRIGGER statement */ + Token *pName1, /* The name of the trigger */ + Token *pName2, /* The name of the trigger */ + int tr_tm, /* One of TK_BEFORE, TK_AFTER, TK_INSTEAD */ + int op, /* One of TK_INSERT, TK_UPDATE, TK_DELETE */ + IdList *pColumns, /* column list if this is an UPDATE OF trigger */ + SrcList *pTableName,/* The name of the table/view the trigger applies to */ + Expr *pWhen, /* WHEN clause */ + int isTemp, /* True if the TEMPORARY keyword is present */ + int noErr /* Suppress errors if the trigger already exists */ +){ + Trigger *pTrigger = 0; + Table *pTab; + char *zName = 0; /* Name of the trigger */ + sqlite3 *db = pParse->db; + int iDb; /* The database to store the trigger in */ + Token *pName; /* The unqualified db name */ + DbFixer sFix; + int iTabDb; + + assert( pName1!=0 ); /* pName1->z might be NULL, but not pName1 itself */ + assert( pName2!=0 ); + if( isTemp ){ + /* If TEMP was specified, then the trigger name may not be qualified. */ + if( pName2->n>0 ){ + sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name"); + goto trigger_cleanup; + } + iDb = 1; + pName = pName1; + }else{ + /* Figure out the db that the the trigger will be created in */ + iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); + if( iDb<0 ){ + goto trigger_cleanup; + } + } + + /* If the trigger name was unqualified, and the table is a temp table, + ** then set iDb to 1 to create the trigger in the temporary database. + ** If sqlite3SrcListLookup() returns 0, indicating the table does not + ** exist, the error is caught by the block below. + */ + if( !pTableName || db->mallocFailed ){ + goto trigger_cleanup; + } + pTab = sqlite3SrcListLookup(pParse, pTableName); + if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ + iDb = 1; + } + + /* Ensure the table name matches database name and that the table exists */ + if( db->mallocFailed ) goto trigger_cleanup; + assert( pTableName->nSrc==1 ); + if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", pName) && + sqlite3FixSrcList(&sFix, pTableName) ){ + goto trigger_cleanup; + } + pTab = sqlite3SrcListLookup(pParse, pTableName); + if( !pTab ){ + /* The table does not exist. */ + goto trigger_cleanup; + } + if( IsVirtual(pTab) ){ + sqlite3ErrorMsg(pParse, "cannot create triggers on virtual tables"); + goto trigger_cleanup; + } + + /* Check that the trigger name is not reserved and that no trigger of the + ** specified name exists */ + zName = sqlite3NameFromToken(db, pName); + if( !zName || SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ + goto trigger_cleanup; + } + if( sqlite3HashFind(&(db->aDb[iDb].pSchema->trigHash), zName,strlen(zName)) ){ + if( !noErr ){ + sqlite3ErrorMsg(pParse, "trigger %T already exists", pName); + } + goto trigger_cleanup; + } + + /* Do not create a trigger on a system table */ + if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){ + sqlite3ErrorMsg(pParse, "cannot create trigger on system table"); + pParse->nErr++; + goto trigger_cleanup; + } + + /* INSTEAD of triggers are only for views and views only support INSTEAD + ** of triggers. + */ + if( pTab->pSelect && tr_tm!=TK_INSTEAD ){ + sqlite3ErrorMsg(pParse, "cannot create %s trigger on view: %S", + (tr_tm == TK_BEFORE)?"BEFORE":"AFTER", pTableName, 0); + goto trigger_cleanup; + } + if( !pTab->pSelect && tr_tm==TK_INSTEAD ){ + sqlite3ErrorMsg(pParse, "cannot create INSTEAD OF" + " trigger on table: %S", pTableName, 0); + goto trigger_cleanup; + } + iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); + +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code = SQLITE_CREATE_TRIGGER; + const char *zDb = db->aDb[iTabDb].zName; + const char *zDbTrig = isTemp ? db->aDb[1].zName : zDb; + if( iTabDb==1 || isTemp ) code = SQLITE_CREATE_TEMP_TRIGGER; + if( sqlite3AuthCheck(pParse, code, zName, pTab->zName, zDbTrig) ){ + goto trigger_cleanup; + } + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iTabDb),0,zDb)){ + goto trigger_cleanup; + } + } +#endif + + /* INSTEAD OF triggers can only appear on views and BEFORE triggers + ** cannot appear on views. So we might as well translate every + ** INSTEAD OF trigger into a BEFORE trigger. It simplifies code + ** elsewhere. + */ + if (tr_tm == TK_INSTEAD){ + tr_tm = TK_BEFORE; + } + + /* Build the Trigger object */ + pTrigger = (Trigger*)sqlite3DbMallocZero(db, sizeof(Trigger)); + if( pTrigger==0 ) goto trigger_cleanup; + pTrigger->name = zName; + zName = 0; + pTrigger->table = sqlite3DbStrDup(db, pTableName->a[0].zName); + pTrigger->pSchema = db->aDb[iDb].pSchema; + pTrigger->pTabSchema = pTab->pSchema; + pTrigger->op = op; + pTrigger->tr_tm = tr_tm==TK_BEFORE ? TRIGGER_BEFORE : TRIGGER_AFTER; + pTrigger->pWhen = sqlite3ExprDup(db, pWhen); + pTrigger->pColumns = sqlite3IdListDup(db, pColumns); + sqlite3TokenCopy(db, &pTrigger->nameToken,pName); + assert( pParse->pNewTrigger==0 ); + pParse->pNewTrigger = pTrigger; + +trigger_cleanup: + sqlite3_free(zName); + sqlite3SrcListDelete(pTableName); + sqlite3IdListDelete(pColumns); + sqlite3ExprDelete(pWhen); + if( !pParse->pNewTrigger ){ + sqlite3DeleteTrigger(pTrigger); + }else{ + assert( pParse->pNewTrigger==pTrigger ); + } +} + +/* +** This routine is called after all of the trigger actions have been parsed +** in order to complete the process of building the trigger. +*/ +SQLITE_PRIVATE void sqlite3FinishTrigger( + Parse *pParse, /* Parser context */ + TriggerStep *pStepList, /* The triggered program */ + Token *pAll /* Token that describes the complete CREATE TRIGGER */ +){ + Trigger *pTrig = 0; /* The trigger whose construction is finishing up */ + sqlite3 *db = pParse->db; /* The database */ + DbFixer sFix; + int iDb; /* Database containing the trigger */ + + pTrig = pParse->pNewTrigger; + pParse->pNewTrigger = 0; + if( pParse->nErr || !pTrig ) goto triggerfinish_cleanup; + iDb = sqlite3SchemaToIndex(pParse->db, pTrig->pSchema); + pTrig->step_list = pStepList; + while( pStepList ){ + pStepList->pTrig = pTrig; + pStepList = pStepList->pNext; + } + if( sqlite3FixInit(&sFix, pParse, iDb, "trigger", &pTrig->nameToken) + && sqlite3FixTriggerStep(&sFix, pTrig->step_list) ){ + goto triggerfinish_cleanup; + } + + /* if we are not initializing, and this trigger is not on a TEMP table, + ** build the sqlite_master entry + */ + if( !db->init.busy ){ + Vdbe *v; + char *z; + + /* Make an entry in the sqlite_master table */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto triggerfinish_cleanup; + sqlite3BeginWriteOperation(pParse, 0, iDb); + z = sqlite3DbStrNDup(db, (char*)pAll->z, pAll->n); + sqlite3NestedParse(pParse, + "INSERT INTO %Q.%s VALUES('trigger',%Q,%Q,0,'CREATE TRIGGER %q')", + db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTrig->name, + pTrig->table, z); + sqlite3_free(z); + sqlite3ChangeCookie(pParse, iDb); + sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sqlite3MPrintf( + db, "type='trigger' AND name='%q'", pTrig->name), P4_DYNAMIC + ); + } + + if( db->init.busy ){ + int n; + Table *pTab; + Trigger *pDel; + pDel = sqlite3HashInsert(&db->aDb[iDb].pSchema->trigHash, + pTrig->name, strlen(pTrig->name), pTrig); + if( pDel ){ + assert( pDel==pTrig ); + db->mallocFailed = 1; + goto triggerfinish_cleanup; + } + n = strlen(pTrig->table) + 1; + pTab = sqlite3HashFind(&pTrig->pTabSchema->tblHash, pTrig->table, n); + assert( pTab!=0 ); + pTrig->pNext = pTab->pTrigger; + pTab->pTrigger = pTrig; + pTrig = 0; + } + +triggerfinish_cleanup: + sqlite3DeleteTrigger(pTrig); + assert( !pParse->pNewTrigger ); + sqlite3DeleteTriggerStep(pStepList); +} + +/* +** Make a copy of all components of the given trigger step. This has +** the effect of copying all Expr.token.z values into memory obtained +** from sqlite3_malloc(). As initially created, the Expr.token.z values +** all point to the input string that was fed to the parser. But that +** string is ephemeral - it will go away as soon as the sqlite3_exec() +** call that started the parser exits. This routine makes a persistent +** copy of all the Expr.token.z strings so that the TriggerStep structure +** will be valid even after the sqlite3_exec() call returns. +*/ +static void sqlitePersistTriggerStep(sqlite3 *db, TriggerStep *p){ + if( p->target.z ){ + p->target.z = (u8*)sqlite3DbStrNDup(db, (char*)p->target.z, p->target.n); + p->target.dyn = 1; + } + if( p->pSelect ){ + Select *pNew = sqlite3SelectDup(db, p->pSelect); + sqlite3SelectDelete(p->pSelect); + p->pSelect = pNew; + } + if( p->pWhere ){ + Expr *pNew = sqlite3ExprDup(db, p->pWhere); + sqlite3ExprDelete(p->pWhere); + p->pWhere = pNew; + } + if( p->pExprList ){ + ExprList *pNew = sqlite3ExprListDup(db, p->pExprList); + sqlite3ExprListDelete(p->pExprList); + p->pExprList = pNew; + } + if( p->pIdList ){ + IdList *pNew = sqlite3IdListDup(db, p->pIdList); + sqlite3IdListDelete(p->pIdList); + p->pIdList = pNew; + } +} + +/* +** Turn a SELECT statement (that the pSelect parameter points to) into +** a trigger step. Return a pointer to a TriggerStep structure. +** +** The parser calls this routine when it finds a SELECT statement in +** body of a TRIGGER. +*/ +SQLITE_PRIVATE TriggerStep *sqlite3TriggerSelectStep(sqlite3 *db, Select *pSelect){ + TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep)); + if( pTriggerStep==0 ) { + sqlite3SelectDelete(pSelect); + return 0; + } + + pTriggerStep->op = TK_SELECT; + pTriggerStep->pSelect = pSelect; + pTriggerStep->orconf = OE_Default; + sqlitePersistTriggerStep(db, pTriggerStep); + + return pTriggerStep; +} + +/* +** Build a trigger step out of an INSERT statement. Return a pointer +** to the new trigger step. +** +** The parser calls this routine when it sees an INSERT inside the +** body of a trigger. +*/ +SQLITE_PRIVATE TriggerStep *sqlite3TriggerInsertStep( + sqlite3 *db, /* The database connection */ + Token *pTableName, /* Name of the table into which we insert */ + IdList *pColumn, /* List of columns in pTableName to insert into */ + ExprList *pEList, /* The VALUE clause: a list of values to be inserted */ + Select *pSelect, /* A SELECT statement that supplies values */ + int orconf /* The conflict algorithm (OE_Abort, OE_Replace, etc.) */ +){ + TriggerStep *pTriggerStep; + + assert(pEList == 0 || pSelect == 0); + assert(pEList != 0 || pSelect != 0 || db->mallocFailed); + + pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep)); + if( pTriggerStep ){ + pTriggerStep->op = TK_INSERT; + pTriggerStep->pSelect = pSelect; + pTriggerStep->target = *pTableName; + pTriggerStep->pIdList = pColumn; + pTriggerStep->pExprList = pEList; + pTriggerStep->orconf = orconf; + sqlitePersistTriggerStep(db, pTriggerStep); + }else{ + sqlite3IdListDelete(pColumn); + sqlite3ExprListDelete(pEList); + sqlite3SelectDelete(pSelect); + } + + return pTriggerStep; +} + +/* +** Construct a trigger step that implements an UPDATE statement and return +** a pointer to that trigger step. The parser calls this routine when it +** sees an UPDATE statement inside the body of a CREATE TRIGGER. +*/ +SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep( + sqlite3 *db, /* The database connection */ + Token *pTableName, /* Name of the table to be updated */ + ExprList *pEList, /* The SET clause: list of column and new values */ + Expr *pWhere, /* The WHERE clause */ + int orconf /* The conflict algorithm. (OE_Abort, OE_Ignore, etc) */ +){ + TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep)); + if( pTriggerStep==0 ){ + sqlite3ExprListDelete(pEList); + sqlite3ExprDelete(pWhere); + return 0; + } + + pTriggerStep->op = TK_UPDATE; + pTriggerStep->target = *pTableName; + pTriggerStep->pExprList = pEList; + pTriggerStep->pWhere = pWhere; + pTriggerStep->orconf = orconf; + sqlitePersistTriggerStep(db, pTriggerStep); + + return pTriggerStep; +} + +/* +** Construct a trigger step that implements a DELETE statement and return +** a pointer to that trigger step. The parser calls this routine when it +** sees a DELETE statement inside the body of a CREATE TRIGGER. +*/ +SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep( + sqlite3 *db, /* Database connection */ + Token *pTableName, /* The table from which rows are deleted */ + Expr *pWhere /* The WHERE clause */ +){ + TriggerStep *pTriggerStep = sqlite3DbMallocZero(db, sizeof(TriggerStep)); + if( pTriggerStep==0 ){ + sqlite3ExprDelete(pWhere); + return 0; + } + + pTriggerStep->op = TK_DELETE; + pTriggerStep->target = *pTableName; + pTriggerStep->pWhere = pWhere; + pTriggerStep->orconf = OE_Default; + sqlitePersistTriggerStep(db, pTriggerStep); + + return pTriggerStep; +} + +/* +** Recursively delete a Trigger structure +*/ +SQLITE_PRIVATE void sqlite3DeleteTrigger(Trigger *pTrigger){ + if( pTrigger==0 ) return; + sqlite3DeleteTriggerStep(pTrigger->step_list); + sqlite3_free(pTrigger->name); + sqlite3_free(pTrigger->table); + sqlite3ExprDelete(pTrigger->pWhen); + sqlite3IdListDelete(pTrigger->pColumns); + if( pTrigger->nameToken.dyn ) sqlite3_free((char*)pTrigger->nameToken.z); + sqlite3_free(pTrigger); +} + +/* +** This function is called to drop a trigger from the database schema. +** +** This may be called directly from the parser and therefore identifies +** the trigger by name. The sqlite3DropTriggerPtr() routine does the +** same job as this routine except it takes a pointer to the trigger +** instead of the trigger name. +**/ +SQLITE_PRIVATE void sqlite3DropTrigger(Parse *pParse, SrcList *pName, int noErr){ + Trigger *pTrigger = 0; + int i; + const char *zDb; + const char *zName; + int nName; + sqlite3 *db = pParse->db; + + if( db->mallocFailed ) goto drop_trigger_cleanup; + if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ + goto drop_trigger_cleanup; + } + + assert( pName->nSrc==1 ); + zDb = pName->a[0].zDatabase; + zName = pName->a[0].zName; + nName = strlen(zName); + for(i=OMIT_TEMPDB; i<db->nDb; i++){ + int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ + if( zDb && sqlite3StrICmp(db->aDb[j].zName, zDb) ) continue; + pTrigger = sqlite3HashFind(&(db->aDb[j].pSchema->trigHash), zName, nName); + if( pTrigger ) break; + } + if( !pTrigger ){ + if( !noErr ){ + sqlite3ErrorMsg(pParse, "no such trigger: %S", pName, 0); + } + goto drop_trigger_cleanup; + } + sqlite3DropTriggerPtr(pParse, pTrigger); + +drop_trigger_cleanup: + sqlite3SrcListDelete(pName); +} + +/* +** Return a pointer to the Table structure for the table that a trigger +** is set on. +*/ +static Table *tableOfTrigger(Trigger *pTrigger){ + int n = strlen(pTrigger->table) + 1; + return sqlite3HashFind(&pTrigger->pTabSchema->tblHash, pTrigger->table, n); +} + + +/* +** Drop a trigger given a pointer to that trigger. +*/ +SQLITE_PRIVATE void sqlite3DropTriggerPtr(Parse *pParse, Trigger *pTrigger){ + Table *pTable; + Vdbe *v; + sqlite3 *db = pParse->db; + int iDb; + + iDb = sqlite3SchemaToIndex(pParse->db, pTrigger->pSchema); + assert( iDb>=0 && iDb<db->nDb ); + pTable = tableOfTrigger(pTrigger); + assert( pTable ); + assert( pTable->pSchema==pTrigger->pSchema || iDb==1 ); +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int code = SQLITE_DROP_TRIGGER; + const char *zDb = db->aDb[iDb].zName; + const char *zTab = SCHEMA_TABLE(iDb); + if( iDb==1 ) code = SQLITE_DROP_TEMP_TRIGGER; + if( sqlite3AuthCheck(pParse, code, pTrigger->name, pTable->zName, zDb) || + sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ + return; + } + } +#endif + + /* Generate code to destroy the database record of the trigger. + */ + assert( pTable!=0 ); + if( (v = sqlite3GetVdbe(pParse))!=0 ){ + int base; + static const VdbeOpList dropTrigger[] = { + { OP_Rewind, 0, ADDR(9), 0}, + { OP_String8, 0, 1, 0}, /* 1 */ + { OP_Column, 0, 1, 2}, + { OP_Ne, 2, ADDR(8), 1}, + { OP_String8, 0, 1, 0}, /* 4: "trigger" */ + { OP_Column, 0, 0, 2}, + { OP_Ne, 2, ADDR(8), 1}, + { OP_Delete, 0, 0, 0}, + { OP_Next, 0, ADDR(1), 0}, /* 8 */ + }; + + sqlite3BeginWriteOperation(pParse, 0, iDb); + sqlite3OpenMasterTable(pParse, iDb); + base = sqlite3VdbeAddOpList(v, ArraySize(dropTrigger), dropTrigger); + sqlite3VdbeChangeP4(v, base+1, pTrigger->name, 0); + sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC); + sqlite3ChangeCookie(pParse, iDb); + sqlite3VdbeAddOp2(v, OP_Close, 0, 0); + sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->name, 0); + } +} + +/* +** Remove a trigger from the hash tables of the sqlite* pointer. +*/ +SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){ + Trigger *pTrigger; + int nName = strlen(zName); + pTrigger = sqlite3HashInsert(&(db->aDb[iDb].pSchema->trigHash), + zName, nName, 0); + if( pTrigger ){ + Table *pTable = tableOfTrigger(pTrigger); + assert( pTable!=0 ); + if( pTable->pTrigger == pTrigger ){ + pTable->pTrigger = pTrigger->pNext; + }else{ + Trigger *cc = pTable->pTrigger; + while( cc ){ + if( cc->pNext == pTrigger ){ + cc->pNext = cc->pNext->pNext; + break; + } + cc = cc->pNext; + } + assert(cc); + } + sqlite3DeleteTrigger(pTrigger); + db->flags |= SQLITE_InternChanges; + } +} + +/* +** pEList is the SET clause of an UPDATE statement. Each entry +** in pEList is of the format <id>=<expr>. If any of the entries +** in pEList have an <id> which matches an identifier in pIdList, +** then return TRUE. If pIdList==NULL, then it is considered a +** wildcard that matches anything. Likewise if pEList==NULL then +** it matches anything so always return true. Return false only +** if there is no match. +*/ +static int checkColumnOverLap(IdList *pIdList, ExprList *pEList){ + int e; + if( !pIdList || !pEList ) return 1; + for(e=0; e<pEList->nExpr; e++){ + if( sqlite3IdListIndex(pIdList, pEList->a[e].zName)>=0 ) return 1; + } + return 0; +} + +/* +** Return a bit vector to indicate what kind of triggers exist for operation +** "op" on table pTab. If pChanges is not NULL then it is a list of columns +** that are being updated. Triggers only match if the ON clause of the +** trigger definition overlaps the set of columns being updated. +** +** The returned bit vector is some combination of TRIGGER_BEFORE and +** TRIGGER_AFTER. +*/ +SQLITE_PRIVATE int sqlite3TriggersExist( + Parse *pParse, /* Used to check for recursive triggers */ + Table *pTab, /* The table the contains the triggers */ + int op, /* one of TK_DELETE, TK_INSERT, TK_UPDATE */ + ExprList *pChanges /* Columns that change in an UPDATE statement */ +){ + Trigger *pTrigger; + int mask = 0; + + pTrigger = IsVirtual(pTab) ? 0 : pTab->pTrigger; + while( pTrigger ){ + if( pTrigger->op==op && checkColumnOverLap(pTrigger->pColumns, pChanges) ){ + mask |= pTrigger->tr_tm; + } + pTrigger = pTrigger->pNext; + } + return mask; +} + +/* +** Convert the pStep->target token into a SrcList and return a pointer +** to that SrcList. +** +** This routine adds a specific database name, if needed, to the target when +** forming the SrcList. This prevents a trigger in one database from +** referring to a target in another database. An exception is when the +** trigger is in TEMP in which case it can refer to any other database it +** wants. +*/ +static SrcList *targetSrcList( + Parse *pParse, /* The parsing context */ + TriggerStep *pStep /* The trigger containing the target token */ +){ + Token sDb; /* Dummy database name token */ + int iDb; /* Index of the database to use */ + SrcList *pSrc; /* SrcList to be returned */ + + iDb = sqlite3SchemaToIndex(pParse->db, pStep->pTrig->pSchema); + if( iDb==0 || iDb>=2 ){ + assert( iDb<pParse->db->nDb ); + sDb.z = (u8*)pParse->db->aDb[iDb].zName; + sDb.n = strlen((char*)sDb.z); + pSrc = sqlite3SrcListAppend(pParse->db, 0, &sDb, &pStep->target); + } else { + pSrc = sqlite3SrcListAppend(pParse->db, 0, &pStep->target, 0); + } + return pSrc; +} + +/* +** Generate VDBE code for zero or more statements inside the body of a +** trigger. +*/ +static int codeTriggerProgram( + Parse *pParse, /* The parser context */ + TriggerStep *pStepList, /* List of statements inside the trigger body */ + int orconfin /* Conflict algorithm. (OE_Abort, etc) */ +){ + TriggerStep * pTriggerStep = pStepList; + int orconf; + Vdbe *v = pParse->pVdbe; + sqlite3 *db = pParse->db; + + assert( pTriggerStep!=0 ); + assert( v!=0 ); + sqlite3VdbeAddOp2(v, OP_ContextPush, 0, 0); + VdbeComment((v, "begin trigger %s", pStepList->pTrig->name)); + while( pTriggerStep ){ + orconf = (orconfin == OE_Default)?pTriggerStep->orconf:orconfin; + pParse->trigStack->orconf = orconf; + switch( pTriggerStep->op ){ + case TK_SELECT: { + Select *ss = sqlite3SelectDup(db, pTriggerStep->pSelect); + if( ss ){ + SelectDest dest; + + sqlite3SelectDestInit(&dest, SRT_Discard, 0); + sqlite3SelectResolve(pParse, ss, 0); + sqlite3Select(pParse, ss, &dest, 0, 0, 0, 0); + sqlite3SelectDelete(ss); + } + break; + } + case TK_UPDATE: { + SrcList *pSrc; + pSrc = targetSrcList(pParse, pTriggerStep); + sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0); + sqlite3Update(pParse, pSrc, + sqlite3ExprListDup(db, pTriggerStep->pExprList), + sqlite3ExprDup(db, pTriggerStep->pWhere), orconf); + sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0); + break; + } + case TK_INSERT: { + SrcList *pSrc; + pSrc = targetSrcList(pParse, pTriggerStep); + sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0); + sqlite3Insert(pParse, pSrc, + sqlite3ExprListDup(db, pTriggerStep->pExprList), + sqlite3SelectDup(db, pTriggerStep->pSelect), + sqlite3IdListDup(db, pTriggerStep->pIdList), orconf); + sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0); + break; + } + case TK_DELETE: { + SrcList *pSrc; + sqlite3VdbeAddOp2(v, OP_ResetCount, 0, 0); + pSrc = targetSrcList(pParse, pTriggerStep); + sqlite3DeleteFrom(pParse, pSrc, + sqlite3ExprDup(db, pTriggerStep->pWhere)); + sqlite3VdbeAddOp2(v, OP_ResetCount, 1, 0); + break; + } + default: + assert(0); + } + pTriggerStep = pTriggerStep->pNext; + } + sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0); + VdbeComment((v, "end trigger %s", pStepList->pTrig->name)); + + return 0; +} + +/* +** This is called to code FOR EACH ROW triggers. +** +** When the code that this function generates is executed, the following +** must be true: +** +** 1. No cursors may be open in the main database. (But newIdx and oldIdx +** can be indices of cursors in temporary tables. See below.) +** +** 2. If the triggers being coded are ON INSERT or ON UPDATE triggers, then +** a temporary vdbe cursor (index newIdx) must be open and pointing at +** a row containing values to be substituted for new.* expressions in the +** trigger program(s). +** +** 3. If the triggers being coded are ON DELETE or ON UPDATE triggers, then +** a temporary vdbe cursor (index oldIdx) must be open and pointing at +** a row containing values to be substituted for old.* expressions in the +** trigger program(s). +** +** If they are not NULL, the piOldColMask and piNewColMask output variables +** are set to values that describe the columns used by the trigger program +** in the OLD.* and NEW.* tables respectively. If column N of the +** pseudo-table is read at least once, the corresponding bit of the output +** mask is set. If a column with an index greater than 32 is read, the +** output mask is set to the special value 0xffffffff. +** +*/ +SQLITE_PRIVATE int sqlite3CodeRowTrigger( + Parse *pParse, /* Parse context */ + int op, /* One of TK_UPDATE, TK_INSERT, TK_DELETE */ + ExprList *pChanges, /* Changes list for any UPDATE OF triggers */ + int tr_tm, /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ + Table *pTab, /* The table to code triggers from */ + int newIdx, /* The indice of the "new" row to access */ + int oldIdx, /* The indice of the "old" row to access */ + int orconf, /* ON CONFLICT policy */ + int ignoreJump, /* Instruction to jump to for RAISE(IGNORE) */ + u32 *piOldColMask, /* OUT: Mask of columns used from the OLD.* table */ + u32 *piNewColMask /* OUT: Mask of columns used from the NEW.* table */ +){ + Trigger *p; + sqlite3 *db = pParse->db; + TriggerStack trigStackEntry; + + trigStackEntry.oldColMask = 0; + trigStackEntry.newColMask = 0; + + assert(op == TK_UPDATE || op == TK_INSERT || op == TK_DELETE); + assert(tr_tm == TRIGGER_BEFORE || tr_tm == TRIGGER_AFTER ); + + assert(newIdx != -1 || oldIdx != -1); + + for(p=pTab->pTrigger; p; p=p->pNext){ + int fire_this = 0; + + /* Determine whether we should code this trigger */ + if( + p->op==op && + p->tr_tm==tr_tm && + (p->pSchema==p->pTabSchema || p->pSchema==db->aDb[1].pSchema) && + (op!=TK_UPDATE||!p->pColumns||checkColumnOverLap(p->pColumns,pChanges)) + ){ + TriggerStack *pS; /* Pointer to trigger-stack entry */ + for(pS=pParse->trigStack; pS && p!=pS->pTrigger; pS=pS->pNext){} + if( !pS ){ + fire_this = 1; + } +#if 0 /* Give no warning for recursive triggers. Just do not do them */ + else{ + sqlite3ErrorMsg(pParse, "recursive triggers not supported (%s)", + p->name); + return SQLITE_ERROR; + } +#endif + } + + if( fire_this ){ + int endTrigger; + Expr * whenExpr; + AuthContext sContext; + NameContext sNC; + +#ifndef SQLITE_OMIT_TRACE + sqlite3VdbeAddOp4(pParse->pVdbe, OP_Trace, 0, 0, 0, + sqlite3MPrintf(db, "-- TRIGGER %s", p->name), + P4_DYNAMIC); +#endif + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + + /* Push an entry on to the trigger stack */ + trigStackEntry.pTrigger = p; + trigStackEntry.newIdx = newIdx; + trigStackEntry.oldIdx = oldIdx; + trigStackEntry.pTab = pTab; + trigStackEntry.pNext = pParse->trigStack; + trigStackEntry.ignoreJump = ignoreJump; + pParse->trigStack = &trigStackEntry; + sqlite3AuthContextPush(pParse, &sContext, p->name); + + /* code the WHEN clause */ + endTrigger = sqlite3VdbeMakeLabel(pParse->pVdbe); + whenExpr = sqlite3ExprDup(db, p->pWhen); + if( db->mallocFailed || sqlite3ExprResolveNames(&sNC, whenExpr) ){ + pParse->trigStack = trigStackEntry.pNext; + sqlite3ExprDelete(whenExpr); + return 1; + } + sqlite3ExprIfFalse(pParse, whenExpr, endTrigger, SQLITE_JUMPIFNULL); + sqlite3ExprDelete(whenExpr); + + codeTriggerProgram(pParse, p->step_list, orconf); + + /* Pop the entry off the trigger stack */ + pParse->trigStack = trigStackEntry.pNext; + sqlite3AuthContextPop(&sContext); + + sqlite3VdbeResolveLabel(pParse->pVdbe, endTrigger); + } + } + if( piOldColMask ) *piOldColMask |= trigStackEntry.oldColMask; + if( piNewColMask ) *piNewColMask |= trigStackEntry.newColMask; + return 0; +} +#endif /* !defined(SQLITE_OMIT_TRIGGER) */ + +/************** End of trigger.c *********************************************/ +/************** Begin file update.c ******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle UPDATE statements. +** +** $Id: update.c,v 1.178 2008/04/28 18:46:43 drh Exp $ +*/ + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* Forward declaration */ +static void updateVirtualTable( + Parse *pParse, /* The parsing context */ + SrcList *pSrc, /* The virtual table to be modified */ + Table *pTab, /* The virtual table */ + ExprList *pChanges, /* The columns to change in the UPDATE statement */ + Expr *pRowidExpr, /* Expression used to recompute the rowid */ + int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ + Expr *pWhere /* WHERE clause of the UPDATE statement */ +); +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +/* +** The most recently coded instruction was an OP_Column to retrieve the +** i-th column of table pTab. This routine sets the P4 parameter of the +** OP_Column to the default value, if any. +** +** The default value of a column is specified by a DEFAULT clause in the +** column definition. This was either supplied by the user when the table +** was created, or added later to the table definition by an ALTER TABLE +** command. If the latter, then the row-records in the table btree on disk +** may not contain a value for the column and the default value, taken +** from the P4 parameter of the OP_Column instruction, is returned instead. +** If the former, then all row-records are guaranteed to include a value +** for the column and the P4 value is not required. +** +** Column definitions created by an ALTER TABLE command may only have +** literal default values specified: a number, null or a string. (If a more +** complicated default expression value was provided, it is evaluated +** when the ALTER TABLE is executed and one of the literal values written +** into the sqlite_master table.) +** +** Therefore, the P4 parameter is only required if the default value for +** the column is a literal number, string or null. The sqlite3ValueFromExpr() +** function is capable of transforming these types of expressions into +** sqlite3_value objects. +*/ +SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *v, Table *pTab, int i){ + if( pTab && !pTab->pSelect ){ + sqlite3_value *pValue; + u8 enc = ENC(sqlite3VdbeDb(v)); + Column *pCol = &pTab->aCol[i]; + VdbeComment((v, "%s.%s", pTab->zName, pCol->zName)); + assert( i<pTab->nCol ); + sqlite3ValueFromExpr(sqlite3VdbeDb(v), pCol->pDflt, enc, + pCol->affinity, &pValue); + if( pValue ){ + sqlite3VdbeChangeP4(v, -1, (const char *)pValue, P4_MEM); + } + } +} + +/* +** Process an UPDATE statement. +** +** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL; +** \_______/ \________/ \______/ \________________/ +* onError pTabList pChanges pWhere +*/ +SQLITE_PRIVATE void sqlite3Update( + Parse *pParse, /* The parser context */ + SrcList *pTabList, /* The table in which we should change things */ + ExprList *pChanges, /* Things to be changed */ + Expr *pWhere, /* The WHERE clause. May be null */ + int onError /* How to handle constraint errors */ +){ + int i, j; /* Loop counters */ + Table *pTab; /* The table to be updated */ + int addr = 0; /* VDBE instruction address of the start of the loop */ + WhereInfo *pWInfo; /* Information about the WHERE clause */ + Vdbe *v; /* The virtual database engine */ + Index *pIdx; /* For looping over indices */ + int nIdx; /* Number of indices that need updating */ + int iCur; /* VDBE Cursor number of pTab */ + sqlite3 *db; /* The database structure */ + int *aRegIdx = 0; /* One register assigned to each index to be updated */ + int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the + ** an expression for the i-th column of the table. + ** aXRef[i]==-1 if the i-th column is not changed. */ + int chngRowid; /* True if the record number is being changed */ + Expr *pRowidExpr = 0; /* Expression defining the new record number */ + int openAll = 0; /* True if all indices need to be opened */ + AuthContext sContext; /* The authorization context */ + NameContext sNC; /* The name-context to resolve expressions in */ + int iDb; /* Database containing the table being updated */ + int j1; /* Addresses of jump instructions */ + int okOnePass; /* True for one-pass algorithm without the FIFO */ + +#ifndef SQLITE_OMIT_TRIGGER + int isView; /* Trying to update a view */ + int triggers_exist = 0; /* True if any row triggers exist */ +#endif + int iBeginAfterTrigger; /* Address of after trigger program */ + int iEndAfterTrigger; /* Exit of after trigger program */ + int iBeginBeforeTrigger; /* Address of before trigger program */ + int iEndBeforeTrigger; /* Exit of before trigger program */ + u32 old_col_mask = 0; /* Mask of OLD.* columns in use */ + u32 new_col_mask = 0; /* Mask of NEW.* columns in use */ + + int newIdx = -1; /* index of trigger "new" temp table */ + int oldIdx = -1; /* index of trigger "old" temp table */ + + /* Register Allocations */ + int regRowCount = 0; /* A count of rows changed */ + int regOldRowid; /* The old rowid */ + int regNewRowid; /* The new rowid */ + int regData; /* New data for the row */ + + sContext.pParse = 0; + db = pParse->db; + if( pParse->nErr || db->mallocFailed ){ + goto update_cleanup; + } + assert( pTabList->nSrc==1 ); + + /* Locate the table which we want to update. + */ + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ) goto update_cleanup; + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + + /* Figure out if we have any triggers and if the table being + ** updated is a view + */ +#ifndef SQLITE_OMIT_TRIGGER + triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges); + isView = pTab->pSelect!=0; +#else +# define triggers_exist 0 +# define isView 0 +#endif +#ifdef SQLITE_OMIT_VIEW +# undef isView +# define isView 0 +#endif + + if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ + goto update_cleanup; + } + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto update_cleanup; + } + aXRef = sqlite3DbMallocRaw(db, sizeof(int) * pTab->nCol ); + if( aXRef==0 ) goto update_cleanup; + for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; + + /* If there are FOR EACH ROW triggers, allocate cursors for the + ** special OLD and NEW tables + */ + if( triggers_exist ){ + newIdx = pParse->nTab++; + oldIdx = pParse->nTab++; + } + + /* Allocate a cursors for the main database table and for all indices. + ** The index cursors might not be used, but if they are used they + ** need to occur right after the database cursor. So go ahead and + ** allocate enough space, just in case. + */ + pTabList->a[0].iCursor = iCur = pParse->nTab++; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + pParse->nTab++; + } + + /* Initialize the name-context */ + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + sNC.pSrcList = pTabList; + + /* Resolve the column names in all the expressions of the + ** of the UPDATE statement. Also find the column index + ** for each column to be updated in the pChanges array. For each + ** column to be updated, make sure we have authorization to change + ** that column. + */ + chngRowid = 0; + for(i=0; i<pChanges->nExpr; i++){ + if( sqlite3ExprResolveNames(&sNC, pChanges->a[i].pExpr) ){ + goto update_cleanup; + } + for(j=0; j<pTab->nCol; j++){ + if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){ + if( j==pTab->iPKey ){ + chngRowid = 1; + pRowidExpr = pChanges->a[i].pExpr; + } + aXRef[j] = i; + break; + } + } + if( j>=pTab->nCol ){ + if( sqlite3IsRowid(pChanges->a[i].zName) ){ + chngRowid = 1; + pRowidExpr = pChanges->a[i].pExpr; + }else{ + sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName); + goto update_cleanup; + } + } +#ifndef SQLITE_OMIT_AUTHORIZATION + { + int rc; + rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName, + pTab->aCol[j].zName, db->aDb[iDb].zName); + if( rc==SQLITE_DENY ){ + goto update_cleanup; + }else if( rc==SQLITE_IGNORE ){ + aXRef[j] = -1; + } + } +#endif + } + + /* Allocate memory for the array aRegIdx[]. There is one entry in the + ** array for each index associated with table being updated. Fill in + ** the value with a register number for indices that are to be used + ** and with zero for unused indices. + */ + for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} + if( nIdx>0 ){ + aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx ); + if( aRegIdx==0 ) goto update_cleanup; + } + for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ + int reg; + if( chngRowid ){ + reg = ++pParse->nMem; + }else{ + reg = 0; + for(i=0; i<pIdx->nColumn; i++){ + if( aXRef[pIdx->aiColumn[i]]>=0 ){ + reg = ++pParse->nMem; + break; + } + } + } + aRegIdx[j] = reg; + } + + /* Allocate a block of register used to store the change record + ** sent to sqlite3GenerateConstraintChecks(). There are either + ** one or two registers for holding the rowid. One rowid register + ** is used if chngRowid is false and two are used if chngRowid is + ** true. Following these are pTab->nCol register holding column + ** data. + */ + regOldRowid = regNewRowid = pParse->nMem + 1; + pParse->nMem += pTab->nCol + 1; + if( chngRowid ){ + regNewRowid++; + pParse->nMem++; + } + regData = regNewRowid+1; + + + /* Begin generating code. + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto update_cleanup; + if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, 1, iDb); + +#ifndef SQLITE_OMIT_VIRTUALTABLE + /* Virtual tables must be handled separately */ + if( IsVirtual(pTab) ){ + updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, + pWhere); + pWhere = 0; + pTabList = 0; + goto update_cleanup; + } +#endif + + /* Start the view context + */ + if( isView ){ + sqlite3AuthContextPush(pParse, &sContext, pTab->zName); + } + + /* Generate the code for triggers. + */ + if( triggers_exist ){ + int iGoto; + + /* Create pseudo-tables for NEW and OLD + */ + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol); + sqlite3VdbeAddOp2(v, OP_OpenPseudo, oldIdx, 0); + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol); + sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0); + + iGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); + addr = sqlite3VdbeMakeLabel(v); + iBeginBeforeTrigger = sqlite3VdbeCurrentAddr(v); + if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab, + newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){ + goto update_cleanup; + } + iEndBeforeTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); + iBeginAfterTrigger = sqlite3VdbeCurrentAddr(v); + if( sqlite3CodeRowTrigger(pParse, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, + newIdx, oldIdx, onError, addr, &old_col_mask, &new_col_mask) ){ + goto update_cleanup; + } + iEndAfterTrigger = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); + sqlite3VdbeJumpHere(v, iGoto); + } + + /* If we are trying to update a view, realize that view into + ** a ephemeral table. + */ + if( isView ){ + sqlite3MaterializeView(pParse, pTab->pSelect, pWhere, iCur); + } + + /* Resolve the column names in all the expressions in the + ** WHERE clause. + */ + if( sqlite3ExprResolveNames(&sNC, pWhere) ){ + goto update_cleanup; + } + + /* Begin the database scan + */ + sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid); + pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, + WHERE_ONEPASS_DESIRED); + if( pWInfo==0 ) goto update_cleanup; + okOnePass = pWInfo->okOnePass; + + /* Remember the rowid of every item to be updated. + */ + sqlite3VdbeAddOp2(v, IsVirtual(pTab)?OP_VRowid:OP_Rowid, iCur, regOldRowid); + if( !okOnePass ) sqlite3VdbeAddOp2(v, OP_FifoWrite, regOldRowid, 0); + + /* End the database scan loop. + */ + sqlite3WhereEnd(pWInfo); + + /* Initialize the count of updated rows + */ + if( db->flags & SQLITE_CountRows && !pParse->trigStack ){ + regRowCount = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); + } + + if( !isView && !IsVirtual(pTab) ){ + /* + ** Open every index that needs updating. Note that if any + ** index could potentially invoke a REPLACE conflict resolution + ** action, then we need to open all indices because we might need + ** to be deleting some records. + */ + if( !okOnePass ) sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenWrite); + if( onError==OE_Replace ){ + openAll = 1; + }else{ + openAll = 0; + for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ + if( pIdx->onError==OE_Replace ){ + openAll = 1; + break; + } + } + } + for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + if( openAll || aRegIdx[i]>0 ){ + KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); + sqlite3VdbeAddOp4(v, OP_OpenWrite, iCur+i+1, pIdx->tnum, iDb, + (char*)pKey, P4_KEYINFO_HANDOFF); + assert( pParse->nTab>iCur+i+1 ); + } + } + } + + /* Jump back to this point if a trigger encounters an IGNORE constraint. */ + if( triggers_exist ){ + sqlite3VdbeResolveLabel(v, addr); + } + + /* Top of the update loop */ + if( okOnePass ){ + int a1 = sqlite3VdbeAddOp1(v, OP_NotNull, regOldRowid); + addr = sqlite3VdbeAddOp0(v, OP_Goto); + sqlite3VdbeJumpHere(v, a1); + }else{ + addr = sqlite3VdbeAddOp2(v, OP_FifoRead, regOldRowid, 0); + } + + if( triggers_exist ){ + int regRowid; + int regRow; + int regCols; + + /* Make cursor iCur point to the record that is being updated. + */ + sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid); + + /* Generate the OLD table + */ + regRowid = sqlite3GetTempReg(pParse); + regRow = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid); + if( !old_col_mask ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, regRow); + }else{ + sqlite3VdbeAddOp2(v, OP_RowData, iCur, regRow); + } + sqlite3VdbeAddOp3(v, OP_Insert, oldIdx, regRow, regRowid); + + /* Generate the NEW table + */ + if( chngRowid ){ + sqlite3ExprCodeAndCache(pParse, pRowidExpr, regRowid); + }else{ + sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regRowid); + } + regCols = sqlite3GetTempRange(pParse, pTab->nCol); + for(i=0; i<pTab->nCol; i++){ + if( i==pTab->iPKey ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i); + continue; + } + j = aXRef[i]; + if( new_col_mask&((u32)1<<i) || new_col_mask==0xffffffff ){ + if( j<0 ){ + sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regCols+i); + sqlite3ColumnDefault(v, pTab, i); + }else{ + sqlite3ExprCodeAndCache(pParse, pChanges->a[j].pExpr, regCols+i); + } + }else{ + sqlite3VdbeAddOp2(v, OP_Null, 0, regCols+i); + } + } + sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRow); + if( !isView ){ + sqlite3TableAffinityStr(v, pTab); + sqlite3ExprCacheAffinityChange(pParse, regCols, pTab->nCol); + } + sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol); + if( pParse->nErr ) goto update_cleanup; + sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRow, regRowid); + sqlite3ReleaseTempReg(pParse, regRowid); + sqlite3ReleaseTempReg(pParse, regRow); + + sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginBeforeTrigger); + sqlite3VdbeJumpHere(v, iEndBeforeTrigger); + } + + if( !isView && !IsVirtual(pTab) ){ + /* Loop over every record that needs updating. We have to load + ** the old data for each record to be updated because some columns + ** might not change and we will need to copy the old value. + ** Also, the old data is needed to delete the old index entries. + ** So make the cursor point at the old record. + */ + sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addr, regOldRowid); + + /* If the record number will change, push the record number as it + ** will be after the update. (The old record number is currently + ** on top of the stack.) + */ + if( chngRowid ){ + sqlite3ExprCode(pParse, pRowidExpr, regNewRowid); + sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); + } + + /* Compute new data for this record. + */ + for(i=0; i<pTab->nCol; i++){ + if( i==pTab->iPKey ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, regData+i); + continue; + } + j = aXRef[i]; + if( j<0 ){ + sqlite3VdbeAddOp3(v, OP_Column, iCur, i, regData+i); + sqlite3ColumnDefault(v, pTab, i); + }else{ + sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regData+i); + } + } + + /* Do constraint checks + */ + sqlite3GenerateConstraintChecks(pParse, pTab, iCur, regNewRowid, + aRegIdx, chngRowid, 1, + onError, addr); + + /* Delete the old indices for the current record. + */ + j1 = sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regOldRowid); + sqlite3GenerateRowIndexDelete(pParse, pTab, iCur, aRegIdx); + + /* If changing the record number, delete the old record. + */ + if( chngRowid ){ + sqlite3VdbeAddOp2(v, OP_Delete, iCur, 0); + } + sqlite3VdbeJumpHere(v, j1); + + /* Create the new index entries and the new record. + */ + sqlite3CompleteInsertion(pParse, pTab, iCur, regNewRowid, + aRegIdx, chngRowid, 1, -1, 0); + } + + /* Increment the row counter + */ + if( db->flags & SQLITE_CountRows && !pParse->trigStack){ + sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); + } + + /* If there are triggers, close all the cursors after each iteration + ** through the loop. The fire the after triggers. + */ + if( triggers_exist ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, iBeginAfterTrigger); + sqlite3VdbeJumpHere(v, iEndAfterTrigger); + } + + /* Repeat the above with the next record to be updated, until + ** all record selected by the WHERE clause have been updated. + */ + sqlite3VdbeAddOp2(v, OP_Goto, 0, addr); + sqlite3VdbeJumpHere(v, addr); + + /* Close all tables */ + for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + if( openAll || aRegIdx[i]>0 ){ + sqlite3VdbeAddOp2(v, OP_Close, iCur+i+1, 0); + } + } + sqlite3VdbeAddOp2(v, OP_Close, iCur, 0); + if( triggers_exist ){ + sqlite3VdbeAddOp2(v, OP_Close, newIdx, 0); + sqlite3VdbeAddOp2(v, OP_Close, oldIdx, 0); + } + + /* + ** Return the number of rows that were changed. If this routine is + ** generating code because of a call to sqlite3NestedParse(), do not + ** invoke the callback function. + */ + if( db->flags & SQLITE_CountRows && !pParse->trigStack && pParse->nested==0 ){ + sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", P4_STATIC); + } + +update_cleanup: + sqlite3AuthContextPop(&sContext); + sqlite3_free(aRegIdx); + sqlite3_free(aXRef); + sqlite3SrcListDelete(pTabList); + sqlite3ExprListDelete(pChanges); + sqlite3ExprDelete(pWhere); + return; +} + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* +** Generate code for an UPDATE of a virtual table. +** +** The strategy is that we create an ephemerial table that contains +** for each row to be changed: +** +** (A) The original rowid of that row. +** (B) The revised rowid for the row. (note1) +** (C) The content of every column in the row. +** +** Then we loop over this ephemeral table and for each row in +** the ephermeral table call VUpdate. +** +** When finished, drop the ephemeral table. +** +** (note1) Actually, if we know in advance that (A) is always the same +** as (B) we only store (A), then duplicate (A) when pulling +** it out of the ephemeral table before calling VUpdate. +*/ +static void updateVirtualTable( + Parse *pParse, /* The parsing context */ + SrcList *pSrc, /* The virtual table to be modified */ + Table *pTab, /* The virtual table */ + ExprList *pChanges, /* The columns to change in the UPDATE statement */ + Expr *pRowid, /* Expression used to recompute the rowid */ + int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ + Expr *pWhere /* WHERE clause of the UPDATE statement */ +){ + Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */ + ExprList *pEList = 0; /* The result set of the SELECT statement */ + Select *pSelect = 0; /* The SELECT statement */ + Expr *pExpr; /* Temporary expression */ + int ephemTab; /* Table holding the result of the SELECT */ + int i; /* Loop counter */ + int addr; /* Address of top of loop */ + int iReg; /* First register in set passed to OP_VUpdate */ + sqlite3 *db = pParse->db; /* Database connection */ + const char *pVtab = (const char*)pTab->pVtab; + SelectDest dest; + + /* Construct the SELECT statement that will find the new values for + ** all updated rows. + */ + pEList = sqlite3ExprListAppend(pParse, 0, + sqlite3CreateIdExpr(pParse, "_rowid_"), 0); + if( pRowid ){ + pEList = sqlite3ExprListAppend(pParse, pEList, + sqlite3ExprDup(db, pRowid), 0); + } + assert( pTab->iPKey<0 ); + for(i=0; i<pTab->nCol; i++){ + if( aXRef[i]>=0 ){ + pExpr = sqlite3ExprDup(db, pChanges->a[aXRef[i]].pExpr); + }else{ + pExpr = sqlite3CreateIdExpr(pParse, pTab->aCol[i].zName); + } + pEList = sqlite3ExprListAppend(pParse, pEList, pExpr, 0); + } + pSelect = sqlite3SelectNew(pParse, pEList, pSrc, pWhere, 0, 0, 0, 0, 0, 0); + + /* Create the ephemeral table into which the update results will + ** be stored. + */ + assert( v ); + ephemTab = pParse->nTab++; + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, pTab->nCol+1+(pRowid!=0)); + + /* fill the ephemeral table + */ + sqlite3SelectDestInit(&dest, SRT_Table, ephemTab); + sqlite3Select(pParse, pSelect, &dest, 0, 0, 0, 0); + + /* Generate code to scan the ephemeral table and call VUpdate. */ + iReg = ++pParse->nMem; + pParse->nMem += pTab->nCol+1; + sqlite3VdbeAddOp2(v, OP_Rewind, ephemTab, 0); + addr = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp3(v, OP_Column, ephemTab, 0, iReg); + sqlite3VdbeAddOp3(v, OP_Column, ephemTab, (pRowid?1:0), iReg+1); + for(i=0; i<pTab->nCol; i++){ + sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i+1+(pRowid!=0), iReg+2+i); + } + sqlite3VtabMakeWritable(pParse, pTab); + sqlite3VdbeAddOp4(v, OP_VUpdate, 0, pTab->nCol+2, iReg, pVtab, P4_VTAB); + sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr); + sqlite3VdbeJumpHere(v, addr-1); + sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); + + /* Cleanup */ + sqlite3SelectDelete(pSelect); +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +/* Make sure "isView" gets undefined in case this file becomes part of +** the amalgamation - so that subsequent files do not see isView as a +** macro. */ +#undef isView + +/************** End of update.c **********************************************/ +/************** Begin file vacuum.c ******************************************/ +/* +** 2003 April 6 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to implement the VACUUM command. +** +** Most of the code in this file may be omitted by defining the +** SQLITE_OMIT_VACUUM macro. +** +** $Id: vacuum.c,v 1.78 2008/04/30 16:38:23 drh Exp $ +*/ + +#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) +/* +** Execute zSql on database db. Return an error code. +*/ +static int execSql(sqlite3 *db, const char *zSql){ + sqlite3_stmt *pStmt; + if( !zSql ){ + return SQLITE_NOMEM; + } + if( SQLITE_OK!=sqlite3_prepare(db, zSql, -1, &pStmt, 0) ){ + return sqlite3_errcode(db); + } + while( SQLITE_ROW==sqlite3_step(pStmt) ){} + return sqlite3_finalize(pStmt); +} + +/* +** Execute zSql on database db. The statement returns exactly +** one column. Execute this as SQL on the same database. +*/ +static int execExecSql(sqlite3 *db, const char *zSql){ + sqlite3_stmt *pStmt; + int rc; + + rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); + if( rc!=SQLITE_OK ) return rc; + + while( SQLITE_ROW==sqlite3_step(pStmt) ){ + rc = execSql(db, (char*)sqlite3_column_text(pStmt, 0)); + if( rc!=SQLITE_OK ){ + sqlite3_finalize(pStmt); + return rc; + } + } + + return sqlite3_finalize(pStmt); +} + +/* +** The non-standard VACUUM command is used to clean up the database, +** collapse free space, etc. It is modelled after the VACUUM command +** in PostgreSQL. +** +** In version 1.0.x of SQLite, the VACUUM command would call +** gdbm_reorganize() on all the database tables. But beginning +** with 2.0.0, SQLite no longer uses GDBM so this command has +** become a no-op. +*/ +SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){ + Vdbe *v = sqlite3GetVdbe(pParse); + if( v ){ + sqlite3VdbeAddOp2(v, OP_Vacuum, 0, 0); + } + return; +} + +/* +** This routine implements the OP_Vacuum opcode of the VDBE. +*/ +SQLITE_PRIVATE int sqlite3RunVacuum(char **pzErrMsg, sqlite3 *db){ + int rc = SQLITE_OK; /* Return code from service routines */ + Btree *pMain; /* The database being vacuumed */ + Btree *pTemp; /* The temporary database we vacuum into */ + char *zSql = 0; /* SQL statements */ + int saved_flags; /* Saved value of the db->flags */ + Db *pDb = 0; /* Database to detach at end of vacuum */ + int nRes; + + /* Save the current value of the write-schema flag before setting it. */ + saved_flags = db->flags; + db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; + + if( !db->autoCommit ){ + sqlite3SetString(pzErrMsg, "cannot VACUUM from within a transaction", + (char*)0); + rc = SQLITE_ERROR; + goto end_of_vacuum; + } + pMain = db->aDb[0].pBt; + + /* Attach the temporary database as 'vacuum_db'. The synchronous pragma + ** can be set to 'off' for this file, as it is not recovered if a crash + ** occurs anyway. The integrity of the database is maintained by a + ** (possibly synchronous) transaction opened on the main database before + ** sqlite3BtreeCopyFile() is called. + ** + ** An optimisation would be to use a non-journaled pager. + ** (Later:) I tried setting "PRAGMA vacuum_db.journal_mode=OFF" but + ** that actually made the VACUUM run slower. Very little journalling + ** actually occurs when doing a vacuum since the vacuum_db is initially + ** empty. Only the journal header is written. Apparently it takes more + ** time to parse and run the PRAGMA to turn journalling off than it does + ** to write the journal header file. + */ + zSql = "ATTACH '' AS vacuum_db;"; + rc = execSql(db, zSql); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + pDb = &db->aDb[db->nDb-1]; + assert( strcmp(db->aDb[db->nDb-1].zName,"vacuum_db")==0 ); + pTemp = db->aDb[db->nDb-1].pBt; + + nRes = sqlite3BtreeGetReserve(pMain); + if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes) + || sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes) + || db->mallocFailed + ){ + rc = SQLITE_NOMEM; + goto end_of_vacuum; + } + rc = execSql(db, "PRAGMA vacuum_db.synchronous=OFF"); + if( rc!=SQLITE_OK ){ + goto end_of_vacuum; + } + +#ifndef SQLITE_OMIT_AUTOVACUUM + sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac : + sqlite3BtreeGetAutoVacuum(pMain)); +#endif + + /* Begin a transaction */ + rc = execSql(db, "BEGIN EXCLUSIVE;"); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + /* Query the schema of the main database. Create a mirror schema + ** in the temporary database. + */ + rc = execExecSql(db, + "SELECT 'CREATE TABLE vacuum_db.' || substr(sql,14) " + " FROM sqlite_master WHERE type='table' AND name!='sqlite_sequence'" + " AND rootpage>0" + ); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = execExecSql(db, + "SELECT 'CREATE INDEX vacuum_db.' || substr(sql,14)" + " FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %' "); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = execExecSql(db, + "SELECT 'CREATE UNIQUE INDEX vacuum_db.' || substr(sql,21) " + " FROM sqlite_master WHERE sql LIKE 'CREATE UNIQUE INDEX %'"); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + /* Loop through the tables in the main database. For each, do + ** an "INSERT INTO vacuum_db.xxx SELECT * FROM xxx;" to copy + ** the contents to the temporary database. + */ + rc = execExecSql(db, + "SELECT 'INSERT INTO vacuum_db.' || quote(name) " + "|| ' SELECT * FROM ' || quote(name) || ';'" + "FROM sqlite_master " + "WHERE type = 'table' AND name!='sqlite_sequence' " + " AND rootpage>0" + + ); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + /* Copy over the sequence table + */ + rc = execExecSql(db, + "SELECT 'DELETE FROM vacuum_db.' || quote(name) || ';' " + "FROM vacuum_db.sqlite_master WHERE name='sqlite_sequence' " + ); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = execExecSql(db, + "SELECT 'INSERT INTO vacuum_db.' || quote(name) " + "|| ' SELECT * FROM ' || quote(name) || ';' " + "FROM vacuum_db.sqlite_master WHERE name=='sqlite_sequence';" + ); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + + + /* Copy the triggers, views, and virtual tables from the main database + ** over to the temporary database. None of these objects has any + ** associated storage, so all we have to do is copy their entries + ** from the SQLITE_MASTER table. + */ + rc = execSql(db, + "INSERT INTO vacuum_db.sqlite_master " + " SELECT type, name, tbl_name, rootpage, sql" + " FROM sqlite_master" + " WHERE type='view' OR type='trigger'" + " OR (type='table' AND rootpage=0)" + ); + if( rc ) goto end_of_vacuum; + + /* At this point, unless the main db was completely empty, there is now a + ** transaction open on the vacuum database, but not on the main database. + ** Open a btree level transaction on the main database. This allows a + ** call to sqlite3BtreeCopyFile(). The main database btree level + ** transaction is then committed, so the SQL level never knows it was + ** opened for writing. This way, the SQL transaction used to create the + ** temporary database never needs to be committed. + */ + if( rc==SQLITE_OK ){ + u32 meta; + int i; + + /* This array determines which meta meta values are preserved in the + ** vacuum. Even entries are the meta value number and odd entries + ** are an increment to apply to the meta value after the vacuum. + ** The increment is used to increase the schema cookie so that other + ** connections to the same database will know to reread the schema. + */ + static const unsigned char aCopy[] = { + 1, 1, /* Add one to the old schema cookie */ + 3, 0, /* Preserve the default page cache size */ + 5, 0, /* Preserve the default text encoding */ + 6, 0, /* Preserve the user version */ + }; + + assert( 1==sqlite3BtreeIsInTrans(pTemp) ); + assert( 1==sqlite3BtreeIsInTrans(pMain) ); + + /* Copy Btree meta values */ + for(i=0; i<sizeof(aCopy)/sizeof(aCopy[0]); i+=2){ + rc = sqlite3BtreeGetMeta(pMain, aCopy[i], &meta); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = sqlite3BtreeUpdateMeta(pTemp, aCopy[i], meta+aCopy[i+1]); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + } + + rc = sqlite3BtreeCopyFile(pMain, pTemp); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = sqlite3BtreeCommit(pTemp); + if( rc!=SQLITE_OK ) goto end_of_vacuum; + rc = sqlite3BtreeCommit(pMain); + } + + if( rc==SQLITE_OK ){ + rc = sqlite3BtreeSetPageSize(pMain, sqlite3BtreeGetPageSize(pTemp), nRes); + } + +end_of_vacuum: + /* Restore the original value of db->flags */ + db->flags = saved_flags; + + /* Currently there is an SQL level transaction open on the vacuum + ** database. No locks are held on any other files (since the main file + ** was committed at the btree level). So it safe to end the transaction + ** by manually setting the autoCommit flag to true and detaching the + ** vacuum database. The vacuum_db journal file is deleted when the pager + ** is closed by the DETACH. + */ + db->autoCommit = 1; + + if( pDb ){ + sqlite3BtreeClose(pDb->pBt); + pDb->pBt = 0; + pDb->pSchema = 0; + } + + sqlite3ResetInternalSchema(db, 0); + + return rc; +} +#endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */ + +/************** End of vacuum.c **********************************************/ +/************** Begin file vtab.c ********************************************/ +/* +** 2006 June 10 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains code used to help implement virtual tables. +** +** $Id: vtab.c,v 1.69 2008/05/05 13:23:04 drh Exp $ +*/ +#ifndef SQLITE_OMIT_VIRTUALTABLE + +static int createModule( + sqlite3 *db, /* Database in which module is registered */ + const char *zName, /* Name assigned to this module */ + const sqlite3_module *pModule, /* The definition of the module */ + void *pAux, /* Context pointer for xCreate/xConnect */ + void (*xDestroy)(void *) /* Module destructor function */ +) { + int rc, nName; + Module *pMod; + + sqlite3_mutex_enter(db->mutex); + nName = strlen(zName); + pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); + if( pMod ){ + char *zCopy = (char *)(&pMod[1]); + memcpy(zCopy, zName, nName+1); + pMod->zName = zCopy; + pMod->pModule = pModule; + pMod->pAux = pAux; + pMod->xDestroy = xDestroy; + pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod); + if( pMod && pMod->xDestroy ){ + pMod->xDestroy(pMod->pAux); + } + sqlite3_free(pMod); + sqlite3ResetInternalSchema(db, 0); + } + rc = sqlite3ApiExit(db, SQLITE_OK); + sqlite3_mutex_leave(db->mutex); + return rc; +} + + +/* +** External API function used to create a new virtual-table module. +*/ +SQLITE_API int sqlite3_create_module( + sqlite3 *db, /* Database in which module is registered */ + const char *zName, /* Name assigned to this module */ + const sqlite3_module *pModule, /* The definition of the module */ + void *pAux /* Context pointer for xCreate/xConnect */ +){ + return createModule(db, zName, pModule, pAux, 0); +} + +/* +** External API function used to create a new virtual-table module. +*/ +SQLITE_API int sqlite3_create_module_v2( + sqlite3 *db, /* Database in which module is registered */ + const char *zName, /* Name assigned to this module */ + const sqlite3_module *pModule, /* The definition of the module */ + void *pAux, /* Context pointer for xCreate/xConnect */ + void (*xDestroy)(void *) /* Module destructor function */ +){ + return createModule(db, zName, pModule, pAux, xDestroy); +} + +/* +** Lock the virtual table so that it cannot be disconnected. +** Locks nest. Every lock should have a corresponding unlock. +** If an unlock is omitted, resources leaks will occur. +** +** If a disconnect is attempted while a virtual table is locked, +** the disconnect is deferred until all locks have been removed. +*/ +SQLITE_PRIVATE void sqlite3VtabLock(sqlite3_vtab *pVtab){ + pVtab->nRef++; +} + +/* +** Unlock a virtual table. When the last lock is removed, +** disconnect the virtual table. +*/ +SQLITE_PRIVATE void sqlite3VtabUnlock(sqlite3 *db, sqlite3_vtab *pVtab){ + pVtab->nRef--; + assert(db); + assert( sqlite3SafetyCheckOk(db) ); + if( pVtab->nRef==0 ){ + if( db->magic==SQLITE_MAGIC_BUSY ){ + (void)sqlite3SafetyOff(db); + pVtab->pModule->xDisconnect(pVtab); + (void)sqlite3SafetyOn(db); + } else { + pVtab->pModule->xDisconnect(pVtab); + } + } +} + +/* +** Clear any and all virtual-table information from the Table record. +** This routine is called, for example, just before deleting the Table +** record. +*/ +SQLITE_PRIVATE void sqlite3VtabClear(Table *p){ + sqlite3_vtab *pVtab = p->pVtab; + if( pVtab ){ + assert( p->pMod && p->pMod->pModule ); + sqlite3VtabUnlock(p->pSchema->db, pVtab); + p->pVtab = 0; + } + if( p->azModuleArg ){ + int i; + for(i=0; i<p->nModuleArg; i++){ + sqlite3_free(p->azModuleArg[i]); + } + sqlite3_free(p->azModuleArg); + } +} + +/* +** Add a new module argument to pTable->azModuleArg[]. +** The string is not copied - the pointer is stored. The +** string will be freed automatically when the table is +** deleted. +*/ +static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ + int i = pTable->nModuleArg++; + int nBytes = sizeof(char *)*(1+pTable->nModuleArg); + char **azModuleArg; + azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); + if( azModuleArg==0 ){ + int j; + for(j=0; j<i; j++){ + sqlite3_free(pTable->azModuleArg[j]); + } + sqlite3_free(zArg); + sqlite3_free(pTable->azModuleArg); + pTable->nModuleArg = 0; + }else{ + azModuleArg[i] = zArg; + azModuleArg[i+1] = 0; + } + pTable->azModuleArg = azModuleArg; +} + +/* +** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE +** statement. The module name has been parsed, but the optional list +** of parameters that follow the module name are still pending. +*/ +SQLITE_PRIVATE void sqlite3VtabBeginParse( + Parse *pParse, /* Parsing context */ + Token *pName1, /* Name of new table, or database name */ + Token *pName2, /* Name of new table or NULL */ + Token *pModuleName /* Name of the module for the virtual table */ +){ + int iDb; /* The database the table is being created in */ + Table *pTable; /* The new virtual table */ + sqlite3 *db; /* Database connection */ + + if( pParse->db->flags & SQLITE_SharedCache ){ + sqlite3ErrorMsg(pParse, "Cannot use virtual tables in shared-cache mode"); + return; + } + + sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, 0); + pTable = pParse->pNewTable; + if( pTable==0 || pParse->nErr ) return; + assert( 0==pTable->pIndex ); + + db = pParse->db; + iDb = sqlite3SchemaToIndex(db, pTable->pSchema); + assert( iDb>=0 ); + + pTable->isVirtual = 1; + pTable->nModuleArg = 0; + addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); + addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName)); + addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); + pParse->sNameToken.n = pModuleName->z + pModuleName->n - pName1->z; + +#ifndef SQLITE_OMIT_AUTHORIZATION + /* Creating a virtual table invokes the authorization callback twice. + ** The first invocation, to obtain permission to INSERT a row into the + ** sqlite_master table, has already been made by sqlite3StartTable(). + ** The second call, to obtain permission to create the table, is made now. + */ + if( pTable->azModuleArg ){ + sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, + pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); + } +#endif +} + +/* +** This routine takes the module argument that has been accumulating +** in pParse->zArg[] and appends it to the list of arguments on the +** virtual table currently under construction in pParse->pTable. +*/ +static void addArgumentToVtab(Parse *pParse){ + if( pParse->sArg.z && pParse->pNewTable ){ + const char *z = (const char*)pParse->sArg.z; + int n = pParse->sArg.n; + sqlite3 *db = pParse->db; + addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); + } +} + +/* +** The parser calls this routine after the CREATE VIRTUAL TABLE statement +** has been completely parsed. +*/ +SQLITE_PRIVATE void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ + Table *pTab; /* The table being constructed */ + sqlite3 *db; /* The database connection */ + char *zModule; /* The module name of the table: USING modulename */ + Module *pMod = 0; + + addArgumentToVtab(pParse); + pParse->sArg.z = 0; + + /* Lookup the module name. */ + pTab = pParse->pNewTable; + if( pTab==0 ) return; + db = pParse->db; + if( pTab->nModuleArg<1 ) return; + zModule = pTab->azModuleArg[0]; + pMod = (Module *)sqlite3HashFind(&db->aModule, zModule, strlen(zModule)); + pTab->pMod = pMod; + + /* If the CREATE VIRTUAL TABLE statement is being entered for the + ** first time (in other words if the virtual table is actually being + ** created now instead of just being read out of sqlite_master) then + ** do additional initialization work and store the statement text + ** in the sqlite_master table. + */ + if( !db->init.busy ){ + char *zStmt; + char *zWhere; + int iDb; + Vdbe *v; + + /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ + if( pEnd ){ + pParse->sNameToken.n = pEnd->z - pParse->sNameToken.z + pEnd->n; + } + zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); + + /* A slot for the record has already been allocated in the + ** SQLITE_MASTER table. We just need to update that slot with all + ** the information we've collected. + ** + ** The VM register number pParse->regRowid holds the rowid of an + ** entry in the sqlite_master table tht was created for this vtab + ** by sqlite3StartTable(). + */ + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + sqlite3NestedParse(pParse, + "UPDATE %Q.%s " + "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " + "WHERE rowid=#%d", + db->aDb[iDb].zName, SCHEMA_TABLE(iDb), + pTab->zName, + pTab->zName, + zStmt, + pParse->regRowid + ); + sqlite3_free(zStmt); + v = sqlite3GetVdbe(pParse); + sqlite3ChangeCookie(pParse, iDb); + + sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); + zWhere = sqlite3MPrintf(db, "name='%q'", pTab->zName); + sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 1, 0, zWhere, P4_DYNAMIC); + sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, + pTab->zName, strlen(pTab->zName) + 1); + } + + /* If we are rereading the sqlite_master table create the in-memory + ** record of the table. If the module has already been registered, + ** also call the xConnect method here. + */ + else { + Table *pOld; + Schema *pSchema = pTab->pSchema; + const char *zName = pTab->zName; + int nName = strlen(zName) + 1; + pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab); + if( pOld ){ + db->mallocFailed = 1; + assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ + return; + } + pSchema->db = pParse->db; + pParse->pNewTable = 0; + } +} + +/* +** The parser calls this routine when it sees the first token +** of an argument to the module name in a CREATE VIRTUAL TABLE statement. +*/ +SQLITE_PRIVATE void sqlite3VtabArgInit(Parse *pParse){ + addArgumentToVtab(pParse); + pParse->sArg.z = 0; + pParse->sArg.n = 0; +} + +/* +** The parser calls this routine for each token after the first token +** in an argument to the module name in a CREATE VIRTUAL TABLE statement. +*/ +SQLITE_PRIVATE void sqlite3VtabArgExtend(Parse *pParse, Token *p){ + Token *pArg = &pParse->sArg; + if( pArg->z==0 ){ + pArg->z = p->z; + pArg->n = p->n; + }else{ + assert(pArg->z < p->z); + pArg->n = (p->z + p->n - pArg->z); + } +} + +/* +** Invoke a virtual table constructor (either xCreate or xConnect). The +** pointer to the function to invoke is passed as the fourth parameter +** to this procedure. +*/ +static int vtabCallConstructor( + sqlite3 *db, + Table *pTab, + Module *pMod, + int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), + char **pzErr +){ + int rc; + int rc2; + sqlite3_vtab *pVtab = 0; + const char *const*azArg = (const char *const*)pTab->azModuleArg; + int nArg = pTab->nModuleArg; + char *zErr = 0; + char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); + + if( !zModuleName ){ + return SQLITE_NOMEM; + } + + assert( !db->pVTab ); + assert( xConstruct ); + + db->pVTab = pTab; + rc = sqlite3SafetyOff(db); + assert( rc==SQLITE_OK ); + rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVtab, &zErr); + rc2 = sqlite3SafetyOn(db); + if( rc==SQLITE_OK && pVtab ){ + pVtab->pModule = pMod->pModule; + pVtab->nRef = 1; + pTab->pVtab = pVtab; + } + + if( SQLITE_OK!=rc ){ + if( zErr==0 ){ + *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); + }else { + *pzErr = sqlite3MPrintf(db, "%s", zErr); + sqlite3_free(zErr); + } + }else if( db->pVTab ){ + const char *zFormat = "vtable constructor did not declare schema: %s"; + *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); + rc = SQLITE_ERROR; + } + if( rc==SQLITE_OK ){ + rc = rc2; + } + db->pVTab = 0; + sqlite3_free(zModuleName); + + /* If everything went according to plan, loop through the columns + ** of the table to see if any of them contain the token "hidden". + ** If so, set the Column.isHidden flag and remove the token from + ** the type string. + */ + if( rc==SQLITE_OK ){ + int iCol; + for(iCol=0; iCol<pTab->nCol; iCol++){ + char *zType = pTab->aCol[iCol].zType; + int nType; + int i = 0; + if( !zType ) continue; + nType = strlen(zType); + if( sqlite3StrNICmp("hidden", zType, 6) || (zType[6] && zType[6]!=' ') ){ + for(i=0; i<nType; i++){ + if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) + && (zType[i+7]=='\0' || zType[i+7]==' ') + ){ + i++; + break; + } + } + } + if( i<nType ){ + int j; + int nDel = 6 + (zType[i+6] ? 1 : 0); + for(j=i; (j+nDel)<=nType; j++){ + zType[j] = zType[j+nDel]; + } + if( zType[i]=='\0' && i>0 ){ + assert(zType[i-1]==' '); + zType[i-1] = '\0'; + } + pTab->aCol[iCol].isHidden = 1; + } + } + } + return rc; +} + +/* +** This function is invoked by the parser to call the xConnect() method +** of the virtual table pTab. If an error occurs, an error code is returned +** and an error left in pParse. +** +** This call is a no-op if table pTab is not a virtual table. +*/ +SQLITE_PRIVATE int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ + Module *pMod; + int rc = SQLITE_OK; + + if( !pTab || !pTab->isVirtual || pTab->pVtab ){ + return SQLITE_OK; + } + + pMod = pTab->pMod; + if( !pMod ){ + const char *zModule = pTab->azModuleArg[0]; + sqlite3ErrorMsg(pParse, "no such module: %s", zModule); + rc = SQLITE_ERROR; + } else { + char *zErr = 0; + sqlite3 *db = pParse->db; + rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); + if( rc!=SQLITE_OK ){ + sqlite3ErrorMsg(pParse, "%s", zErr); + } + sqlite3_free(zErr); + } + + return rc; +} + +/* +** Add the virtual table pVtab to the array sqlite3.aVTrans[]. +*/ +static int addToVTrans(sqlite3 *db, sqlite3_vtab *pVtab){ + const int ARRAY_INCR = 5; + + /* Grow the sqlite3.aVTrans array if required */ + if( (db->nVTrans%ARRAY_INCR)==0 ){ + sqlite3_vtab **aVTrans; + int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); + aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); + if( !aVTrans ){ + return SQLITE_NOMEM; + } + memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); + db->aVTrans = aVTrans; + } + + /* Add pVtab to the end of sqlite3.aVTrans */ + db->aVTrans[db->nVTrans++] = pVtab; + sqlite3VtabLock(pVtab); + return SQLITE_OK; +} + +/* +** This function is invoked by the vdbe to call the xCreate method +** of the virtual table named zTab in database iDb. +** +** If an error occurs, *pzErr is set to point an an English language +** description of the error and an SQLITE_XXX error code is returned. +** In this case the caller must call sqlite3_free() on *pzErr. +*/ +SQLITE_PRIVATE int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ + int rc = SQLITE_OK; + Table *pTab; + Module *pMod; + const char *zModule; + + pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); + assert(pTab && pTab->isVirtual && !pTab->pVtab); + pMod = pTab->pMod; + zModule = pTab->azModuleArg[0]; + + /* If the module has been registered and includes a Create method, + ** invoke it now. If the module has not been registered, return an + ** error. Otherwise, do nothing. + */ + if( !pMod ){ + *pzErr = sqlite3MPrintf(db, "no such module: %s", zModule); + rc = SQLITE_ERROR; + }else{ + rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); + } + + if( rc==SQLITE_OK && pTab->pVtab ){ + rc = addToVTrans(db, pTab->pVtab); + } + + return rc; +} + +/* +** This function is used to set the schema of a virtual table. It is only +** valid to call this function from within the xCreate() or xConnect() of a +** virtual table module. +*/ +SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ + Parse sParse; + + int rc = SQLITE_OK; + Table *pTab; + char *zErr = 0; + + sqlite3_mutex_enter(db->mutex); + pTab = db->pVTab; + if( !pTab ){ + sqlite3Error(db, SQLITE_MISUSE, 0); + sqlite3_mutex_leave(db->mutex); + return SQLITE_MISUSE; + } + assert(pTab->isVirtual && pTab->nCol==0 && pTab->aCol==0); + + memset(&sParse, 0, sizeof(Parse)); + sParse.declareVtab = 1; + sParse.db = db; + + if( + SQLITE_OK == sqlite3RunParser(&sParse, zCreateTable, &zErr) && + sParse.pNewTable && + !sParse.pNewTable->pSelect && + !sParse.pNewTable->isVirtual + ){ + pTab->aCol = sParse.pNewTable->aCol; + pTab->nCol = sParse.pNewTable->nCol; + sParse.pNewTable->nCol = 0; + sParse.pNewTable->aCol = 0; + db->pVTab = 0; + } else { + sqlite3Error(db, SQLITE_ERROR, zErr); + sqlite3_free(zErr); + rc = SQLITE_ERROR; + } + sParse.declareVtab = 0; + + sqlite3_finalize((sqlite3_stmt*)sParse.pVdbe); + sqlite3DeleteTable(sParse.pNewTable); + sParse.pNewTable = 0; + + assert( (rc&0xff)==rc ); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** This function is invoked by the vdbe to call the xDestroy method +** of the virtual table named zTab in database iDb. This occurs +** when a DROP TABLE is mentioned. +** +** This call is a no-op if zTab is not a virtual table. +*/ +SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab) +{ + int rc = SQLITE_OK; + Table *pTab; + + pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); + assert(pTab); + if( pTab->pVtab ){ + int (*xDestroy)(sqlite3_vtab *pVTab) = pTab->pMod->pModule->xDestroy; + rc = sqlite3SafetyOff(db); + assert( rc==SQLITE_OK ); + if( xDestroy ){ + rc = xDestroy(pTab->pVtab); + } + (void)sqlite3SafetyOn(db); + if( rc==SQLITE_OK ){ + int i; + for(i=0; i<db->nVTrans; i++){ + if( db->aVTrans[i]==pTab->pVtab ){ + db->aVTrans[i] = db->aVTrans[--db->nVTrans]; + break; + } + } + pTab->pVtab = 0; + } + } + + return rc; +} + +/* +** This function invokes either the xRollback or xCommit method +** of each of the virtual tables in the sqlite3.aVTrans array. The method +** called is identified by the second argument, "offset", which is +** the offset of the method to call in the sqlite3_module structure. +** +** The array is cleared after invoking the callbacks. +*/ +static void callFinaliser(sqlite3 *db, int offset){ + int i; + if( db->aVTrans ){ + for(i=0; i<db->nVTrans && db->aVTrans[i]; i++){ + sqlite3_vtab *pVtab = db->aVTrans[i]; + int (*x)(sqlite3_vtab *); + x = *(int (**)(sqlite3_vtab *))((char *)pVtab->pModule + offset); + if( x ) x(pVtab); + sqlite3VtabUnlock(db, pVtab); + } + sqlite3_free(db->aVTrans); + db->nVTrans = 0; + db->aVTrans = 0; + } +} + +/* +** If argument rc2 is not SQLITE_OK, then return it and do nothing. +** Otherwise, invoke the xSync method of all virtual tables in the +** sqlite3.aVTrans array. Return the error code for the first error +** that occurs, or SQLITE_OK if all xSync operations are successful. +*/ +SQLITE_PRIVATE int sqlite3VtabSync(sqlite3 *db, int rc2){ + int i; + int rc = SQLITE_OK; + int rcsafety; + sqlite3_vtab **aVTrans = db->aVTrans; + if( rc2!=SQLITE_OK ) return rc2; + + rc = sqlite3SafetyOff(db); + db->aVTrans = 0; + for(i=0; rc==SQLITE_OK && i<db->nVTrans && aVTrans[i]; i++){ + sqlite3_vtab *pVtab = aVTrans[i]; + int (*x)(sqlite3_vtab *); + x = pVtab->pModule->xSync; + if( x ){ + rc = x(pVtab); + } + } + db->aVTrans = aVTrans; + rcsafety = sqlite3SafetyOn(db); + + if( rc==SQLITE_OK ){ + rc = rcsafety; + } + return rc; +} + +/* +** Invoke the xRollback method of all virtual tables in the +** sqlite3.aVTrans array. Then clear the array itself. +*/ +SQLITE_PRIVATE int sqlite3VtabRollback(sqlite3 *db){ + callFinaliser(db, offsetof(sqlite3_module,xRollback)); + return SQLITE_OK; +} + +/* +** Invoke the xCommit method of all virtual tables in the +** sqlite3.aVTrans array. Then clear the array itself. +*/ +SQLITE_PRIVATE int sqlite3VtabCommit(sqlite3 *db){ + callFinaliser(db, offsetof(sqlite3_module,xCommit)); + return SQLITE_OK; +} + +/* +** If the virtual table pVtab supports the transaction interface +** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is +** not currently open, invoke the xBegin method now. +** +** If the xBegin call is successful, place the sqlite3_vtab pointer +** in the sqlite3.aVTrans array. +*/ +SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *db, sqlite3_vtab *pVtab){ + int rc = SQLITE_OK; + const sqlite3_module *pModule; + + /* Special case: If db->aVTrans is NULL and db->nVTrans is greater + ** than zero, then this function is being called from within a + ** virtual module xSync() callback. It is illegal to write to + ** virtual module tables in this case, so return SQLITE_LOCKED. + */ + if( 0==db->aVTrans && db->nVTrans>0 ){ + return SQLITE_LOCKED; + } + if( !pVtab ){ + return SQLITE_OK; + } + pModule = pVtab->pModule; + + if( pModule->xBegin ){ + int i; + + + /* If pVtab is already in the aVTrans array, return early */ + for(i=0; (i<db->nVTrans) && 0!=db->aVTrans[i]; i++){ + if( db->aVTrans[i]==pVtab ){ + return SQLITE_OK; + } + } + + /* Invoke the xBegin method */ + rc = pModule->xBegin(pVtab); + if( rc!=SQLITE_OK ){ + return rc; + } + + rc = addToVTrans(db, pVtab); + } + return rc; +} + +/* +** The first parameter (pDef) is a function implementation. The +** second parameter (pExpr) is the first argument to this function. +** If pExpr is a column in a virtual table, then let the virtual +** table implementation have an opportunity to overload the function. +** +** This routine is used to allow virtual table implementations to +** overload MATCH, LIKE, GLOB, and REGEXP operators. +** +** Return either the pDef argument (indicating no change) or a +** new FuncDef structure that is marked as ephemeral using the +** SQLITE_FUNC_EPHEM flag. +*/ +SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction( + sqlite3 *db, /* Database connection for reporting malloc problems */ + FuncDef *pDef, /* Function to possibly overload */ + int nArg, /* Number of arguments to the function */ + Expr *pExpr /* First argument to the function */ +){ + Table *pTab; + sqlite3_vtab *pVtab; + sqlite3_module *pMod; + void (*xFunc)(sqlite3_context*,int,sqlite3_value**); + void *pArg; + FuncDef *pNew; + int rc = 0; + char *zLowerName; + unsigned char *z; + + + /* Check to see the left operand is a column in a virtual table */ + if( pExpr==0 ) return pDef; + if( pExpr->op!=TK_COLUMN ) return pDef; + pTab = pExpr->pTab; + if( pTab==0 ) return pDef; + if( !pTab->isVirtual ) return pDef; + pVtab = pTab->pVtab; + assert( pVtab!=0 ); + assert( pVtab->pModule!=0 ); + pMod = (sqlite3_module *)pVtab->pModule; + if( pMod->xFindFunction==0 ) return pDef; + + /* Call the xFindFunction method on the virtual table implementation + ** to see if the implementation wants to overload this function + */ + zLowerName = sqlite3DbStrDup(db, pDef->zName); + if( zLowerName ){ + for(z=(unsigned char*)zLowerName; *z; z++){ + *z = sqlite3UpperToLower[*z]; + } + rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); + sqlite3_free(zLowerName); + } + if( rc==0 ){ + return pDef; + } + + /* Create a new ephemeral function definition for the overloaded + ** function */ + pNew = sqlite3DbMallocZero(db, sizeof(*pNew) + strlen(pDef->zName) ); + if( pNew==0 ){ + return pDef; + } + *pNew = *pDef; + memcpy(pNew->zName, pDef->zName, strlen(pDef->zName)+1); + pNew->xFunc = xFunc; + pNew->pUserData = pArg; + pNew->flags |= SQLITE_FUNC_EPHEM; + return pNew; +} + +/* +** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] +** array so that an OP_VBegin will get generated for it. Add pTab to the +** array if it is missing. If pTab is already in the array, this routine +** is a no-op. +*/ +SQLITE_PRIVATE void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ + int i, n; + assert( IsVirtual(pTab) ); + for(i=0; i<pParse->nVtabLock; i++){ + if( pTab==pParse->apVtabLock[i] ) return; + } + n = (pParse->nVtabLock+1)*sizeof(pParse->apVtabLock[0]); + pParse->apVtabLock = sqlite3_realloc(pParse->apVtabLock, n); + if( pParse->apVtabLock ){ + pParse->apVtabLock[pParse->nVtabLock++] = pTab; + }else{ + pParse->db->mallocFailed = 1; + } +} + +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +/************** End of vtab.c ************************************************/ +/************** Begin file where.c *******************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This module contains C code that generates VDBE code used to process +** the WHERE clause of SQL statements. This module is reponsible for +** generating the code that loops through a table looking for applicable +** rows. Indices are selected and used to speed the search when doing +** so is applicable. Because this module is responsible for selecting +** indices, you might also think of this module as the "query optimizer". +** +** $Id: where.c,v 1.302 2008/04/19 14:40:44 drh Exp $ +*/ + +/* +** The number of bits in a Bitmask. "BMS" means "BitMask Size". +*/ +#define BMS (sizeof(Bitmask)*8) + +/* +** Trace output macros +*/ +#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) +SQLITE_PRIVATE int sqlite3WhereTrace = 0; +# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X +#else +# define WHERETRACE(X) +#endif + +/* Forward reference +*/ +typedef struct WhereClause WhereClause; +typedef struct ExprMaskSet ExprMaskSet; + +/* +** The query generator uses an array of instances of this structure to +** help it analyze the subexpressions of the WHERE clause. Each WHERE +** clause subexpression is separated from the others by an AND operator. +** +** All WhereTerms are collected into a single WhereClause structure. +** The following identity holds: +** +** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm +** +** When a term is of the form: +** +** X <op> <expr> +** +** where X is a column name and <op> is one of certain operators, +** then WhereTerm.leftCursor and WhereTerm.leftColumn record the +** cursor number and column number for X. WhereTerm.operator records +** the <op> using a bitmask encoding defined by WO_xxx below. The +** use of a bitmask encoding for the operator allows us to search +** quickly for terms that match any of several different operators. +** +** prereqRight and prereqAll record sets of cursor numbers, +** but they do so indirectly. A single ExprMaskSet structure translates +** cursor number into bits and the translated bit is stored in the prereq +** fields. The translation is used in order to maximize the number of +** bits that will fit in a Bitmask. The VDBE cursor numbers might be +** spread out over the non-negative integers. For example, the cursor +** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet +** translates these sparse cursor numbers into consecutive integers +** beginning with 0 in order to make the best possible use of the available +** bits in the Bitmask. So, in the example above, the cursor numbers +** would be mapped into integers 0 through 7. +*/ +typedef struct WhereTerm WhereTerm; +struct WhereTerm { + Expr *pExpr; /* Pointer to the subexpression */ + i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ + i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ + i16 leftColumn; /* Column number of X in "X <op> <expr>" */ + u16 eOperator; /* A WO_xx value describing <op> */ + u8 flags; /* Bit flags. See below */ + u8 nChild; /* Number of children that must disable us */ + WhereClause *pWC; /* The clause this term is part of */ + Bitmask prereqRight; /* Bitmask of tables used by pRight */ + Bitmask prereqAll; /* Bitmask of tables referenced by p */ +}; + +/* +** Allowed values of WhereTerm.flags +*/ +#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ +#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ +#define TERM_CODED 0x04 /* This term is already coded */ +#define TERM_COPIED 0x08 /* Has a child */ +#define TERM_OR_OK 0x10 /* Used during OR-clause processing */ + +/* +** An instance of the following structure holds all information about a +** WHERE clause. Mostly this is a container for one or more WhereTerms. +*/ +struct WhereClause { + Parse *pParse; /* The parser context */ + ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ + int nTerm; /* Number of terms */ + int nSlot; /* Number of entries in a[] */ + WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ + WhereTerm aStatic[10]; /* Initial static space for a[] */ +}; + +/* +** An instance of the following structure keeps track of a mapping +** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. +** +** The VDBE cursor numbers are small integers contained in +** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE +** clause, the cursor numbers might not begin with 0 and they might +** contain gaps in the numbering sequence. But we want to make maximum +** use of the bits in our bitmasks. This structure provides a mapping +** from the sparse cursor numbers into consecutive integers beginning +** with 0. +** +** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask +** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. +** +** For example, if the WHERE clause expression used these VDBE +** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure +** would map those cursor numbers into bits 0 through 5. +** +** Note that the mapping is not necessarily ordered. In the example +** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, +** 57->5, 73->4. Or one of 719 other combinations might be used. It +** does not really matter. What is important is that sparse cursor +** numbers all get mapped into bit numbers that begin with 0 and contain +** no gaps. +*/ +struct ExprMaskSet { + int n; /* Number of assigned cursor values */ + int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ +}; + + +/* +** Bitmasks for the operators that indices are able to exploit. An +** OR-ed combination of these values can be used when searching for +** terms in the where clause. +*/ +#define WO_IN 1 +#define WO_EQ 2 +#define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) +#define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) +#define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) +#define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) +#define WO_MATCH 64 +#define WO_ISNULL 128 + +/* +** Value for flags returned by bestIndex(). +** +** The least significant byte is reserved as a mask for WO_ values above. +** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. +** But if the table is the right table of a left join, WhereLevel.flags +** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as +** the "op" parameter to findTerm when we are resolving equality constraints. +** ISNULL constraints will then not be used on the right table of a left +** join. Tickets #2177 and #2189. +*/ +#define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ +#define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */ +#define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ +#define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */ +#define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ +#define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */ +#define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */ +#define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ +#define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ +#define WHERE_REVERSE 0x200000 /* Scan in reverse order */ +#define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ +#define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ + +/* +** Initialize a preallocated WhereClause structure. +*/ +static void whereClauseInit( + WhereClause *pWC, /* The WhereClause to be initialized */ + Parse *pParse, /* The parsing context */ + ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ +){ + pWC->pParse = pParse; + pWC->pMaskSet = pMaskSet; + pWC->nTerm = 0; + pWC->nSlot = ArraySize(pWC->aStatic); + pWC->a = pWC->aStatic; +} + +/* +** Deallocate a WhereClause structure. The WhereClause structure +** itself is not freed. This routine is the inverse of whereClauseInit(). +*/ +static void whereClauseClear(WhereClause *pWC){ + int i; + WhereTerm *a; + for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ + if( a->flags & TERM_DYNAMIC ){ + sqlite3ExprDelete(a->pExpr); + } + } + if( pWC->a!=pWC->aStatic ){ + sqlite3_free(pWC->a); + } +} + +/* +** Add a new entries to the WhereClause structure. Increase the allocated +** space as necessary. +** +** If the flags argument includes TERM_DYNAMIC, then responsibility +** for freeing the expression p is assumed by the WhereClause object. +** +** WARNING: This routine might reallocate the space used to store +** WhereTerms. All pointers to WhereTerms should be invalided after +** calling this routine. Such pointers may be reinitialized by referencing +** the pWC->a[] array. +*/ +static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ + WhereTerm *pTerm; + int idx; + if( pWC->nTerm>=pWC->nSlot ){ + WhereTerm *pOld = pWC->a; + pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); + if( pWC->a==0 ){ + pWC->pParse->db->mallocFailed = 1; + if( flags & TERM_DYNAMIC ){ + sqlite3ExprDelete(p); + } + pWC->a = pOld; + return 0; + } + memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); + if( pOld!=pWC->aStatic ){ + sqlite3_free(pOld); + } + pWC->nSlot *= 2; + } + pTerm = &pWC->a[idx = pWC->nTerm]; + pWC->nTerm++; + pTerm->pExpr = p; + pTerm->flags = flags; + pTerm->pWC = pWC; + pTerm->iParent = -1; + return idx; +} + +/* +** This routine identifies subexpressions in the WHERE clause where +** each subexpression is separated by the AND operator or some other +** operator specified in the op parameter. The WhereClause structure +** is filled with pointers to subexpressions. For example: +** +** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) +** \________/ \_______________/ \________________/ +** slot[0] slot[1] slot[2] +** +** The original WHERE clause in pExpr is unaltered. All this routine +** does is make slot[] entries point to substructure within pExpr. +** +** In the previous sentence and in the diagram, "slot[]" refers to +** the WhereClause.a[] array. This array grows as needed to contain +** all terms of the WHERE clause. +*/ +static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ + if( pExpr==0 ) return; + if( pExpr->op!=op ){ + whereClauseInsert(pWC, pExpr, 0); + }else{ + whereSplit(pWC, pExpr->pLeft, op); + whereSplit(pWC, pExpr->pRight, op); + } +} + +/* +** Initialize an expression mask set +*/ +#define initMaskSet(P) memset(P, 0, sizeof(*P)) + +/* +** Return the bitmask for the given cursor number. Return 0 if +** iCursor is not in the set. +*/ +static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ + int i; + for(i=0; i<pMaskSet->n; i++){ + if( pMaskSet->ix[i]==iCursor ){ + return ((Bitmask)1)<<i; + } + } + return 0; +} + +/* +** Create a new mask for cursor iCursor. +** +** There is one cursor per table in the FROM clause. The number of +** tables in the FROM clause is limited by a test early in the +** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] +** array will never overflow. +*/ +static void createMask(ExprMaskSet *pMaskSet, int iCursor){ + assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); + pMaskSet->ix[pMaskSet->n++] = iCursor; +} + +/* +** This routine walks (recursively) an expression tree and generates +** a bitmask indicating which tables are used in that expression +** tree. +** +** In order for this routine to work, the calling function must have +** previously invoked sqlite3ExprResolveNames() on the expression. See +** the header comment on that routine for additional information. +** The sqlite3ExprResolveNames() routines looks for column names and +** sets their opcodes to TK_COLUMN and their Expr.iTable fields to +** the VDBE cursor number of the table. This routine just has to +** translate the cursor numbers into bitmask values and OR all +** the bitmasks together. +*/ +static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); +static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); +static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ + Bitmask mask = 0; + if( p==0 ) return 0; + if( p->op==TK_COLUMN ){ + mask = getMask(pMaskSet, p->iTable); + return mask; + } + mask = exprTableUsage(pMaskSet, p->pRight); + mask |= exprTableUsage(pMaskSet, p->pLeft); + mask |= exprListTableUsage(pMaskSet, p->pList); + mask |= exprSelectTableUsage(pMaskSet, p->pSelect); + return mask; +} +static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ + int i; + Bitmask mask = 0; + if( pList ){ + for(i=0; i<pList->nExpr; i++){ + mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); + } + } + return mask; +} +static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ + Bitmask mask = 0; + while( pS ){ + mask |= exprListTableUsage(pMaskSet, pS->pEList); + mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); + mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); + mask |= exprTableUsage(pMaskSet, pS->pWhere); + mask |= exprTableUsage(pMaskSet, pS->pHaving); + pS = pS->pPrior; + } + return mask; +} + +/* +** Return TRUE if the given operator is one of the operators that is +** allowed for an indexable WHERE clause term. The allowed operators are +** "=", "<", ">", "<=", ">=", and "IN". +*/ +static int allowedOp(int op){ + assert( TK_GT>TK_EQ && TK_GT<TK_GE ); + assert( TK_LT>TK_EQ && TK_LT<TK_GE ); + assert( TK_LE>TK_EQ && TK_LE<TK_GE ); + assert( TK_GE==TK_EQ+4 ); + return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; +} + +/* +** Swap two objects of type T. +*/ +#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} + +/* +** Commute a comparision operator. Expressions of the form "X op Y" +** are converted into "Y op X". +** +** If a collation sequence is associated with either the left or right +** side of the comparison, it remains associated with the same side after +** the commutation. So "Y collate NOCASE op X" becomes +** "X collate NOCASE op Y". This is because any collation sequence on +** the left hand side of a comparison overrides any collation sequence +** attached to the right. For the same reason the EP_ExpCollate flag +** is not commuted. +*/ +static void exprCommute(Expr *pExpr){ + u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); + u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); + assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); + SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); + pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; + pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; + SWAP(Expr*,pExpr->pRight,pExpr->pLeft); + if( pExpr->op>=TK_GT ){ + assert( TK_LT==TK_GT+2 ); + assert( TK_GE==TK_LE+2 ); + assert( TK_GT>TK_EQ ); + assert( TK_GT<TK_LE ); + assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); + pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; + } +} + +/* +** Translate from TK_xx operator to WO_xx bitmask. +*/ +static int operatorMask(int op){ + int c; + assert( allowedOp(op) ); + if( op==TK_IN ){ + c = WO_IN; + }else if( op==TK_ISNULL ){ + c = WO_ISNULL; + }else{ + c = WO_EQ<<(op-TK_EQ); + } + assert( op!=TK_ISNULL || c==WO_ISNULL ); + assert( op!=TK_IN || c==WO_IN ); + assert( op!=TK_EQ || c==WO_EQ ); + assert( op!=TK_LT || c==WO_LT ); + assert( op!=TK_LE || c==WO_LE ); + assert( op!=TK_GT || c==WO_GT ); + assert( op!=TK_GE || c==WO_GE ); + return c; +} + +/* +** Search for a term in the WHERE clause that is of the form "X <op> <expr>" +** where X is a reference to the iColumn of table iCur and <op> is one of +** the WO_xx operator codes specified by the op parameter. +** Return a pointer to the term. Return 0 if not found. +*/ +static WhereTerm *findTerm( + WhereClause *pWC, /* The WHERE clause to be searched */ + int iCur, /* Cursor number of LHS */ + int iColumn, /* Column number of LHS */ + Bitmask notReady, /* RHS must not overlap with this mask */ + u16 op, /* Mask of WO_xx values describing operator */ + Index *pIdx /* Must be compatible with this index, if not NULL */ +){ + WhereTerm *pTerm; + int k; + for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ + if( pTerm->leftCursor==iCur + && (pTerm->prereqRight & notReady)==0 + && pTerm->leftColumn==iColumn + && (pTerm->eOperator & op)!=0 + ){ + if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){ + Expr *pX = pTerm->pExpr; + CollSeq *pColl; + char idxaff; + int j; + Parse *pParse = pWC->pParse; + + idxaff = pIdx->pTable->aCol[iColumn].affinity; + if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; + + /* Figure out the collation sequence required from an index for + ** it to be useful for optimising expression pX. Store this + ** value in variable pColl. + */ + assert(pX->pLeft); + pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); + if( !pColl ){ + pColl = pParse->db->pDfltColl; + } + + for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} + assert( j<pIdx->nColumn ); + if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; + } + return pTerm; + } + } + return 0; +} + +/* Forward reference */ +static void exprAnalyze(SrcList*, WhereClause*, int); + +/* +** Call exprAnalyze on all terms in a WHERE clause. +** +** +*/ +static void exprAnalyzeAll( + SrcList *pTabList, /* the FROM clause */ + WhereClause *pWC /* the WHERE clause to be analyzed */ +){ + int i; + for(i=pWC->nTerm-1; i>=0; i--){ + exprAnalyze(pTabList, pWC, i); + } +} + +#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION +/* +** Check to see if the given expression is a LIKE or GLOB operator that +** can be optimized using inequality constraints. Return TRUE if it is +** so and false if not. +** +** In order for the operator to be optimizible, the RHS must be a string +** literal that does not begin with a wildcard. +*/ +static int isLikeOrGlob( + sqlite3 *db, /* The database */ + Expr *pExpr, /* Test this expression */ + int *pnPattern, /* Number of non-wildcard prefix characters */ + int *pisComplete, /* True if the only wildcard is % in the last character */ + int *pnoCase /* True if uppercase is equivalent to lowercase */ +){ + const char *z; + Expr *pRight, *pLeft; + ExprList *pList; + int c, cnt; + char wc[3]; + CollSeq *pColl; + + if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ + return 0; + } +#ifdef SQLITE_EBCDIC + if( *pnoCase ) return 0; +#endif + pList = pExpr->pList; + pRight = pList->a[0].pExpr; + if( pRight->op!=TK_STRING + && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){ + return 0; + } + pLeft = pList->a[1].pExpr; + if( pLeft->op!=TK_COLUMN ){ + return 0; + } + pColl = pLeft->pColl; + assert( pColl!=0 || pLeft->iColumn==-1 ); + if( pColl==0 ){ + /* No collation is defined for the ROWID. Use the default. */ + pColl = db->pDfltColl; + } + if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && + (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ + return 0; + } + sqlite3DequoteExpr(db, pRight); + z = (char *)pRight->token.z; + cnt = 0; + if( z ){ + while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } + } + if( cnt==0 || 255==(u8)z[cnt] ){ + return 0; + } + *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; + *pnPattern = cnt; + return 1; +} +#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ + + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* +** Check to see if the given expression is of the form +** +** column MATCH expr +** +** If it is then return TRUE. If not, return FALSE. +*/ +static int isMatchOfColumn( + Expr *pExpr /* Test this expression */ +){ + ExprList *pList; + + if( pExpr->op!=TK_FUNCTION ){ + return 0; + } + if( pExpr->token.n!=5 || + sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ + return 0; + } + pList = pExpr->pList; + if( pList->nExpr!=2 ){ + return 0; + } + if( pList->a[1].pExpr->op != TK_COLUMN ){ + return 0; + } + return 1; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +/* +** If the pBase expression originated in the ON or USING clause of +** a join, then transfer the appropriate markings over to derived. +*/ +static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ + pDerived->flags |= pBase->flags & EP_FromJoin; + pDerived->iRightJoinTable = pBase->iRightJoinTable; +} + +#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) +/* +** Return TRUE if the given term of an OR clause can be converted +** into an IN clause. The iCursor and iColumn define the left-hand +** side of the IN clause. +** +** The context is that we have multiple OR-connected equality terms +** like this: +** +** a=<expr1> OR a=<expr2> OR b=<expr3> OR ... +** +** The pOrTerm input to this routine corresponds to a single term of +** this OR clause. In order for the term to be a condidate for +** conversion to an IN operator, the following must be true: +** +** * The left-hand side of the term must be the column which +** is identified by iCursor and iColumn. +** +** * If the right-hand side is also a column, then the affinities +** of both right and left sides must be such that no type +** conversions are required on the right. (Ticket #2249) +** +** If both of these conditions are true, then return true. Otherwise +** return false. +*/ +static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ + int affLeft, affRight; + assert( pOrTerm->eOperator==WO_EQ ); + if( pOrTerm->leftCursor!=iCursor ){ + return 0; + } + if( pOrTerm->leftColumn!=iColumn ){ + return 0; + } + affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); + if( affRight==0 ){ + return 1; + } + affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); + if( affRight!=affLeft ){ + return 0; + } + return 1; +} + +/* +** Return true if the given term of an OR clause can be ignored during +** a check to make sure all OR terms are candidates for optimization. +** In other words, return true if a call to the orTermIsOptCandidate() +** above returned false but it is not necessary to disqualify the +** optimization. +** +** Suppose the original OR phrase was this: +** +** a=4 OR a=11 OR a=b +** +** During analysis, the third term gets flipped around and duplicate +** so that we are left with this: +** +** a=4 OR a=11 OR a=b OR b=a +** +** Since the last two terms are duplicates, only one of them +** has to qualify in order for the whole phrase to qualify. When +** this routine is called, we know that pOrTerm did not qualify. +** This routine merely checks to see if pOrTerm has a duplicate that +** might qualify. If there is a duplicate that has not yet been +** disqualified, then return true. If there are no duplicates, or +** the duplicate has also been disqualifed, return false. +*/ +static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ + if( pOrTerm->flags & TERM_COPIED ){ + /* This is the original term. The duplicate is to the left had + ** has not yet been analyzed and thus has not yet been disqualified. */ + return 1; + } + if( (pOrTerm->flags & TERM_VIRTUAL)!=0 + && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){ + /* This is a duplicate term. The original qualified so this one + ** does not have to. */ + return 1; + } + /* This is either a singleton term or else it is a duplicate for + ** which the original did not qualify. Either way we are done for. */ + return 0; +} +#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ + +/* +** The input to this routine is an WhereTerm structure with only the +** "pExpr" field filled in. The job of this routine is to analyze the +** subexpression and populate all the other fields of the WhereTerm +** structure. +** +** If the expression is of the form "<expr> <op> X" it gets commuted +** to the standard form of "X <op> <expr>". If the expression is of +** the form "X <op> Y" where both X and Y are columns, then the original +** expression is unchanged and a new virtual expression of the form +** "Y <op> X" is added to the WHERE clause and analyzed separately. +*/ +static void exprAnalyze( + SrcList *pSrc, /* the FROM clause */ + WhereClause *pWC, /* the WHERE clause */ + int idxTerm /* Index of the term to be analyzed */ +){ + WhereTerm *pTerm; + ExprMaskSet *pMaskSet; + Expr *pExpr; + Bitmask prereqLeft; + Bitmask prereqAll; + Bitmask extraRight = 0; + int nPattern; + int isComplete; + int noCase; + int op; + Parse *pParse = pWC->pParse; + sqlite3 *db = pParse->db; + + if( db->mallocFailed ){ + return; + } + pTerm = &pWC->a[idxTerm]; + pMaskSet = pWC->pMaskSet; + pExpr = pTerm->pExpr; + prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); + op = pExpr->op; + if( op==TK_IN ){ + assert( pExpr->pRight==0 ); + pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) + | exprSelectTableUsage(pMaskSet, pExpr->pSelect); + }else if( op==TK_ISNULL ){ + pTerm->prereqRight = 0; + }else{ + pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); + } + prereqAll = exprTableUsage(pMaskSet, pExpr); + if( ExprHasProperty(pExpr, EP_FromJoin) ){ + Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); + prereqAll |= x; + extraRight = x-1; /* ON clause terms may not be used with an index + ** on left table of a LEFT JOIN. Ticket #3015 */ + } + pTerm->prereqAll = prereqAll; + pTerm->leftCursor = -1; + pTerm->iParent = -1; + pTerm->eOperator = 0; + if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ + Expr *pLeft = pExpr->pLeft; + Expr *pRight = pExpr->pRight; + if( pLeft->op==TK_COLUMN ){ + pTerm->leftCursor = pLeft->iTable; + pTerm->leftColumn = pLeft->iColumn; + pTerm->eOperator = operatorMask(op); + } + if( pRight && pRight->op==TK_COLUMN ){ + WhereTerm *pNew; + Expr *pDup; + if( pTerm->leftCursor>=0 ){ + int idxNew; + pDup = sqlite3ExprDup(db, pExpr); + if( db->mallocFailed ){ + sqlite3ExprDelete(pDup); + return; + } + idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); + if( idxNew==0 ) return; + pNew = &pWC->a[idxNew]; + pNew->iParent = idxTerm; + pTerm = &pWC->a[idxTerm]; + pTerm->nChild = 1; + pTerm->flags |= TERM_COPIED; + }else{ + pDup = pExpr; + pNew = pTerm; + } + exprCommute(pDup); + pLeft = pDup->pLeft; + pNew->leftCursor = pLeft->iTable; + pNew->leftColumn = pLeft->iColumn; + pNew->prereqRight = prereqLeft; + pNew->prereqAll = prereqAll; + pNew->eOperator = operatorMask(pDup->op); + } + } + +#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION + /* If a term is the BETWEEN operator, create two new virtual terms + ** that define the range that the BETWEEN implements. + */ + else if( pExpr->op==TK_BETWEEN ){ + ExprList *pList = pExpr->pList; + int i; + static const u8 ops[] = {TK_GE, TK_LE}; + assert( pList!=0 ); + assert( pList->nExpr==2 ); + for(i=0; i<2; i++){ + Expr *pNewExpr; + int idxNew; + pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft), + sqlite3ExprDup(db, pList->a[i].pExpr), 0); + idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); + exprAnalyze(pSrc, pWC, idxNew); + pTerm = &pWC->a[idxTerm]; + pWC->a[idxNew].iParent = idxTerm; + } + pTerm->nChild = 2; + } +#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ + +#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) + /* Attempt to convert OR-connected terms into an IN operator so that + ** they can make use of indices. Example: + ** + ** x = expr1 OR expr2 = x OR x = expr3 + ** + ** is converted into + ** + ** x IN (expr1,expr2,expr3) + ** + ** This optimization must be omitted if OMIT_SUBQUERY is defined because + ** the compiler for the the IN operator is part of sub-queries. + */ + else if( pExpr->op==TK_OR ){ + int ok; + int i, j; + int iColumn, iCursor; + WhereClause sOr; + WhereTerm *pOrTerm; + + assert( (pTerm->flags & TERM_DYNAMIC)==0 ); + whereClauseInit(&sOr, pWC->pParse, pMaskSet); + whereSplit(&sOr, pExpr, TK_OR); + exprAnalyzeAll(pSrc, &sOr); + assert( sOr.nTerm>=2 ); + j = 0; + if( db->mallocFailed ) goto or_not_possible; + do{ + assert( j<sOr.nTerm ); + iColumn = sOr.a[j].leftColumn; + iCursor = sOr.a[j].leftCursor; + ok = iCursor>=0; + for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ + if( pOrTerm->eOperator!=WO_EQ ){ + goto or_not_possible; + } + if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ + pOrTerm->flags |= TERM_OR_OK; + }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ + pOrTerm->flags &= ~TERM_OR_OK; + }else{ + ok = 0; + } + } + }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 ); + if( ok ){ + ExprList *pList = 0; + Expr *pNew, *pDup; + Expr *pLeft = 0; + for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ + if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; + pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight); + pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); + pLeft = pOrTerm->pExpr->pLeft; + } + assert( pLeft!=0 ); + pDup = sqlite3ExprDup(db, pLeft); + pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); + if( pNew ){ + int idxNew; + transferJoinMarkings(pNew, pExpr); + pNew->pList = pList; + idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); + exprAnalyze(pSrc, pWC, idxNew); + pTerm = &pWC->a[idxTerm]; + pWC->a[idxNew].iParent = idxTerm; + pTerm->nChild = 1; + }else{ + sqlite3ExprListDelete(pList); + } + } +or_not_possible: + whereClauseClear(&sOr); + } +#endif /* SQLITE_OMIT_OR_OPTIMIZATION */ + +#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION + /* Add constraints to reduce the search space on a LIKE or GLOB + ** operator. + ** + ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints + ** + ** x>='abc' AND x<'abd' AND x LIKE 'abc%' + ** + ** The last character of the prefix "abc" is incremented to form the + ** termination condidtion "abd". This trick of incrementing the last + ** is not 255 and if the character set is not EBCDIC. + */ + if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase) ){ + Expr *pLeft, *pRight; + Expr *pStr1, *pStr2; + Expr *pNewExpr1, *pNewExpr2; + int idxNew1, idxNew2; + + pLeft = pExpr->pList->a[1].pExpr; + pRight = pExpr->pList->a[0].pExpr; + pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); + if( pStr1 ){ + sqlite3TokenCopy(db, &pStr1->token, &pRight->token); + pStr1->token.n = nPattern; + pStr1->flags = EP_Dequoted; + } + pStr2 = sqlite3ExprDup(db, pStr1); + if( !db->mallocFailed ){ + u8 c, *pC; + assert( pStr2->token.dyn ); + pC = (u8*)&pStr2->token.z[nPattern-1]; + c = *pC; + if( noCase ) c = sqlite3UpperToLower[c]; + *pC = c + 1; + } + pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0); + idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); + exprAnalyze(pSrc, pWC, idxNew1); + pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0); + idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); + exprAnalyze(pSrc, pWC, idxNew2); + pTerm = &pWC->a[idxTerm]; + if( isComplete ){ + pWC->a[idxNew1].iParent = idxTerm; + pWC->a[idxNew2].iParent = idxTerm; + pTerm->nChild = 2; + } + } +#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ + +#ifndef SQLITE_OMIT_VIRTUALTABLE + /* Add a WO_MATCH auxiliary term to the constraint set if the + ** current expression is of the form: column MATCH expr. + ** This information is used by the xBestIndex methods of + ** virtual tables. The native query optimizer does not attempt + ** to do anything with MATCH functions. + */ + if( isMatchOfColumn(pExpr) ){ + int idxNew; + Expr *pRight, *pLeft; + WhereTerm *pNewTerm; + Bitmask prereqColumn, prereqExpr; + + pRight = pExpr->pList->a[0].pExpr; + pLeft = pExpr->pList->a[1].pExpr; + prereqExpr = exprTableUsage(pMaskSet, pRight); + prereqColumn = exprTableUsage(pMaskSet, pLeft); + if( (prereqExpr & prereqColumn)==0 ){ + Expr *pNewExpr; + pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0); + idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); + pNewTerm = &pWC->a[idxNew]; + pNewTerm->prereqRight = prereqExpr; + pNewTerm->leftCursor = pLeft->iTable; + pNewTerm->leftColumn = pLeft->iColumn; + pNewTerm->eOperator = WO_MATCH; + pNewTerm->iParent = idxTerm; + pTerm = &pWC->a[idxTerm]; + pTerm->nChild = 1; + pTerm->flags |= TERM_COPIED; + pNewTerm->prereqAll = pTerm->prereqAll; + } + } +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + + /* Prevent ON clause terms of a LEFT JOIN from being used to drive + ** an index for tables to the left of the join. + */ + pTerm->prereqRight |= extraRight; +} + +/* +** Return TRUE if any of the expressions in pList->a[iFirst...] contain +** a reference to any table other than the iBase table. +*/ +static int referencesOtherTables( + ExprList *pList, /* Search expressions in ths list */ + ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ + int iFirst, /* Be searching with the iFirst-th expression */ + int iBase /* Ignore references to this table */ +){ + Bitmask allowed = ~getMask(pMaskSet, iBase); + while( iFirst<pList->nExpr ){ + if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ + return 1; + } + } + return 0; +} + + +/* +** This routine decides if pIdx can be used to satisfy the ORDER BY +** clause. If it can, it returns 1. If pIdx cannot satisfy the +** ORDER BY clause, this routine returns 0. +** +** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the +** left-most table in the FROM clause of that same SELECT statement and +** the table has a cursor number of "base". pIdx is an index on pTab. +** +** nEqCol is the number of columns of pIdx that are used as equality +** constraints. Any of these columns may be missing from the ORDER BY +** clause and the match can still be a success. +** +** All terms of the ORDER BY that match against the index must be either +** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE +** index do not need to satisfy this constraint.) The *pbRev value is +** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if +** the ORDER BY clause is all ASC. +*/ +static int isSortingIndex( + Parse *pParse, /* Parsing context */ + ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ + Index *pIdx, /* The index we are testing */ + int base, /* Cursor number for the table to be sorted */ + ExprList *pOrderBy, /* The ORDER BY clause */ + int nEqCol, /* Number of index columns with == constraints */ + int *pbRev /* Set to 1 if ORDER BY is DESC */ +){ + int i, j; /* Loop counters */ + int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ + int nTerm; /* Number of ORDER BY terms */ + struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ + sqlite3 *db = pParse->db; + + assert( pOrderBy!=0 ); + nTerm = pOrderBy->nExpr; + assert( nTerm>0 ); + + /* Match terms of the ORDER BY clause against columns of + ** the index. + ** + ** Note that indices have pIdx->nColumn regular columns plus + ** one additional column containing the rowid. The rowid column + ** of the index is also allowed to match against the ORDER BY + ** clause. + */ + for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ + Expr *pExpr; /* The expression of the ORDER BY pTerm */ + CollSeq *pColl; /* The collating sequence of pExpr */ + int termSortOrder; /* Sort order for this term */ + int iColumn; /* The i-th column of the index. -1 for rowid */ + int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ + const char *zColl; /* Name of the collating sequence for i-th index term */ + + pExpr = pTerm->pExpr; + if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ + /* Can not use an index sort on anything that is not a column in the + ** left-most table of the FROM clause */ + break; + } + pColl = sqlite3ExprCollSeq(pParse, pExpr); + if( !pColl ){ + pColl = db->pDfltColl; + } + if( i<pIdx->nColumn ){ + iColumn = pIdx->aiColumn[i]; + if( iColumn==pIdx->pTable->iPKey ){ + iColumn = -1; + } + iSortOrder = pIdx->aSortOrder[i]; + zColl = pIdx->azColl[i]; + }else{ + iColumn = -1; + iSortOrder = 0; + zColl = pColl->zName; + } + if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ + /* Term j of the ORDER BY clause does not match column i of the index */ + if( i<nEqCol ){ + /* If an index column that is constrained by == fails to match an + ** ORDER BY term, that is OK. Just ignore that column of the index + */ + continue; + }else{ + /* If an index column fails to match and is not constrained by == + ** then the index cannot satisfy the ORDER BY constraint. + */ + return 0; + } + } + assert( pIdx->aSortOrder!=0 ); + assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); + assert( iSortOrder==0 || iSortOrder==1 ); + termSortOrder = iSortOrder ^ pTerm->sortOrder; + if( i>nEqCol ){ + if( termSortOrder!=sortOrder ){ + /* Indices can only be used if all ORDER BY terms past the + ** equality constraints are all either DESC or ASC. */ + return 0; + } + }else{ + sortOrder = termSortOrder; + } + j++; + pTerm++; + if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ + /* If the indexed column is the primary key and everything matches + ** so far and none of the ORDER BY terms to the right reference other + ** tables in the join, then we are assured that the index can be used + ** to sort because the primary key is unique and so none of the other + ** columns will make any difference + */ + j = nTerm; + } + } + + *pbRev = sortOrder!=0; + if( j>=nTerm ){ + /* All terms of the ORDER BY clause are covered by this index so + ** this index can be used for sorting. */ + return 1; + } + if( pIdx->onError!=OE_None && i==pIdx->nColumn + && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ + /* All terms of this index match some prefix of the ORDER BY clause + ** and the index is UNIQUE and no terms on the tail of the ORDER BY + ** clause reference other tables in a join. If this is all true then + ** the order by clause is superfluous. */ + return 1; + } + return 0; +} + +/* +** Check table to see if the ORDER BY clause in pOrderBy can be satisfied +** by sorting in order of ROWID. Return true if so and set *pbRev to be +** true for reverse ROWID and false for forward ROWID order. +*/ +static int sortableByRowid( + int base, /* Cursor number for table to be sorted */ + ExprList *pOrderBy, /* The ORDER BY clause */ + ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ + int *pbRev /* Set to 1 if ORDER BY is DESC */ +){ + Expr *p; + + assert( pOrderBy!=0 ); + assert( pOrderBy->nExpr>0 ); + p = pOrderBy->a[0].pExpr; + if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 + && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ + *pbRev = pOrderBy->a[0].sortOrder; + return 1; + } + return 0; +} + +/* +** Prepare a crude estimate of the logarithm of the input value. +** The results need not be exact. This is only used for estimating +** the total cost of performing operatings with O(logN) or O(NlogN) +** complexity. Because N is just a guess, it is no great tragedy if +** logN is a little off. +*/ +static double estLog(double N){ + double logN = 1; + double x = 10; + while( N>x ){ + logN += 1; + x *= 10; + } + return logN; +} + +/* +** Two routines for printing the content of an sqlite3_index_info +** structure. Used for testing and debugging only. If neither +** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines +** are no-ops. +*/ +#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) +static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ + int i; + if( !sqlite3WhereTrace ) return; + for(i=0; i<p->nConstraint; i++){ + sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", + i, + p->aConstraint[i].iColumn, + p->aConstraint[i].iTermOffset, + p->aConstraint[i].op, + p->aConstraint[i].usable); + } + for(i=0; i<p->nOrderBy; i++){ + sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", + i, + p->aOrderBy[i].iColumn, + p->aOrderBy[i].desc); + } +} +static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ + int i; + if( !sqlite3WhereTrace ) return; + for(i=0; i<p->nConstraint; i++){ + sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", + i, + p->aConstraintUsage[i].argvIndex, + p->aConstraintUsage[i].omit); + } + sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); + sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); + sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); + sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); +} +#else +#define TRACE_IDX_INPUTS(A) +#define TRACE_IDX_OUTPUTS(A) +#endif + +#ifndef SQLITE_OMIT_VIRTUALTABLE +/* +** Compute the best index for a virtual table. +** +** The best index is computed by the xBestIndex method of the virtual +** table module. This routine is really just a wrapper that sets up +** the sqlite3_index_info structure that is used to communicate with +** xBestIndex. +** +** In a join, this routine might be called multiple times for the +** same virtual table. The sqlite3_index_info structure is created +** and initialized on the first invocation and reused on all subsequent +** invocations. The sqlite3_index_info structure is also used when +** code is generated to access the virtual table. The whereInfoDelete() +** routine takes care of freeing the sqlite3_index_info structure after +** everybody has finished with it. +*/ +static double bestVirtualIndex( + Parse *pParse, /* The parsing context */ + WhereClause *pWC, /* The WHERE clause */ + struct SrcList_item *pSrc, /* The FROM clause term to search */ + Bitmask notReady, /* Mask of cursors that are not available */ + ExprList *pOrderBy, /* The order by clause */ + int orderByUsable, /* True if we can potential sort */ + sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ +){ + Table *pTab = pSrc->pTab; + sqlite3_index_info *pIdxInfo; + struct sqlite3_index_constraint *pIdxCons; + struct sqlite3_index_orderby *pIdxOrderBy; + struct sqlite3_index_constraint_usage *pUsage; + WhereTerm *pTerm; + int i, j; + int nOrderBy; + int rc; + + /* If the sqlite3_index_info structure has not been previously + ** allocated and initialized for this virtual table, then allocate + ** and initialize it now + */ + pIdxInfo = *ppIdxInfo; + if( pIdxInfo==0 ){ + WhereTerm *pTerm; + int nTerm; + WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); + + /* Count the number of possible WHERE clause constraints referring + ** to this virtual table */ + for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ + if( pTerm->leftCursor != pSrc->iCursor ) continue; + if( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); + testcase( pTerm->eOperator==WO_IN ); + testcase( pTerm->eOperator==WO_ISNULL ); + if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; + nTerm++; + } + + /* If the ORDER BY clause contains only columns in the current + ** virtual table then allocate space for the aOrderBy part of + ** the sqlite3_index_info structure. + */ + nOrderBy = 0; + if( pOrderBy ){ + for(i=0; i<pOrderBy->nExpr; i++){ + Expr *pExpr = pOrderBy->a[i].pExpr; + if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; + } + if( i==pOrderBy->nExpr ){ + nOrderBy = pOrderBy->nExpr; + } + } + + /* Allocate the sqlite3_index_info structure + */ + pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) + + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm + + sizeof(*pIdxOrderBy)*nOrderBy ); + if( pIdxInfo==0 ){ + sqlite3ErrorMsg(pParse, "out of memory"); + return 0.0; + } + *ppIdxInfo = pIdxInfo; + + /* Initialize the structure. The sqlite3_index_info structure contains + ** many fields that are declared "const" to prevent xBestIndex from + ** changing them. We have to do some funky casting in order to + ** initialize those fields. + */ + pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; + pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; + pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; + *(int*)&pIdxInfo->nConstraint = nTerm; + *(int*)&pIdxInfo->nOrderBy = nOrderBy; + *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; + *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; + *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = + pUsage; + + for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ + if( pTerm->leftCursor != pSrc->iCursor ) continue; + if( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); + testcase( pTerm->eOperator==WO_IN ); + testcase( pTerm->eOperator==WO_ISNULL ); + if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; + pIdxCons[j].iColumn = pTerm->leftColumn; + pIdxCons[j].iTermOffset = i; + pIdxCons[j].op = pTerm->eOperator; + /* The direct assignment in the previous line is possible only because + ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The + ** following asserts verify this fact. */ + assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); + assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); + assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); + assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); + assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); + assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); + assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); + j++; + } + for(i=0; i<nOrderBy; i++){ + Expr *pExpr = pOrderBy->a[i].pExpr; + pIdxOrderBy[i].iColumn = pExpr->iColumn; + pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; + } + } + + /* At this point, the sqlite3_index_info structure that pIdxInfo points + ** to will have been initialized, either during the current invocation or + ** during some prior invocation. Now we just have to customize the + ** details of pIdxInfo for the current invocation and pass it to + ** xBestIndex. + */ + + /* The module name must be defined. Also, by this point there must + ** be a pointer to an sqlite3_vtab structure. Otherwise + ** sqlite3ViewGetColumnNames() would have picked up the error. + */ + assert( pTab->azModuleArg && pTab->azModuleArg[0] ); + assert( pTab->pVtab ); +#if 0 + if( pTab->pVtab==0 ){ + sqlite3ErrorMsg(pParse, "undefined module %s for table %s", + pTab->azModuleArg[0], pTab->zName); + return 0.0; + } +#endif + + /* Set the aConstraint[].usable fields and initialize all + ** output variables to zero. + ** + ** aConstraint[].usable is true for constraints where the right-hand + ** side contains only references to tables to the left of the current + ** table. In other words, if the constraint is of the form: + ** + ** column = expr + ** + ** and we are evaluating a join, then the constraint on column is + ** only valid if all tables referenced in expr occur to the left + ** of the table containing column. + ** + ** The aConstraints[] array contains entries for all constraints + ** on the current table. That way we only have to compute it once + ** even though we might try to pick the best index multiple times. + ** For each attempt at picking an index, the order of tables in the + ** join might be different so we have to recompute the usable flag + ** each time. + */ + pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; + pUsage = pIdxInfo->aConstraintUsage; + for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ + j = pIdxCons->iTermOffset; + pTerm = &pWC->a[j]; + pIdxCons->usable = (pTerm->prereqRight & notReady)==0; + } + memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); + if( pIdxInfo->needToFreeIdxStr ){ + sqlite3_free(pIdxInfo->idxStr); + } + pIdxInfo->idxStr = 0; + pIdxInfo->idxNum = 0; + pIdxInfo->needToFreeIdxStr = 0; + pIdxInfo->orderByConsumed = 0; + pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; + nOrderBy = pIdxInfo->nOrderBy; + if( pIdxInfo->nOrderBy && !orderByUsable ){ + *(int*)&pIdxInfo->nOrderBy = 0; + } + + (void)sqlite3SafetyOff(pParse->db); + WHERETRACE(("xBestIndex for %s\n", pTab->zName)); + TRACE_IDX_INPUTS(pIdxInfo); + rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); + TRACE_IDX_OUTPUTS(pIdxInfo); + (void)sqlite3SafetyOn(pParse->db); + + for(i=0; i<pIdxInfo->nConstraint; i++){ + if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){ + sqlite3ErrorMsg(pParse, + "table %s: xBestIndex returned an invalid plan", pTab->zName); + return 0.0; + } + } + + if( rc!=SQLITE_OK ){ + if( rc==SQLITE_NOMEM ){ + pParse->db->mallocFailed = 1; + }else { + sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); + } + } + *(int*)&pIdxInfo->nOrderBy = nOrderBy; + + return pIdxInfo->estimatedCost; +} +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + +/* +** Find the best index for accessing a particular table. Return a pointer +** to the index, flags that describe how the index should be used, the +** number of equality constraints, and the "cost" for this index. +** +** The lowest cost index wins. The cost is an estimate of the amount of +** CPU and disk I/O need to process the request using the selected index. +** Factors that influence cost include: +** +** * The estimated number of rows that will be retrieved. (The +** fewer the better.) +** +** * Whether or not sorting must occur. +** +** * Whether or not there must be separate lookups in the +** index and in the main table. +** +*/ +static double bestIndex( + Parse *pParse, /* The parsing context */ + WhereClause *pWC, /* The WHERE clause */ + struct SrcList_item *pSrc, /* The FROM clause term to search */ + Bitmask notReady, /* Mask of cursors that are not available */ + ExprList *pOrderBy, /* The order by clause */ + Index **ppIndex, /* Make *ppIndex point to the best index */ + int *pFlags, /* Put flags describing this choice in *pFlags */ + int *pnEq /* Put the number of == or IN constraints here */ +){ + WhereTerm *pTerm; + Index *bestIdx = 0; /* Index that gives the lowest cost */ + double lowestCost; /* The cost of using bestIdx */ + int bestFlags = 0; /* Flags associated with bestIdx */ + int bestNEq = 0; /* Best value for nEq */ + int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ + Index *pProbe; /* An index we are evaluating */ + int rev; /* True to scan in reverse order */ + int flags; /* Flags associated with pProbe */ + int nEq; /* Number of == or IN constraints */ + int eqTermMask; /* Mask of valid equality operators */ + double cost; /* Cost of using pProbe */ + + WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); + lowestCost = SQLITE_BIG_DBL; + pProbe = pSrc->pTab->pIndex; + + /* If the table has no indices and there are no terms in the where + ** clause that refer to the ROWID, then we will never be able to do + ** anything other than a full table scan on this table. We might as + ** well put it first in the join order. That way, perhaps it can be + ** referenced by other tables in the join. + */ + if( pProbe==0 && + findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && + (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ + *pFlags = 0; + *ppIndex = 0; + *pnEq = 0; + return 0.0; + } + + /* Check for a rowid=EXPR or rowid IN (...) constraints + */ + pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); + if( pTerm ){ + Expr *pExpr; + *ppIndex = 0; + bestFlags = WHERE_ROWID_EQ; + if( pTerm->eOperator & WO_EQ ){ + /* Rowid== is always the best pick. Look no further. Because only + ** a single row is generated, output is always in sorted order */ + *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; + *pnEq = 1; + WHERETRACE(("... best is rowid\n")); + return 0.0; + }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ + /* Rowid IN (LIST): cost is NlogN where N is the number of list + ** elements. */ + lowestCost = pExpr->pList->nExpr; + lowestCost *= estLog(lowestCost); + }else{ + /* Rowid IN (SELECT): cost is NlogN where N is the number of rows + ** in the result of the inner select. We have no way to estimate + ** that value so make a wild guess. */ + lowestCost = 200; + } + WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); + } + + /* Estimate the cost of a table scan. If we do not know how many + ** entries are in the table, use 1 million as a guess. + */ + cost = pProbe ? pProbe->aiRowEst[0] : 1000000; + WHERETRACE(("... table scan base cost: %.9g\n", cost)); + flags = WHERE_ROWID_RANGE; + + /* Check for constraints on a range of rowids in a table scan. + */ + pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); + if( pTerm ){ + if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ + flags |= WHERE_TOP_LIMIT; + cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ + } + if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ + flags |= WHERE_BTM_LIMIT; + cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ + } + WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); + }else{ + flags = 0; + } + + /* If the table scan does not satisfy the ORDER BY clause, increase + ** the cost by NlogN to cover the expense of sorting. */ + if( pOrderBy ){ + if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ + flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; + if( rev ){ + flags |= WHERE_REVERSE; + } + }else{ + cost += cost*estLog(cost); + WHERETRACE(("... sorting increases cost to %.9g\n", cost)); + } + } + if( cost<lowestCost ){ + lowestCost = cost; + bestFlags = flags; + } + + /* If the pSrc table is the right table of a LEFT JOIN then we may not + ** use an index to satisfy IS NULL constraints on that table. This is + ** because columns might end up being NULL if the table does not match - + ** a circumstance which the index cannot help us discover. Ticket #2177. + */ + if( (pSrc->jointype & JT_LEFT)!=0 ){ + eqTermMask = WO_EQ|WO_IN; + }else{ + eqTermMask = WO_EQ|WO_IN|WO_ISNULL; + } + + /* Look at each index. + */ + for(; pProbe; pProbe=pProbe->pNext){ + int i; /* Loop counter */ + double inMultiplier = 1; + + WHERETRACE(("... index %s:\n", pProbe->zName)); + + /* Count the number of columns in the index that are satisfied + ** by x=EXPR constraints or x IN (...) constraints. + */ + flags = 0; + for(i=0; i<pProbe->nColumn; i++){ + int j = pProbe->aiColumn[i]; + pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); + if( pTerm==0 ) break; + flags |= WHERE_COLUMN_EQ; + if( pTerm->eOperator & WO_IN ){ + Expr *pExpr = pTerm->pExpr; + flags |= WHERE_COLUMN_IN; + if( pExpr->pSelect!=0 ){ + inMultiplier *= 25; + }else if( pExpr->pList!=0 ){ + inMultiplier *= pExpr->pList->nExpr + 1; + } + } + } + cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); + nEq = i; + if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 + && nEq==pProbe->nColumn ){ + flags |= WHERE_UNIQUE; + } + WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost)); + + /* Look for range constraints + */ + if( nEq<pProbe->nColumn ){ + int j = pProbe->aiColumn[nEq]; + pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); + if( pTerm ){ + flags |= WHERE_COLUMN_RANGE; + if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ + flags |= WHERE_TOP_LIMIT; + cost /= 3; + } + if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ + flags |= WHERE_BTM_LIMIT; + cost /= 3; + } + WHERETRACE(("...... range reduces cost to %.9g\n", cost)); + } + } + + /* Add the additional cost of sorting if that is a factor. + */ + if( pOrderBy ){ + if( (flags & WHERE_COLUMN_IN)==0 && + isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ + if( flags==0 ){ + flags = WHERE_COLUMN_RANGE; + } + flags |= WHERE_ORDERBY; + if( rev ){ + flags |= WHERE_REVERSE; + } + }else{ + cost += cost*estLog(cost); + WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); + } + } + + /* Check to see if we can get away with using just the index without + ** ever reading the table. If that is the case, then halve the + ** cost of this index. + */ + if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ + Bitmask m = pSrc->colUsed; + int j; + for(j=0; j<pProbe->nColumn; j++){ + int x = pProbe->aiColumn[j]; + if( x<BMS-1 ){ + m &= ~(((Bitmask)1)<<x); + } + } + if( m==0 ){ + flags |= WHERE_IDX_ONLY; + cost /= 2; + WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); + } + } + + /* If this index has achieved the lowest cost so far, then use it. + */ + if( flags && cost < lowestCost ){ + bestIdx = pProbe; + lowestCost = cost; + bestFlags = flags; + bestNEq = nEq; + } + } + + /* Report the best result + */ + *ppIndex = bestIdx; + WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", + bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); + *pFlags = bestFlags | eqTermMask; + *pnEq = bestNEq; + return lowestCost; +} + + +/* +** Disable a term in the WHERE clause. Except, do not disable the term +** if it controls a LEFT OUTER JOIN and it did not originate in the ON +** or USING clause of that join. +** +** Consider the term t2.z='ok' in the following queries: +** +** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' +** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' +** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' +** +** The t2.z='ok' is disabled in the in (2) because it originates +** in the ON clause. The term is disabled in (3) because it is not part +** of a LEFT OUTER JOIN. In (1), the term is not disabled. +** +** Disabling a term causes that term to not be tested in the inner loop +** of the join. Disabling is an optimization. When terms are satisfied +** by indices, we disable them to prevent redundant tests in the inner +** loop. We would get the correct results if nothing were ever disabled, +** but joins might run a little slower. The trick is to disable as much +** as we can without disabling too much. If we disabled in (1), we'd get +** the wrong answer. See ticket #813. +*/ +static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ + if( pTerm + && (pTerm->flags & TERM_CODED)==0 + && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) + ){ + pTerm->flags |= TERM_CODED; + if( pTerm->iParent>=0 ){ + WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; + if( (--pOther->nChild)==0 ){ + disableTerm(pLevel, pOther); + } + } + } +} + +/* +** Apply the affinities associated with the first n columns of index +** pIdx to the values in the n registers starting at base. +*/ +static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){ + if( n>0 ){ + Vdbe *v = pParse->pVdbe; + assert( v!=0 ); + sqlite3VdbeAddOp2(v, OP_Affinity, base, n); + sqlite3IndexAffinityStr(v, pIdx); + sqlite3ExprCacheAffinityChange(pParse, base, n); + } +} + + +/* +** Generate code for a single equality term of the WHERE clause. An equality +** term can be either X=expr or X IN (...). pTerm is the term to be +** coded. +** +** The current value for the constraint is left in register iReg. +** +** For a constraint of the form X=expr, the expression is evaluated and its +** result is left on the stack. For constraints of the form X IN (...) +** this routine sets up a loop that will iterate over all values of X. +*/ +static int codeEqualityTerm( + Parse *pParse, /* The parsing context */ + WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ + WhereLevel *pLevel, /* When level of the FROM clause we are working on */ + int iTarget /* Attempt to leave results in this register */ +){ + Expr *pX = pTerm->pExpr; + Vdbe *v = pParse->pVdbe; + int iReg; /* Register holding results */ + + if( iTarget<=0 ){ + iReg = iTarget = sqlite3GetTempReg(pParse); + } + if( pX->op==TK_EQ ){ + iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); + }else if( pX->op==TK_ISNULL ){ + iReg = iTarget; + sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); +#ifndef SQLITE_OMIT_SUBQUERY + }else{ + int eType; + int iTab; + struct InLoop *pIn; + + assert( pX->op==TK_IN ); + iReg = iTarget; + eType = sqlite3FindInIndex(pParse, pX, 1); + iTab = pX->iTable; + sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); + VdbeComment((v, "%.*s", pX->span.n, pX->span.z)); + if( pLevel->nIn==0 ){ + pLevel->nxt = sqlite3VdbeMakeLabel(v); + } + pLevel->nIn++; + pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop, + sizeof(pLevel->aInLoop[0])*pLevel->nIn); + pIn = pLevel->aInLoop; + if( pIn ){ + pIn += pLevel->nIn - 1; + pIn->iCur = iTab; + if( eType==IN_INDEX_ROWID ){ + pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); + }else{ + pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); + } + sqlite3VdbeAddOp1(v, OP_IsNull, iReg); + }else{ + pLevel->nIn = 0; + } +#endif + } + disableTerm(pLevel, pTerm); + return iReg; +} + +/* +** Generate code that will evaluate all == and IN constraints for an +** index. The values for all constraints are left on the stack. +** +** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). +** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 +** The index has as many as three equality constraints, but in this +** example, the third "c" value is an inequality. So only two +** constraints are coded. This routine will generate code to evaluate +** a==5 and b IN (1,2,3). The current values for a and b will be left +** on the stack - a is the deepest and b the shallowest. +** +** In the example above nEq==2. But this subroutine works for any value +** of nEq including 0. If nEq==0, this routine is nearly a no-op. +** The only thing it does is allocate the pLevel->iMem memory cell. +** +** This routine always allocates at least one memory cell and puts +** the address of that memory cell in pLevel->iMem. The code that +** calls this routine will use pLevel->iMem to store the termination +** key value of the loop. If one or more IN operators appear, then +** this routine allocates an additional nEq memory cells for internal +** use. +*/ +static int codeAllEqualityTerms( + Parse *pParse, /* Parsing context */ + WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ + WhereClause *pWC, /* The WHERE clause */ + Bitmask notReady, /* Which parts of FROM have not yet been coded */ + int nExtraReg /* Number of extra registers to allocate */ +){ + int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ + Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ + Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ + int iCur = pLevel->iTabCur; /* The cursor of the table */ + WhereTerm *pTerm; /* A single constraint term */ + int j; /* Loop counter */ + int regBase; /* Base register */ + + /* Figure out how many memory cells we will need then allocate them. + ** We always need at least one used to store the loop terminator + ** value. If there are IN operators we'll need one for each == or + ** IN constraint. + */ + pLevel->iMem = pParse->nMem + 1; + regBase = pParse->nMem + 2; + pParse->nMem += pLevel->nEq + 2 + nExtraReg; + + /* Evaluate the equality constraints + */ + assert( pIdx->nColumn>=nEq ); + for(j=0; j<nEq; j++){ + int r1; + int k = pIdx->aiColumn[j]; + pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); + if( pTerm==0 ) break; + assert( (pTerm->flags & TERM_CODED)==0 ); + r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); + if( r1!=regBase+j ){ + sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); + } + testcase( pTerm->eOperator & WO_ISNULL ); + testcase( pTerm->eOperator & WO_IN ); + if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ + sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk); + } + } + return regBase; +} + +#if defined(SQLITE_TEST) +/* +** The following variable holds a text description of query plan generated +** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin +** overwrites the previous. This information is used for testing and +** analysis only. +*/ +SQLITE_API char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ +static int nQPlan = 0; /* Next free slow in _query_plan[] */ + +#endif /* SQLITE_TEST */ + + +/* +** Free a WhereInfo structure +*/ +static void whereInfoFree(WhereInfo *pWInfo){ + if( pWInfo ){ + int i; + for(i=0; i<pWInfo->nLevel; i++){ + sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; + if( pInfo ){ + assert( pInfo->needToFreeIdxStr==0 ); + sqlite3_free(pInfo); + } + } + sqlite3_free(pWInfo); + } +} + + +/* +** Generate the beginning of the loop used for WHERE clause processing. +** The return value is a pointer to an opaque structure that contains +** information needed to terminate the loop. Later, the calling routine +** should invoke sqlite3WhereEnd() with the return value of this function +** in order to complete the WHERE clause processing. +** +** If an error occurs, this routine returns NULL. +** +** The basic idea is to do a nested loop, one loop for each table in +** the FROM clause of a select. (INSERT and UPDATE statements are the +** same as a SELECT with only a single table in the FROM clause.) For +** example, if the SQL is this: +** +** SELECT * FROM t1, t2, t3 WHERE ...; +** +** Then the code generated is conceptually like the following: +** +** foreach row1 in t1 do \ Code generated +** foreach row2 in t2 do |-- by sqlite3WhereBegin() +** foreach row3 in t3 do / +** ... +** end \ Code generated +** end |-- by sqlite3WhereEnd() +** end / +** +** Note that the loops might not be nested in the order in which they +** appear in the FROM clause if a different order is better able to make +** use of indices. Note also that when the IN operator appears in +** the WHERE clause, it might result in additional nested loops for +** scanning through all values on the right-hand side of the IN. +** +** There are Btree cursors associated with each table. t1 uses cursor +** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. +** And so forth. This routine generates code to open those VDBE cursors +** and sqlite3WhereEnd() generates the code to close them. +** +** The code that sqlite3WhereBegin() generates leaves the cursors named +** in pTabList pointing at their appropriate entries. The [...] code +** can use OP_Column and OP_Rowid opcodes on these cursors to extract +** data from the various tables of the loop. +** +** If the WHERE clause is empty, the foreach loops must each scan their +** entire tables. Thus a three-way join is an O(N^3) operation. But if +** the tables have indices and there are terms in the WHERE clause that +** refer to those indices, a complete table scan can be avoided and the +** code will run much faster. Most of the work of this routine is checking +** to see if there are indices that can be used to speed up the loop. +** +** Terms of the WHERE clause are also used to limit which rows actually +** make it to the "..." in the middle of the loop. After each "foreach", +** terms of the WHERE clause that use only terms in that loop and outer +** loops are evaluated and if false a jump is made around all subsequent +** inner loops (or around the "..." if the test occurs within the inner- +** most loop) +** +** OUTER JOINS +** +** An outer join of tables t1 and t2 is conceptally coded as follows: +** +** foreach row1 in t1 do +** flag = 0 +** foreach row2 in t2 do +** start: +** ... +** flag = 1 +** end +** if flag==0 then +** move the row2 cursor to a null row +** goto start +** fi +** end +** +** ORDER BY CLAUSE PROCESSING +** +** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, +** if there is one. If there is no ORDER BY clause or if this routine +** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. +** +** If an index can be used so that the natural output order of the table +** scan is correct for the ORDER BY clause, then that index is used and +** *ppOrderBy is set to NULL. This is an optimization that prevents an +** unnecessary sort of the result set if an index appropriate for the +** ORDER BY clause already exists. +** +** If the where clause loops cannot be arranged to provide the correct +** output order, then the *ppOrderBy is unchanged. +*/ +SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin( + Parse *pParse, /* The parser context */ + SrcList *pTabList, /* A list of all tables to be scanned */ + Expr *pWhere, /* The WHERE clause */ + ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ + u8 wflags /* One of the WHERE_* flags defined in sqliteInt.h */ +){ + int i; /* Loop counter */ + WhereInfo *pWInfo; /* Will become the return value of this function */ + Vdbe *v = pParse->pVdbe; /* The virtual database engine */ + int brk, cont = 0; /* Addresses used during code generation */ + Bitmask notReady; /* Cursors that are not yet positioned */ + WhereTerm *pTerm; /* A single term in the WHERE clause */ + ExprMaskSet maskSet; /* The expression mask set */ + WhereClause wc; /* The WHERE clause is divided into these terms */ + struct SrcList_item *pTabItem; /* A single entry from pTabList */ + WhereLevel *pLevel; /* A single level in the pWInfo list */ + int iFrom; /* First unused FROM clause element */ + int andFlags; /* AND-ed combination of all wc.a[].flags */ + sqlite3 *db; /* Database connection */ + ExprList *pOrderBy = 0; + + /* The number of tables in the FROM clause is limited by the number of + ** bits in a Bitmask + */ + if( pTabList->nSrc>BMS ){ + sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); + return 0; + } + + if( ppOrderBy ){ + pOrderBy = *ppOrderBy; + } + + /* Split the WHERE clause into separate subexpressions where each + ** subexpression is separated by an AND operator. + */ + initMaskSet(&maskSet); + whereClauseInit(&wc, pParse, &maskSet); + sqlite3ExprCodeConstants(pParse, pWhere); + whereSplit(&wc, pWhere, TK_AND); + + /* Allocate and initialize the WhereInfo structure that will become the + ** return value. + */ + db = pParse->db; + pWInfo = sqlite3DbMallocZero(db, + sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); + if( db->mallocFailed ){ + goto whereBeginNoMem; + } + pWInfo->nLevel = pTabList->nSrc; + pWInfo->pParse = pParse; + pWInfo->pTabList = pTabList; + pWInfo->iBreak = sqlite3VdbeMakeLabel(v); + + /* Special case: a WHERE clause that is constant. Evaluate the + ** expression and either jump over all of the code or fall thru. + */ + if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ + sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); + pWhere = 0; + } + + /* Assign a bit from the bitmask to every term in the FROM clause. + ** + ** When assigning bitmask values to FROM clause cursors, it must be + ** the case that if X is the bitmask for the N-th FROM clause term then + ** the bitmask for all FROM clause terms to the left of the N-th term + ** is (X-1). An expression from the ON clause of a LEFT JOIN can use + ** its Expr.iRightJoinTable value to find the bitmask of the right table + ** of the join. Subtracting one from the right table bitmask gives a + ** bitmask for all tables to the left of the join. Knowing the bitmask + ** for all tables to the left of a left join is important. Ticket #3015. + */ + for(i=0; i<pTabList->nSrc; i++){ + createMask(&maskSet, pTabList->a[i].iCursor); + } +#ifndef NDEBUG + { + Bitmask toTheLeft = 0; + for(i=0; i<pTabList->nSrc; i++){ + Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor); + assert( (m-1)==toTheLeft ); + toTheLeft |= m; + } + } +#endif + + /* Analyze all of the subexpressions. Note that exprAnalyze() might + ** add new virtual terms onto the end of the WHERE clause. We do not + ** want to analyze these virtual terms, so start analyzing at the end + ** and work forward so that the added virtual terms are never processed. + */ + exprAnalyzeAll(pTabList, &wc); + if( db->mallocFailed ){ + goto whereBeginNoMem; + } + + /* Chose the best index to use for each table in the FROM clause. + ** + ** This loop fills in the following fields: + ** + ** pWInfo->a[].pIdx The index to use for this level of the loop. + ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx + ** pWInfo->a[].nEq The number of == and IN constraints + ** pWInfo->a[].iFrom When term of the FROM clause is being coded + ** pWInfo->a[].iTabCur The VDBE cursor for the database table + ** pWInfo->a[].iIdxCur The VDBE cursor for the index + ** + ** This loop also figures out the nesting order of tables in the FROM + ** clause. + */ + notReady = ~(Bitmask)0; + pTabItem = pTabList->a; + pLevel = pWInfo->a; + andFlags = ~0; + WHERETRACE(("*** Optimizer Start ***\n")); + for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ + Index *pIdx; /* Index for FROM table at pTabItem */ + int flags; /* Flags asssociated with pIdx */ + int nEq; /* Number of == or IN constraints */ + double cost; /* The cost for pIdx */ + int j; /* For looping over FROM tables */ + Index *pBest = 0; /* The best index seen so far */ + int bestFlags = 0; /* Flags associated with pBest */ + int bestNEq = 0; /* nEq associated with pBest */ + double lowestCost; /* Cost of the pBest */ + int bestJ = 0; /* The value of j */ + Bitmask m; /* Bitmask value for j or bestJ */ + int once = 0; /* True when first table is seen */ + sqlite3_index_info *pIndex; /* Current virtual index */ + + lowestCost = SQLITE_BIG_DBL; + for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ + int doNotReorder; /* True if this table should not be reordered */ + + doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; + if( once && doNotReorder ) break; + m = getMask(&maskSet, pTabItem->iCursor); + if( (m & notReady)==0 ){ + if( j==iFrom ) iFrom++; + continue; + } + assert( pTabItem->pTab ); +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTabItem->pTab) ){ + sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; + cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, + ppOrderBy ? *ppOrderBy : 0, i==0, + ppIdxInfo); + flags = WHERE_VIRTUALTABLE; + pIndex = *ppIdxInfo; + if( pIndex && pIndex->orderByConsumed ){ + flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; + } + pIdx = 0; + nEq = 0; + if( (SQLITE_BIG_DBL/2.0)<cost ){ + /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the + ** inital value of lowestCost in this loop. If it is, then + ** the (cost<lowestCost) test below will never be true and + ** pLevel->pBestIdx never set. + */ + cost = (SQLITE_BIG_DBL/2.0); + } + }else +#endif + { + cost = bestIndex(pParse, &wc, pTabItem, notReady, + (i==0 && ppOrderBy) ? *ppOrderBy : 0, + &pIdx, &flags, &nEq); + pIndex = 0; + } + if( cost<lowestCost ){ + once = 1; + lowestCost = cost; + pBest = pIdx; + bestFlags = flags; + bestNEq = nEq; + bestJ = j; + pLevel->pBestIdx = pIndex; + } + if( doNotReorder ) break; + } + WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, + pLevel-pWInfo->a)); + if( (bestFlags & WHERE_ORDERBY)!=0 ){ + *ppOrderBy = 0; + } + andFlags &= bestFlags; + pLevel->flags = bestFlags; + pLevel->pIdx = pBest; + pLevel->nEq = bestNEq; + pLevel->aInLoop = 0; + pLevel->nIn = 0; + if( pBest ){ + pLevel->iIdxCur = pParse->nTab++; + }else{ + pLevel->iIdxCur = -1; + } + notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); + pLevel->iFrom = bestJ; + } + WHERETRACE(("*** Optimizer Finished ***\n")); + + /* If the total query only selects a single row, then the ORDER BY + ** clause is irrelevant. + */ + if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ + *ppOrderBy = 0; + } + + /* If the caller is an UPDATE or DELETE statement that is requesting + ** to use a one-pass algorithm, determine if this is appropriate. + ** The one-pass algorithm only works if the WHERE clause constraints + ** the statement to update a single row. + */ + assert( (wflags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); + if( (wflags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ + pWInfo->okOnePass = 1; + pWInfo->a[0].flags &= ~WHERE_IDX_ONLY; + } + + /* Open all tables in the pTabList and any indices selected for + ** searching those tables. + */ + sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ + for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ + Table *pTab; /* Table to open */ + Index *pIx; /* Index used to access pTab (if any) */ + int iDb; /* Index of database containing table/index */ + int iIdxCur = pLevel->iIdxCur; + +#ifndef SQLITE_OMIT_EXPLAIN + if( pParse->explain==2 ){ + char *zMsg; + struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; + zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); + if( pItem->zAlias ){ + zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias); + } + if( (pIx = pLevel->pIdx)!=0 ){ + zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName); + }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ + zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg); + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + else if( pLevel->pBestIdx ){ + sqlite3_index_info *pBestIdx = pLevel->pBestIdx; + zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg, + pBestIdx->idxNum, pBestIdx->idxStr); + } +#endif + if( pLevel->flags & WHERE_ORDERBY ){ + zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg); + } + sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); + } +#endif /* SQLITE_OMIT_EXPLAIN */ + pTabItem = &pTabList->a[pLevel->iFrom]; + pTab = pTabItem->pTab; + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + if( pTab->isEphem || pTab->pSelect ) continue; +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pLevel->pBestIdx ){ + int iCur = pTabItem->iCursor; + sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, + (const char*)pTab->pVtab, P4_VTAB); + }else +#endif + if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ + int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; + sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); + if( !pWInfo->okOnePass && pTab->nCol<(sizeof(Bitmask)*8) ){ + Bitmask b = pTabItem->colUsed; + int n = 0; + for(; b; b=b>>1, n++){} + sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n); + assert( n<=pTab->nCol ); + } + }else{ + sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); + } + pLevel->iTabCur = pTabItem->iCursor; + if( (pIx = pLevel->pIdx)!=0 ){ + KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); + assert( pIx->pSchema==pTab->pSchema ); + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1); + sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pIx->zName)); + } + sqlite3CodeVerifySchema(pParse, iDb); + } + pWInfo->iTop = sqlite3VdbeCurrentAddr(v); + + /* Generate the code to do the search. Each iteration of the for + ** loop below generates code for a single nested loop of the VM + ** program. + */ + notReady = ~(Bitmask)0; + for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ + int j; + int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ + Index *pIdx; /* The index we will be using */ + int nxt; /* Where to jump to continue with the next IN case */ + int iIdxCur; /* The VDBE cursor for the index */ + int omitTable; /* True if we use the index only */ + int bRev; /* True if we need to scan in reverse order */ + + pTabItem = &pTabList->a[pLevel->iFrom]; + iCur = pTabItem->iCursor; + pIdx = pLevel->pIdx; + iIdxCur = pLevel->iIdxCur; + bRev = (pLevel->flags & WHERE_REVERSE)!=0; + omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; + + /* Create labels for the "break" and "continue" instructions + ** for the current loop. Jump to brk to break out of a loop. + ** Jump to cont to go immediately to the next iteration of the + ** loop. + ** + ** When there is an IN operator, we also have a "nxt" label that + ** means to continue with the next IN value combination. When + ** there are no IN operators in the constraints, the "nxt" label + ** is the same as "brk". + */ + brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); + cont = pLevel->cont = sqlite3VdbeMakeLabel(v); + + /* If this is the right table of a LEFT OUTER JOIN, allocate and + ** initialize a memory cell that records if this table matches any + ** row of the left table of the join. + */ + if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ + pLevel->iLeftJoin = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); + VdbeComment((v, "init LEFT JOIN no-match flag")); + } + +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pLevel->pBestIdx ){ + /* Case 0: The table is a virtual-table. Use the VFilter and VNext + ** to access the data. + */ + int j; + int iReg; /* P3 Value for OP_VFilter */ + sqlite3_index_info *pBestIdx = pLevel->pBestIdx; + int nConstraint = pBestIdx->nConstraint; + struct sqlite3_index_constraint_usage *aUsage = + pBestIdx->aConstraintUsage; + const struct sqlite3_index_constraint *aConstraint = + pBestIdx->aConstraint; + + iReg = sqlite3GetTempRange(pParse, nConstraint+2); + for(j=1; j<=nConstraint; j++){ + int k; + for(k=0; k<nConstraint; k++){ + if( aUsage[k].argvIndex==j ){ + int iTerm = aConstraint[k].iTermOffset; + sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1); + break; + } + } + if( k==nConstraint ) break; + } + sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg); + sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); + sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr, + pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); + sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); + pBestIdx->needToFreeIdxStr = 0; + for(j=0; j<pBestIdx->nConstraint; j++){ + if( aUsage[j].omit ){ + int iTerm = aConstraint[j].iTermOffset; + disableTerm(pLevel, &wc.a[iTerm]); + } + } + pLevel->op = OP_VNext; + pLevel->p1 = iCur; + pLevel->p2 = sqlite3VdbeCurrentAddr(v); + }else +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + + if( pLevel->flags & WHERE_ROWID_EQ ){ + /* Case 1: We can directly reference a single row using an + ** equality comparison against the ROWID field. Or + ** we reference multiple rows using a "rowid IN (...)" + ** construct. + */ + int r1; + pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); + assert( pTerm!=0 ); + assert( pTerm->pExpr!=0 ); + assert( pTerm->leftCursor==iCur ); + assert( omitTable==0 ); + r1 = codeEqualityTerm(pParse, pTerm, pLevel, 0); + nxt = pLevel->nxt; + sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt); + sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1); + VdbeComment((v, "pk")); + pLevel->op = OP_Noop; + }else if( pLevel->flags & WHERE_ROWID_RANGE ){ + /* Case 2: We have an inequality comparison against the ROWID field. + */ + int testOp = OP_Noop; + int start; + WhereTerm *pStart, *pEnd; + + assert( omitTable==0 ); + pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); + pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); + if( bRev ){ + pTerm = pStart; + pStart = pEnd; + pEnd = pTerm; + } + if( pStart ){ + Expr *pX; + int r1, regFree1; + pX = pStart->pExpr; + assert( pX!=0 ); + assert( pStart->leftCursor==iCur ); + r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, ®Free1); + sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk, + pX->op==TK_LE || pX->op==TK_GT); + sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1); + VdbeComment((v, "pk")); + sqlite3ReleaseTempReg(pParse, regFree1); + disableTerm(pLevel, pStart); + }else{ + sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk); + } + if( pEnd ){ + Expr *pX; + pX = pEnd->pExpr; + assert( pX!=0 ); + assert( pEnd->leftCursor==iCur ); + pLevel->iMem = ++pParse->nMem; + sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem); + if( pX->op==TK_LT || pX->op==TK_GT ){ + testOp = bRev ? OP_Le : OP_Ge; + }else{ + testOp = bRev ? OP_Lt : OP_Gt; + } + disableTerm(pLevel, pEnd); + } + start = sqlite3VdbeCurrentAddr(v); + pLevel->op = bRev ? OP_Prev : OP_Next; + pLevel->p1 = iCur; + pLevel->p2 = start; + if( testOp!=OP_Noop ){ + int r1 = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); + /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */ + sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1); + sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); + sqlite3ReleaseTempReg(pParse, r1); + } + }else if( pLevel->flags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ + /* Case 3: A scan using an index. + ** + ** The WHERE clause may contain zero or more equality + ** terms ("==" or "IN" operators) that refer to the N + ** left-most columns of the index. It may also contain + ** inequality constraints (>, <, >= or <=) on the indexed + ** column that immediately follows the N equalities. Only + ** the right-most column can be an inequality - the rest must + ** use the "==" and "IN" operators. For example, if the + ** index is on (x,y,z), then the following clauses are all + ** optimized: + ** + ** x=5 + ** x=5 AND y=10 + ** x=5 AND y<10 + ** x=5 AND y>5 AND y<10 + ** x=5 AND y=5 AND z<=10 + ** + ** The z<10 term of the following cannot be used, only + ** the x=5 term: + ** + ** x=5 AND z<10 + ** + ** N may be zero if there are inequality constraints. + ** If there are no inequality constraints, then N is at + ** least one. + ** + ** This case is also used when there are no WHERE clause + ** constraints but an index is selected anyway, in order + ** to force the output order to conform to an ORDER BY. + */ + int aStartOp[] = { + 0, + 0, + OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ + OP_Last, /* 3: (!start_constraints && startEq && bRev) */ + OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */ + OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */ + OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */ + OP_MoveLe /* 7: (start_constraints && startEq && bRev) */ + }; + int aEndOp[] = { + OP_Noop, /* 0: (!end_constraints) */ + OP_IdxGE, /* 1: (end_constraints && !bRev) */ + OP_IdxLT /* 2: (end_constraints && bRev) */ + }; + int nEq = pLevel->nEq; + int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ + int regBase; /* Base register holding constraint values */ + int r1; /* Temp register */ + WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ + WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ + int startEq; /* True if range start uses ==, >= or <= */ + int endEq; /* True if range end uses ==, >= or <= */ + int start_constraints; /* Start of range is constrained */ + int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ + int nConstraint; /* Number of constraint terms */ + int op; + + /* Generate code to evaluate all constraint terms using == or IN + ** and store the values of those terms in an array of registers + ** starting at regBase. + */ + regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2); + nxt = pLevel->nxt; + + /* If this loop satisfies a sort order (pOrderBy) request that + ** was passed to this function to implement a "SELECT min(x) ..." + ** query, then the caller will only allow the loop to run for + ** a single iteration. This means that the first row returned + ** should not have a NULL value stored in 'x'. If column 'x' is + ** the first one after the nEq equality constraints in the index, + ** this requires some special handling. + */ + if( (wflags&WHERE_ORDERBY_MIN)!=0 + && (pLevel->flags&WHERE_ORDERBY) + && (pIdx->nColumn>nEq) + && (pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq]) + ){ + isMinQuery = 1; + } + + /* Find any inequality constraint terms for the start and end + ** of the range. + */ + if( pLevel->flags & WHERE_TOP_LIMIT ){ + pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx); + } + if( pLevel->flags & WHERE_BTM_LIMIT ){ + pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx); + } + + /* If we are doing a reverse order scan on an ascending index, or + ** a forward order scan on a descending index, interchange the + ** start and end terms (pRangeStart and pRangeEnd). + */ + if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ + SWAP(WhereTerm *, pRangeEnd, pRangeStart); + } + + testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); + testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); + testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); + testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); + startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); + endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); + start_constraints = pRangeStart || nEq>0; + + /* Seek the index cursor to the start of the range. */ + nConstraint = nEq; + if( pRangeStart ){ + int dcc = pParse->disableColCache; + if( pRangeEnd ){ + pParse->disableColCache = 1; + } + sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq); + pParse->disableColCache = dcc; + sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); + nConstraint++; + }else if( isMinQuery ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); + nConstraint++; + startEq = 0; + start_constraints = 1; + } + codeApplyAffinity(pParse, regBase, nConstraint, pIdx); + op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; + assert( op!=0 ); + testcase( op==OP_Rewind ); + testcase( op==OP_Last ); + testcase( op==OP_MoveGt ); + testcase( op==OP_MoveGe ); + testcase( op==OP_MoveLe ); + testcase( op==OP_MoveLt ); + sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, + (char*)nConstraint, P4_INT32); + + /* Load the value for the inequality constraint at the end of the + ** range (if any). + */ + nConstraint = nEq; + if( pRangeEnd ){ + sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq); + sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); + codeApplyAffinity(pParse, regBase, nEq+1, pIdx); + nConstraint++; + } + + /* Top of the loop body */ + pLevel->p2 = sqlite3VdbeCurrentAddr(v); + + /* Check if the index cursor is past the end of the range. */ + op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; + testcase( op==OP_Noop ); + testcase( op==OP_IdxGE ); + testcase( op==OP_IdxLT ); + sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, + (char*)nConstraint, P4_INT32); + sqlite3VdbeChangeP5(v, endEq!=bRev); + + /* If there are inequality constraints, check that the value + ** of the table column that the inequality contrains is not NULL. + ** If it is, jump to the next iteration of the loop. + */ + r1 = sqlite3GetTempReg(pParse); + testcase( pLevel->flags & WHERE_BTM_LIMIT ); + testcase( pLevel->flags & WHERE_TOP_LIMIT ); + if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ + sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); + sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont); + } + + /* Seek the table cursor, if required */ + if( !omitTable ){ + sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1); + sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */ + } + sqlite3ReleaseTempReg(pParse, r1); + + /* Record the instruction used to terminate the loop. Disable + ** WHERE clause terms made redundant by the index range scan. + */ + pLevel->op = bRev ? OP_Prev : OP_Next; + pLevel->p1 = iIdxCur; + disableTerm(pLevel, pRangeStart); + disableTerm(pLevel, pRangeEnd); + }else{ + /* Case 4: There is no usable index. We must do a complete + ** scan of the entire table. + */ + assert( omitTable==0 ); + assert( bRev==0 ); + pLevel->op = OP_Next; + pLevel->p1 = iCur; + pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk); + } + notReady &= ~getMask(&maskSet, iCur); + + /* Insert code to test every subexpression that can be completely + ** computed using the current set of tables. + */ + for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ + Expr *pE; + testcase( pTerm->flags & TERM_VIRTUAL ); + testcase( pTerm->flags & TERM_CODED ); + if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; + if( (pTerm->prereqAll & notReady)!=0 ) continue; + pE = pTerm->pExpr; + assert( pE!=0 ); + if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ + continue; + } + sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL); + pTerm->flags |= TERM_CODED; + } + + /* For a LEFT OUTER JOIN, generate code that will record the fact that + ** at least one row of the right table has matched the left table. + */ + if( pLevel->iLeftJoin ){ + pLevel->top = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); + VdbeComment((v, "record LEFT JOIN hit")); + sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur); + sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur); + for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ + testcase( pTerm->flags & TERM_VIRTUAL ); + testcase( pTerm->flags & TERM_CODED ); + if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; + if( (pTerm->prereqAll & notReady)!=0 ) continue; + assert( pTerm->pExpr ); + sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL); + pTerm->flags |= TERM_CODED; + } + } + } + +#ifdef SQLITE_TEST /* For testing and debugging use only */ + /* Record in the query plan information about the current table + ** and the index used to access it (if any). If the table itself + ** is not used, its name is just '{}'. If no index is used + ** the index is listed as "{}". If the primary key is used the + ** index name is '*'. + */ + for(i=0; i<pTabList->nSrc; i++){ + char *z; + int n; + pLevel = &pWInfo->a[i]; + pTabItem = &pTabList->a[pLevel->iFrom]; + z = pTabItem->zAlias; + if( z==0 ) z = pTabItem->pTab->zName; + n = strlen(z); + if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ + if( pLevel->flags & WHERE_IDX_ONLY ){ + memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); + nQPlan += 2; + }else{ + memcpy(&sqlite3_query_plan[nQPlan], z, n); + nQPlan += n; + } + sqlite3_query_plan[nQPlan++] = ' '; + } + testcase( pLevel->flags & WHERE_ROWID_EQ ); + testcase( pLevel->flags & WHERE_ROWID_RANGE ); + if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ + memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); + nQPlan += 2; + }else if( pLevel->pIdx==0 ){ + memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); + nQPlan += 3; + }else{ + n = strlen(pLevel->pIdx->zName); + if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ + memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); + nQPlan += n; + sqlite3_query_plan[nQPlan++] = ' '; + } + } + } + while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ + sqlite3_query_plan[--nQPlan] = 0; + } + sqlite3_query_plan[nQPlan] = 0; + nQPlan = 0; +#endif /* SQLITE_TEST // Testing and debugging use only */ + + /* Record the continuation address in the WhereInfo structure. Then + ** clean up and return. + */ + pWInfo->iContinue = cont; + whereClauseClear(&wc); + return pWInfo; + + /* Jump here if malloc fails */ +whereBeginNoMem: + whereClauseClear(&wc); + whereInfoFree(pWInfo); + return 0; +} + +/* +** Generate the end of the WHERE loop. See comments on +** sqlite3WhereBegin() for additional information. +*/ +SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){ + Vdbe *v = pWInfo->pParse->pVdbe; + int i; + WhereLevel *pLevel; + SrcList *pTabList = pWInfo->pTabList; + + /* Generate loop termination code. + */ + sqlite3ExprClearColumnCache(pWInfo->pParse, -1); + for(i=pTabList->nSrc-1; i>=0; i--){ + pLevel = &pWInfo->a[i]; + sqlite3VdbeResolveLabel(v, pLevel->cont); + if( pLevel->op!=OP_Noop ){ + sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); + } + if( pLevel->nIn ){ + struct InLoop *pIn; + int j; + sqlite3VdbeResolveLabel(v, pLevel->nxt); + for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ + sqlite3VdbeJumpHere(v, pIn->topAddr+1); + sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr); + sqlite3VdbeJumpHere(v, pIn->topAddr-1); + } + sqlite3_free(pLevel->aInLoop); + } + sqlite3VdbeResolveLabel(v, pLevel->brk); + if( pLevel->iLeftJoin ){ + int addr; + addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); + sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); + if( pLevel->iIdxCur>=0 ){ + sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); + } + sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top); + sqlite3VdbeJumpHere(v, addr); + } + } + + /* The "break" point is here, just past the end of the outer loop. + ** Set it. + */ + sqlite3VdbeResolveLabel(v, pWInfo->iBreak); + + /* Close all of the cursors that were opened by sqlite3WhereBegin. + */ + for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ + struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; + Table *pTab = pTabItem->pTab; + assert( pTab!=0 ); + if( pTab->isEphem || pTab->pSelect ) continue; + if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){ + sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); + } + if( pLevel->pIdx!=0 ){ + sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); + } + + /* If this scan uses an index, make code substitutions to read data + ** from the index in preference to the table. Sometimes, this means + ** the table need never be read from. This is a performance boost, + ** as the vdbe level waits until the table is read before actually + ** seeking the table cursor to the record corresponding to the current + ** position in the index. + ** + ** Calls to the code generator in between sqlite3WhereBegin and + ** sqlite3WhereEnd will have created code that references the table + ** directly. This loop scans all that code looking for opcodes + ** that reference the table and converts them into opcodes that + ** reference the index. + */ + if( pLevel->pIdx ){ + int k, j, last; + VdbeOp *pOp; + Index *pIdx = pLevel->pIdx; + int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY; + + assert( pIdx!=0 ); + pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); + last = sqlite3VdbeCurrentAddr(v); + for(k=pWInfo->iTop; k<last; k++, pOp++){ + if( pOp->p1!=pLevel->iTabCur ) continue; + if( pOp->opcode==OP_Column ){ + for(j=0; j<pIdx->nColumn; j++){ + if( pOp->p2==pIdx->aiColumn[j] ){ + pOp->p2 = j; + pOp->p1 = pLevel->iIdxCur; + break; + } + } + assert(!useIndexOnly || j<pIdx->nColumn); + }else if( pOp->opcode==OP_Rowid ){ + pOp->p1 = pLevel->iIdxCur; + pOp->opcode = OP_IdxRowid; + }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ + pOp->opcode = OP_Noop; + } + } + } + } + + /* Final cleanup + */ + whereInfoFree(pWInfo); + return; +} + +/************** End of where.c ***********************************************/ +/************** Begin file parse.c *******************************************/ +/* Driver template for the LEMON parser generator. +** The author disclaims copyright to this source code. +*/ +/* First off, code is include which follows the "include" declaration +** in the input file. */ + + +/* +** An instance of this structure holds information about the +** LIMIT clause of a SELECT statement. +*/ +struct LimitVal { + Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ + Expr *pOffset; /* The OFFSET expression. NULL if there is none */ +}; + +/* +** An instance of this structure is used to store the LIKE, +** GLOB, NOT LIKE, and NOT GLOB operators. +*/ +struct LikeOp { + Token eOperator; /* "like" or "glob" or "regexp" */ + int not; /* True if the NOT keyword is present */ +}; + +/* +** An instance of the following structure describes the event of a +** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, +** TK_DELETE, or TK_INSTEAD. If the event is of the form +** +** UPDATE ON (a,b,c) +** +** Then the "b" IdList records the list "a,b,c". +*/ +struct TrigEvent { int a; IdList * b; }; + +/* +** An instance of this structure holds the ATTACH key and the key type. +*/ +struct AttachKey { int type; Token key; }; + +/* Next is all token values, in a form suitable for use by makeheaders. +** This section will be null unless lemon is run with the -m switch. +*/ +/* +** These constants (all generated automatically by the parser generator) +** specify the various kinds of tokens (terminals) that the parser +** understands. +** +** Each symbol here is a terminal symbol in the grammar. +*/ +/* Make sure the INTERFACE macro is defined. +*/ +#ifndef INTERFACE +# define INTERFACE 1 +#endif +/* The next thing included is series of defines which control +** various aspects of the generated parser. +** YYCODETYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 terminals +** and nonterminals. "int" is used otherwise. +** YYNOCODE is a number of type YYCODETYPE which corresponds +** to no legal terminal or nonterminal number. This +** number is used to fill in empty slots of the hash +** table. +** YYFALLBACK If defined, this indicates that one or more tokens +** have fall-back values which should be used if the +** original value of the token will not parse. +** YYACTIONTYPE is the data type used for storing terminal +** and nonterminal numbers. "unsigned char" is +** used if there are fewer than 250 rules and +** states combined. "int" is used otherwise. +** sqlite3ParserTOKENTYPE is the data type used for minor tokens given +** directly to the parser from the tokenizer. +** YYMINORTYPE is the data type used for all minor tokens. +** This is typically a union of many types, one of +** which is sqlite3ParserTOKENTYPE. The entry in the union +** for base tokens is called "yy0". +** YYSTACKDEPTH is the maximum depth of the parser's stack. If +** zero the stack is dynamically sized using realloc() +** sqlite3ParserARG_SDECL A static variable declaration for the %extra_argument +** sqlite3ParserARG_PDECL A parameter declaration for the %extra_argument +** sqlite3ParserARG_STORE Code to store %extra_argument into yypParser +** sqlite3ParserARG_FETCH Code to extract %extra_argument from yypParser +** YYNSTATE the combined number of states. +** YYNRULE the number of rules in the grammar +** YYERRORSYMBOL is the code number of the error symbol. If not +** defined, then do no error processing. +*/ +#define YYCODETYPE unsigned char +#define YYNOCODE 248 +#define YYACTIONTYPE unsigned short int +#define YYWILDCARD 59 +#define sqlite3ParserTOKENTYPE Token +typedef union { + sqlite3ParserTOKENTYPE yy0; + int yy46; + struct LikeOp yy72; + Expr* yy172; + ExprList* yy174; + Select* yy219; + struct LimitVal yy234; + TriggerStep* yy243; + struct TrigEvent yy370; + SrcList* yy373; + struct {int value; int mask;} yy405; + Token yy410; + IdList* yy432; +} YYMINORTYPE; +#ifndef YYSTACKDEPTH +#define YYSTACKDEPTH 100 +#endif +#define sqlite3ParserARG_SDECL Parse *pParse; +#define sqlite3ParserARG_PDECL ,Parse *pParse +#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse +#define sqlite3ParserARG_STORE yypParser->pParse = pParse +#define YYNSTATE 589 +#define YYNRULE 313 +#define YYFALLBACK 1 +#define YY_NO_ACTION (YYNSTATE+YYNRULE+2) +#define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) +#define YY_ERROR_ACTION (YYNSTATE+YYNRULE) + +/* The yyzerominor constant is used to initialize instances of +** YYMINORTYPE objects to zero. */ +static const YYMINORTYPE yyzerominor; + +/* Next are that tables used to determine what action to take based on the +** current state and lookahead token. These tables are used to implement +** functions that take a state number and lookahead value and return an +** action integer. +** +** Suppose the action integer is N. Then the action is determined as +** follows +** +** 0 <= N < YYNSTATE Shift N. That is, push the lookahead +** token onto the stack and goto state N. +** +** YYNSTATE <= N < YYNSTATE+YYNRULE Reduce by rule N-YYNSTATE. +** +** N == YYNSTATE+YYNRULE A syntax error has occurred. +** +** N == YYNSTATE+YYNRULE+1 The parser accepts its input. +** +** N == YYNSTATE+YYNRULE+2 No such action. Denotes unused +** slots in the yy_action[] table. +** +** The action table is constructed as a single large table named yy_action[]. +** Given state S and lookahead X, the action is computed as +** +** yy_action[ yy_shift_ofst[S] + X ] +** +** If the index value yy_shift_ofst[S]+X is out of range or if the value +** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X or if yy_shift_ofst[S] +** is equal to YY_SHIFT_USE_DFLT, it means that the action is not in the table +** and that yy_default[S] should be used instead. +** +** The formula above is for computing the action when the lookahead is +** a terminal symbol. If the lookahead is a non-terminal (as occurs after +** a reduce action) then the yy_reduce_ofst[] array is used in place of +** the yy_shift_ofst[] array and YY_REDUCE_USE_DFLT is used in place of +** YY_SHIFT_USE_DFLT. +** +** The following are the tables generated in this section: +** +** yy_action[] A single table containing all actions. +** yy_lookahead[] A table containing the lookahead for each entry in +** yy_action. Used to detect hash collisions. +** yy_shift_ofst[] For each state, the offset into yy_action for +** shifting terminals. +** yy_reduce_ofst[] For each state, the offset into yy_action for +** shifting non-terminals after a reduce. +** yy_default[] Default action for each state. +*/ +static const YYACTIONTYPE yy_action[] = { + /* 0 */ 292, 903, 124, 588, 409, 172, 2, 418, 61, 61, + /* 10 */ 61, 61, 519, 63, 63, 63, 63, 64, 64, 65, + /* 20 */ 65, 65, 66, 210, 447, 212, 425, 431, 68, 63, + /* 30 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210, + /* 40 */ 391, 388, 396, 451, 60, 59, 297, 435, 436, 432, + /* 50 */ 432, 62, 62, 61, 61, 61, 61, 263, 63, 63, + /* 60 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292, + /* 70 */ 493, 494, 418, 489, 208, 82, 67, 420, 69, 154, + /* 80 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66, + /* 90 */ 210, 67, 462, 69, 154, 425, 431, 574, 264, 58, + /* 100 */ 64, 64, 65, 65, 65, 66, 210, 397, 398, 422, + /* 110 */ 422, 422, 292, 60, 59, 297, 435, 436, 432, 432, + /* 120 */ 62, 62, 61, 61, 61, 61, 317, 63, 63, 63, + /* 130 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431, + /* 140 */ 94, 65, 65, 65, 66, 210, 396, 210, 414, 34, + /* 150 */ 56, 298, 442, 443, 410, 418, 60, 59, 297, 435, + /* 160 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 208, + /* 170 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66, + /* 180 */ 210, 292, 372, 524, 295, 572, 113, 408, 522, 451, + /* 190 */ 331, 317, 407, 20, 244, 340, 519, 396, 478, 531, + /* 200 */ 505, 447, 212, 571, 570, 245, 530, 425, 431, 149, + /* 210 */ 150, 397, 398, 414, 41, 211, 151, 533, 488, 489, + /* 220 */ 418, 568, 569, 420, 292, 60, 59, 297, 435, 436, + /* 230 */ 432, 432, 62, 62, 61, 61, 61, 61, 317, 63, + /* 240 */ 63, 63, 63, 64, 64, 65, 65, 65, 66, 210, + /* 250 */ 425, 431, 447, 333, 215, 422, 422, 422, 363, 299, + /* 260 */ 414, 41, 397, 398, 366, 567, 211, 292, 60, 59, + /* 270 */ 297, 435, 436, 432, 432, 62, 62, 61, 61, 61, + /* 280 */ 61, 396, 63, 63, 63, 63, 64, 64, 65, 65, + /* 290 */ 65, 66, 210, 425, 431, 491, 300, 524, 474, 66, + /* 300 */ 210, 214, 474, 229, 411, 286, 534, 20, 449, 523, + /* 310 */ 168, 60, 59, 297, 435, 436, 432, 432, 62, 62, + /* 320 */ 61, 61, 61, 61, 474, 63, 63, 63, 63, 64, + /* 330 */ 64, 65, 65, 65, 66, 210, 209, 480, 317, 77, + /* 340 */ 292, 239, 300, 55, 484, 490, 397, 398, 181, 547, + /* 350 */ 494, 345, 348, 349, 67, 152, 69, 154, 339, 524, + /* 360 */ 414, 35, 350, 241, 221, 370, 425, 431, 579, 20, + /* 370 */ 164, 118, 243, 343, 248, 344, 176, 322, 442, 443, + /* 380 */ 414, 3, 80, 252, 60, 59, 297, 435, 436, 432, + /* 390 */ 432, 62, 62, 61, 61, 61, 61, 174, 63, 63, + /* 400 */ 63, 63, 64, 64, 65, 65, 65, 66, 210, 292, + /* 410 */ 221, 550, 236, 487, 510, 353, 317, 118, 243, 343, + /* 420 */ 248, 344, 176, 181, 317, 532, 345, 348, 349, 252, + /* 430 */ 223, 415, 155, 464, 511, 425, 431, 350, 414, 34, + /* 440 */ 465, 211, 177, 175, 160, 525, 414, 34, 338, 549, + /* 450 */ 449, 323, 168, 60, 59, 297, 435, 436, 432, 432, + /* 460 */ 62, 62, 61, 61, 61, 61, 415, 63, 63, 63, + /* 470 */ 63, 64, 64, 65, 65, 65, 66, 210, 292, 542, + /* 480 */ 335, 517, 504, 541, 456, 572, 302, 19, 331, 144, + /* 490 */ 317, 390, 317, 330, 2, 362, 457, 294, 483, 373, + /* 500 */ 269, 268, 252, 571, 425, 431, 589, 391, 388, 458, + /* 510 */ 208, 495, 414, 49, 414, 49, 303, 586, 894, 230, + /* 520 */ 894, 496, 60, 59, 297, 435, 436, 432, 432, 62, + /* 530 */ 62, 61, 61, 61, 61, 201, 63, 63, 63, 63, + /* 540 */ 64, 64, 65, 65, 65, 66, 210, 292, 317, 181, + /* 550 */ 439, 255, 345, 348, 349, 370, 153, 583, 308, 251, + /* 560 */ 309, 452, 76, 350, 78, 382, 211, 426, 427, 415, + /* 570 */ 414, 27, 319, 425, 431, 440, 1, 22, 586, 893, + /* 580 */ 396, 893, 544, 478, 320, 263, 438, 438, 429, 430, + /* 590 */ 415, 60, 59, 297, 435, 436, 432, 432, 62, 62, + /* 600 */ 61, 61, 61, 61, 237, 63, 63, 63, 63, 64, + /* 610 */ 64, 65, 65, 65, 66, 210, 292, 428, 583, 374, + /* 620 */ 224, 93, 517, 9, 159, 396, 557, 396, 456, 67, + /* 630 */ 396, 69, 154, 399, 400, 401, 320, 328, 438, 438, + /* 640 */ 457, 336, 425, 431, 361, 397, 398, 320, 433, 438, + /* 650 */ 438, 582, 291, 458, 238, 327, 318, 222, 546, 292, + /* 660 */ 60, 59, 297, 435, 436, 432, 432, 62, 62, 61, + /* 670 */ 61, 61, 61, 225, 63, 63, 63, 63, 64, 64, + /* 680 */ 65, 65, 65, 66, 210, 425, 431, 482, 313, 392, + /* 690 */ 397, 398, 397, 398, 207, 397, 398, 825, 273, 517, + /* 700 */ 251, 200, 292, 60, 59, 297, 435, 436, 432, 432, + /* 710 */ 62, 62, 61, 61, 61, 61, 470, 63, 63, 63, + /* 720 */ 63, 64, 64, 65, 65, 65, 66, 210, 425, 431, + /* 730 */ 171, 160, 263, 263, 304, 415, 276, 395, 274, 263, + /* 740 */ 517, 517, 263, 517, 192, 292, 60, 70, 297, 435, + /* 750 */ 436, 432, 432, 62, 62, 61, 61, 61, 61, 379, + /* 760 */ 63, 63, 63, 63, 64, 64, 65, 65, 65, 66, + /* 770 */ 210, 425, 431, 384, 559, 305, 306, 251, 415, 320, + /* 780 */ 560, 438, 438, 561, 540, 360, 540, 387, 292, 196, + /* 790 */ 59, 297, 435, 436, 432, 432, 62, 62, 61, 61, + /* 800 */ 61, 61, 371, 63, 63, 63, 63, 64, 64, 65, + /* 810 */ 65, 65, 66, 210, 425, 431, 396, 275, 251, 251, + /* 820 */ 172, 250, 418, 415, 386, 367, 178, 179, 180, 469, + /* 830 */ 311, 123, 156, 5, 297, 435, 436, 432, 432, 62, + /* 840 */ 62, 61, 61, 61, 61, 317, 63, 63, 63, 63, + /* 850 */ 64, 64, 65, 65, 65, 66, 210, 72, 324, 194, + /* 860 */ 4, 317, 263, 317, 296, 263, 415, 414, 28, 317, + /* 870 */ 257, 317, 321, 72, 324, 317, 4, 119, 165, 177, + /* 880 */ 296, 397, 398, 414, 23, 414, 32, 418, 321, 326, + /* 890 */ 421, 414, 53, 414, 52, 317, 158, 414, 98, 451, + /* 900 */ 317, 263, 317, 277, 317, 326, 378, 471, 261, 317, + /* 910 */ 259, 18, 478, 445, 445, 451, 317, 414, 96, 75, + /* 920 */ 74, 469, 414, 101, 414, 102, 414, 112, 73, 315, + /* 930 */ 316, 414, 114, 420, 294, 75, 74, 481, 414, 16, + /* 940 */ 381, 317, 279, 467, 73, 315, 316, 72, 324, 420, + /* 950 */ 4, 208, 317, 183, 296, 317, 186, 128, 84, 208, + /* 960 */ 8, 341, 321, 414, 99, 422, 422, 422, 423, 424, + /* 970 */ 11, 623, 380, 307, 414, 33, 413, 414, 97, 326, + /* 980 */ 412, 422, 422, 422, 423, 424, 11, 415, 413, 451, + /* 990 */ 415, 162, 412, 317, 499, 500, 226, 227, 228, 104, + /* 1000 */ 448, 476, 317, 173, 507, 317, 509, 508, 317, 75, + /* 1010 */ 74, 329, 205, 21, 281, 414, 24, 418, 73, 315, + /* 1020 */ 316, 282, 317, 420, 414, 54, 460, 414, 115, 317, + /* 1030 */ 414, 116, 502, 203, 147, 549, 514, 468, 128, 202, + /* 1040 */ 317, 473, 204, 317, 414, 117, 317, 477, 317, 584, + /* 1050 */ 317, 414, 25, 317, 249, 422, 422, 422, 423, 424, + /* 1060 */ 11, 506, 414, 36, 512, 414, 37, 317, 414, 26, + /* 1070 */ 414, 38, 414, 39, 526, 414, 40, 317, 254, 317, + /* 1080 */ 128, 317, 418, 317, 256, 377, 278, 268, 585, 414, + /* 1090 */ 42, 293, 317, 352, 317, 128, 208, 513, 258, 414, + /* 1100 */ 43, 414, 44, 414, 29, 414, 30, 545, 260, 128, + /* 1110 */ 317, 553, 317, 173, 414, 45, 414, 46, 317, 262, + /* 1120 */ 383, 554, 317, 91, 564, 317, 91, 317, 581, 189, + /* 1130 */ 290, 357, 414, 47, 414, 48, 267, 365, 368, 369, + /* 1140 */ 414, 31, 270, 271, 414, 10, 272, 414, 50, 414, + /* 1150 */ 51, 556, 566, 280, 283, 284, 578, 146, 419, 405, + /* 1160 */ 231, 505, 444, 325, 516, 463, 163, 446, 552, 394, + /* 1170 */ 466, 563, 246, 515, 518, 520, 402, 403, 404, 7, + /* 1180 */ 314, 84, 232, 334, 347, 83, 332, 57, 170, 79, + /* 1190 */ 213, 461, 125, 85, 337, 342, 492, 502, 497, 301, + /* 1200 */ 498, 416, 105, 219, 247, 218, 503, 501, 233, 220, + /* 1210 */ 287, 234, 527, 528, 235, 529, 417, 521, 354, 288, + /* 1220 */ 184, 121, 185, 240, 535, 475, 242, 356, 187, 479, + /* 1230 */ 188, 358, 537, 88, 190, 548, 364, 193, 132, 376, + /* 1240 */ 555, 375, 133, 134, 135, 310, 562, 138, 136, 575, + /* 1250 */ 576, 577, 580, 100, 393, 406, 217, 142, 624, 625, + /* 1260 */ 103, 141, 265, 166, 167, 434, 71, 453, 441, 437, + /* 1270 */ 450, 143, 538, 157, 120, 454, 161, 472, 455, 169, + /* 1280 */ 459, 81, 6, 12, 13, 92, 95, 126, 216, 127, + /* 1290 */ 111, 485, 486, 17, 86, 346, 106, 122, 253, 107, + /* 1300 */ 87, 108, 182, 245, 355, 145, 351, 536, 129, 359, + /* 1310 */ 312, 130, 543, 173, 539, 266, 191, 109, 289, 551, + /* 1320 */ 195, 14, 131, 198, 197, 558, 137, 199, 139, 140, + /* 1330 */ 15, 565, 89, 90, 573, 110, 385, 206, 148, 389, + /* 1340 */ 285, 587, +}; +static const YYCODETYPE yy_lookahead[] = { + /* 0 */ 16, 139, 140, 141, 168, 21, 144, 23, 69, 70, + /* 10 */ 71, 72, 176, 74, 75, 76, 77, 78, 79, 80, + /* 20 */ 81, 82, 83, 84, 78, 79, 42, 43, 73, 74, + /* 30 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, + /* 40 */ 1, 2, 23, 58, 60, 61, 62, 63, 64, 65, + /* 50 */ 66, 67, 68, 69, 70, 71, 72, 147, 74, 75, + /* 60 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16, + /* 70 */ 185, 186, 88, 88, 110, 22, 217, 92, 219, 220, + /* 80 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, + /* 90 */ 84, 217, 218, 219, 220, 42, 43, 238, 188, 46, + /* 100 */ 78, 79, 80, 81, 82, 83, 84, 88, 89, 124, + /* 110 */ 125, 126, 16, 60, 61, 62, 63, 64, 65, 66, + /* 120 */ 67, 68, 69, 70, 71, 72, 147, 74, 75, 76, + /* 130 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43, + /* 140 */ 44, 80, 81, 82, 83, 84, 23, 84, 169, 170, + /* 150 */ 19, 164, 165, 166, 23, 23, 60, 61, 62, 63, + /* 160 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 110, + /* 170 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, + /* 180 */ 84, 16, 123, 147, 150, 147, 21, 167, 168, 58, + /* 190 */ 211, 147, 156, 157, 92, 216, 176, 23, 147, 176, + /* 200 */ 177, 78, 79, 165, 166, 103, 183, 42, 43, 78, + /* 210 */ 79, 88, 89, 169, 170, 228, 180, 181, 169, 88, + /* 220 */ 88, 98, 99, 92, 16, 60, 61, 62, 63, 64, + /* 230 */ 65, 66, 67, 68, 69, 70, 71, 72, 147, 74, + /* 240 */ 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, + /* 250 */ 42, 43, 78, 209, 210, 124, 125, 126, 224, 208, + /* 260 */ 169, 170, 88, 89, 230, 227, 228, 16, 60, 61, + /* 270 */ 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, + /* 280 */ 72, 23, 74, 75, 76, 77, 78, 79, 80, 81, + /* 290 */ 82, 83, 84, 42, 43, 160, 16, 147, 161, 83, + /* 300 */ 84, 210, 161, 153, 169, 158, 156, 157, 161, 162, + /* 310 */ 163, 60, 61, 62, 63, 64, 65, 66, 67, 68, + /* 320 */ 69, 70, 71, 72, 161, 74, 75, 76, 77, 78, + /* 330 */ 79, 80, 81, 82, 83, 84, 192, 200, 147, 131, + /* 340 */ 16, 200, 16, 199, 20, 169, 88, 89, 90, 185, + /* 350 */ 186, 93, 94, 95, 217, 22, 219, 220, 147, 147, + /* 360 */ 169, 170, 104, 200, 84, 147, 42, 43, 156, 157, + /* 370 */ 90, 91, 92, 93, 94, 95, 96, 164, 165, 166, + /* 380 */ 169, 170, 131, 103, 60, 61, 62, 63, 64, 65, + /* 390 */ 66, 67, 68, 69, 70, 71, 72, 155, 74, 75, + /* 400 */ 76, 77, 78, 79, 80, 81, 82, 83, 84, 16, + /* 410 */ 84, 11, 221, 20, 30, 16, 147, 91, 92, 93, + /* 420 */ 94, 95, 96, 90, 147, 181, 93, 94, 95, 103, + /* 430 */ 212, 189, 155, 27, 50, 42, 43, 104, 169, 170, + /* 440 */ 34, 228, 43, 201, 202, 181, 169, 170, 206, 49, + /* 450 */ 161, 162, 163, 60, 61, 62, 63, 64, 65, 66, + /* 460 */ 67, 68, 69, 70, 71, 72, 189, 74, 75, 76, + /* 470 */ 77, 78, 79, 80, 81, 82, 83, 84, 16, 25, + /* 480 */ 211, 147, 20, 29, 12, 147, 102, 19, 211, 21, + /* 490 */ 147, 141, 147, 216, 144, 41, 24, 98, 20, 99, + /* 500 */ 100, 101, 103, 165, 42, 43, 0, 1, 2, 37, + /* 510 */ 110, 39, 169, 170, 169, 170, 182, 19, 20, 190, + /* 520 */ 22, 49, 60, 61, 62, 63, 64, 65, 66, 67, + /* 530 */ 68, 69, 70, 71, 72, 155, 74, 75, 76, 77, + /* 540 */ 78, 79, 80, 81, 82, 83, 84, 16, 147, 90, + /* 550 */ 20, 20, 93, 94, 95, 147, 155, 59, 215, 225, + /* 560 */ 215, 20, 130, 104, 132, 227, 228, 42, 43, 189, + /* 570 */ 169, 170, 16, 42, 43, 20, 19, 22, 19, 20, + /* 580 */ 23, 22, 18, 147, 106, 147, 108, 109, 63, 64, + /* 590 */ 189, 60, 61, 62, 63, 64, 65, 66, 67, 68, + /* 600 */ 69, 70, 71, 72, 147, 74, 75, 76, 77, 78, + /* 610 */ 79, 80, 81, 82, 83, 84, 16, 92, 59, 55, + /* 620 */ 212, 21, 147, 19, 147, 23, 188, 23, 12, 217, + /* 630 */ 23, 219, 220, 7, 8, 9, 106, 186, 108, 109, + /* 640 */ 24, 147, 42, 43, 208, 88, 89, 106, 92, 108, + /* 650 */ 109, 244, 245, 37, 147, 39, 147, 182, 94, 16, + /* 660 */ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, + /* 670 */ 70, 71, 72, 145, 74, 75, 76, 77, 78, 79, + /* 680 */ 80, 81, 82, 83, 84, 42, 43, 80, 142, 143, + /* 690 */ 88, 89, 88, 89, 148, 88, 89, 133, 14, 147, + /* 700 */ 225, 155, 16, 60, 61, 62, 63, 64, 65, 66, + /* 710 */ 67, 68, 69, 70, 71, 72, 114, 74, 75, 76, + /* 720 */ 77, 78, 79, 80, 81, 82, 83, 84, 42, 43, + /* 730 */ 201, 202, 147, 147, 182, 189, 52, 147, 54, 147, + /* 740 */ 147, 147, 147, 147, 155, 16, 60, 61, 62, 63, + /* 750 */ 64, 65, 66, 67, 68, 69, 70, 71, 72, 213, + /* 760 */ 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, + /* 770 */ 84, 42, 43, 188, 188, 182, 182, 225, 189, 106, + /* 780 */ 188, 108, 109, 188, 99, 100, 101, 241, 16, 155, + /* 790 */ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, + /* 800 */ 71, 72, 213, 74, 75, 76, 77, 78, 79, 80, + /* 810 */ 81, 82, 83, 84, 42, 43, 23, 133, 225, 225, + /* 820 */ 21, 225, 23, 189, 239, 236, 99, 100, 101, 22, + /* 830 */ 242, 243, 155, 191, 62, 63, 64, 65, 66, 67, + /* 840 */ 68, 69, 70, 71, 72, 147, 74, 75, 76, 77, + /* 850 */ 78, 79, 80, 81, 82, 83, 84, 16, 17, 22, + /* 860 */ 19, 147, 147, 147, 23, 147, 189, 169, 170, 147, + /* 870 */ 14, 147, 31, 16, 17, 147, 19, 147, 19, 43, + /* 880 */ 23, 88, 89, 169, 170, 169, 170, 88, 31, 48, + /* 890 */ 147, 169, 170, 169, 170, 147, 89, 169, 170, 58, + /* 900 */ 147, 147, 147, 188, 147, 48, 188, 114, 52, 147, + /* 910 */ 54, 19, 147, 124, 125, 58, 147, 169, 170, 78, + /* 920 */ 79, 114, 169, 170, 169, 170, 169, 170, 87, 88, + /* 930 */ 89, 169, 170, 92, 98, 78, 79, 80, 169, 170, + /* 940 */ 91, 147, 188, 22, 87, 88, 89, 16, 17, 92, + /* 950 */ 19, 110, 147, 155, 23, 147, 155, 22, 121, 110, + /* 960 */ 68, 80, 31, 169, 170, 124, 125, 126, 127, 128, + /* 970 */ 129, 112, 123, 208, 169, 170, 107, 169, 170, 48, + /* 980 */ 111, 124, 125, 126, 127, 128, 129, 189, 107, 58, + /* 990 */ 189, 5, 111, 147, 7, 8, 10, 11, 12, 13, + /* 1000 */ 161, 20, 147, 22, 178, 147, 91, 92, 147, 78, + /* 1010 */ 79, 147, 26, 19, 28, 169, 170, 23, 87, 88, + /* 1020 */ 89, 35, 147, 92, 169, 170, 147, 169, 170, 147, + /* 1030 */ 169, 170, 97, 47, 113, 49, 20, 203, 22, 53, + /* 1040 */ 147, 147, 56, 147, 169, 170, 147, 147, 147, 20, + /* 1050 */ 147, 169, 170, 147, 147, 124, 125, 126, 127, 128, + /* 1060 */ 129, 147, 169, 170, 178, 169, 170, 147, 169, 170, + /* 1070 */ 169, 170, 169, 170, 147, 169, 170, 147, 20, 147, + /* 1080 */ 22, 147, 88, 147, 147, 99, 100, 101, 59, 169, + /* 1090 */ 170, 105, 147, 20, 147, 22, 110, 178, 147, 169, + /* 1100 */ 170, 169, 170, 169, 170, 169, 170, 20, 147, 22, + /* 1110 */ 147, 20, 147, 22, 169, 170, 169, 170, 147, 147, + /* 1120 */ 134, 20, 147, 22, 20, 147, 22, 147, 20, 232, + /* 1130 */ 22, 233, 169, 170, 169, 170, 147, 147, 147, 147, + /* 1140 */ 169, 170, 147, 147, 169, 170, 147, 169, 170, 169, + /* 1150 */ 170, 147, 147, 147, 147, 147, 147, 191, 161, 149, + /* 1160 */ 193, 177, 229, 223, 161, 172, 6, 229, 194, 146, + /* 1170 */ 172, 194, 172, 172, 172, 161, 146, 146, 146, 22, + /* 1180 */ 154, 121, 194, 118, 173, 119, 116, 120, 112, 130, + /* 1190 */ 222, 152, 152, 98, 115, 98, 171, 97, 171, 40, + /* 1200 */ 179, 189, 19, 84, 171, 226, 171, 173, 195, 226, + /* 1210 */ 174, 196, 171, 171, 197, 171, 198, 179, 15, 174, + /* 1220 */ 151, 60, 151, 204, 152, 205, 204, 152, 151, 205, + /* 1230 */ 152, 38, 152, 130, 151, 184, 152, 184, 19, 15, + /* 1240 */ 194, 152, 187, 187, 187, 152, 194, 184, 187, 33, + /* 1250 */ 152, 152, 137, 159, 1, 20, 175, 214, 112, 112, + /* 1260 */ 175, 214, 234, 112, 112, 92, 19, 11, 20, 107, + /* 1270 */ 20, 19, 235, 19, 32, 20, 112, 114, 20, 22, + /* 1280 */ 20, 22, 117, 22, 117, 237, 237, 19, 44, 20, + /* 1290 */ 240, 20, 20, 231, 19, 44, 19, 243, 20, 19, + /* 1300 */ 19, 19, 96, 103, 16, 21, 44, 17, 98, 36, + /* 1310 */ 246, 45, 45, 22, 51, 133, 98, 19, 5, 1, + /* 1320 */ 122, 19, 102, 14, 113, 17, 113, 115, 102, 122, + /* 1330 */ 19, 123, 68, 68, 20, 14, 57, 135, 19, 3, + /* 1340 */ 136, 4, +}; +#define YY_SHIFT_USE_DFLT (-62) +#define YY_SHIFT_MAX 389 +static const short yy_shift_ofst[] = { + /* 0 */ 39, 841, 986, -16, 841, 931, 931, 258, 123, -36, + /* 10 */ 96, 931, 931, 931, 931, 931, -45, 400, 174, 19, + /* 20 */ 132, -54, -54, 53, 165, 208, 251, 324, 393, 462, + /* 30 */ 531, 600, 643, 686, 643, 643, 643, 643, 643, 643, + /* 40 */ 643, 643, 643, 643, 643, 643, 643, 643, 643, 643, + /* 50 */ 643, 643, 729, 772, 772, 857, 931, 931, 931, 931, + /* 60 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931, + /* 70 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931, + /* 80 */ 931, 931, 931, 931, 931, 931, 931, 931, 931, 931, + /* 90 */ 931, 931, 931, 931, 931, 931, -61, -61, 6, 6, + /* 100 */ 280, 22, 61, 399, 564, 19, 19, 19, 19, 19, + /* 110 */ 19, 19, 216, 132, 63, -62, -62, -62, 131, 326, + /* 120 */ 472, 472, 498, 559, 506, 799, 19, 799, 19, 19, + /* 130 */ 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, + /* 140 */ 19, 849, 59, -36, -36, -36, -62, -62, -62, -15, + /* 150 */ -15, 333, 459, 478, 557, 530, 541, 616, 602, 793, + /* 160 */ 604, 607, 626, 19, 19, 881, 19, 19, 994, 19, + /* 170 */ 19, 807, 19, 19, 673, 807, 19, 19, 384, 384, + /* 180 */ 384, 19, 19, 673, 19, 19, 673, 19, 454, 685, + /* 190 */ 19, 19, 673, 19, 19, 19, 673, 19, 19, 19, + /* 200 */ 673, 673, 19, 19, 19, 19, 19, 468, 869, 921, + /* 210 */ 132, 789, 789, 432, 406, 406, 406, 836, 406, 132, + /* 220 */ 406, 132, 935, 837, 837, 1160, 1160, 1160, 1160, 1157, + /* 230 */ -36, 1060, 1065, 1066, 1070, 1067, 1059, 1076, 1076, 1095, + /* 240 */ 1079, 1095, 1079, 1097, 1097, 1159, 1097, 1100, 1097, 1183, + /* 250 */ 1119, 1119, 1159, 1097, 1097, 1097, 1183, 1203, 1076, 1203, + /* 260 */ 1076, 1203, 1076, 1076, 1193, 1103, 1203, 1076, 1161, 1161, + /* 270 */ 1219, 1060, 1076, 1224, 1224, 1224, 1224, 1060, 1161, 1219, + /* 280 */ 1076, 1216, 1216, 1076, 1076, 1115, -62, -62, -62, -62, + /* 290 */ -62, -62, 525, 684, 727, 856, 859, 556, 555, 981, + /* 300 */ 102, 987, 915, 1016, 1058, 1073, 1087, 1091, 1101, 1104, + /* 310 */ 892, 1108, 1029, 1253, 1235, 1146, 1147, 1151, 1152, 1173, + /* 320 */ 1162, 1247, 1248, 1250, 1252, 1256, 1254, 1255, 1257, 1258, + /* 330 */ 1260, 1259, 1165, 1261, 1167, 1259, 1163, 1268, 1269, 1164, + /* 340 */ 1271, 1272, 1242, 1244, 1275, 1251, 1277, 1278, 1280, 1281, + /* 350 */ 1262, 1282, 1206, 1200, 1288, 1290, 1284, 1210, 1273, 1263, + /* 360 */ 1266, 1291, 1267, 1182, 1218, 1298, 1313, 1318, 1220, 1264, + /* 370 */ 1265, 1198, 1302, 1211, 1309, 1212, 1308, 1213, 1226, 1207, + /* 380 */ 1311, 1208, 1314, 1321, 1279, 1202, 1204, 1319, 1336, 1337, +}; +#define YY_REDUCE_USE_DFLT (-165) +#define YY_REDUCE_MAX 291 +static const short yy_reduce_ofst[] = { + /* 0 */ -138, 277, 546, 137, 401, -21, 44, 36, 38, 242, + /* 10 */ -141, 191, 91, 269, 343, 345, -126, 589, 338, 150, + /* 20 */ 147, -13, 213, 412, 412, 412, 412, 412, 412, 412, + /* 30 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412, + /* 40 */ 412, 412, 412, 412, 412, 412, 412, 412, 412, 412, + /* 50 */ 412, 412, 412, 412, 412, 211, 698, 714, 716, 722, + /* 60 */ 724, 728, 748, 753, 755, 757, 762, 769, 794, 805, + /* 70 */ 808, 846, 855, 858, 861, 875, 882, 893, 896, 899, + /* 80 */ 901, 903, 906, 920, 930, 932, 934, 936, 945, 947, + /* 90 */ 963, 965, 971, 975, 978, 980, 412, 412, 412, 412, + /* 100 */ 20, 412, 412, 23, 34, 334, 475, 552, 593, 594, + /* 110 */ 585, 212, 412, 289, 412, 412, 412, 412, 135, -164, + /* 120 */ -115, 164, 407, 407, 350, 141, 51, 163, 596, -90, + /* 130 */ 436, 218, 765, 438, 586, 592, 595, 715, 718, 408, + /* 140 */ 754, 380, 634, 677, 798, 801, 144, 529, 588, 49, + /* 150 */ 176, 244, 264, 329, 457, 329, 329, 451, 477, 494, + /* 160 */ 507, 509, 528, 590, 730, 642, 509, 743, 839, 864, + /* 170 */ 879, 834, 894, 900, 329, 834, 907, 914, 826, 886, + /* 180 */ 919, 927, 937, 329, 951, 961, 329, 972, 897, 898, + /* 190 */ 989, 990, 329, 991, 992, 995, 329, 996, 999, 1004, + /* 200 */ 329, 329, 1005, 1006, 1007, 1008, 1009, 1010, 966, 967, + /* 210 */ 997, 933, 938, 940, 993, 998, 1000, 984, 1001, 1003, + /* 220 */ 1002, 1014, 1011, 974, 977, 1023, 1030, 1031, 1032, 1026, + /* 230 */ 1012, 988, 1013, 1015, 1017, 1018, 968, 1039, 1040, 1019, + /* 240 */ 1020, 1022, 1024, 1025, 1027, 1021, 1033, 1034, 1035, 1036, + /* 250 */ 979, 983, 1038, 1041, 1042, 1044, 1045, 1069, 1072, 1071, + /* 260 */ 1075, 1077, 1078, 1080, 1028, 1037, 1083, 1084, 1051, 1053, + /* 270 */ 1043, 1046, 1089, 1055, 1056, 1057, 1061, 1052, 1063, 1047, + /* 280 */ 1093, 1048, 1049, 1098, 1099, 1050, 1094, 1081, 1085, 1062, + /* 290 */ 1054, 1064, +}; +static const YYACTIONTYPE yy_default[] = { + /* 0 */ 595, 820, 902, 710, 902, 820, 902, 902, 848, 714, + /* 10 */ 877, 818, 902, 902, 902, 902, 792, 902, 848, 902, + /* 20 */ 626, 848, 848, 743, 902, 902, 902, 902, 902, 902, + /* 30 */ 902, 902, 744, 902, 822, 817, 813, 815, 814, 821, + /* 40 */ 745, 734, 741, 748, 726, 861, 750, 751, 757, 758, + /* 50 */ 878, 876, 780, 779, 798, 902, 902, 902, 902, 902, + /* 60 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902, + /* 70 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902, + /* 80 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902, + /* 90 */ 902, 902, 902, 902, 902, 902, 782, 804, 781, 791, + /* 100 */ 619, 783, 784, 679, 614, 902, 902, 902, 902, 902, + /* 110 */ 902, 902, 785, 902, 786, 799, 800, 801, 902, 902, + /* 120 */ 902, 902, 902, 902, 595, 710, 902, 710, 902, 902, + /* 130 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902, + /* 140 */ 902, 902, 902, 902, 902, 902, 704, 714, 895, 902, + /* 150 */ 902, 670, 902, 902, 902, 902, 902, 902, 902, 902, + /* 160 */ 902, 902, 602, 600, 902, 702, 902, 902, 628, 902, + /* 170 */ 902, 712, 902, 902, 717, 718, 902, 902, 902, 902, + /* 180 */ 902, 902, 902, 616, 902, 902, 691, 902, 854, 902, + /* 190 */ 902, 902, 868, 902, 902, 902, 866, 902, 902, 902, + /* 200 */ 693, 753, 834, 902, 881, 883, 902, 902, 702, 711, + /* 210 */ 902, 902, 902, 816, 737, 737, 737, 649, 737, 902, + /* 220 */ 737, 902, 652, 747, 747, 599, 599, 599, 599, 669, + /* 230 */ 902, 747, 738, 740, 730, 742, 902, 719, 719, 727, + /* 240 */ 729, 727, 729, 681, 681, 666, 681, 652, 681, 826, + /* 250 */ 831, 831, 666, 681, 681, 681, 826, 611, 719, 611, + /* 260 */ 719, 611, 719, 719, 858, 860, 611, 719, 683, 683, + /* 270 */ 759, 747, 719, 690, 690, 690, 690, 747, 683, 759, + /* 280 */ 719, 880, 880, 719, 719, 888, 636, 654, 654, 863, + /* 290 */ 895, 900, 902, 902, 902, 902, 766, 902, 902, 902, + /* 300 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902, + /* 310 */ 841, 902, 902, 902, 902, 771, 767, 902, 768, 902, + /* 320 */ 696, 902, 902, 902, 902, 902, 902, 902, 902, 902, + /* 330 */ 902, 819, 902, 731, 902, 739, 902, 902, 902, 902, + /* 340 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902, + /* 350 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902, + /* 360 */ 856, 857, 902, 902, 902, 902, 902, 902, 902, 902, + /* 370 */ 902, 902, 902, 902, 902, 902, 902, 902, 902, 902, + /* 380 */ 902, 902, 902, 902, 887, 902, 902, 890, 596, 902, + /* 390 */ 590, 593, 592, 594, 598, 601, 623, 624, 625, 603, + /* 400 */ 604, 605, 606, 607, 608, 609, 615, 617, 635, 637, + /* 410 */ 621, 639, 700, 701, 763, 694, 695, 699, 622, 774, + /* 420 */ 765, 769, 770, 772, 773, 787, 788, 790, 796, 803, + /* 430 */ 806, 789, 794, 795, 797, 802, 805, 697, 698, 809, + /* 440 */ 629, 630, 633, 634, 844, 846, 845, 847, 632, 631, + /* 450 */ 775, 778, 811, 812, 869, 870, 871, 872, 873, 807, + /* 460 */ 720, 810, 793, 732, 735, 736, 733, 703, 713, 722, + /* 470 */ 723, 724, 725, 708, 709, 715, 728, 761, 762, 716, + /* 480 */ 705, 706, 707, 808, 764, 776, 777, 640, 641, 771, + /* 490 */ 642, 643, 644, 682, 685, 686, 687, 645, 664, 667, + /* 500 */ 668, 646, 653, 647, 648, 655, 656, 657, 660, 661, + /* 510 */ 662, 663, 658, 659, 827, 828, 832, 830, 829, 650, + /* 520 */ 651, 665, 638, 627, 620, 671, 674, 675, 676, 677, + /* 530 */ 678, 680, 672, 673, 618, 610, 612, 721, 850, 859, + /* 540 */ 855, 851, 852, 853, 613, 823, 824, 684, 755, 756, + /* 550 */ 849, 862, 864, 760, 865, 867, 892, 688, 689, 692, + /* 560 */ 833, 874, 746, 749, 752, 754, 835, 836, 837, 838, + /* 570 */ 839, 842, 843, 840, 875, 879, 882, 884, 885, 886, + /* 580 */ 889, 891, 896, 897, 898, 901, 899, 597, 591, +}; +#define YY_SZ_ACTTAB (int)(sizeof(yy_action)/sizeof(yy_action[0])) + +/* The next table maps tokens into fallback tokens. If a construct +** like the following: +** +** %fallback ID X Y Z. +** +** appears in the grammer, then ID becomes a fallback token for X, Y, +** and Z. Whenever one of the tokens X, Y, or Z is input to the parser +** but it does not parse, the type of the token is changed to ID and +** the parse is retried before an error is thrown. +*/ +#ifdef YYFALLBACK +static const YYCODETYPE yyFallback[] = { + 0, /* $ => nothing */ + 0, /* SEMI => nothing */ + 23, /* EXPLAIN => ID */ + 23, /* QUERY => ID */ + 23, /* PLAN => ID */ + 23, /* BEGIN => ID */ + 0, /* TRANSACTION => nothing */ + 23, /* DEFERRED => ID */ + 23, /* IMMEDIATE => ID */ + 23, /* EXCLUSIVE => ID */ + 0, /* COMMIT => nothing */ + 23, /* END => ID */ + 0, /* ROLLBACK => nothing */ + 0, /* CREATE => nothing */ + 0, /* TABLE => nothing */ + 23, /* IF => ID */ + 0, /* NOT => nothing */ + 0, /* EXISTS => nothing */ + 23, /* TEMP => ID */ + 0, /* LP => nothing */ + 0, /* RP => nothing */ + 0, /* AS => nothing */ + 0, /* COMMA => nothing */ + 0, /* ID => nothing */ + 23, /* ABORT => ID */ + 23, /* AFTER => ID */ + 23, /* ANALYZE => ID */ + 23, /* ASC => ID */ + 23, /* ATTACH => ID */ + 23, /* BEFORE => ID */ + 23, /* CASCADE => ID */ + 23, /* CAST => ID */ + 23, /* CONFLICT => ID */ + 23, /* DATABASE => ID */ + 23, /* DESC => ID */ + 23, /* DETACH => ID */ + 23, /* EACH => ID */ + 23, /* FAIL => ID */ + 23, /* FOR => ID */ + 23, /* IGNORE => ID */ + 23, /* INITIALLY => ID */ + 23, /* INSTEAD => ID */ + 23, /* LIKE_KW => ID */ + 23, /* MATCH => ID */ + 23, /* KEY => ID */ + 23, /* OF => ID */ + 23, /* OFFSET => ID */ + 23, /* PRAGMA => ID */ + 23, /* RAISE => ID */ + 23, /* REPLACE => ID */ + 23, /* RESTRICT => ID */ + 23, /* ROW => ID */ + 23, /* TRIGGER => ID */ + 23, /* VACUUM => ID */ + 23, /* VIEW => ID */ + 23, /* VIRTUAL => ID */ + 23, /* REINDEX => ID */ + 23, /* RENAME => ID */ + 23, /* CTIME_KW => ID */ + 0, /* ANY => nothing */ + 0, /* OR => nothing */ + 0, /* AND => nothing */ + 0, /* IS => nothing */ + 0, /* BETWEEN => nothing */ + 0, /* IN => nothing */ + 0, /* ISNULL => nothing */ + 0, /* NOTNULL => nothing */ + 0, /* NE => nothing */ + 0, /* EQ => nothing */ + 0, /* GT => nothing */ + 0, /* LE => nothing */ + 0, /* LT => nothing */ + 0, /* GE => nothing */ + 0, /* ESCAPE => nothing */ + 0, /* BITAND => nothing */ + 0, /* BITOR => nothing */ + 0, /* LSHIFT => nothing */ + 0, /* RSHIFT => nothing */ + 0, /* PLUS => nothing */ + 0, /* MINUS => nothing */ + 0, /* STAR => nothing */ + 0, /* SLASH => nothing */ + 0, /* REM => nothing */ + 0, /* CONCAT => nothing */ + 0, /* COLLATE => nothing */ + 0, /* UMINUS => nothing */ + 0, /* UPLUS => nothing */ + 0, /* BITNOT => nothing */ + 0, /* STRING => nothing */ + 0, /* JOIN_KW => nothing */ + 0, /* CONSTRAINT => nothing */ + 0, /* DEFAULT => nothing */ + 0, /* NULL => nothing */ + 0, /* PRIMARY => nothing */ + 0, /* UNIQUE => nothing */ + 0, /* CHECK => nothing */ + 0, /* REFERENCES => nothing */ + 0, /* AUTOINCR => nothing */ + 0, /* ON => nothing */ + 0, /* DELETE => nothing */ + 0, /* UPDATE => nothing */ + 0, /* INSERT => nothing */ + 0, /* SET => nothing */ + 0, /* DEFERRABLE => nothing */ + 0, /* FOREIGN => nothing */ + 0, /* DROP => nothing */ + 0, /* UNION => nothing */ + 0, /* ALL => nothing */ + 0, /* EXCEPT => nothing */ + 0, /* INTERSECT => nothing */ + 0, /* SELECT => nothing */ + 0, /* DISTINCT => nothing */ + 0, /* DOT => nothing */ + 0, /* FROM => nothing */ + 0, /* JOIN => nothing */ + 0, /* USING => nothing */ + 0, /* ORDER => nothing */ + 0, /* BY => nothing */ + 0, /* GROUP => nothing */ + 0, /* HAVING => nothing */ + 0, /* LIMIT => nothing */ + 0, /* WHERE => nothing */ + 0, /* INTO => nothing */ + 0, /* VALUES => nothing */ + 0, /* INTEGER => nothing */ + 0, /* FLOAT => nothing */ + 0, /* BLOB => nothing */ + 0, /* REGISTER => nothing */ + 0, /* VARIABLE => nothing */ + 0, /* CASE => nothing */ + 0, /* WHEN => nothing */ + 0, /* THEN => nothing */ + 0, /* ELSE => nothing */ + 0, /* INDEX => nothing */ + 0, /* ALTER => nothing */ + 0, /* TO => nothing */ + 0, /* ADD => nothing */ + 0, /* COLUMNKW => nothing */ +}; +#endif /* YYFALLBACK */ + +/* The following structure represents a single element of the +** parser's stack. Information stored includes: +** +** + The state number for the parser at this level of the stack. +** +** + The value of the token stored at this level of the stack. +** (In other words, the "major" token.) +** +** + The semantic value stored at this level of the stack. This is +** the information used by the action routines in the grammar. +** It is sometimes called the "minor" token. +*/ +struct yyStackEntry { + int stateno; /* The state-number */ + int major; /* The major token value. This is the code + ** number for the token at this stack level */ + YYMINORTYPE minor; /* The user-supplied minor token value. This + ** is the value of the token */ +}; +typedef struct yyStackEntry yyStackEntry; + +/* The state of the parser is completely contained in an instance of +** the following structure */ +struct yyParser { + int yyidx; /* Index of top element in stack */ + int yyerrcnt; /* Shifts left before out of the error */ + sqlite3ParserARG_SDECL /* A place to hold %extra_argument */ +#if YYSTACKDEPTH<=0 + int yystksz; /* Current side of the stack */ + yyStackEntry *yystack; /* The parser's stack */ +#else + yyStackEntry yystack[YYSTACKDEPTH]; /* The parser's stack */ +#endif +}; +typedef struct yyParser yyParser; + +#ifndef NDEBUG +static FILE *yyTraceFILE = 0; +static char *yyTracePrompt = 0; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* +** Turn parser tracing on by giving a stream to which to write the trace +** and a prompt to preface each trace message. Tracing is turned off +** by making either argument NULL +** +** Inputs: +** <ul> +** <li> A FILE* to which trace output should be written. +** If NULL, then tracing is turned off. +** <li> A prefix string written at the beginning of every +** line of trace output. If NULL, then tracing is +** turned off. +** </ul> +** +** Outputs: +** None. +*/ +SQLITE_PRIVATE void sqlite3ParserTrace(FILE *TraceFILE, char *zTracePrompt){ + yyTraceFILE = TraceFILE; + yyTracePrompt = zTracePrompt; + if( yyTraceFILE==0 ) yyTracePrompt = 0; + else if( yyTracePrompt==0 ) yyTraceFILE = 0; +} +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing shifts, the names of all terminals and nonterminals +** are required. The following table supplies these names */ +static const char *const yyTokenName[] = { + "$", "SEMI", "EXPLAIN", "QUERY", + "PLAN", "BEGIN", "TRANSACTION", "DEFERRED", + "IMMEDIATE", "EXCLUSIVE", "COMMIT", "END", + "ROLLBACK", "CREATE", "TABLE", "IF", + "NOT", "EXISTS", "TEMP", "LP", + "RP", "AS", "COMMA", "ID", + "ABORT", "AFTER", "ANALYZE", "ASC", + "ATTACH", "BEFORE", "CASCADE", "CAST", + "CONFLICT", "DATABASE", "DESC", "DETACH", + "EACH", "FAIL", "FOR", "IGNORE", + "INITIALLY", "INSTEAD", "LIKE_KW", "MATCH", + "KEY", "OF", "OFFSET", "PRAGMA", + "RAISE", "REPLACE", "RESTRICT", "ROW", + "TRIGGER", "VACUUM", "VIEW", "VIRTUAL", + "REINDEX", "RENAME", "CTIME_KW", "ANY", + "OR", "AND", "IS", "BETWEEN", + "IN", "ISNULL", "NOTNULL", "NE", + "EQ", "GT", "LE", "LT", + "GE", "ESCAPE", "BITAND", "BITOR", + "LSHIFT", "RSHIFT", "PLUS", "MINUS", + "STAR", "SLASH", "REM", "CONCAT", + "COLLATE", "UMINUS", "UPLUS", "BITNOT", + "STRING", "JOIN_KW", "CONSTRAINT", "DEFAULT", + "NULL", "PRIMARY", "UNIQUE", "CHECK", + "REFERENCES", "AUTOINCR", "ON", "DELETE", + "UPDATE", "INSERT", "SET", "DEFERRABLE", + "FOREIGN", "DROP", "UNION", "ALL", + "EXCEPT", "INTERSECT", "SELECT", "DISTINCT", + "DOT", "FROM", "JOIN", "USING", + "ORDER", "BY", "GROUP", "HAVING", + "LIMIT", "WHERE", "INTO", "VALUES", + "INTEGER", "FLOAT", "BLOB", "REGISTER", + "VARIABLE", "CASE", "WHEN", "THEN", + "ELSE", "INDEX", "ALTER", "TO", + "ADD", "COLUMNKW", "error", "input", + "cmdlist", "ecmd", "cmdx", "cmd", + "explain", "transtype", "trans_opt", "nm", + "create_table", "create_table_args", "temp", "ifnotexists", + "dbnm", "columnlist", "conslist_opt", "select", + "column", "columnid", "type", "carglist", + "id", "ids", "typetoken", "typename", + "signed", "plus_num", "minus_num", "carg", + "ccons", "term", "expr", "onconf", + "sortorder", "autoinc", "idxlist_opt", "refargs", + "defer_subclause", "refarg", "refact", "init_deferred_pred_opt", + "conslist", "tcons", "idxlist", "defer_subclause_opt", + "orconf", "resolvetype", "raisetype", "ifexists", + "fullname", "oneselect", "multiselect_op", "distinct", + "selcollist", "from", "where_opt", "groupby_opt", + "having_opt", "orderby_opt", "limit_opt", "sclp", + "as", "seltablist", "stl_prefix", "joinop", + "on_opt", "using_opt", "seltablist_paren", "joinop2", + "inscollist", "sortlist", "sortitem", "nexprlist", + "setlist", "insert_cmd", "inscollist_opt", "itemlist", + "exprlist", "likeop", "escape", "between_op", + "in_op", "case_operand", "case_exprlist", "case_else", + "uniqueflag", "idxitem", "collate", "nmnum", + "plus_opt", "number", "trigger_decl", "trigger_cmd_list", + "trigger_time", "trigger_event", "foreach_clause", "when_clause", + "trigger_cmd", "database_kw_opt", "key_opt", "add_column_fullname", + "kwcolumn_opt", "create_vtab", "vtabarglist", "vtabarg", + "vtabargtoken", "lp", "anylist", +}; +#endif /* NDEBUG */ + +#ifndef NDEBUG +/* For tracing reduce actions, the names of all rules are required. +*/ +static const char *const yyRuleName[] = { + /* 0 */ "input ::= cmdlist", + /* 1 */ "cmdlist ::= cmdlist ecmd", + /* 2 */ "cmdlist ::= ecmd", + /* 3 */ "cmdx ::= cmd", + /* 4 */ "ecmd ::= SEMI", + /* 5 */ "ecmd ::= explain cmdx SEMI", + /* 6 */ "explain ::=", + /* 7 */ "explain ::= EXPLAIN", + /* 8 */ "explain ::= EXPLAIN QUERY PLAN", + /* 9 */ "cmd ::= BEGIN transtype trans_opt", + /* 10 */ "trans_opt ::=", + /* 11 */ "trans_opt ::= TRANSACTION", + /* 12 */ "trans_opt ::= TRANSACTION nm", + /* 13 */ "transtype ::=", + /* 14 */ "transtype ::= DEFERRED", + /* 15 */ "transtype ::= IMMEDIATE", + /* 16 */ "transtype ::= EXCLUSIVE", + /* 17 */ "cmd ::= COMMIT trans_opt", + /* 18 */ "cmd ::= END trans_opt", + /* 19 */ "cmd ::= ROLLBACK trans_opt", + /* 20 */ "cmd ::= create_table create_table_args", + /* 21 */ "create_table ::= CREATE temp TABLE ifnotexists nm dbnm", + /* 22 */ "ifnotexists ::=", + /* 23 */ "ifnotexists ::= IF NOT EXISTS", + /* 24 */ "temp ::= TEMP", + /* 25 */ "temp ::=", + /* 26 */ "create_table_args ::= LP columnlist conslist_opt RP", + /* 27 */ "create_table_args ::= AS select", + /* 28 */ "columnlist ::= columnlist COMMA column", + /* 29 */ "columnlist ::= column", + /* 30 */ "column ::= columnid type carglist", + /* 31 */ "columnid ::= nm", + /* 32 */ "id ::= ID", + /* 33 */ "ids ::= ID|STRING", + /* 34 */ "nm ::= ID", + /* 35 */ "nm ::= STRING", + /* 36 */ "nm ::= JOIN_KW", + /* 37 */ "type ::=", + /* 38 */ "type ::= typetoken", + /* 39 */ "typetoken ::= typename", + /* 40 */ "typetoken ::= typename LP signed RP", + /* 41 */ "typetoken ::= typename LP signed COMMA signed RP", + /* 42 */ "typename ::= ids", + /* 43 */ "typename ::= typename ids", + /* 44 */ "signed ::= plus_num", + /* 45 */ "signed ::= minus_num", + /* 46 */ "carglist ::= carglist carg", + /* 47 */ "carglist ::=", + /* 48 */ "carg ::= CONSTRAINT nm ccons", + /* 49 */ "carg ::= ccons", + /* 50 */ "ccons ::= DEFAULT term", + /* 51 */ "ccons ::= DEFAULT LP expr RP", + /* 52 */ "ccons ::= DEFAULT PLUS term", + /* 53 */ "ccons ::= DEFAULT MINUS term", + /* 54 */ "ccons ::= DEFAULT id", + /* 55 */ "ccons ::= NULL onconf", + /* 56 */ "ccons ::= NOT NULL onconf", + /* 57 */ "ccons ::= PRIMARY KEY sortorder onconf autoinc", + /* 58 */ "ccons ::= UNIQUE onconf", + /* 59 */ "ccons ::= CHECK LP expr RP", + /* 60 */ "ccons ::= REFERENCES nm idxlist_opt refargs", + /* 61 */ "ccons ::= defer_subclause", + /* 62 */ "ccons ::= COLLATE ids", + /* 63 */ "autoinc ::=", + /* 64 */ "autoinc ::= AUTOINCR", + /* 65 */ "refargs ::=", + /* 66 */ "refargs ::= refargs refarg", + /* 67 */ "refarg ::= MATCH nm", + /* 68 */ "refarg ::= ON DELETE refact", + /* 69 */ "refarg ::= ON UPDATE refact", + /* 70 */ "refarg ::= ON INSERT refact", + /* 71 */ "refact ::= SET NULL", + /* 72 */ "refact ::= SET DEFAULT", + /* 73 */ "refact ::= CASCADE", + /* 74 */ "refact ::= RESTRICT", + /* 75 */ "defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt", + /* 76 */ "defer_subclause ::= DEFERRABLE init_deferred_pred_opt", + /* 77 */ "init_deferred_pred_opt ::=", + /* 78 */ "init_deferred_pred_opt ::= INITIALLY DEFERRED", + /* 79 */ "init_deferred_pred_opt ::= INITIALLY IMMEDIATE", + /* 80 */ "conslist_opt ::=", + /* 81 */ "conslist_opt ::= COMMA conslist", + /* 82 */ "conslist ::= conslist COMMA tcons", + /* 83 */ "conslist ::= conslist tcons", + /* 84 */ "conslist ::= tcons", + /* 85 */ "tcons ::= CONSTRAINT nm", + /* 86 */ "tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf", + /* 87 */ "tcons ::= UNIQUE LP idxlist RP onconf", + /* 88 */ "tcons ::= CHECK LP expr RP onconf", + /* 89 */ "tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt", + /* 90 */ "defer_subclause_opt ::=", + /* 91 */ "defer_subclause_opt ::= defer_subclause", + /* 92 */ "onconf ::=", + /* 93 */ "onconf ::= ON CONFLICT resolvetype", + /* 94 */ "orconf ::=", + /* 95 */ "orconf ::= OR resolvetype", + /* 96 */ "resolvetype ::= raisetype", + /* 97 */ "resolvetype ::= IGNORE", + /* 98 */ "resolvetype ::= REPLACE", + /* 99 */ "cmd ::= DROP TABLE ifexists fullname", + /* 100 */ "ifexists ::= IF EXISTS", + /* 101 */ "ifexists ::=", + /* 102 */ "cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select", + /* 103 */ "cmd ::= DROP VIEW ifexists fullname", + /* 104 */ "cmd ::= select", + /* 105 */ "select ::= oneselect", + /* 106 */ "select ::= select multiselect_op oneselect", + /* 107 */ "multiselect_op ::= UNION", + /* 108 */ "multiselect_op ::= UNION ALL", + /* 109 */ "multiselect_op ::= EXCEPT|INTERSECT", + /* 110 */ "oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt", + /* 111 */ "distinct ::= DISTINCT", + /* 112 */ "distinct ::= ALL", + /* 113 */ "distinct ::=", + /* 114 */ "sclp ::= selcollist COMMA", + /* 115 */ "sclp ::=", + /* 116 */ "selcollist ::= sclp expr as", + /* 117 */ "selcollist ::= sclp STAR", + /* 118 */ "selcollist ::= sclp nm DOT STAR", + /* 119 */ "as ::= AS nm", + /* 120 */ "as ::= ids", + /* 121 */ "as ::=", + /* 122 */ "from ::=", + /* 123 */ "from ::= FROM seltablist", + /* 124 */ "stl_prefix ::= seltablist joinop", + /* 125 */ "stl_prefix ::=", + /* 126 */ "seltablist ::= stl_prefix nm dbnm as on_opt using_opt", + /* 127 */ "seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt", + /* 128 */ "seltablist_paren ::= select", + /* 129 */ "seltablist_paren ::= seltablist", + /* 130 */ "dbnm ::=", + /* 131 */ "dbnm ::= DOT nm", + /* 132 */ "fullname ::= nm dbnm", + /* 133 */ "joinop ::= COMMA|JOIN", + /* 134 */ "joinop ::= JOIN_KW JOIN", + /* 135 */ "joinop ::= JOIN_KW nm JOIN", + /* 136 */ "joinop ::= JOIN_KW nm nm JOIN", + /* 137 */ "on_opt ::= ON expr", + /* 138 */ "on_opt ::=", + /* 139 */ "using_opt ::= USING LP inscollist RP", + /* 140 */ "using_opt ::=", + /* 141 */ "orderby_opt ::=", + /* 142 */ "orderby_opt ::= ORDER BY sortlist", + /* 143 */ "sortlist ::= sortlist COMMA sortitem sortorder", + /* 144 */ "sortlist ::= sortitem sortorder", + /* 145 */ "sortitem ::= expr", + /* 146 */ "sortorder ::= ASC", + /* 147 */ "sortorder ::= DESC", + /* 148 */ "sortorder ::=", + /* 149 */ "groupby_opt ::=", + /* 150 */ "groupby_opt ::= GROUP BY nexprlist", + /* 151 */ "having_opt ::=", + /* 152 */ "having_opt ::= HAVING expr", + /* 153 */ "limit_opt ::=", + /* 154 */ "limit_opt ::= LIMIT expr", + /* 155 */ "limit_opt ::= LIMIT expr OFFSET expr", + /* 156 */ "limit_opt ::= LIMIT expr COMMA expr", + /* 157 */ "cmd ::= DELETE FROM fullname where_opt", + /* 158 */ "where_opt ::=", + /* 159 */ "where_opt ::= WHERE expr", + /* 160 */ "cmd ::= UPDATE orconf fullname SET setlist where_opt", + /* 161 */ "setlist ::= setlist COMMA nm EQ expr", + /* 162 */ "setlist ::= nm EQ expr", + /* 163 */ "cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP", + /* 164 */ "cmd ::= insert_cmd INTO fullname inscollist_opt select", + /* 165 */ "cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES", + /* 166 */ "insert_cmd ::= INSERT orconf", + /* 167 */ "insert_cmd ::= REPLACE", + /* 168 */ "itemlist ::= itemlist COMMA expr", + /* 169 */ "itemlist ::= expr", + /* 170 */ "inscollist_opt ::=", + /* 171 */ "inscollist_opt ::= LP inscollist RP", + /* 172 */ "inscollist ::= inscollist COMMA nm", + /* 173 */ "inscollist ::= nm", + /* 174 */ "expr ::= term", + /* 175 */ "expr ::= LP expr RP", + /* 176 */ "term ::= NULL", + /* 177 */ "expr ::= ID", + /* 178 */ "expr ::= JOIN_KW", + /* 179 */ "expr ::= nm DOT nm", + /* 180 */ "expr ::= nm DOT nm DOT nm", + /* 181 */ "term ::= INTEGER|FLOAT|BLOB", + /* 182 */ "term ::= STRING", + /* 183 */ "expr ::= REGISTER", + /* 184 */ "expr ::= VARIABLE", + /* 185 */ "expr ::= expr COLLATE ids", + /* 186 */ "expr ::= CAST LP expr AS typetoken RP", + /* 187 */ "expr ::= ID LP distinct exprlist RP", + /* 188 */ "expr ::= ID LP STAR RP", + /* 189 */ "term ::= CTIME_KW", + /* 190 */ "expr ::= expr AND expr", + /* 191 */ "expr ::= expr OR expr", + /* 192 */ "expr ::= expr LT|GT|GE|LE expr", + /* 193 */ "expr ::= expr EQ|NE expr", + /* 194 */ "expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr", + /* 195 */ "expr ::= expr PLUS|MINUS expr", + /* 196 */ "expr ::= expr STAR|SLASH|REM expr", + /* 197 */ "expr ::= expr CONCAT expr", + /* 198 */ "likeop ::= LIKE_KW", + /* 199 */ "likeop ::= NOT LIKE_KW", + /* 200 */ "likeop ::= MATCH", + /* 201 */ "likeop ::= NOT MATCH", + /* 202 */ "escape ::= ESCAPE expr", + /* 203 */ "escape ::=", + /* 204 */ "expr ::= expr likeop expr escape", + /* 205 */ "expr ::= expr ISNULL|NOTNULL", + /* 206 */ "expr ::= expr IS NULL", + /* 207 */ "expr ::= expr NOT NULL", + /* 208 */ "expr ::= expr IS NOT NULL", + /* 209 */ "expr ::= NOT expr", + /* 210 */ "expr ::= BITNOT expr", + /* 211 */ "expr ::= MINUS expr", + /* 212 */ "expr ::= PLUS expr", + /* 213 */ "between_op ::= BETWEEN", + /* 214 */ "between_op ::= NOT BETWEEN", + /* 215 */ "expr ::= expr between_op expr AND expr", + /* 216 */ "in_op ::= IN", + /* 217 */ "in_op ::= NOT IN", + /* 218 */ "expr ::= expr in_op LP exprlist RP", + /* 219 */ "expr ::= LP select RP", + /* 220 */ "expr ::= expr in_op LP select RP", + /* 221 */ "expr ::= expr in_op nm dbnm", + /* 222 */ "expr ::= EXISTS LP select RP", + /* 223 */ "expr ::= CASE case_operand case_exprlist case_else END", + /* 224 */ "case_exprlist ::= case_exprlist WHEN expr THEN expr", + /* 225 */ "case_exprlist ::= WHEN expr THEN expr", + /* 226 */ "case_else ::= ELSE expr", + /* 227 */ "case_else ::=", + /* 228 */ "case_operand ::= expr", + /* 229 */ "case_operand ::=", + /* 230 */ "exprlist ::= nexprlist", + /* 231 */ "exprlist ::=", + /* 232 */ "nexprlist ::= nexprlist COMMA expr", + /* 233 */ "nexprlist ::= expr", + /* 234 */ "cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP", + /* 235 */ "uniqueflag ::= UNIQUE", + /* 236 */ "uniqueflag ::=", + /* 237 */ "idxlist_opt ::=", + /* 238 */ "idxlist_opt ::= LP idxlist RP", + /* 239 */ "idxlist ::= idxlist COMMA idxitem collate sortorder", + /* 240 */ "idxlist ::= idxitem collate sortorder", + /* 241 */ "idxitem ::= nm", + /* 242 */ "collate ::=", + /* 243 */ "collate ::= COLLATE ids", + /* 244 */ "cmd ::= DROP INDEX ifexists fullname", + /* 245 */ "cmd ::= VACUUM", + /* 246 */ "cmd ::= VACUUM nm", + /* 247 */ "cmd ::= PRAGMA nm dbnm EQ nmnum", + /* 248 */ "cmd ::= PRAGMA nm dbnm EQ ON", + /* 249 */ "cmd ::= PRAGMA nm dbnm EQ DELETE", + /* 250 */ "cmd ::= PRAGMA nm dbnm EQ minus_num", + /* 251 */ "cmd ::= PRAGMA nm dbnm LP nmnum RP", + /* 252 */ "cmd ::= PRAGMA nm dbnm", + /* 253 */ "nmnum ::= plus_num", + /* 254 */ "nmnum ::= nm", + /* 255 */ "plus_num ::= plus_opt number", + /* 256 */ "minus_num ::= MINUS number", + /* 257 */ "number ::= INTEGER|FLOAT", + /* 258 */ "plus_opt ::= PLUS", + /* 259 */ "plus_opt ::=", + /* 260 */ "cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END", + /* 261 */ "trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause", + /* 262 */ "trigger_time ::= BEFORE", + /* 263 */ "trigger_time ::= AFTER", + /* 264 */ "trigger_time ::= INSTEAD OF", + /* 265 */ "trigger_time ::=", + /* 266 */ "trigger_event ::= DELETE|INSERT", + /* 267 */ "trigger_event ::= UPDATE", + /* 268 */ "trigger_event ::= UPDATE OF inscollist", + /* 269 */ "foreach_clause ::=", + /* 270 */ "foreach_clause ::= FOR EACH ROW", + /* 271 */ "when_clause ::=", + /* 272 */ "when_clause ::= WHEN expr", + /* 273 */ "trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI", + /* 274 */ "trigger_cmd_list ::=", + /* 275 */ "trigger_cmd ::= UPDATE orconf nm SET setlist where_opt", + /* 276 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP", + /* 277 */ "trigger_cmd ::= insert_cmd INTO nm inscollist_opt select", + /* 278 */ "trigger_cmd ::= DELETE FROM nm where_opt", + /* 279 */ "trigger_cmd ::= select", + /* 280 */ "expr ::= RAISE LP IGNORE RP", + /* 281 */ "expr ::= RAISE LP raisetype COMMA nm RP", + /* 282 */ "raisetype ::= ROLLBACK", + /* 283 */ "raisetype ::= ABORT", + /* 284 */ "raisetype ::= FAIL", + /* 285 */ "cmd ::= DROP TRIGGER ifexists fullname", + /* 286 */ "cmd ::= ATTACH database_kw_opt expr AS expr key_opt", + /* 287 */ "cmd ::= DETACH database_kw_opt expr", + /* 288 */ "key_opt ::=", + /* 289 */ "key_opt ::= KEY expr", + /* 290 */ "database_kw_opt ::= DATABASE", + /* 291 */ "database_kw_opt ::=", + /* 292 */ "cmd ::= REINDEX", + /* 293 */ "cmd ::= REINDEX nm dbnm", + /* 294 */ "cmd ::= ANALYZE", + /* 295 */ "cmd ::= ANALYZE nm dbnm", + /* 296 */ "cmd ::= ALTER TABLE fullname RENAME TO nm", + /* 297 */ "cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column", + /* 298 */ "add_column_fullname ::= fullname", + /* 299 */ "kwcolumn_opt ::=", + /* 300 */ "kwcolumn_opt ::= COLUMNKW", + /* 301 */ "cmd ::= create_vtab", + /* 302 */ "cmd ::= create_vtab LP vtabarglist RP", + /* 303 */ "create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm", + /* 304 */ "vtabarglist ::= vtabarg", + /* 305 */ "vtabarglist ::= vtabarglist COMMA vtabarg", + /* 306 */ "vtabarg ::=", + /* 307 */ "vtabarg ::= vtabarg vtabargtoken", + /* 308 */ "vtabargtoken ::= ANY", + /* 309 */ "vtabargtoken ::= lp anylist RP", + /* 310 */ "lp ::= LP", + /* 311 */ "anylist ::=", + /* 312 */ "anylist ::= anylist ANY", +}; +#endif /* NDEBUG */ + + +#if YYSTACKDEPTH<=0 +/* +** Try to increase the size of the parser stack. +*/ +static void yyGrowStack(yyParser *p){ + int newSize; + yyStackEntry *pNew; + + newSize = p->yystksz*2 + 100; + pNew = realloc(p->yystack, newSize*sizeof(pNew[0])); + if( pNew ){ + p->yystack = pNew; + p->yystksz = newSize; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sStack grows to %d entries!\n", + yyTracePrompt, p->yystksz); + } +#endif + } +} +#endif + +/* +** This function allocates a new parser. +** The only argument is a pointer to a function which works like +** malloc. +** +** Inputs: +** A pointer to the function used to allocate memory. +** +** Outputs: +** A pointer to a parser. This pointer is used in subsequent calls +** to sqlite3Parser and sqlite3ParserFree. +*/ +SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(size_t)){ + yyParser *pParser; + pParser = (yyParser*)(*mallocProc)( (size_t)sizeof(yyParser) ); + if( pParser ){ + pParser->yyidx = -1; +#if YYSTACKDEPTH<=0 + yyGrowStack(pParser); +#endif + } + return pParser; +} + +/* The following function deletes the value associated with a +** symbol. The symbol can be either a terminal or nonterminal. +** "yymajor" is the symbol code, and "yypminor" is a pointer to +** the value. +*/ +static void yy_destructor(YYCODETYPE yymajor, YYMINORTYPE *yypminor){ + switch( yymajor ){ + /* Here is inserted the actions which take place when a + ** terminal or non-terminal is destroyed. This can happen + ** when the symbol is popped from the stack during a + ** reduce or during error processing or when a parser is + ** being destroyed before it is finished parsing. + ** + ** Note: during a reduce, the only symbols destroyed are those + ** which appear on the RHS of the rule, but which are not used + ** inside the C code. + */ + case 155: /* select */ +{ +sqlite3SelectDelete((yypminor->yy219)); +} + break; + case 169: /* term */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 170: /* expr */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 174: /* idxlist_opt */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 182: /* idxlist */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 188: /* fullname */ +{ +sqlite3SrcListDelete((yypminor->yy373)); +} + break; + case 189: /* oneselect */ +{ +sqlite3SelectDelete((yypminor->yy219)); +} + break; + case 192: /* selcollist */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 193: /* from */ +{ +sqlite3SrcListDelete((yypminor->yy373)); +} + break; + case 194: /* where_opt */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 195: /* groupby_opt */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 196: /* having_opt */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 197: /* orderby_opt */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 199: /* sclp */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 201: /* seltablist */ +{ +sqlite3SrcListDelete((yypminor->yy373)); +} + break; + case 202: /* stl_prefix */ +{ +sqlite3SrcListDelete((yypminor->yy373)); +} + break; + case 204: /* on_opt */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 205: /* using_opt */ +{ +sqlite3IdListDelete((yypminor->yy432)); +} + break; + case 206: /* seltablist_paren */ +{ +sqlite3SelectDelete((yypminor->yy219)); +} + break; + case 208: /* inscollist */ +{ +sqlite3IdListDelete((yypminor->yy432)); +} + break; + case 209: /* sortlist */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 210: /* sortitem */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 211: /* nexprlist */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 212: /* setlist */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 214: /* inscollist_opt */ +{ +sqlite3IdListDelete((yypminor->yy432)); +} + break; + case 215: /* itemlist */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 216: /* exprlist */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 218: /* escape */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 221: /* case_operand */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 222: /* case_exprlist */ +{ +sqlite3ExprListDelete((yypminor->yy174)); +} + break; + case 223: /* case_else */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 231: /* trigger_cmd_list */ +{ +sqlite3DeleteTriggerStep((yypminor->yy243)); +} + break; + case 233: /* trigger_event */ +{ +sqlite3IdListDelete((yypminor->yy370).b); +} + break; + case 235: /* when_clause */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + case 236: /* trigger_cmd */ +{ +sqlite3DeleteTriggerStep((yypminor->yy243)); +} + break; + case 238: /* key_opt */ +{ +sqlite3ExprDelete((yypminor->yy172)); +} + break; + default: break; /* If no destructor action specified: do nothing */ + } +} + +/* +** Pop the parser's stack once. +** +** If there is a destructor routine associated with the token which +** is popped from the stack, then call it. +** +** Return the major token number for the symbol popped. +*/ +static int yy_pop_parser_stack(yyParser *pParser){ + YYCODETYPE yymajor; + yyStackEntry *yytos = &pParser->yystack[pParser->yyidx]; + + if( pParser->yyidx<0 ) return 0; +#ifndef NDEBUG + if( yyTraceFILE && pParser->yyidx>=0 ){ + fprintf(yyTraceFILE,"%sPopping %s\n", + yyTracePrompt, + yyTokenName[yytos->major]); + } +#endif + yymajor = yytos->major; + yy_destructor( yymajor, &yytos->minor); + pParser->yyidx--; + return yymajor; +} + +/* +** Deallocate and destroy a parser. Destructors are all called for +** all stack elements before shutting the parser down. +** +** Inputs: +** <ul> +** <li> A pointer to the parser. This should be a pointer +** obtained from sqlite3ParserAlloc. +** <li> A pointer to a function used to reclaim memory obtained +** from malloc. +** </ul> +*/ +SQLITE_PRIVATE void sqlite3ParserFree( + void *p, /* The parser to be deleted */ + void (*freeProc)(void*) /* Function used to reclaim memory */ +){ + yyParser *pParser = (yyParser*)p; + if( pParser==0 ) return; + while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser); +#if YYSTACKDEPTH<=0 + free(pParser->yystack); +#endif + (*freeProc)((void*)pParser); +} + +/* +** Find the appropriate action for a parser given the terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_shift_action( + yyParser *pParser, /* The parser */ + YYCODETYPE iLookAhead /* The look-ahead token */ +){ + int i; + int stateno = pParser->yystack[pParser->yyidx].stateno; + + if( stateno>YY_SHIFT_MAX || (i = yy_shift_ofst[stateno])==YY_SHIFT_USE_DFLT ){ + return yy_default[stateno]; + } + assert( iLookAhead!=YYNOCODE ); + i += iLookAhead; + if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){ + if( iLookAhead>0 ){ +#ifdef YYFALLBACK + int iFallback; /* Fallback token */ + if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0]) + && (iFallback = yyFallback[iLookAhead])!=0 ){ +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n", + yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]); + } +#endif + return yy_find_shift_action(pParser, iFallback); + } +#endif +#ifdef YYWILDCARD + { + int j = i - iLookAhead + YYWILDCARD; + if( j>=0 && j<YY_SZ_ACTTAB && yy_lookahead[j]==YYWILDCARD ){ +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n", + yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]); + } +#endif /* NDEBUG */ + return yy_action[j]; + } + } +#endif /* YYWILDCARD */ + } + return yy_default[stateno]; + }else{ + return yy_action[i]; + } +} + +/* +** Find the appropriate action for a parser given the non-terminal +** look-ahead token iLookAhead. +** +** If the look-ahead token is YYNOCODE, then check to see if the action is +** independent of the look-ahead. If it is, return the action, otherwise +** return YY_NO_ACTION. +*/ +static int yy_find_reduce_action( + int stateno, /* Current state number */ + YYCODETYPE iLookAhead /* The look-ahead token */ +){ + int i; +#ifdef YYERRORSYMBOL + if( stateno>YY_REDUCE_MAX ){ + return yy_default[stateno]; + } +#else + assert( stateno<=YY_REDUCE_MAX ); +#endif + i = yy_reduce_ofst[stateno]; + assert( i!=YY_REDUCE_USE_DFLT ); + assert( iLookAhead!=YYNOCODE ); + i += iLookAhead; +#ifdef YYERRORSYMBOL + if( i<0 || i>=YY_SZ_ACTTAB || yy_lookahead[i]!=iLookAhead ){ + return yy_default[stateno]; + } +#else + assert( i>=0 && i<YY_SZ_ACTTAB ); + assert( yy_lookahead[i]==iLookAhead ); +#endif + return yy_action[i]; +} + +/* +** The following routine is called if the stack overflows. +*/ +static void yyStackOverflow(yyParser *yypParser, YYMINORTYPE *yypMinor){ + sqlite3ParserARG_FETCH; + yypParser->yyidx--; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will execute if the parser + ** stack every overflows */ + + sqlite3ErrorMsg(pParse, "parser stack overflow"); + pParse->parseError = 1; + sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */ +} + +/* +** Perform a shift action. +*/ +static void yy_shift( + yyParser *yypParser, /* The parser to be shifted */ + int yyNewState, /* The new state to shift in */ + int yyMajor, /* The major token to shift in */ + YYMINORTYPE *yypMinor /* Pointer ot the minor token to shift in */ +){ + yyStackEntry *yytos; + yypParser->yyidx++; +#if YYSTACKDEPTH>0 + if( yypParser->yyidx>=YYSTACKDEPTH ){ + yyStackOverflow(yypParser, yypMinor); + return; + } +#else + if( yypParser->yyidx>=yypParser->yystksz ){ + yyGrowStack(yypParser); + if( yypParser->yyidx>=yypParser->yystksz ){ + yyStackOverflow(yypParser, yypMinor); + return; + } + } +#endif + yytos = &yypParser->yystack[yypParser->yyidx]; + yytos->stateno = yyNewState; + yytos->major = yyMajor; + yytos->minor = *yypMinor; +#ifndef NDEBUG + if( yyTraceFILE && yypParser->yyidx>0 ){ + int i; + fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState); + fprintf(yyTraceFILE,"%sStack:",yyTracePrompt); + for(i=1; i<=yypParser->yyidx; i++) + fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]); + fprintf(yyTraceFILE,"\n"); + } +#endif +} + +/* The following table contains information about every rule that +** is used during the reduce. +*/ +static const struct { + YYCODETYPE lhs; /* Symbol on the left-hand side of the rule */ + unsigned char nrhs; /* Number of right-hand side symbols in the rule */ +} yyRuleInfo[] = { + { 139, 1 }, + { 140, 2 }, + { 140, 1 }, + { 142, 1 }, + { 141, 1 }, + { 141, 3 }, + { 144, 0 }, + { 144, 1 }, + { 144, 3 }, + { 143, 3 }, + { 146, 0 }, + { 146, 1 }, + { 146, 2 }, + { 145, 0 }, + { 145, 1 }, + { 145, 1 }, + { 145, 1 }, + { 143, 2 }, + { 143, 2 }, + { 143, 2 }, + { 143, 2 }, + { 148, 6 }, + { 151, 0 }, + { 151, 3 }, + { 150, 1 }, + { 150, 0 }, + { 149, 4 }, + { 149, 2 }, + { 153, 3 }, + { 153, 1 }, + { 156, 3 }, + { 157, 1 }, + { 160, 1 }, + { 161, 1 }, + { 147, 1 }, + { 147, 1 }, + { 147, 1 }, + { 158, 0 }, + { 158, 1 }, + { 162, 1 }, + { 162, 4 }, + { 162, 6 }, + { 163, 1 }, + { 163, 2 }, + { 164, 1 }, + { 164, 1 }, + { 159, 2 }, + { 159, 0 }, + { 167, 3 }, + { 167, 1 }, + { 168, 2 }, + { 168, 4 }, + { 168, 3 }, + { 168, 3 }, + { 168, 2 }, + { 168, 2 }, + { 168, 3 }, + { 168, 5 }, + { 168, 2 }, + { 168, 4 }, + { 168, 4 }, + { 168, 1 }, + { 168, 2 }, + { 173, 0 }, + { 173, 1 }, + { 175, 0 }, + { 175, 2 }, + { 177, 2 }, + { 177, 3 }, + { 177, 3 }, + { 177, 3 }, + { 178, 2 }, + { 178, 2 }, + { 178, 1 }, + { 178, 1 }, + { 176, 3 }, + { 176, 2 }, + { 179, 0 }, + { 179, 2 }, + { 179, 2 }, + { 154, 0 }, + { 154, 2 }, + { 180, 3 }, + { 180, 2 }, + { 180, 1 }, + { 181, 2 }, + { 181, 7 }, + { 181, 5 }, + { 181, 5 }, + { 181, 10 }, + { 183, 0 }, + { 183, 1 }, + { 171, 0 }, + { 171, 3 }, + { 184, 0 }, + { 184, 2 }, + { 185, 1 }, + { 185, 1 }, + { 185, 1 }, + { 143, 4 }, + { 187, 2 }, + { 187, 0 }, + { 143, 8 }, + { 143, 4 }, + { 143, 1 }, + { 155, 1 }, + { 155, 3 }, + { 190, 1 }, + { 190, 2 }, + { 190, 1 }, + { 189, 9 }, + { 191, 1 }, + { 191, 1 }, + { 191, 0 }, + { 199, 2 }, + { 199, 0 }, + { 192, 3 }, + { 192, 2 }, + { 192, 4 }, + { 200, 2 }, + { 200, 1 }, + { 200, 0 }, + { 193, 0 }, + { 193, 2 }, + { 202, 2 }, + { 202, 0 }, + { 201, 6 }, + { 201, 7 }, + { 206, 1 }, + { 206, 1 }, + { 152, 0 }, + { 152, 2 }, + { 188, 2 }, + { 203, 1 }, + { 203, 2 }, + { 203, 3 }, + { 203, 4 }, + { 204, 2 }, + { 204, 0 }, + { 205, 4 }, + { 205, 0 }, + { 197, 0 }, + { 197, 3 }, + { 209, 4 }, + { 209, 2 }, + { 210, 1 }, + { 172, 1 }, + { 172, 1 }, + { 172, 0 }, + { 195, 0 }, + { 195, 3 }, + { 196, 0 }, + { 196, 2 }, + { 198, 0 }, + { 198, 2 }, + { 198, 4 }, + { 198, 4 }, + { 143, 4 }, + { 194, 0 }, + { 194, 2 }, + { 143, 6 }, + { 212, 5 }, + { 212, 3 }, + { 143, 8 }, + { 143, 5 }, + { 143, 6 }, + { 213, 2 }, + { 213, 1 }, + { 215, 3 }, + { 215, 1 }, + { 214, 0 }, + { 214, 3 }, + { 208, 3 }, + { 208, 1 }, + { 170, 1 }, + { 170, 3 }, + { 169, 1 }, + { 170, 1 }, + { 170, 1 }, + { 170, 3 }, + { 170, 5 }, + { 169, 1 }, + { 169, 1 }, + { 170, 1 }, + { 170, 1 }, + { 170, 3 }, + { 170, 6 }, + { 170, 5 }, + { 170, 4 }, + { 169, 1 }, + { 170, 3 }, + { 170, 3 }, + { 170, 3 }, + { 170, 3 }, + { 170, 3 }, + { 170, 3 }, + { 170, 3 }, + { 170, 3 }, + { 217, 1 }, + { 217, 2 }, + { 217, 1 }, + { 217, 2 }, + { 218, 2 }, + { 218, 0 }, + { 170, 4 }, + { 170, 2 }, + { 170, 3 }, + { 170, 3 }, + { 170, 4 }, + { 170, 2 }, + { 170, 2 }, + { 170, 2 }, + { 170, 2 }, + { 219, 1 }, + { 219, 2 }, + { 170, 5 }, + { 220, 1 }, + { 220, 2 }, + { 170, 5 }, + { 170, 3 }, + { 170, 5 }, + { 170, 4 }, + { 170, 4 }, + { 170, 5 }, + { 222, 5 }, + { 222, 4 }, + { 223, 2 }, + { 223, 0 }, + { 221, 1 }, + { 221, 0 }, + { 216, 1 }, + { 216, 0 }, + { 211, 3 }, + { 211, 1 }, + { 143, 11 }, + { 224, 1 }, + { 224, 0 }, + { 174, 0 }, + { 174, 3 }, + { 182, 5 }, + { 182, 3 }, + { 225, 1 }, + { 226, 0 }, + { 226, 2 }, + { 143, 4 }, + { 143, 1 }, + { 143, 2 }, + { 143, 5 }, + { 143, 5 }, + { 143, 5 }, + { 143, 5 }, + { 143, 6 }, + { 143, 3 }, + { 227, 1 }, + { 227, 1 }, + { 165, 2 }, + { 166, 2 }, + { 229, 1 }, + { 228, 1 }, + { 228, 0 }, + { 143, 5 }, + { 230, 11 }, + { 232, 1 }, + { 232, 1 }, + { 232, 2 }, + { 232, 0 }, + { 233, 1 }, + { 233, 1 }, + { 233, 3 }, + { 234, 0 }, + { 234, 3 }, + { 235, 0 }, + { 235, 2 }, + { 231, 3 }, + { 231, 0 }, + { 236, 6 }, + { 236, 8 }, + { 236, 5 }, + { 236, 4 }, + { 236, 1 }, + { 170, 4 }, + { 170, 6 }, + { 186, 1 }, + { 186, 1 }, + { 186, 1 }, + { 143, 4 }, + { 143, 6 }, + { 143, 3 }, + { 238, 0 }, + { 238, 2 }, + { 237, 1 }, + { 237, 0 }, + { 143, 1 }, + { 143, 3 }, + { 143, 1 }, + { 143, 3 }, + { 143, 6 }, + { 143, 6 }, + { 239, 1 }, + { 240, 0 }, + { 240, 1 }, + { 143, 1 }, + { 143, 4 }, + { 241, 7 }, + { 242, 1 }, + { 242, 3 }, + { 243, 0 }, + { 243, 2 }, + { 244, 1 }, + { 244, 3 }, + { 245, 1 }, + { 246, 0 }, + { 246, 2 }, +}; + +static void yy_accept(yyParser*); /* Forward Declaration */ + +/* +** Perform a reduce action and the shift that must immediately +** follow the reduce. +*/ +static void yy_reduce( + yyParser *yypParser, /* The parser */ + int yyruleno /* Number of the rule by which to reduce */ +){ + int yygoto; /* The next state */ + int yyact; /* The next action */ + YYMINORTYPE yygotominor; /* The LHS of the rule reduced */ + yyStackEntry *yymsp; /* The top of the parser's stack */ + int yysize; /* Amount to pop the stack */ + sqlite3ParserARG_FETCH; + yymsp = &yypParser->yystack[yypParser->yyidx]; +#ifndef NDEBUG + if( yyTraceFILE && yyruleno>=0 + && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){ + fprintf(yyTraceFILE, "%sReduce [%s].\n", yyTracePrompt, + yyRuleName[yyruleno]); + } +#endif /* NDEBUG */ + + /* Silence complaints from purify about yygotominor being uninitialized + ** in some cases when it is copied into the stack after the following + ** switch. yygotominor is uninitialized when a rule reduces that does + ** not set the value of its left-hand side nonterminal. Leaving the + ** value of the nonterminal uninitialized is utterly harmless as long + ** as the value is never used. So really the only thing this code + ** accomplishes is to quieten purify. + ** + ** 2007-01-16: The wireshark project (www.wireshark.org) reports that + ** without this code, their parser segfaults. I'm not sure what there + ** parser is doing to make this happen. This is the second bug report + ** from wireshark this week. Clearly they are stressing Lemon in ways + ** that it has not been previously stressed... (SQLite ticket #2172) + */ + /*memset(&yygotominor, 0, sizeof(yygotominor));*/ + yygotominor = yyzerominor; + + + switch( yyruleno ){ + /* Beginning here are the reduction cases. A typical example + ** follows: + ** case 0: + ** #line <lineno> <grammarfile> + ** { ... } // User supplied code + ** #line <lineno> <thisfile> + ** break; + */ + case 0: /* input ::= cmdlist */ + case 1: /* cmdlist ::= cmdlist ecmd */ + case 2: /* cmdlist ::= ecmd */ + case 4: /* ecmd ::= SEMI */ + case 5: /* ecmd ::= explain cmdx SEMI */ + case 10: /* trans_opt ::= */ + case 11: /* trans_opt ::= TRANSACTION */ + case 12: /* trans_opt ::= TRANSACTION nm */ + case 20: /* cmd ::= create_table create_table_args */ + case 28: /* columnlist ::= columnlist COMMA column */ + case 29: /* columnlist ::= column */ + case 37: /* type ::= */ + case 44: /* signed ::= plus_num */ + case 45: /* signed ::= minus_num */ + case 46: /* carglist ::= carglist carg */ + case 47: /* carglist ::= */ + case 48: /* carg ::= CONSTRAINT nm ccons */ + case 49: /* carg ::= ccons */ + case 55: /* ccons ::= NULL onconf */ + case 82: /* conslist ::= conslist COMMA tcons */ + case 83: /* conslist ::= conslist tcons */ + case 84: /* conslist ::= tcons */ + case 85: /* tcons ::= CONSTRAINT nm */ + case 258: /* plus_opt ::= PLUS */ + case 259: /* plus_opt ::= */ + case 269: /* foreach_clause ::= */ + case 270: /* foreach_clause ::= FOR EACH ROW */ + case 290: /* database_kw_opt ::= DATABASE */ + case 291: /* database_kw_opt ::= */ + case 299: /* kwcolumn_opt ::= */ + case 300: /* kwcolumn_opt ::= COLUMNKW */ + case 304: /* vtabarglist ::= vtabarg */ + case 305: /* vtabarglist ::= vtabarglist COMMA vtabarg */ + case 307: /* vtabarg ::= vtabarg vtabargtoken */ + case 311: /* anylist ::= */ +{ +} + break; + case 3: /* cmdx ::= cmd */ +{ sqlite3FinishCoding(pParse); } + break; + case 6: /* explain ::= */ +{ sqlite3BeginParse(pParse, 0); } + break; + case 7: /* explain ::= EXPLAIN */ +{ sqlite3BeginParse(pParse, 1); } + break; + case 8: /* explain ::= EXPLAIN QUERY PLAN */ +{ sqlite3BeginParse(pParse, 2); } + break; + case 9: /* cmd ::= BEGIN transtype trans_opt */ +{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy46);} + break; + case 13: /* transtype ::= */ +{yygotominor.yy46 = TK_DEFERRED;} + break; + case 14: /* transtype ::= DEFERRED */ + case 15: /* transtype ::= IMMEDIATE */ + case 16: /* transtype ::= EXCLUSIVE */ + case 107: /* multiselect_op ::= UNION */ + case 109: /* multiselect_op ::= EXCEPT|INTERSECT */ +{yygotominor.yy46 = yymsp[0].major;} + break; + case 17: /* cmd ::= COMMIT trans_opt */ + case 18: /* cmd ::= END trans_opt */ +{sqlite3CommitTransaction(pParse);} + break; + case 19: /* cmd ::= ROLLBACK trans_opt */ +{sqlite3RollbackTransaction(pParse);} + break; + case 21: /* create_table ::= CREATE temp TABLE ifnotexists nm dbnm */ +{ + sqlite3StartTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,yymsp[-4].minor.yy46,0,0,yymsp[-2].minor.yy46); +} + break; + case 22: /* ifnotexists ::= */ + case 25: /* temp ::= */ + case 63: /* autoinc ::= */ + case 77: /* init_deferred_pred_opt ::= */ + case 79: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ + case 90: /* defer_subclause_opt ::= */ + case 101: /* ifexists ::= */ + case 112: /* distinct ::= ALL */ + case 113: /* distinct ::= */ + case 213: /* between_op ::= BETWEEN */ + case 216: /* in_op ::= IN */ +{yygotominor.yy46 = 0;} + break; + case 23: /* ifnotexists ::= IF NOT EXISTS */ + case 24: /* temp ::= TEMP */ + case 64: /* autoinc ::= AUTOINCR */ + case 78: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ + case 100: /* ifexists ::= IF EXISTS */ + case 111: /* distinct ::= DISTINCT */ + case 214: /* between_op ::= NOT BETWEEN */ + case 217: /* in_op ::= NOT IN */ +{yygotominor.yy46 = 1;} + break; + case 26: /* create_table_args ::= LP columnlist conslist_opt RP */ +{ + sqlite3EndTable(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy0,0); +} + break; + case 27: /* create_table_args ::= AS select */ +{ + sqlite3EndTable(pParse,0,0,yymsp[0].minor.yy219); + sqlite3SelectDelete(yymsp[0].minor.yy219); +} + break; + case 30: /* column ::= columnid type carglist */ +{ + yygotominor.yy410.z = yymsp[-2].minor.yy410.z; + yygotominor.yy410.n = (pParse->sLastToken.z-yymsp[-2].minor.yy410.z) + pParse->sLastToken.n; +} + break; + case 31: /* columnid ::= nm */ +{ + sqlite3AddColumn(pParse,&yymsp[0].minor.yy410); + yygotominor.yy410 = yymsp[0].minor.yy410; +} + break; + case 32: /* id ::= ID */ + case 33: /* ids ::= ID|STRING */ + case 34: /* nm ::= ID */ + case 35: /* nm ::= STRING */ + case 36: /* nm ::= JOIN_KW */ + case 257: /* number ::= INTEGER|FLOAT */ +{yygotominor.yy410 = yymsp[0].minor.yy0;} + break; + case 38: /* type ::= typetoken */ +{sqlite3AddColumnType(pParse,&yymsp[0].minor.yy410);} + break; + case 39: /* typetoken ::= typename */ + case 42: /* typename ::= ids */ + case 119: /* as ::= AS nm */ + case 120: /* as ::= ids */ + case 131: /* dbnm ::= DOT nm */ + case 241: /* idxitem ::= nm */ + case 243: /* collate ::= COLLATE ids */ + case 253: /* nmnum ::= plus_num */ + case 254: /* nmnum ::= nm */ + case 255: /* plus_num ::= plus_opt number */ + case 256: /* minus_num ::= MINUS number */ +{yygotominor.yy410 = yymsp[0].minor.yy410;} + break; + case 40: /* typetoken ::= typename LP signed RP */ +{ + yygotominor.yy410.z = yymsp[-3].minor.yy410.z; + yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-3].minor.yy410.z; +} + break; + case 41: /* typetoken ::= typename LP signed COMMA signed RP */ +{ + yygotominor.yy410.z = yymsp[-5].minor.yy410.z; + yygotominor.yy410.n = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] - yymsp[-5].minor.yy410.z; +} + break; + case 43: /* typename ::= typename ids */ +{yygotominor.yy410.z=yymsp[-1].minor.yy410.z; yygotominor.yy410.n=yymsp[0].minor.yy410.n+(yymsp[0].minor.yy410.z-yymsp[-1].minor.yy410.z);} + break; + case 50: /* ccons ::= DEFAULT term */ + case 52: /* ccons ::= DEFAULT PLUS term */ +{sqlite3AddDefaultValue(pParse,yymsp[0].minor.yy172);} + break; + case 51: /* ccons ::= DEFAULT LP expr RP */ +{sqlite3AddDefaultValue(pParse,yymsp[-1].minor.yy172);} + break; + case 53: /* ccons ::= DEFAULT MINUS term */ +{ + Expr *p = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0); + sqlite3AddDefaultValue(pParse,p); +} + break; + case 54: /* ccons ::= DEFAULT id */ +{ + Expr *p = sqlite3PExpr(pParse, TK_STRING, 0, 0, &yymsp[0].minor.yy410); + sqlite3AddDefaultValue(pParse,p); +} + break; + case 56: /* ccons ::= NOT NULL onconf */ +{sqlite3AddNotNull(pParse, yymsp[0].minor.yy46);} + break; + case 57: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */ +{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy46,yymsp[0].minor.yy46,yymsp[-2].minor.yy46);} + break; + case 58: /* ccons ::= UNIQUE onconf */ +{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy46,0,0,0,0);} + break; + case 59: /* ccons ::= CHECK LP expr RP */ +{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy172);} + break; + case 60: /* ccons ::= REFERENCES nm idxlist_opt refargs */ +{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy410,yymsp[-1].minor.yy174,yymsp[0].minor.yy46);} + break; + case 61: /* ccons ::= defer_subclause */ +{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy46);} + break; + case 62: /* ccons ::= COLLATE ids */ +{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy410);} + break; + case 65: /* refargs ::= */ +{ yygotominor.yy46 = OE_Restrict * 0x010101; } + break; + case 66: /* refargs ::= refargs refarg */ +{ yygotominor.yy46 = (yymsp[-1].minor.yy46 & yymsp[0].minor.yy405.mask) | yymsp[0].minor.yy405.value; } + break; + case 67: /* refarg ::= MATCH nm */ +{ yygotominor.yy405.value = 0; yygotominor.yy405.mask = 0x000000; } + break; + case 68: /* refarg ::= ON DELETE refact */ +{ yygotominor.yy405.value = yymsp[0].minor.yy46; yygotominor.yy405.mask = 0x0000ff; } + break; + case 69: /* refarg ::= ON UPDATE refact */ +{ yygotominor.yy405.value = yymsp[0].minor.yy46<<8; yygotominor.yy405.mask = 0x00ff00; } + break; + case 70: /* refarg ::= ON INSERT refact */ +{ yygotominor.yy405.value = yymsp[0].minor.yy46<<16; yygotominor.yy405.mask = 0xff0000; } + break; + case 71: /* refact ::= SET NULL */ +{ yygotominor.yy46 = OE_SetNull; } + break; + case 72: /* refact ::= SET DEFAULT */ +{ yygotominor.yy46 = OE_SetDflt; } + break; + case 73: /* refact ::= CASCADE */ +{ yygotominor.yy46 = OE_Cascade; } + break; + case 74: /* refact ::= RESTRICT */ +{ yygotominor.yy46 = OE_Restrict; } + break; + case 75: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ + case 76: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */ + case 91: /* defer_subclause_opt ::= defer_subclause */ + case 93: /* onconf ::= ON CONFLICT resolvetype */ + case 95: /* orconf ::= OR resolvetype */ + case 96: /* resolvetype ::= raisetype */ + case 166: /* insert_cmd ::= INSERT orconf */ +{yygotominor.yy46 = yymsp[0].minor.yy46;} + break; + case 80: /* conslist_opt ::= */ +{yygotominor.yy410.n = 0; yygotominor.yy410.z = 0;} + break; + case 81: /* conslist_opt ::= COMMA conslist */ +{yygotominor.yy410 = yymsp[-1].minor.yy0;} + break; + case 86: /* tcons ::= PRIMARY KEY LP idxlist autoinc RP onconf */ +{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy174,yymsp[0].minor.yy46,yymsp[-2].minor.yy46,0);} + break; + case 87: /* tcons ::= UNIQUE LP idxlist RP onconf */ +{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy174,yymsp[0].minor.yy46,0,0,0,0);} + break; + case 88: /* tcons ::= CHECK LP expr RP onconf */ +{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy172);} + break; + case 89: /* tcons ::= FOREIGN KEY LP idxlist RP REFERENCES nm idxlist_opt refargs defer_subclause_opt */ +{ + sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy174, &yymsp[-3].minor.yy410, yymsp[-2].minor.yy174, yymsp[-1].minor.yy46); + sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy46); +} + break; + case 92: /* onconf ::= */ + case 94: /* orconf ::= */ +{yygotominor.yy46 = OE_Default;} + break; + case 97: /* resolvetype ::= IGNORE */ +{yygotominor.yy46 = OE_Ignore;} + break; + case 98: /* resolvetype ::= REPLACE */ + case 167: /* insert_cmd ::= REPLACE */ +{yygotominor.yy46 = OE_Replace;} + break; + case 99: /* cmd ::= DROP TABLE ifexists fullname */ +{ + sqlite3DropTable(pParse, yymsp[0].minor.yy373, 0, yymsp[-1].minor.yy46); +} + break; + case 102: /* cmd ::= CREATE temp VIEW ifnotexists nm dbnm AS select */ +{ + sqlite3CreateView(pParse, &yymsp[-7].minor.yy0, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, yymsp[0].minor.yy219, yymsp[-6].minor.yy46, yymsp[-4].minor.yy46); +} + break; + case 103: /* cmd ::= DROP VIEW ifexists fullname */ +{ + sqlite3DropTable(pParse, yymsp[0].minor.yy373, 1, yymsp[-1].minor.yy46); +} + break; + case 104: /* cmd ::= select */ +{ + SelectDest dest = {SRT_Callback, 0, 0, 0, 0}; + sqlite3Select(pParse, yymsp[0].minor.yy219, &dest, 0, 0, 0, 0); + sqlite3SelectDelete(yymsp[0].minor.yy219); +} + break; + case 105: /* select ::= oneselect */ + case 128: /* seltablist_paren ::= select */ +{yygotominor.yy219 = yymsp[0].minor.yy219;} + break; + case 106: /* select ::= select multiselect_op oneselect */ +{ + if( yymsp[0].minor.yy219 ){ + yymsp[0].minor.yy219->op = yymsp[-1].minor.yy46; + yymsp[0].minor.yy219->pPrior = yymsp[-2].minor.yy219; + }else{ + sqlite3SelectDelete(yymsp[-2].minor.yy219); + } + yygotominor.yy219 = yymsp[0].minor.yy219; +} + break; + case 108: /* multiselect_op ::= UNION ALL */ +{yygotominor.yy46 = TK_ALL;} + break; + case 110: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */ +{ + yygotominor.yy219 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy174,yymsp[-5].minor.yy373,yymsp[-4].minor.yy172,yymsp[-3].minor.yy174,yymsp[-2].minor.yy172,yymsp[-1].minor.yy174,yymsp[-7].minor.yy46,yymsp[0].minor.yy234.pLimit,yymsp[0].minor.yy234.pOffset); +} + break; + case 114: /* sclp ::= selcollist COMMA */ + case 238: /* idxlist_opt ::= LP idxlist RP */ +{yygotominor.yy174 = yymsp[-1].minor.yy174;} + break; + case 115: /* sclp ::= */ + case 141: /* orderby_opt ::= */ + case 149: /* groupby_opt ::= */ + case 231: /* exprlist ::= */ + case 237: /* idxlist_opt ::= */ +{yygotominor.yy174 = 0;} + break; + case 116: /* selcollist ::= sclp expr as */ +{ + yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[-1].minor.yy172,yymsp[0].minor.yy410.n?&yymsp[0].minor.yy410:0); +} + break; + case 117: /* selcollist ::= sclp STAR */ +{ + Expr *p = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0); + yygotominor.yy174 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy174, p, 0); +} + break; + case 118: /* selcollist ::= sclp nm DOT STAR */ +{ + Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, 0); + Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410); + Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); + yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174, pDot, 0); +} + break; + case 121: /* as ::= */ +{yygotominor.yy410.n = 0;} + break; + case 122: /* from ::= */ +{yygotominor.yy373 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy373));} + break; + case 123: /* from ::= FROM seltablist */ +{ + yygotominor.yy373 = yymsp[0].minor.yy373; + sqlite3SrcListShiftJoinType(yygotominor.yy373); +} + break; + case 124: /* stl_prefix ::= seltablist joinop */ +{ + yygotominor.yy373 = yymsp[-1].minor.yy373; + if( yygotominor.yy373 && yygotominor.yy373->nSrc>0 ) yygotominor.yy373->a[yygotominor.yy373->nSrc-1].jointype = yymsp[0].minor.yy46; +} + break; + case 125: /* stl_prefix ::= */ +{yygotominor.yy373 = 0;} + break; + case 126: /* seltablist ::= stl_prefix nm dbnm as on_opt using_opt */ +{ + yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-5].minor.yy373,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,0,yymsp[-1].minor.yy172,yymsp[0].minor.yy432); +} + break; + case 127: /* seltablist ::= stl_prefix LP seltablist_paren RP as on_opt using_opt */ +{ + yygotominor.yy373 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy373,0,0,&yymsp[-2].minor.yy410,yymsp[-4].minor.yy219,yymsp[-1].minor.yy172,yymsp[0].minor.yy432); + } + break; + case 129: /* seltablist_paren ::= seltablist */ +{ + sqlite3SrcListShiftJoinType(yymsp[0].minor.yy373); + yygotominor.yy219 = sqlite3SelectNew(pParse,0,yymsp[0].minor.yy373,0,0,0,0,0,0,0); + } + break; + case 130: /* dbnm ::= */ +{yygotominor.yy410.z=0; yygotominor.yy410.n=0;} + break; + case 132: /* fullname ::= nm dbnm */ +{yygotominor.yy373 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410);} + break; + case 133: /* joinop ::= COMMA|JOIN */ +{ yygotominor.yy46 = JT_INNER; } + break; + case 134: /* joinop ::= JOIN_KW JOIN */ +{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); } + break; + case 135: /* joinop ::= JOIN_KW nm JOIN */ +{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy410,0); } + break; + case 136: /* joinop ::= JOIN_KW nm nm JOIN */ +{ yygotominor.yy46 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy410,&yymsp[-1].minor.yy410); } + break; + case 137: /* on_opt ::= ON expr */ + case 145: /* sortitem ::= expr */ + case 152: /* having_opt ::= HAVING expr */ + case 159: /* where_opt ::= WHERE expr */ + case 174: /* expr ::= term */ + case 202: /* escape ::= ESCAPE expr */ + case 226: /* case_else ::= ELSE expr */ + case 228: /* case_operand ::= expr */ +{yygotominor.yy172 = yymsp[0].minor.yy172;} + break; + case 138: /* on_opt ::= */ + case 151: /* having_opt ::= */ + case 158: /* where_opt ::= */ + case 203: /* escape ::= */ + case 227: /* case_else ::= */ + case 229: /* case_operand ::= */ +{yygotominor.yy172 = 0;} + break; + case 139: /* using_opt ::= USING LP inscollist RP */ + case 171: /* inscollist_opt ::= LP inscollist RP */ +{yygotominor.yy432 = yymsp[-1].minor.yy432;} + break; + case 140: /* using_opt ::= */ + case 170: /* inscollist_opt ::= */ +{yygotominor.yy432 = 0;} + break; + case 142: /* orderby_opt ::= ORDER BY sortlist */ + case 150: /* groupby_opt ::= GROUP BY nexprlist */ + case 230: /* exprlist ::= nexprlist */ +{yygotominor.yy174 = yymsp[0].minor.yy174;} + break; + case 143: /* sortlist ::= sortlist COMMA sortitem sortorder */ +{ + yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy174,yymsp[-1].minor.yy172,0); + if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46; +} + break; + case 144: /* sortlist ::= sortitem sortorder */ +{ + yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy172,0); + if( yygotominor.yy174 && yygotominor.yy174->a ) yygotominor.yy174->a[0].sortOrder = yymsp[0].minor.yy46; +} + break; + case 146: /* sortorder ::= ASC */ + case 148: /* sortorder ::= */ +{yygotominor.yy46 = SQLITE_SO_ASC;} + break; + case 147: /* sortorder ::= DESC */ +{yygotominor.yy46 = SQLITE_SO_DESC;} + break; + case 153: /* limit_opt ::= */ +{yygotominor.yy234.pLimit = 0; yygotominor.yy234.pOffset = 0;} + break; + case 154: /* limit_opt ::= LIMIT expr */ +{yygotominor.yy234.pLimit = yymsp[0].minor.yy172; yygotominor.yy234.pOffset = 0;} + break; + case 155: /* limit_opt ::= LIMIT expr OFFSET expr */ +{yygotominor.yy234.pLimit = yymsp[-2].minor.yy172; yygotominor.yy234.pOffset = yymsp[0].minor.yy172;} + break; + case 156: /* limit_opt ::= LIMIT expr COMMA expr */ +{yygotominor.yy234.pOffset = yymsp[-2].minor.yy172; yygotominor.yy234.pLimit = yymsp[0].minor.yy172;} + break; + case 157: /* cmd ::= DELETE FROM fullname where_opt */ +{sqlite3DeleteFrom(pParse,yymsp[-1].minor.yy373,yymsp[0].minor.yy172);} + break; + case 160: /* cmd ::= UPDATE orconf fullname SET setlist where_opt */ +{ + sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy174,"set list"); + sqlite3Update(pParse,yymsp[-3].minor.yy373,yymsp[-1].minor.yy174,yymsp[0].minor.yy172,yymsp[-4].minor.yy46); +} + break; + case 161: /* setlist ::= setlist COMMA nm EQ expr */ +{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);} + break; + case 162: /* setlist ::= nm EQ expr */ +{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,&yymsp[-2].minor.yy410);} + break; + case 163: /* cmd ::= insert_cmd INTO fullname inscollist_opt VALUES LP itemlist RP */ +{sqlite3Insert(pParse, yymsp[-5].minor.yy373, yymsp[-1].minor.yy174, 0, yymsp[-4].minor.yy432, yymsp[-7].minor.yy46);} + break; + case 164: /* cmd ::= insert_cmd INTO fullname inscollist_opt select */ +{sqlite3Insert(pParse, yymsp[-2].minor.yy373, 0, yymsp[0].minor.yy219, yymsp[-1].minor.yy432, yymsp[-4].minor.yy46);} + break; + case 165: /* cmd ::= insert_cmd INTO fullname inscollist_opt DEFAULT VALUES */ +{sqlite3Insert(pParse, yymsp[-3].minor.yy373, 0, 0, yymsp[-2].minor.yy432, yymsp[-5].minor.yy46);} + break; + case 168: /* itemlist ::= itemlist COMMA expr */ + case 232: /* nexprlist ::= nexprlist COMMA expr */ +{yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy174,yymsp[0].minor.yy172,0);} + break; + case 169: /* itemlist ::= expr */ + case 233: /* nexprlist ::= expr */ +{yygotominor.yy174 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy172,0);} + break; + case 172: /* inscollist ::= inscollist COMMA nm */ +{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy432,&yymsp[0].minor.yy410);} + break; + case 173: /* inscollist ::= nm */ +{yygotominor.yy432 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy410);} + break; + case 175: /* expr ::= LP expr RP */ +{yygotominor.yy172 = yymsp[-1].minor.yy172; sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); } + break; + case 176: /* term ::= NULL */ + case 181: /* term ::= INTEGER|FLOAT|BLOB */ + case 182: /* term ::= STRING */ +{yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, 0, 0, &yymsp[0].minor.yy0);} + break; + case 177: /* expr ::= ID */ + case 178: /* expr ::= JOIN_KW */ +{yygotominor.yy172 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);} + break; + case 179: /* expr ::= nm DOT nm */ +{ + Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410); + Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410); + yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); +} + break; + case 180: /* expr ::= nm DOT nm DOT nm */ +{ + Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy410); + Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy410); + Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy410); + Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); + yygotominor.yy172 = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); +} + break; + case 183: /* expr ::= REGISTER */ +{yygotominor.yy172 = sqlite3RegisterExpr(pParse, &yymsp[0].minor.yy0);} + break; + case 184: /* expr ::= VARIABLE */ +{ + Token *pToken = &yymsp[0].minor.yy0; + Expr *pExpr = yygotominor.yy172 = sqlite3PExpr(pParse, TK_VARIABLE, 0, 0, pToken); + sqlite3ExprAssignVarNumber(pParse, pExpr); +} + break; + case 185: /* expr ::= expr COLLATE ids */ +{ + yygotominor.yy172 = sqlite3ExprSetColl(pParse, yymsp[-2].minor.yy172, &yymsp[0].minor.yy410); +} + break; + case 186: /* expr ::= CAST LP expr AS typetoken RP */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy172, 0, &yymsp[-1].minor.yy410); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0); +} + break; + case 187: /* expr ::= ID LP distinct exprlist RP */ +{ + if( yymsp[-1].minor.yy174 && yymsp[-1].minor.yy174->nExpr>SQLITE_MAX_FUNCTION_ARG ){ + sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0); + } + yygotominor.yy172 = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy174, &yymsp[-4].minor.yy0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0); + if( yymsp[-2].minor.yy46 && yygotominor.yy172 ){ + yygotominor.yy172->flags |= EP_Distinct; + } +} + break; + case 188: /* expr ::= ID LP STAR RP */ +{ + yygotominor.yy172 = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0); +} + break; + case 189: /* term ::= CTIME_KW */ +{ + /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are + ** treated as functions that return constants */ + yygotominor.yy172 = sqlite3ExprFunction(pParse, 0,&yymsp[0].minor.yy0); + if( yygotominor.yy172 ){ + yygotominor.yy172->op = TK_CONST_FUNC; + yygotominor.yy172->span = yymsp[0].minor.yy0; + } +} + break; + case 190: /* expr ::= expr AND expr */ + case 191: /* expr ::= expr OR expr */ + case 192: /* expr ::= expr LT|GT|GE|LE expr */ + case 193: /* expr ::= expr EQ|NE expr */ + case 194: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ + case 195: /* expr ::= expr PLUS|MINUS expr */ + case 196: /* expr ::= expr STAR|SLASH|REM expr */ + case 197: /* expr ::= expr CONCAT expr */ +{yygotominor.yy172 = sqlite3PExpr(pParse,yymsp[-1].major,yymsp[-2].minor.yy172,yymsp[0].minor.yy172,0);} + break; + case 198: /* likeop ::= LIKE_KW */ + case 200: /* likeop ::= MATCH */ +{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 0;} + break; + case 199: /* likeop ::= NOT LIKE_KW */ + case 201: /* likeop ::= NOT MATCH */ +{yygotominor.yy72.eOperator = yymsp[0].minor.yy0; yygotominor.yy72.not = 1;} + break; + case 204: /* expr ::= expr likeop expr escape */ +{ + ExprList *pList; + pList = sqlite3ExprListAppend(pParse,0, yymsp[-1].minor.yy172, 0); + pList = sqlite3ExprListAppend(pParse,pList, yymsp[-3].minor.yy172, 0); + if( yymsp[0].minor.yy172 ){ + pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0); + } + yygotominor.yy172 = sqlite3ExprFunction(pParse, pList, &yymsp[-2].minor.yy72.eOperator); + if( yymsp[-2].minor.yy72.not ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy172->span, &yymsp[-1].minor.yy172->span); + if( yygotominor.yy172 ) yygotominor.yy172->flags |= EP_InfixFunc; +} + break; + case 205: /* expr ::= expr ISNULL|NOTNULL */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[0].major, yymsp[-1].minor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy172->span,&yymsp[0].minor.yy0); +} + break; + case 206: /* expr ::= expr IS NULL */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_ISNULL, yymsp[-2].minor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0); +} + break; + case 207: /* expr ::= expr NOT NULL */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-2].minor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy172->span,&yymsp[0].minor.yy0); +} + break; + case 208: /* expr ::= expr IS NOT NULL */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOTNULL, yymsp[-3].minor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,&yymsp[0].minor.yy0); +} + break; + case 209: /* expr ::= NOT expr */ + case 210: /* expr ::= BITNOT expr */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, yymsp[-1].major, yymsp[0].minor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span); +} + break; + case 211: /* expr ::= MINUS expr */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span); +} + break; + case 212: /* expr ::= PLUS expr */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_UPLUS, yymsp[0].minor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy172->span); +} + break; + case 215: /* expr ::= expr between_op expr AND expr */ +{ + ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0); + pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy172, 0); + yygotominor.yy172 = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy172, 0, 0); + if( yygotominor.yy172 ){ + yygotominor.yy172->pList = pList; + }else{ + sqlite3ExprListDelete(pList); + } + if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy172->span); +} + break; + case 218: /* expr ::= expr in_op LP exprlist RP */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0); + if( yygotominor.yy172 ){ + yygotominor.yy172->pList = yymsp[-1].minor.yy174; + sqlite3ExprSetHeight(yygotominor.yy172); + }else{ + sqlite3ExprListDelete(yymsp[-1].minor.yy174); + } + if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0); + } + break; + case 219: /* expr ::= LP select RP */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); + if( yygotominor.yy172 ){ + yygotominor.yy172->pSelect = yymsp[-1].minor.yy219; + sqlite3ExprSetHeight(yygotominor.yy172); + }else{ + sqlite3SelectDelete(yymsp[-1].minor.yy219); + } + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0); + } + break; + case 220: /* expr ::= expr in_op LP select RP */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy172, 0, 0); + if( yygotominor.yy172 ){ + yygotominor.yy172->pSelect = yymsp[-1].minor.yy219; + sqlite3ExprSetHeight(yygotominor.yy172); + }else{ + sqlite3SelectDelete(yymsp[-1].minor.yy219); + } + if( yymsp[-3].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-4].minor.yy172->span,&yymsp[0].minor.yy0); + } + break; + case 221: /* expr ::= expr in_op nm dbnm */ +{ + SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410); + yygotominor.yy172 = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy172, 0, 0); + if( yygotominor.yy172 ){ + yygotominor.yy172->pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); + sqlite3ExprSetHeight(yygotominor.yy172); + }else{ + sqlite3SrcListDelete(pSrc); + } + if( yymsp[-2].minor.yy46 ) yygotominor.yy172 = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy172, 0, 0); + sqlite3ExprSpan(yygotominor.yy172,&yymsp[-3].minor.yy172->span,yymsp[0].minor.yy410.z?&yymsp[0].minor.yy410:&yymsp[-1].minor.yy410); + } + break; + case 222: /* expr ::= EXISTS LP select RP */ +{ + Expr *p = yygotominor.yy172 = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); + if( p ){ + p->pSelect = yymsp[-1].minor.yy219; + sqlite3ExprSpan(p,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0); + sqlite3ExprSetHeight(yygotominor.yy172); + }else{ + sqlite3SelectDelete(yymsp[-1].minor.yy219); + } + } + break; + case 223: /* expr ::= CASE case_operand case_exprlist case_else END */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, 0); + if( yygotominor.yy172 ){ + yygotominor.yy172->pList = yymsp[-2].minor.yy174; + sqlite3ExprSetHeight(yygotominor.yy172); + }else{ + sqlite3ExprListDelete(yymsp[-2].minor.yy174); + } + sqlite3ExprSpan(yygotominor.yy172, &yymsp[-4].minor.yy0, &yymsp[0].minor.yy0); +} + break; + case 224: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */ +{ + yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, yymsp[-2].minor.yy172, 0); + yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0); +} + break; + case 225: /* case_exprlist ::= WHEN expr THEN expr */ +{ + yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy172, 0); + yygotominor.yy174 = sqlite3ExprListAppend(pParse,yygotominor.yy174, yymsp[0].minor.yy172, 0); +} + break; + case 234: /* cmd ::= CREATE uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */ +{ + sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy410, &yymsp[-5].minor.yy410, + sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy410,0), yymsp[-1].minor.yy174, yymsp[-9].minor.yy46, + &yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy46); +} + break; + case 235: /* uniqueflag ::= UNIQUE */ + case 283: /* raisetype ::= ABORT */ +{yygotominor.yy46 = OE_Abort;} + break; + case 236: /* uniqueflag ::= */ +{yygotominor.yy46 = OE_None;} + break; + case 239: /* idxlist ::= idxlist COMMA idxitem collate sortorder */ +{ + Expr *p = 0; + if( yymsp[-1].minor.yy410.n>0 ){ + p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); + sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410); + } + yygotominor.yy174 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy174, p, &yymsp[-2].minor.yy410); + sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index"); + if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46; +} + break; + case 240: /* idxlist ::= idxitem collate sortorder */ +{ + Expr *p = 0; + if( yymsp[-1].minor.yy410.n>0 ){ + p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); + sqlite3ExprSetColl(pParse, p, &yymsp[-1].minor.yy410); + } + yygotominor.yy174 = sqlite3ExprListAppend(pParse,0, p, &yymsp[-2].minor.yy410); + sqlite3ExprListCheckLength(pParse, yygotominor.yy174, "index"); + if( yygotominor.yy174 ) yygotominor.yy174->a[yygotominor.yy174->nExpr-1].sortOrder = yymsp[0].minor.yy46; +} + break; + case 242: /* collate ::= */ +{yygotominor.yy410.z = 0; yygotominor.yy410.n = 0;} + break; + case 244: /* cmd ::= DROP INDEX ifexists fullname */ +{sqlite3DropIndex(pParse, yymsp[0].minor.yy373, yymsp[-1].minor.yy46);} + break; + case 245: /* cmd ::= VACUUM */ + case 246: /* cmd ::= VACUUM nm */ +{sqlite3Vacuum(pParse);} + break; + case 247: /* cmd ::= PRAGMA nm dbnm EQ nmnum */ +{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,0);} + break; + case 248: /* cmd ::= PRAGMA nm dbnm EQ ON */ + case 249: /* cmd ::= PRAGMA nm dbnm EQ DELETE */ +{sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy0,0);} + break; + case 250: /* cmd ::= PRAGMA nm dbnm EQ minus_num */ +{ + sqlite3Pragma(pParse,&yymsp[-3].minor.yy410,&yymsp[-2].minor.yy410,&yymsp[0].minor.yy410,1); +} + break; + case 251: /* cmd ::= PRAGMA nm dbnm LP nmnum RP */ +{sqlite3Pragma(pParse,&yymsp[-4].minor.yy410,&yymsp[-3].minor.yy410,&yymsp[-1].minor.yy410,0);} + break; + case 252: /* cmd ::= PRAGMA nm dbnm */ +{sqlite3Pragma(pParse,&yymsp[-1].minor.yy410,&yymsp[0].minor.yy410,0,0);} + break; + case 260: /* cmd ::= CREATE trigger_decl BEGIN trigger_cmd_list END */ +{ + Token all; + all.z = yymsp[-3].minor.yy410.z; + all.n = (yymsp[0].minor.yy0.z - yymsp[-3].minor.yy410.z) + yymsp[0].minor.yy0.n; + sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy243, &all); +} + break; + case 261: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */ +{ + sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy410, &yymsp[-6].minor.yy410, yymsp[-5].minor.yy46, yymsp[-4].minor.yy370.a, yymsp[-4].minor.yy370.b, yymsp[-2].minor.yy373, yymsp[0].minor.yy172, yymsp[-10].minor.yy46, yymsp[-8].minor.yy46); + yygotominor.yy410 = (yymsp[-6].minor.yy410.n==0?yymsp[-7].minor.yy410:yymsp[-6].minor.yy410); +} + break; + case 262: /* trigger_time ::= BEFORE */ + case 265: /* trigger_time ::= */ +{ yygotominor.yy46 = TK_BEFORE; } + break; + case 263: /* trigger_time ::= AFTER */ +{ yygotominor.yy46 = TK_AFTER; } + break; + case 264: /* trigger_time ::= INSTEAD OF */ +{ yygotominor.yy46 = TK_INSTEAD;} + break; + case 266: /* trigger_event ::= DELETE|INSERT */ + case 267: /* trigger_event ::= UPDATE */ +{yygotominor.yy370.a = yymsp[0].major; yygotominor.yy370.b = 0;} + break; + case 268: /* trigger_event ::= UPDATE OF inscollist */ +{yygotominor.yy370.a = TK_UPDATE; yygotominor.yy370.b = yymsp[0].minor.yy432;} + break; + case 271: /* when_clause ::= */ + case 288: /* key_opt ::= */ +{ yygotominor.yy172 = 0; } + break; + case 272: /* when_clause ::= WHEN expr */ + case 289: /* key_opt ::= KEY expr */ +{ yygotominor.yy172 = yymsp[0].minor.yy172; } + break; + case 273: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */ +{ + if( yymsp[-2].minor.yy243 ){ + yymsp[-2].minor.yy243->pLast->pNext = yymsp[-1].minor.yy243; + }else{ + yymsp[-2].minor.yy243 = yymsp[-1].minor.yy243; + } + yymsp[-2].minor.yy243->pLast = yymsp[-1].minor.yy243; + yygotominor.yy243 = yymsp[-2].minor.yy243; +} + break; + case 274: /* trigger_cmd_list ::= */ +{ yygotominor.yy243 = 0; } + break; + case 275: /* trigger_cmd ::= UPDATE orconf nm SET setlist where_opt */ +{ yygotominor.yy243 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-3].minor.yy410, yymsp[-1].minor.yy174, yymsp[0].minor.yy172, yymsp[-4].minor.yy46); } + break; + case 276: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt VALUES LP itemlist RP */ +{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-5].minor.yy410, yymsp[-4].minor.yy432, yymsp[-1].minor.yy174, 0, yymsp[-7].minor.yy46);} + break; + case 277: /* trigger_cmd ::= insert_cmd INTO nm inscollist_opt select */ +{yygotominor.yy243 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy410, yymsp[-1].minor.yy432, 0, yymsp[0].minor.yy219, yymsp[-4].minor.yy46);} + break; + case 278: /* trigger_cmd ::= DELETE FROM nm where_opt */ +{yygotominor.yy243 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-1].minor.yy410, yymsp[0].minor.yy172);} + break; + case 279: /* trigger_cmd ::= select */ +{yygotominor.yy243 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy219); } + break; + case 280: /* expr ::= RAISE LP IGNORE RP */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); + if( yygotominor.yy172 ){ + yygotominor.yy172->iColumn = OE_Ignore; + sqlite3ExprSpan(yygotominor.yy172, &yymsp[-3].minor.yy0, &yymsp[0].minor.yy0); + } +} + break; + case 281: /* expr ::= RAISE LP raisetype COMMA nm RP */ +{ + yygotominor.yy172 = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy410); + if( yygotominor.yy172 ) { + yygotominor.yy172->iColumn = yymsp[-3].minor.yy46; + sqlite3ExprSpan(yygotominor.yy172, &yymsp[-5].minor.yy0, &yymsp[0].minor.yy0); + } +} + break; + case 282: /* raisetype ::= ROLLBACK */ +{yygotominor.yy46 = OE_Rollback;} + break; + case 284: /* raisetype ::= FAIL */ +{yygotominor.yy46 = OE_Fail;} + break; + case 285: /* cmd ::= DROP TRIGGER ifexists fullname */ +{ + sqlite3DropTrigger(pParse,yymsp[0].minor.yy373,yymsp[-1].minor.yy46); +} + break; + case 286: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */ +{ + sqlite3Attach(pParse, yymsp[-3].minor.yy172, yymsp[-1].minor.yy172, yymsp[0].minor.yy172); +} + break; + case 287: /* cmd ::= DETACH database_kw_opt expr */ +{ + sqlite3Detach(pParse, yymsp[0].minor.yy172); +} + break; + case 292: /* cmd ::= REINDEX */ +{sqlite3Reindex(pParse, 0, 0);} + break; + case 293: /* cmd ::= REINDEX nm dbnm */ +{sqlite3Reindex(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);} + break; + case 294: /* cmd ::= ANALYZE */ +{sqlite3Analyze(pParse, 0, 0);} + break; + case 295: /* cmd ::= ANALYZE nm dbnm */ +{sqlite3Analyze(pParse, &yymsp[-1].minor.yy410, &yymsp[0].minor.yy410);} + break; + case 296: /* cmd ::= ALTER TABLE fullname RENAME TO nm */ +{ + sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy373,&yymsp[0].minor.yy410); +} + break; + case 297: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */ +{ + sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy410); +} + break; + case 298: /* add_column_fullname ::= fullname */ +{ + sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy373); +} + break; + case 301: /* cmd ::= create_vtab */ +{sqlite3VtabFinishParse(pParse,0);} + break; + case 302: /* cmd ::= create_vtab LP vtabarglist RP */ +{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);} + break; + case 303: /* create_vtab ::= CREATE VIRTUAL TABLE nm dbnm USING nm */ +{ + sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy410, &yymsp[-2].minor.yy410, &yymsp[0].minor.yy410); +} + break; + case 306: /* vtabarg ::= */ +{sqlite3VtabArgInit(pParse);} + break; + case 308: /* vtabargtoken ::= ANY */ + case 309: /* vtabargtoken ::= lp anylist RP */ + case 310: /* lp ::= LP */ + case 312: /* anylist ::= anylist ANY */ +{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);} + break; + }; + yygoto = yyRuleInfo[yyruleno].lhs; + yysize = yyRuleInfo[yyruleno].nrhs; + yypParser->yyidx -= yysize; + yyact = yy_find_reduce_action(yymsp[-yysize].stateno,yygoto); + if( yyact < YYNSTATE ){ +#ifdef NDEBUG + /* If we are not debugging and the reduce action popped at least + ** one element off the stack, then we can push the new element back + ** onto the stack here, and skip the stack overflow test in yy_shift(). + ** That gives a significant speed improvement. */ + if( yysize ){ + yypParser->yyidx++; + yymsp -= yysize-1; + yymsp->stateno = yyact; + yymsp->major = yygoto; + yymsp->minor = yygotominor; + }else +#endif + { + yy_shift(yypParser,yyact,yygoto,&yygotominor); + } + }else{ + assert( yyact == YYNSTATE + YYNRULE + 1 ); + yy_accept(yypParser); + } +} + +/* +** The following code executes when the parse fails +*/ +static void yy_parse_failed( + yyParser *yypParser /* The parser */ +){ + sqlite3ParserARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser fails */ + sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* +** The following code executes when a syntax error first occurs. +*/ +static void yy_syntax_error( + yyParser *yypParser, /* The parser */ + int yymajor, /* The major type of the error token */ + YYMINORTYPE yyminor /* The minor type of the error token */ +){ + sqlite3ParserARG_FETCH; +#define TOKEN (yyminor.yy0) + + assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ + sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); + pParse->parseError = 1; + sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* +** The following is executed when the parser accepts +*/ +static void yy_accept( + yyParser *yypParser /* The parser */ +){ + sqlite3ParserARG_FETCH; +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt); + } +#endif + while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser); + /* Here code is inserted which will be executed whenever the + ** parser accepts */ + sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */ +} + +/* The main parser program. +** The first argument is a pointer to a structure obtained from +** "sqlite3ParserAlloc" which describes the current state of the parser. +** The second argument is the major token number. The third is +** the minor token. The fourth optional argument is whatever the +** user wants (and specified in the grammar) and is available for +** use by the action routines. +** +** Inputs: +** <ul> +** <li> A pointer to the parser (an opaque structure.) +** <li> The major token number. +** <li> The minor token number. +** <li> An option argument of a grammar-specified type. +** </ul> +** +** Outputs: +** None. +*/ +SQLITE_PRIVATE void sqlite3Parser( + void *yyp, /* The parser */ + int yymajor, /* The major token code number */ + sqlite3ParserTOKENTYPE yyminor /* The value for the token */ + sqlite3ParserARG_PDECL /* Optional %extra_argument parameter */ +){ + YYMINORTYPE yyminorunion; + int yyact; /* The parser action. */ + int yyendofinput; /* True if we are at the end of input */ +#ifdef YYERRORSYMBOL + int yyerrorhit = 0; /* True if yymajor has invoked an error */ +#endif + yyParser *yypParser; /* The parser */ + + /* (re)initialize the parser, if necessary */ + yypParser = (yyParser*)yyp; + if( yypParser->yyidx<0 ){ +#if YYSTACKDEPTH<=0 + if( yypParser->yystksz <=0 ){ + /*memset(&yyminorunion, 0, sizeof(yyminorunion));*/ + yyminorunion = yyzerominor; + yyStackOverflow(yypParser, &yyminorunion); + return; + } +#endif + yypParser->yyidx = 0; + yypParser->yyerrcnt = -1; + yypParser->yystack[0].stateno = 0; + yypParser->yystack[0].major = 0; + } + yyminorunion.yy0 = yyminor; + yyendofinput = (yymajor==0); + sqlite3ParserARG_STORE; + +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]); + } +#endif + + do{ + yyact = yy_find_shift_action(yypParser,yymajor); + if( yyact<YYNSTATE ){ + assert( !yyendofinput ); /* Impossible to shift the $ token */ + yy_shift(yypParser,yyact,yymajor,&yyminorunion); + yypParser->yyerrcnt--; + yymajor = YYNOCODE; + }else if( yyact < YYNSTATE + YYNRULE ){ + yy_reduce(yypParser,yyact-YYNSTATE); + }else{ + assert( yyact == YY_ERROR_ACTION ); +#ifdef YYERRORSYMBOL + int yymx; +#endif +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sSyntax Error!\n",yyTracePrompt); + } +#endif +#ifdef YYERRORSYMBOL + /* A syntax error has occurred. + ** The response to an error depends upon whether or not the + ** grammar defines an error token "ERROR". + ** + ** This is what we do if the grammar does define ERROR: + ** + ** * Call the %syntax_error function. + ** + ** * Begin popping the stack until we enter a state where + ** it is legal to shift the error symbol, then shift + ** the error symbol. + ** + ** * Set the error count to three. + ** + ** * Begin accepting and shifting new tokens. No new error + ** processing will occur until three tokens have been + ** shifted successfully. + ** + */ + if( yypParser->yyerrcnt<0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yymx = yypParser->yystack[yypParser->yyidx].major; + if( yymx==YYERRORSYMBOL || yyerrorhit ){ +#ifndef NDEBUG + if( yyTraceFILE ){ + fprintf(yyTraceFILE,"%sDiscard input token %s\n", + yyTracePrompt,yyTokenName[yymajor]); + } +#endif + yy_destructor(yymajor,&yyminorunion); + yymajor = YYNOCODE; + }else{ + while( + yypParser->yyidx >= 0 && + yymx != YYERRORSYMBOL && + (yyact = yy_find_reduce_action( + yypParser->yystack[yypParser->yyidx].stateno, + YYERRORSYMBOL)) >= YYNSTATE + ){ + yy_pop_parser_stack(yypParser); + } + if( yypParser->yyidx < 0 || yymajor==0 ){ + yy_destructor(yymajor,&yyminorunion); + yy_parse_failed(yypParser); + yymajor = YYNOCODE; + }else if( yymx!=YYERRORSYMBOL ){ + YYMINORTYPE u2; + u2.YYERRSYMDT = 0; + yy_shift(yypParser,yyact,YYERRORSYMBOL,&u2); + } + } + yypParser->yyerrcnt = 3; + yyerrorhit = 1; +#else /* YYERRORSYMBOL is not defined */ + /* This is what we do if the grammar does not define ERROR: + ** + ** * Report an error message, and throw away the input token. + ** + ** * If the input token is $, then fail the parse. + ** + ** As before, subsequent error messages are suppressed until + ** three input tokens have been successfully shifted. + */ + if( yypParser->yyerrcnt<=0 ){ + yy_syntax_error(yypParser,yymajor,yyminorunion); + } + yypParser->yyerrcnt = 3; + yy_destructor(yymajor,&yyminorunion); + if( yyendofinput ){ + yy_parse_failed(yypParser); + } + yymajor = YYNOCODE; +#endif + } + }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 ); + return; +} + +/************** End of parse.c ***********************************************/ +/************** Begin file tokenize.c ****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** An tokenizer for SQL +** +** This file contains C code that splits an SQL input string up into +** individual tokens and sends those tokens one-by-one over to the +** parser for analysis. +** +** $Id: tokenize.c,v 1.142 2008/04/28 18:46:43 drh Exp $ +*/ + +/* +** The charMap() macro maps alphabetic characters into their +** lower-case ASCII equivalent. On ASCII machines, this is just +** an upper-to-lower case map. On EBCDIC machines we also need +** to adjust the encoding. Only alphabetic characters and underscores +** need to be translated. +*/ +#ifdef SQLITE_ASCII +# define charMap(X) sqlite3UpperToLower[(unsigned char)X] +#endif +#ifdef SQLITE_EBCDIC +# define charMap(X) ebcdicToAscii[(unsigned char)X] +const unsigned char ebcdicToAscii[] = { +/* 0 1 2 3 4 5 6 7 8 9 A B C D E F */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 1x */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 3x */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 4x */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 5x */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 95, 0, 0, /* 6x */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 7x */ + 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* 8x */ + 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* 9x */ + 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ax */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ + 0, 97, 98, 99,100,101,102,103,104,105, 0, 0, 0, 0, 0, 0, /* Cx */ + 0,106,107,108,109,110,111,112,113,114, 0, 0, 0, 0, 0, 0, /* Dx */ + 0, 0,115,116,117,118,119,120,121,122, 0, 0, 0, 0, 0, 0, /* Ex */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Fx */ +}; +#endif + +/* +** The sqlite3KeywordCode function looks up an identifier to determine if +** it is a keyword. If it is a keyword, the token code of that keyword is +** returned. If the input is not a keyword, TK_ID is returned. +** +** The implementation of this routine was generated by a program, +** mkkeywordhash.h, located in the tool subdirectory of the distribution. +** The output of the mkkeywordhash.c program is written into a file +** named keywordhash.h and then included into this source file by +** the #include below. +*/ +/************** Include keywordhash.h in the middle of tokenize.c ************/ +/************** Begin file keywordhash.h *************************************/ +/***** This file contains automatically generated code ****** +** +** The code in this file has been automatically generated by +** +** $Header: /sqlite/sqlite/tool/mkkeywordhash.c,v 1.31 2007/07/30 18:26:20 rse Exp $ +** +** The code in this file implements a function that determines whether +** or not a given identifier is really an SQL keyword. The same thing +** might be implemented more directly using a hand-written hash table. +** But by using this automatically generated code, the size of the code +** is substantially reduced. This is important for embedded applications +** on platforms with limited memory. +*/ +/* Hash score: 165 */ +static int keywordCode(const char *z, int n){ + /* zText[] encodes 775 bytes of keywords in 526 bytes */ + static const char zText[526] = + "BEFOREIGNOREGEXPLAINSTEADDESCAPEACHECKEYCONSTRAINTERSECTABLEFT" + "HENDATABASELECTRANSACTIONATURALTERAISELSEXCEPTRIGGEREFERENCES" + "UNIQUERYATTACHAVINGROUPDATEMPORARYBEGINNEREINDEXCLUSIVEXISTSBETWEEN" + "OTNULLIKECASCADEFERRABLECASECOLLATECREATECURRENT_DATEDELETEDETACH" + "IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN" + "WHERENAMEAFTEREPLACEANDEFAULTAUTOINCREMENTCASTCOLUMNCOMMITCONFLICT" + "CROSSCURRENT_TIMESTAMPRIMARYDEFERREDISTINCTDROPFAILFROMFULLGLOB" + "YIFINTOFFSETISNULLORDERESTRICTOUTERIGHTROLLBACKROWUNIONUSINGVACUUM" + "VIEWINITIALLY"; + static const unsigned char aHash[127] = { + 63, 92, 109, 61, 0, 38, 0, 0, 69, 0, 64, 0, 0, + 102, 4, 65, 7, 0, 108, 72, 103, 99, 0, 22, 0, 0, + 113, 0, 111, 106, 0, 18, 80, 0, 1, 0, 0, 56, 57, + 0, 55, 11, 0, 33, 77, 89, 0, 110, 88, 0, 0, 45, + 0, 90, 54, 0, 20, 0, 114, 34, 19, 0, 10, 97, 28, + 83, 0, 0, 116, 93, 47, 115, 41, 12, 44, 0, 78, 0, + 87, 29, 0, 86, 0, 0, 0, 82, 79, 84, 75, 96, 6, + 14, 95, 0, 68, 0, 21, 76, 98, 27, 0, 112, 67, 104, + 49, 40, 71, 0, 0, 81, 100, 0, 107, 0, 15, 0, 0, + 24, 0, 73, 42, 50, 0, 16, 48, 0, 37, + }; + static const unsigned char aNext[116] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, + 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, + 17, 0, 0, 0, 36, 39, 0, 0, 25, 0, 0, 31, 0, + 0, 0, 43, 52, 0, 0, 0, 53, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 51, 0, 0, 0, 0, 26, 0, 8, 46, + 2, 0, 0, 0, 0, 0, 0, 0, 3, 58, 66, 0, 13, + 0, 91, 85, 0, 94, 0, 74, 0, 0, 62, 0, 35, 101, + 0, 0, 105, 23, 30, 60, 70, 0, 0, 59, 0, 0, + }; + static const unsigned char aLen[116] = { + 6, 7, 3, 6, 6, 7, 7, 3, 4, 6, 4, 5, 3, + 10, 9, 5, 4, 4, 3, 8, 2, 6, 11, 2, 7, 5, + 5, 4, 6, 7, 10, 6, 5, 6, 6, 5, 6, 4, 9, + 2, 5, 5, 7, 5, 9, 6, 7, 7, 3, 4, 4, 7, + 3, 10, 4, 7, 6, 12, 6, 6, 9, 4, 6, 5, 4, + 7, 6, 5, 6, 7, 5, 4, 5, 6, 5, 7, 3, 7, + 13, 2, 2, 4, 6, 6, 8, 5, 17, 12, 7, 8, 8, + 2, 4, 4, 4, 4, 4, 2, 2, 4, 6, 2, 3, 6, + 5, 8, 5, 5, 8, 3, 5, 5, 6, 4, 9, 3, + }; + static const unsigned short int aOffset[116] = { + 0, 2, 2, 6, 10, 13, 18, 23, 25, 26, 31, 33, 37, + 40, 47, 55, 58, 61, 63, 65, 70, 71, 76, 85, 86, 91, + 95, 99, 102, 107, 113, 123, 126, 131, 136, 141, 144, 148, 148, + 152, 157, 160, 164, 166, 169, 177, 183, 189, 189, 192, 195, 199, + 200, 204, 214, 218, 225, 231, 243, 249, 255, 264, 266, 272, 277, + 279, 286, 291, 296, 302, 308, 313, 317, 320, 326, 330, 337, 339, + 346, 348, 350, 359, 363, 369, 375, 383, 388, 388, 404, 411, 418, + 419, 426, 430, 434, 438, 442, 445, 447, 449, 452, 452, 455, 458, + 464, 468, 476, 480, 485, 493, 496, 501, 506, 512, 516, 521, + }; + static const unsigned char aCode[116] = { + TK_BEFORE, TK_FOREIGN, TK_FOR, TK_IGNORE, TK_LIKE_KW, + TK_EXPLAIN, TK_INSTEAD, TK_ADD, TK_DESC, TK_ESCAPE, + TK_EACH, TK_CHECK, TK_KEY, TK_CONSTRAINT, TK_INTERSECT, + TK_TABLE, TK_JOIN_KW, TK_THEN, TK_END, TK_DATABASE, + TK_AS, TK_SELECT, TK_TRANSACTION,TK_ON, TK_JOIN_KW, + TK_ALTER, TK_RAISE, TK_ELSE, TK_EXCEPT, TK_TRIGGER, + TK_REFERENCES, TK_UNIQUE, TK_QUERY, TK_ATTACH, TK_HAVING, + TK_GROUP, TK_UPDATE, TK_TEMP, TK_TEMP, TK_OR, + TK_BEGIN, TK_JOIN_KW, TK_REINDEX, TK_INDEX, TK_EXCLUSIVE, + TK_EXISTS, TK_BETWEEN, TK_NOTNULL, TK_NOT, TK_NULL, + TK_LIKE_KW, TK_CASCADE, TK_ASC, TK_DEFERRABLE, TK_CASE, + TK_COLLATE, TK_CREATE, TK_CTIME_KW, TK_DELETE, TK_DETACH, + TK_IMMEDIATE, TK_JOIN, TK_INSERT, TK_MATCH, TK_PLAN, + TK_ANALYZE, TK_PRAGMA, TK_ABORT, TK_VALUES, TK_VIRTUAL, + TK_LIMIT, TK_WHEN, TK_WHERE, TK_RENAME, TK_AFTER, + TK_REPLACE, TK_AND, TK_DEFAULT, TK_AUTOINCR, TK_TO, + TK_IN, TK_CAST, TK_COLUMNKW, TK_COMMIT, TK_CONFLICT, + TK_JOIN_KW, TK_CTIME_KW, TK_CTIME_KW, TK_PRIMARY, TK_DEFERRED, + TK_DISTINCT, TK_IS, TK_DROP, TK_FAIL, TK_FROM, + TK_JOIN_KW, TK_LIKE_KW, TK_BY, TK_IF, TK_INTO, + TK_OFFSET, TK_OF, TK_SET, TK_ISNULL, TK_ORDER, + TK_RESTRICT, TK_JOIN_KW, TK_JOIN_KW, TK_ROLLBACK, TK_ROW, + TK_UNION, TK_USING, TK_VACUUM, TK_VIEW, TK_INITIALLY, + TK_ALL, + }; + int h, i; + if( n<2 ) return TK_ID; + h = ((charMap(z[0])*4) ^ + (charMap(z[n-1])*3) ^ + n) % 127; + for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){ + if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){ + return aCode[i]; + } + } + return TK_ID; +} +SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){ + return keywordCode((char*)z, n); +} + +/************** End of keywordhash.h *****************************************/ +/************** Continuing where we left off in tokenize.c *******************/ + + +/* +** If X is a character that can be used in an identifier then +** IdChar(X) will be true. Otherwise it is false. +** +** For ASCII, any character with the high-order bit set is +** allowed in an identifier. For 7-bit characters, +** sqlite3IsIdChar[X] must be 1. +** +** For EBCDIC, the rules are more complex but have the same +** end result. +** +** Ticket #1066. the SQL standard does not allow '$' in the +** middle of identfiers. But many SQL implementations do. +** SQLite will allow '$' in identifiers for compatibility. +** But the feature is undocumented. +*/ +#ifdef SQLITE_ASCII +SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[] = { +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ + 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ +}; +#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20])) +#endif +#ifdef SQLITE_EBCDIC +SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[] = { +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ + 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 4x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, /* 5x */ + 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, /* 6x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, /* 7x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, /* 8x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, /* 9x */ + 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, /* Ax */ + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* Bx */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Cx */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Dx */ + 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, /* Ex */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, /* Fx */ +}; +#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) +#endif + + +/* +** Return the length of the token that begins at z[0]. +** Store the token type in *tokenType before returning. +*/ +SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *z, int *tokenType){ + int i, c; + switch( *z ){ + case ' ': case '\t': case '\n': case '\f': case '\r': { + for(i=1; isspace(z[i]); i++){} + *tokenType = TK_SPACE; + return i; + } + case '-': { + if( z[1]=='-' ){ + for(i=2; (c=z[i])!=0 && c!='\n'; i++){} + *tokenType = TK_COMMENT; + return i; + } + *tokenType = TK_MINUS; + return 1; + } + case '(': { + *tokenType = TK_LP; + return 1; + } + case ')': { + *tokenType = TK_RP; + return 1; + } + case ';': { + *tokenType = TK_SEMI; + return 1; + } + case '+': { + *tokenType = TK_PLUS; + return 1; + } + case '*': { + *tokenType = TK_STAR; + return 1; + } + case '/': { + if( z[1]!='*' || z[2]==0 ){ + *tokenType = TK_SLASH; + return 1; + } + for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} + if( c ) i++; + *tokenType = TK_COMMENT; + return i; + } + case '%': { + *tokenType = TK_REM; + return 1; + } + case '=': { + *tokenType = TK_EQ; + return 1 + (z[1]=='='); + } + case '<': { + if( (c=z[1])=='=' ){ + *tokenType = TK_LE; + return 2; + }else if( c=='>' ){ + *tokenType = TK_NE; + return 2; + }else if( c=='<' ){ + *tokenType = TK_LSHIFT; + return 2; + }else{ + *tokenType = TK_LT; + return 1; + } + } + case '>': { + if( (c=z[1])=='=' ){ + *tokenType = TK_GE; + return 2; + }else if( c=='>' ){ + *tokenType = TK_RSHIFT; + return 2; + }else{ + *tokenType = TK_GT; + return 1; + } + } + case '!': { + if( z[1]!='=' ){ + *tokenType = TK_ILLEGAL; + return 2; + }else{ + *tokenType = TK_NE; + return 2; + } + } + case '|': { + if( z[1]!='|' ){ + *tokenType = TK_BITOR; + return 1; + }else{ + *tokenType = TK_CONCAT; + return 2; + } + } + case ',': { + *tokenType = TK_COMMA; + return 1; + } + case '&': { + *tokenType = TK_BITAND; + return 1; + } + case '~': { + *tokenType = TK_BITNOT; + return 1; + } + case '`': + case '\'': + case '"': { + int delim = z[0]; + for(i=1; (c=z[i])!=0; i++){ + if( c==delim ){ + if( z[i+1]==delim ){ + i++; + }else{ + break; + } + } + } + if( c ){ + *tokenType = TK_STRING; + return i+1; + }else{ + *tokenType = TK_ILLEGAL; + return i; + } + } + case '.': { +#ifndef SQLITE_OMIT_FLOATING_POINT + if( !isdigit(z[1]) ) +#endif + { + *tokenType = TK_DOT; + return 1; + } + /* If the next character is a digit, this is a floating point + ** number that begins with ".". Fall thru into the next case */ + } + case '0': case '1': case '2': case '3': case '4': + case '5': case '6': case '7': case '8': case '9': { + *tokenType = TK_INTEGER; + for(i=0; isdigit(z[i]); i++){} +#ifndef SQLITE_OMIT_FLOATING_POINT + if( z[i]=='.' ){ + i++; + while( isdigit(z[i]) ){ i++; } + *tokenType = TK_FLOAT; + } + if( (z[i]=='e' || z[i]=='E') && + ( isdigit(z[i+1]) + || ((z[i+1]=='+' || z[i+1]=='-') && isdigit(z[i+2])) + ) + ){ + i += 2; + while( isdigit(z[i]) ){ i++; } + *tokenType = TK_FLOAT; + } +#endif + while( IdChar(z[i]) ){ + *tokenType = TK_ILLEGAL; + i++; + } + return i; + } + case '[': { + for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} + *tokenType = c==']' ? TK_ID : TK_ILLEGAL; + return i; + } + case '?': { + *tokenType = TK_VARIABLE; + for(i=1; isdigit(z[i]); i++){} + return i; + } + case '#': { + for(i=1; isdigit(z[i]); i++){} + if( i>1 ){ + /* Parameters of the form #NNN (where NNN is a number) are used + ** internally by sqlite3NestedParse. */ + *tokenType = TK_REGISTER; + return i; + } + /* Fall through into the next case if the '#' is not followed by + ** a digit. Try to match #AAAA where AAAA is a parameter name. */ + } +#ifndef SQLITE_OMIT_TCL_VARIABLE + case '$': +#endif + case '@': /* For compatibility with MS SQL Server */ + case ':': { + int n = 0; + *tokenType = TK_VARIABLE; + for(i=1; (c=z[i])!=0; i++){ + if( IdChar(c) ){ + n++; +#ifndef SQLITE_OMIT_TCL_VARIABLE + }else if( c=='(' && n>0 ){ + do{ + i++; + }while( (c=z[i])!=0 && !isspace(c) && c!=')' ); + if( c==')' ){ + i++; + }else{ + *tokenType = TK_ILLEGAL; + } + break; + }else if( c==':' && z[i+1]==':' ){ + i++; +#endif + }else{ + break; + } + } + if( n==0 ) *tokenType = TK_ILLEGAL; + return i; + } +#ifndef SQLITE_OMIT_BLOB_LITERAL + case 'x': case 'X': { + if( z[1]=='\'' ){ + *tokenType = TK_BLOB; + for(i=2; (c=z[i])!=0 && c!='\''; i++){ + if( !isxdigit(c) ){ + *tokenType = TK_ILLEGAL; + } + } + if( i%2 || !c ) *tokenType = TK_ILLEGAL; + if( c ) i++; + return i; + } + /* Otherwise fall through to the next case */ + } +#endif + default: { + if( !IdChar(*z) ){ + break; + } + for(i=1; IdChar(z[i]); i++){} + *tokenType = keywordCode((char*)z, i); + return i; + } + } + *tokenType = TK_ILLEGAL; + return 1; +} + +/* +** Run the parser on the given SQL string. The parser structure is +** passed in. An SQLITE_ status code is returned. If an error occurs +** and pzErrMsg!=NULL then an error message might be written into +** memory obtained from sqlite3_malloc() and *pzErrMsg made to point to that +** error message. Or maybe not. +*/ +SQLITE_PRIVATE int sqlite3RunParser(Parse *pParse, const char *zSql, char **pzErrMsg){ + int nErr = 0; + int i; + void *pEngine; + int tokenType; + int lastTokenParsed = -1; + sqlite3 *db = pParse->db; + int mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; + + if( db->activeVdbeCnt==0 ){ + db->u1.isInterrupted = 0; + } + pParse->rc = SQLITE_OK; + pParse->zTail = pParse->zSql = zSql; + i = 0; + pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3_malloc); + if( pEngine==0 ){ + db->mallocFailed = 1; + return SQLITE_NOMEM; + } + assert( pParse->sLastToken.dyn==0 ); + assert( pParse->pNewTable==0 ); + assert( pParse->pNewTrigger==0 ); + assert( pParse->nVar==0 ); + assert( pParse->nVarExpr==0 ); + assert( pParse->nVarExprAlloc==0 ); + assert( pParse->apVarExpr==0 ); + while( !db->mallocFailed && zSql[i]!=0 ){ + assert( i>=0 ); + pParse->sLastToken.z = (u8*)&zSql[i]; + assert( pParse->sLastToken.dyn==0 ); + pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType); + i += pParse->sLastToken.n; + if( i>mxSqlLen ){ + pParse->rc = SQLITE_TOOBIG; + break; + } + switch( tokenType ){ + case TK_SPACE: + case TK_COMMENT: { + if( db->u1.isInterrupted ){ + pParse->rc = SQLITE_INTERRUPT; + sqlite3SetString(pzErrMsg, "interrupt", (char*)0); + goto abort_parse; + } + break; + } + case TK_ILLEGAL: { + if( pzErrMsg ){ + sqlite3_free(*pzErrMsg); + *pzErrMsg = sqlite3MPrintf(db, "unrecognized token: \"%T\"", + &pParse->sLastToken); + } + nErr++; + goto abort_parse; + } + case TK_SEMI: { + pParse->zTail = &zSql[i]; + /* Fall thru into the default case */ + } + default: { + sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse); + lastTokenParsed = tokenType; + if( pParse->rc!=SQLITE_OK ){ + goto abort_parse; + } + break; + } + } + } +abort_parse: + if( zSql[i]==0 && nErr==0 && pParse->rc==SQLITE_OK ){ + if( lastTokenParsed!=TK_SEMI ){ + sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse); + pParse->zTail = &zSql[i]; + } + sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse); + } + sqlite3ParserFree(pEngine, sqlite3_free); + if( db->mallocFailed ){ + pParse->rc = SQLITE_NOMEM; + } + if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){ + sqlite3SetString(&pParse->zErrMsg, sqlite3ErrStr(pParse->rc), (char*)0); + } + if( pParse->zErrMsg ){ + if( pzErrMsg && *pzErrMsg==0 ){ + *pzErrMsg = pParse->zErrMsg; + }else{ + sqlite3_free(pParse->zErrMsg); + } + pParse->zErrMsg = 0; + nErr++; + } + if( pParse->pVdbe && pParse->nErr>0 && pParse->nested==0 ){ + sqlite3VdbeDelete(pParse->pVdbe); + pParse->pVdbe = 0; + } +#ifndef SQLITE_OMIT_SHARED_CACHE + if( pParse->nested==0 ){ + sqlite3_free(pParse->aTableLock); + pParse->aTableLock = 0; + pParse->nTableLock = 0; + } +#endif +#ifndef SQLITE_OMIT_VIRTUALTABLE + sqlite3_free(pParse->apVtabLock); +#endif + + if( !IN_DECLARE_VTAB ){ + /* If the pParse->declareVtab flag is set, do not delete any table + ** structure built up in pParse->pNewTable. The calling code (see vtab.c) + ** will take responsibility for freeing the Table structure. + */ + sqlite3DeleteTable(pParse->pNewTable); + } + + sqlite3DeleteTrigger(pParse->pNewTrigger); + sqlite3_free(pParse->apVarExpr); + if( nErr>0 && (pParse->rc==SQLITE_OK || pParse->rc==SQLITE_DONE) ){ + pParse->rc = SQLITE_ERROR; + } + return nErr; +} + +/************** End of tokenize.c ********************************************/ +/************** Begin file complete.c ****************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** An tokenizer for SQL +** +** This file contains C code that implements the sqlite3_complete() API. +** This code used to be part of the tokenizer.c source file. But by +** separating it out, the code will be automatically omitted from +** static links that do not use it. +** +** $Id: complete.c,v 1.6 2007/08/27 23:26:59 drh Exp $ +*/ +#ifndef SQLITE_OMIT_COMPLETE + +/* +** This is defined in tokenize.c. We just have to import the definition. +*/ +#ifndef SQLITE_AMALGAMATION +#ifdef SQLITE_ASCII +SQLITE_PRIVATE const char sqlite3IsAsciiIdChar[]; +#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && sqlite3IsAsciiIdChar[c-0x20])) +#endif +#ifdef SQLITE_EBCDIC +SQLITE_PRIVATE const char sqlite3IsEbcdicIdChar[]; +#define IdChar(C) (((c=C)>=0x42 && sqlite3IsEbcdicIdChar[c-0x40])) +#endif +#endif /* SQLITE_AMALGAMATION */ + + +/* +** Token types used by the sqlite3_complete() routine. See the header +** comments on that procedure for additional information. +*/ +#define tkSEMI 0 +#define tkWS 1 +#define tkOTHER 2 +#define tkEXPLAIN 3 +#define tkCREATE 4 +#define tkTEMP 5 +#define tkTRIGGER 6 +#define tkEND 7 + +/* +** Return TRUE if the given SQL string ends in a semicolon. +** +** Special handling is require for CREATE TRIGGER statements. +** Whenever the CREATE TRIGGER keywords are seen, the statement +** must end with ";END;". +** +** This implementation uses a state machine with 7 states: +** +** (0) START At the beginning or end of an SQL statement. This routine +** returns 1 if it ends in the START state and 0 if it ends +** in any other state. +** +** (1) NORMAL We are in the middle of statement which ends with a single +** semicolon. +** +** (2) EXPLAIN The keyword EXPLAIN has been seen at the beginning of +** a statement. +** +** (3) CREATE The keyword CREATE has been seen at the beginning of a +** statement, possibly preceeded by EXPLAIN and/or followed by +** TEMP or TEMPORARY +** +** (4) TRIGGER We are in the middle of a trigger definition that must be +** ended by a semicolon, the keyword END, and another semicolon. +** +** (5) SEMI We've seen the first semicolon in the ";END;" that occurs at +** the end of a trigger definition. +** +** (6) END We've seen the ";END" of the ";END;" that occurs at the end +** of a trigger difinition. +** +** Transitions between states above are determined by tokens extracted +** from the input. The following tokens are significant: +** +** (0) tkSEMI A semicolon. +** (1) tkWS Whitespace +** (2) tkOTHER Any other SQL token. +** (3) tkEXPLAIN The "explain" keyword. +** (4) tkCREATE The "create" keyword. +** (5) tkTEMP The "temp" or "temporary" keyword. +** (6) tkTRIGGER The "trigger" keyword. +** (7) tkEND The "end" keyword. +** +** Whitespace never causes a state transition and is always ignored. +** +** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed +** to recognize the end of a trigger can be omitted. All we have to do +** is look for a semicolon that is not part of an string or comment. +*/ +SQLITE_API int sqlite3_complete(const char *zSql){ + u8 state = 0; /* Current state, using numbers defined in header comment */ + u8 token; /* Value of the next token */ + +#ifndef SQLITE_OMIT_TRIGGER + /* A complex statement machine used to detect the end of a CREATE TRIGGER + ** statement. This is the normal case. + */ + static const u8 trans[7][8] = { + /* Token: */ + /* State: ** SEMI WS OTHER EXPLAIN CREATE TEMP TRIGGER END */ + /* 0 START: */ { 0, 0, 1, 2, 3, 1, 1, 1, }, + /* 1 NORMAL: */ { 0, 1, 1, 1, 1, 1, 1, 1, }, + /* 2 EXPLAIN: */ { 0, 2, 1, 1, 3, 1, 1, 1, }, + /* 3 CREATE: */ { 0, 3, 1, 1, 1, 3, 4, 1, }, + /* 4 TRIGGER: */ { 5, 4, 4, 4, 4, 4, 4, 4, }, + /* 5 SEMI: */ { 5, 5, 4, 4, 4, 4, 4, 6, }, + /* 6 END: */ { 0, 6, 4, 4, 4, 4, 4, 4, }, + }; +#else + /* If triggers are not suppored by this compile then the statement machine + ** used to detect the end of a statement is much simplier + */ + static const u8 trans[2][3] = { + /* Token: */ + /* State: ** SEMI WS OTHER */ + /* 0 START: */ { 0, 0, 1, }, + /* 1 NORMAL: */ { 0, 1, 1, }, + }; +#endif /* SQLITE_OMIT_TRIGGER */ + + while( *zSql ){ + switch( *zSql ){ + case ';': { /* A semicolon */ + token = tkSEMI; + break; + } + case ' ': + case '\r': + case '\t': + case '\n': + case '\f': { /* White space is ignored */ + token = tkWS; + break; + } + case '/': { /* C-style comments */ + if( zSql[1]!='*' ){ + token = tkOTHER; + break; + } + zSql += 2; + while( zSql[0] && (zSql[0]!='*' || zSql[1]!='/') ){ zSql++; } + if( zSql[0]==0 ) return 0; + zSql++; + token = tkWS; + break; + } + case '-': { /* SQL-style comments from "--" to end of line */ + if( zSql[1]!='-' ){ + token = tkOTHER; + break; + } + while( *zSql && *zSql!='\n' ){ zSql++; } + if( *zSql==0 ) return state==0; + token = tkWS; + break; + } + case '[': { /* Microsoft-style identifiers in [...] */ + zSql++; + while( *zSql && *zSql!=']' ){ zSql++; } + if( *zSql==0 ) return 0; + token = tkOTHER; + break; + } + case '`': /* Grave-accent quoted symbols used by MySQL */ + case '"': /* single- and double-quoted strings */ + case '\'': { + int c = *zSql; + zSql++; + while( *zSql && *zSql!=c ){ zSql++; } + if( *zSql==0 ) return 0; + token = tkOTHER; + break; + } + default: { + int c; + if( IdChar((u8)*zSql) ){ + /* Keywords and unquoted identifiers */ + int nId; + for(nId=1; IdChar(zSql[nId]); nId++){} +#ifdef SQLITE_OMIT_TRIGGER + token = tkOTHER; +#else + switch( *zSql ){ + case 'c': case 'C': { + if( nId==6 && sqlite3StrNICmp(zSql, "create", 6)==0 ){ + token = tkCREATE; + }else{ + token = tkOTHER; + } + break; + } + case 't': case 'T': { + if( nId==7 && sqlite3StrNICmp(zSql, "trigger", 7)==0 ){ + token = tkTRIGGER; + }else if( nId==4 && sqlite3StrNICmp(zSql, "temp", 4)==0 ){ + token = tkTEMP; + }else if( nId==9 && sqlite3StrNICmp(zSql, "temporary", 9)==0 ){ + token = tkTEMP; + }else{ + token = tkOTHER; + } + break; + } + case 'e': case 'E': { + if( nId==3 && sqlite3StrNICmp(zSql, "end", 3)==0 ){ + token = tkEND; + }else +#ifndef SQLITE_OMIT_EXPLAIN + if( nId==7 && sqlite3StrNICmp(zSql, "explain", 7)==0 ){ + token = tkEXPLAIN; + }else +#endif + { + token = tkOTHER; + } + break; + } + default: { + token = tkOTHER; + break; + } + } +#endif /* SQLITE_OMIT_TRIGGER */ + zSql += nId-1; + }else{ + /* Operators and special symbols */ + token = tkOTHER; + } + break; + } + } + state = trans[state][token]; + zSql++; + } + return state==0; +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** This routine is the same as the sqlite3_complete() routine described +** above, except that the parameter is required to be UTF-16 encoded, not +** UTF-8. +*/ +SQLITE_API int sqlite3_complete16(const void *zSql){ + sqlite3_value *pVal; + char const *zSql8; + int rc = SQLITE_NOMEM; + + pVal = sqlite3ValueNew(0); + sqlite3ValueSetStr(pVal, -1, zSql, SQLITE_UTF16NATIVE, SQLITE_STATIC); + zSql8 = sqlite3ValueText(pVal, SQLITE_UTF8); + if( zSql8 ){ + rc = sqlite3_complete(zSql8); + } + sqlite3ValueFree(pVal); + return sqlite3ApiExit(0, rc); +} +#endif /* SQLITE_OMIT_UTF16 */ +#endif /* SQLITE_OMIT_COMPLETE */ + +/************** End of complete.c ********************************************/ +/************** Begin file main.c ********************************************/ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Main file for the SQLite library. The routines in this file +** implement the programmer interface to the library. Routines in +** other files are for internal use by SQLite and should not be +** accessed by users of the library. +** +** $Id: main.c,v 1.439 2008/05/13 13:27:34 drh Exp $ +*/ +#ifdef SQLITE_ENABLE_FTS3 +/************** Include fts3.h in the middle of main.c ***********************/ +/************** Begin file fts3.h ********************************************/ +/* +** 2006 Oct 10 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This header file is used by programs that want to link against the +** FTS3 library. All it does is declare the sqlite3Fts3Init() interface. +*/ + +#if 0 +extern "C" { +#endif /* __cplusplus */ + +SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db); + +#if 0 +} /* extern "C" */ +#endif /* __cplusplus */ + +/************** End of fts3.h ************************************************/ +/************** Continuing where we left off in main.c ***********************/ +#endif + +/* +** The version of the library +*/ +SQLITE_API const char sqlite3_version[] = SQLITE_VERSION; +SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; } +SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } +SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } + +#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) +/* +** If the following function pointer is not NULL and if +** SQLITE_ENABLE_IOTRACE is enabled, then messages describing +** I/O active are written using this function. These messages +** are intended for debugging activity only. +*/ +SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*, ...) = 0; +#endif + +/* +** If the following global variable points to a string which is the +** name of a directory, then that directory will be used to store +** temporary files. +** +** See also the "PRAGMA temp_store_directory" SQL command. +*/ +SQLITE_API char *sqlite3_temp_directory = 0; + +/* +** Routine needed to support the testcase() macro. +*/ +#ifdef SQLITE_COVERAGE_TEST +SQLITE_PRIVATE void sqlite3Coverage(int x){ + static int dummy = 0; + dummy += x; +} +#endif + + +/* +** Return true if the buffer z[0..n-1] contains all spaces. +*/ +static int allSpaces(const char *z, int n){ + while( n>0 && z[n-1]==' ' ){ n--; } + return n==0; +} + +/* +** This is the default collating function named "BINARY" which is always +** available. +** +** If the padFlag argument is not NULL then space padding at the end +** of strings is ignored. This implements the RTRIM collation. +*/ +static int binCollFunc( + void *padFlag, + int nKey1, const void *pKey1, + int nKey2, const void *pKey2 +){ + int rc, n; + n = nKey1<nKey2 ? nKey1 : nKey2; + rc = memcmp(pKey1, pKey2, n); + if( rc==0 ){ + if( padFlag + && allSpaces(((char*)pKey1)+n, nKey1-n) + && allSpaces(((char*)pKey2)+n, nKey2-n) + ){ + /* Leave rc unchanged at 0 */ + }else{ + rc = nKey1 - nKey2; + } + } + return rc; +} + +/* +** Another built-in collating sequence: NOCASE. +** +** This collating sequence is intended to be used for "case independant +** comparison". SQLite's knowledge of upper and lower case equivalents +** extends only to the 26 characters used in the English language. +** +** At the moment there is only a UTF-8 implementation. +*/ +static int nocaseCollatingFunc( + void *NotUsed, + int nKey1, const void *pKey1, + int nKey2, const void *pKey2 +){ + int r = sqlite3StrNICmp( + (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); + if( 0==r ){ + r = nKey1-nKey2; + } + return r; +} + +/* +** Return the ROWID of the most recent insert +*/ +SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ + return db->lastRowid; +} + +/* +** Return the number of changes in the most recent call to sqlite3_exec(). +*/ +SQLITE_API int sqlite3_changes(sqlite3 *db){ + return db->nChange; +} + +/* +** Return the number of changes since the database handle was opened. +*/ +SQLITE_API int sqlite3_total_changes(sqlite3 *db){ + return db->nTotalChange; +} + +/* +** Close an existing SQLite database +*/ +SQLITE_API int sqlite3_close(sqlite3 *db){ + HashElem *i; + int j; + + if( !db ){ + return SQLITE_OK; + } + if( !sqlite3SafetyCheckSickOrOk(db) ){ + return SQLITE_MISUSE; + } + sqlite3_mutex_enter(db->mutex); + +#ifdef SQLITE_SSE + { + extern void sqlite3SseCleanup(sqlite3*); + sqlite3SseCleanup(db); + } +#endif + + sqlite3ResetInternalSchema(db, 0); + + /* If a transaction is open, the ResetInternalSchema() call above + ** will not have called the xDisconnect() method on any virtual + ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() + ** call will do so. We need to do this before the check for active + ** SQL statements below, as the v-table implementation may be storing + ** some prepared statements internally. + */ + sqlite3VtabRollback(db); + + /* If there are any outstanding VMs, return SQLITE_BUSY. */ + if( db->pVdbe ){ + sqlite3Error(db, SQLITE_BUSY, + "Unable to close due to unfinalised statements"); + sqlite3_mutex_leave(db->mutex); + return SQLITE_BUSY; + } + assert( sqlite3SafetyCheckSickOrOk(db) ); + + for(j=0; j<db->nDb; j++){ + struct Db *pDb = &db->aDb[j]; + if( pDb->pBt ){ + sqlite3BtreeClose(pDb->pBt); + pDb->pBt = 0; + if( j!=1 ){ + pDb->pSchema = 0; + } + } + } + sqlite3ResetInternalSchema(db, 0); + assert( db->nDb<=2 ); + assert( db->aDb==db->aDbStatic ); + for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ + FuncDef *pFunc, *pNext; + for(pFunc = (FuncDef*)sqliteHashData(i); pFunc; pFunc=pNext){ + pNext = pFunc->pNext; + sqlite3_free(pFunc); + } + } + + for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ + CollSeq *pColl = (CollSeq *)sqliteHashData(i); + /* Invoke any destructors registered for collation sequence user data. */ + for(j=0; j<3; j++){ + if( pColl[j].xDel ){ + pColl[j].xDel(pColl[j].pUser); + } + } + sqlite3_free(pColl); + } + sqlite3HashClear(&db->aCollSeq); +#ifndef SQLITE_OMIT_VIRTUALTABLE + for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ + Module *pMod = (Module *)sqliteHashData(i); + if( pMod->xDestroy ){ + pMod->xDestroy(pMod->pAux); + } + sqlite3_free(pMod); + } + sqlite3HashClear(&db->aModule); +#endif + + sqlite3HashClear(&db->aFunc); + sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ + if( db->pErr ){ + sqlite3ValueFree(db->pErr); + } + sqlite3CloseExtensions(db); + + db->magic = SQLITE_MAGIC_ERROR; + + /* The temp-database schema is allocated differently from the other schema + ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). + ** So it needs to be freed here. Todo: Why not roll the temp schema into + ** the same sqliteMalloc() as the one that allocates the database + ** structure? + */ + sqlite3_free(db->aDb[1].pSchema); + sqlite3_mutex_leave(db->mutex); + db->magic = SQLITE_MAGIC_CLOSED; + sqlite3_mutex_free(db->mutex); + sqlite3_free(db); + return SQLITE_OK; +} + +/* +** Rollback all database files. +*/ +SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db){ + int i; + int inTrans = 0; + assert( sqlite3_mutex_held(db->mutex) ); + sqlite3FaultBeginBenign(SQLITE_FAULTINJECTOR_MALLOC); + for(i=0; i<db->nDb; i++){ + if( db->aDb[i].pBt ){ + if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ + inTrans = 1; + } + sqlite3BtreeRollback(db->aDb[i].pBt); + db->aDb[i].inTrans = 0; + } + } + sqlite3VtabRollback(db); + sqlite3FaultEndBenign(SQLITE_FAULTINJECTOR_MALLOC); + + if( db->flags&SQLITE_InternChanges ){ + sqlite3ExpirePreparedStatements(db); + sqlite3ResetInternalSchema(db, 0); + } + + /* If one has been configured, invoke the rollback-hook callback */ + if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ + db->xRollbackCallback(db->pRollbackArg); + } +} + +/* +** Return a static string that describes the kind of error specified in the +** argument. +*/ +SQLITE_PRIVATE const char *sqlite3ErrStr(int rc){ + const char *z; + switch( rc & 0xff ){ + case SQLITE_ROW: + case SQLITE_DONE: + case SQLITE_OK: z = "not an error"; break; + case SQLITE_ERROR: z = "SQL logic error or missing database"; break; + case SQLITE_PERM: z = "access permission denied"; break; + case SQLITE_ABORT: z = "callback requested query abort"; break; + case SQLITE_BUSY: z = "database is locked"; break; + case SQLITE_LOCKED: z = "database table is locked"; break; + case SQLITE_NOMEM: z = "out of memory"; break; + case SQLITE_READONLY: z = "attempt to write a readonly database"; break; + case SQLITE_INTERRUPT: z = "interrupted"; break; + case SQLITE_IOERR: z = "disk I/O error"; break; + case SQLITE_CORRUPT: z = "database disk image is malformed"; break; + case SQLITE_FULL: z = "database or disk is full"; break; + case SQLITE_CANTOPEN: z = "unable to open database file"; break; + case SQLITE_EMPTY: z = "table contains no data"; break; + case SQLITE_SCHEMA: z = "database schema has changed"; break; + case SQLITE_TOOBIG: z = "String or BLOB exceeded size limit"; break; + case SQLITE_CONSTRAINT: z = "constraint failed"; break; + case SQLITE_MISMATCH: z = "datatype mismatch"; break; + case SQLITE_MISUSE: z = "library routine called out of sequence";break; + case SQLITE_NOLFS: z = "large file support is disabled"; break; + case SQLITE_AUTH: z = "authorization denied"; break; + case SQLITE_FORMAT: z = "auxiliary database format error"; break; + case SQLITE_RANGE: z = "bind or column index out of range"; break; + case SQLITE_NOTADB: z = "file is encrypted or is not a database";break; + default: z = "unknown error"; break; + } + return z; +} + +/* +** This routine implements a busy callback that sleeps and tries +** again until a timeout value is reached. The timeout value is +** an integer number of milliseconds passed in as the first +** argument. +*/ +static int sqliteDefaultBusyCallback( + void *ptr, /* Database connection */ + int count /* Number of times table has been busy */ +){ +#if OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) + static const u8 delays[] = + { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; + static const u8 totals[] = + { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; +# define NDELAY (sizeof(delays)/sizeof(delays[0])) + sqlite3 *db = (sqlite3 *)ptr; + int timeout = db->busyTimeout; + int delay, prior; + + assert( count>=0 ); + if( count < NDELAY ){ + delay = delays[count]; + prior = totals[count]; + }else{ + delay = delays[NDELAY-1]; + prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); + } + if( prior + delay > timeout ){ + delay = timeout - prior; + if( delay<=0 ) return 0; + } + sqlite3OsSleep(db->pVfs, delay*1000); + return 1; +#else + sqlite3 *db = (sqlite3 *)ptr; + int timeout = ((sqlite3 *)ptr)->busyTimeout; + if( (count+1)*1000 > timeout ){ + return 0; + } + sqlite3OsSleep(db->pVfs, 1000000); + return 1; +#endif +} + +/* +** Invoke the given busy handler. +** +** This routine is called when an operation failed with a lock. +** If this routine returns non-zero, the lock is retried. If it +** returns 0, the operation aborts with an SQLITE_BUSY error. +*/ +SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler *p){ + int rc; + if( p==0 || p->xFunc==0 || p->nBusy<0 ) return 0; + rc = p->xFunc(p->pArg, p->nBusy); + if( rc==0 ){ + p->nBusy = -1; + }else{ + p->nBusy++; + } + return rc; +} + +/* +** This routine sets the busy callback for an Sqlite database to the +** given callback function with the given argument. +*/ +SQLITE_API int sqlite3_busy_handler( + sqlite3 *db, + int (*xBusy)(void*,int), + void *pArg +){ + sqlite3_mutex_enter(db->mutex); + db->busyHandler.xFunc = xBusy; + db->busyHandler.pArg = pArg; + db->busyHandler.nBusy = 0; + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +#ifndef SQLITE_OMIT_PROGRESS_CALLBACK +/* +** This routine sets the progress callback for an Sqlite database to the +** given callback function with the given argument. The progress callback will +** be invoked every nOps opcodes. +*/ +SQLITE_API void sqlite3_progress_handler( + sqlite3 *db, + int nOps, + int (*xProgress)(void*), + void *pArg +){ + if( sqlite3SafetyCheckOk(db) ){ + sqlite3_mutex_enter(db->mutex); + if( nOps>0 ){ + db->xProgress = xProgress; + db->nProgressOps = nOps; + db->pProgressArg = pArg; + }else{ + db->xProgress = 0; + db->nProgressOps = 0; + db->pProgressArg = 0; + } + sqlite3_mutex_leave(db->mutex); + } +} +#endif + + +/* +** This routine installs a default busy handler that waits for the +** specified number of milliseconds before returning 0. +*/ +SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){ + if( ms>0 ){ + db->busyTimeout = ms; + sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); + }else{ + sqlite3_busy_handler(db, 0, 0); + } + return SQLITE_OK; +} + +/* +** Cause any pending operation to stop at its earliest opportunity. +*/ +SQLITE_API void sqlite3_interrupt(sqlite3 *db){ + if( sqlite3SafetyCheckOk(db) ){ + db->u1.isInterrupted = 1; + } +} + + +/* +** This function is exactly the same as sqlite3_create_function(), except +** that it is designed to be called by internal code. The difference is +** that if a malloc() fails in sqlite3_create_function(), an error code +** is returned and the mallocFailed flag cleared. +*/ +SQLITE_PRIVATE int sqlite3CreateFunc( + sqlite3 *db, + const char *zFunctionName, + int nArg, + int enc, + void *pUserData, + void (*xFunc)(sqlite3_context*,int,sqlite3_value **), + void (*xStep)(sqlite3_context*,int,sqlite3_value **), + void (*xFinal)(sqlite3_context*) +){ + FuncDef *p; + int nName; + + assert( sqlite3_mutex_held(db->mutex) ); + if( zFunctionName==0 || + (xFunc && (xFinal || xStep)) || + (!xFunc && (xFinal && !xStep)) || + (!xFunc && (!xFinal && xStep)) || + (nArg<-1 || nArg>127) || + (255<(nName = strlen(zFunctionName))) ){ + sqlite3Error(db, SQLITE_ERROR, "bad parameters"); + return SQLITE_ERROR; + } + +#ifndef SQLITE_OMIT_UTF16 + /* If SQLITE_UTF16 is specified as the encoding type, transform this + ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the + ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. + ** + ** If SQLITE_ANY is specified, add three versions of the function + ** to the hash table. + */ + if( enc==SQLITE_UTF16 ){ + enc = SQLITE_UTF16NATIVE; + }else if( enc==SQLITE_ANY ){ + int rc; + rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, + pUserData, xFunc, xStep, xFinal); + if( rc==SQLITE_OK ){ + rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, + pUserData, xFunc, xStep, xFinal); + } + if( rc!=SQLITE_OK ){ + return rc; + } + enc = SQLITE_UTF16BE; + } +#else + enc = SQLITE_UTF8; +#endif + + /* Check if an existing function is being overridden or deleted. If so, + ** and there are active VMs, then return SQLITE_BUSY. If a function + ** is being overridden/deleted but there are no active VMs, allow the + ** operation to continue but invalidate all precompiled statements. + */ + p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0); + if( p && p->iPrefEnc==enc && p->nArg==nArg ){ + if( db->activeVdbeCnt ){ + sqlite3Error(db, SQLITE_BUSY, + "Unable to delete/modify user-function due to active statements"); + assert( !db->mallocFailed ); + return SQLITE_BUSY; + }else{ + sqlite3ExpirePreparedStatements(db); + } + } + + p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1); + assert(p || db->mallocFailed); + if( !p ){ + return SQLITE_NOMEM; + } + p->flags = 0; + p->xFunc = xFunc; + p->xStep = xStep; + p->xFinalize = xFinal; + p->pUserData = pUserData; + p->nArg = nArg; + return SQLITE_OK; +} + +/* +** Create new user functions. +*/ +SQLITE_API int sqlite3_create_function( + sqlite3 *db, + const char *zFunctionName, + int nArg, + int enc, + void *p, + void (*xFunc)(sqlite3_context*,int,sqlite3_value **), + void (*xStep)(sqlite3_context*,int,sqlite3_value **), + void (*xFinal)(sqlite3_context*) +){ + int rc; + sqlite3_mutex_enter(db->mutex); + rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +#ifndef SQLITE_OMIT_UTF16 +SQLITE_API int sqlite3_create_function16( + sqlite3 *db, + const void *zFunctionName, + int nArg, + int eTextRep, + void *p, + void (*xFunc)(sqlite3_context*,int,sqlite3_value**), + void (*xStep)(sqlite3_context*,int,sqlite3_value**), + void (*xFinal)(sqlite3_context*) +){ + int rc; + char *zFunc8; + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1); + rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal); + sqlite3_free(zFunc8); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} +#endif + + +/* +** Declare that a function has been overloaded by a virtual table. +** +** If the function already exists as a regular global function, then +** this routine is a no-op. If the function does not exist, then create +** a new one that always throws a run-time error. +** +** When virtual tables intend to provide an overloaded function, they +** should call this routine to make sure the global function exists. +** A global function must exist in order for name resolution to work +** properly. +*/ +SQLITE_API int sqlite3_overload_function( + sqlite3 *db, + const char *zName, + int nArg +){ + int nName = strlen(zName); + int rc; + sqlite3_mutex_enter(db->mutex); + if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ + sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, + 0, sqlite3InvalidFunction, 0, 0); + } + rc = sqlite3ApiExit(db, SQLITE_OK); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +#ifndef SQLITE_OMIT_TRACE +/* +** Register a trace function. The pArg from the previously registered trace +** is returned. +** +** A NULL trace function means that no tracing is executes. A non-NULL +** trace is a pointer to a function that is invoked at the start of each +** SQL statement. +*/ +SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ + void *pOld; + sqlite3_mutex_enter(db->mutex); + pOld = db->pTraceArg; + db->xTrace = xTrace; + db->pTraceArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pOld; +} +/* +** Register a profile function. The pArg from the previously registered +** profile function is returned. +** +** A NULL profile function means that no profiling is executes. A non-NULL +** profile is a pointer to a function that is invoked at the conclusion of +** each SQL statement that is run. +*/ +SQLITE_API void *sqlite3_profile( + sqlite3 *db, + void (*xProfile)(void*,const char*,sqlite_uint64), + void *pArg +){ + void *pOld; + sqlite3_mutex_enter(db->mutex); + pOld = db->pProfileArg; + db->xProfile = xProfile; + db->pProfileArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pOld; +} +#endif /* SQLITE_OMIT_TRACE */ + +/*** EXPERIMENTAL *** +** +** Register a function to be invoked when a transaction comments. +** If the invoked function returns non-zero, then the commit becomes a +** rollback. +*/ +SQLITE_API void *sqlite3_commit_hook( + sqlite3 *db, /* Attach the hook to this database */ + int (*xCallback)(void*), /* Function to invoke on each commit */ + void *pArg /* Argument to the function */ +){ + void *pOld; + sqlite3_mutex_enter(db->mutex); + pOld = db->pCommitArg; + db->xCommitCallback = xCallback; + db->pCommitArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pOld; +} + +/* +** Register a callback to be invoked each time a row is updated, +** inserted or deleted using this database connection. +*/ +SQLITE_API void *sqlite3_update_hook( + sqlite3 *db, /* Attach the hook to this database */ + void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), + void *pArg /* Argument to the function */ +){ + void *pRet; + sqlite3_mutex_enter(db->mutex); + pRet = db->pUpdateArg; + db->xUpdateCallback = xCallback; + db->pUpdateArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pRet; +} + +/* +** Register a callback to be invoked each time a transaction is rolled +** back by this database connection. +*/ +SQLITE_API void *sqlite3_rollback_hook( + sqlite3 *db, /* Attach the hook to this database */ + void (*xCallback)(void*), /* Callback function */ + void *pArg /* Argument to the function */ +){ + void *pRet; + sqlite3_mutex_enter(db->mutex); + pRet = db->pRollbackArg; + db->xRollbackCallback = xCallback; + db->pRollbackArg = pArg; + sqlite3_mutex_leave(db->mutex); + return pRet; +} + +/* +** This routine is called to create a connection to a database BTree +** driver. If zFilename is the name of a file, then that file is +** opened and used. If zFilename is the magic name ":memory:" then +** the database is stored in memory (and is thus forgotten as soon as +** the connection is closed.) If zFilename is NULL then the database +** is a "virtual" database for transient use only and is deleted as +** soon as the connection is closed. +** +** A virtual database can be either a disk file (that is automatically +** deleted when the file is closed) or it an be held entirely in memory, +** depending on the values of the TEMP_STORE compile-time macro and the +** db->temp_store variable, according to the following chart: +** +** TEMP_STORE db->temp_store Location of temporary database +** ---------- -------------- ------------------------------ +** 0 any file +** 1 1 file +** 1 2 memory +** 1 0 file +** 2 1 file +** 2 2 memory +** 2 0 memory +** 3 any memory +*/ +SQLITE_PRIVATE int sqlite3BtreeFactory( + const sqlite3 *db, /* Main database when opening aux otherwise 0 */ + const char *zFilename, /* Name of the file containing the BTree database */ + int omitJournal, /* if TRUE then do not journal this file */ + int nCache, /* How many pages in the page cache */ + int vfsFlags, /* Flags passed through to vfsOpen */ + Btree **ppBtree /* Pointer to new Btree object written here */ +){ + int btFlags = 0; + int rc; + + assert( sqlite3_mutex_held(db->mutex) ); + assert( ppBtree != 0); + if( omitJournal ){ + btFlags |= BTREE_OMIT_JOURNAL; + } + if( db->flags & SQLITE_NoReadlock ){ + btFlags |= BTREE_NO_READLOCK; + } + if( zFilename==0 ){ +#if TEMP_STORE==0 + /* Do nothing */ +#endif +#ifndef SQLITE_OMIT_MEMORYDB +#if TEMP_STORE==1 + if( db->temp_store==2 ) zFilename = ":memory:"; +#endif +#if TEMP_STORE==2 + if( db->temp_store!=1 ) zFilename = ":memory:"; +#endif +#if TEMP_STORE==3 + zFilename = ":memory:"; +#endif +#endif /* SQLITE_OMIT_MEMORYDB */ + } + + if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){ + vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; + } + rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags); + if( rc==SQLITE_OK ){ + sqlite3BtreeSetCacheSize(*ppBtree, nCache); + } + return rc; +} + +/* +** Return UTF-8 encoded English language explanation of the most recent +** error. +*/ +SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){ + const char *z; + if( !db ){ + return sqlite3ErrStr(SQLITE_NOMEM); + } + if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){ + return sqlite3ErrStr(SQLITE_MISUSE); + } + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + z = (char*)sqlite3_value_text(db->pErr); + if( z==0 ){ + z = sqlite3ErrStr(db->errCode); + } + sqlite3_mutex_leave(db->mutex); + return z; +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** Return UTF-16 encoded English language explanation of the most recent +** error. +*/ +SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){ + /* Because all the characters in the string are in the unicode + ** range 0x00-0xFF, if we pad the big-endian string with a + ** zero byte, we can obtain the little-endian string with + ** &big_endian[1]. + */ + static const char outOfMemBe[] = { + 0, 'o', 0, 'u', 0, 't', 0, ' ', + 0, 'o', 0, 'f', 0, ' ', + 0, 'm', 0, 'e', 0, 'm', 0, 'o', 0, 'r', 0, 'y', 0, 0, 0 + }; + static const char misuseBe [] = { + 0, 'l', 0, 'i', 0, 'b', 0, 'r', 0, 'a', 0, 'r', 0, 'y', 0, ' ', + 0, 'r', 0, 'o', 0, 'u', 0, 't', 0, 'i', 0, 'n', 0, 'e', 0, ' ', + 0, 'c', 0, 'a', 0, 'l', 0, 'l', 0, 'e', 0, 'd', 0, ' ', + 0, 'o', 0, 'u', 0, 't', 0, ' ', + 0, 'o', 0, 'f', 0, ' ', + 0, 's', 0, 'e', 0, 'q', 0, 'u', 0, 'e', 0, 'n', 0, 'c', 0, 'e', 0, 0, 0 + }; + + const void *z; + if( !db ){ + return (void *)(&outOfMemBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); + } + if( !sqlite3SafetyCheckSickOrOk(db) || db->errCode==SQLITE_MISUSE ){ + return (void *)(&misuseBe[SQLITE_UTF16NATIVE==SQLITE_UTF16LE?1:0]); + } + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + z = sqlite3_value_text16(db->pErr); + if( z==0 ){ + sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), + SQLITE_UTF8, SQLITE_STATIC); + z = sqlite3_value_text16(db->pErr); + } + sqlite3ApiExit(0, 0); + sqlite3_mutex_leave(db->mutex); + return z; +} +#endif /* SQLITE_OMIT_UTF16 */ + +/* +** Return the most recent error code generated by an SQLite routine. If NULL is +** passed to this function, we assume a malloc() failed during sqlite3_open(). +*/ +SQLITE_API int sqlite3_errcode(sqlite3 *db){ + if( db && !sqlite3SafetyCheckSickOrOk(db) ){ + return SQLITE_MISUSE; + } + if( !db || db->mallocFailed ){ + return SQLITE_NOMEM; + } + return db->errCode & db->errMask; +} + +/* +** Create a new collating function for database "db". The name is zName +** and the encoding is enc. +*/ +static int createCollation( + sqlite3* db, + const char *zName, + int enc, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDel)(void*) +){ + CollSeq *pColl; + int enc2; + + assert( sqlite3_mutex_held(db->mutex) ); + + /* If SQLITE_UTF16 is specified as the encoding type, transform this + ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the + ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. + */ + enc2 = enc & ~SQLITE_UTF16_ALIGNED; + if( enc2==SQLITE_UTF16 ){ + enc2 = SQLITE_UTF16NATIVE; + } + + if( (enc2&~3)!=0 ){ + sqlite3Error(db, SQLITE_ERROR, "unknown encoding"); + return SQLITE_ERROR; + } + + /* Check if this call is removing or replacing an existing collation + ** sequence. If so, and there are active VMs, return busy. If there + ** are no active VMs, invalidate any pre-compiled statements. + */ + pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 0); + if( pColl && pColl->xCmp ){ + if( db->activeVdbeCnt ){ + sqlite3Error(db, SQLITE_BUSY, + "Unable to delete/modify collation sequence due to active statements"); + return SQLITE_BUSY; + } + sqlite3ExpirePreparedStatements(db); + + /* If collation sequence pColl was created directly by a call to + ** sqlite3_create_collation, and not generated by synthCollSeq(), + ** then any copies made by synthCollSeq() need to be invalidated. + ** Also, collation destructor - CollSeq.xDel() - function may need + ** to be called. + */ + if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ + CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, strlen(zName)); + int j; + for(j=0; j<3; j++){ + CollSeq *p = &aColl[j]; + if( p->enc==pColl->enc ){ + if( p->xDel ){ + p->xDel(p->pUser); + } + p->xCmp = 0; + } + } + } + } + + pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, strlen(zName), 1); + if( pColl ){ + pColl->xCmp = xCompare; + pColl->pUser = pCtx; + pColl->xDel = xDel; + pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED); + } + sqlite3Error(db, SQLITE_OK, 0); + return SQLITE_OK; +} + + +/* +** This array defines hard upper bounds on limit values. The +** initializer must be kept in sync with the SQLITE_LIMIT_* +** #defines in sqlite3.h. +*/ +static const int aHardLimit[] = { + SQLITE_MAX_LENGTH, + SQLITE_MAX_SQL_LENGTH, + SQLITE_MAX_COLUMN, + SQLITE_MAX_EXPR_DEPTH, + SQLITE_MAX_COMPOUND_SELECT, + SQLITE_MAX_VDBE_OP, + SQLITE_MAX_FUNCTION_ARG, + SQLITE_MAX_ATTACHED, + SQLITE_MAX_LIKE_PATTERN_LENGTH, + SQLITE_MAX_VARIABLE_NUMBER, +}; + +/* +** Make sure the hard limits are set to reasonable values +*/ +#if SQLITE_MAX_LENGTH<100 +# error SQLITE_MAX_LENGTH must be at least 100 +#endif +#if SQLITE_MAX_SQL_LENGTH<100 +# error SQLITE_MAX_SQL_LENGTH must be at least 100 +#endif +#if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH +# error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH +#endif +#if SQLITE_MAX_COMPOUND_SELECT<2 +# error SQLITE_MAX_COMPOUND_SELECT must be at least 2 +#endif +#if SQLITE_MAX_VDBE_OP<40 +# error SQLITE_MAX_VDBE_OP must be at least 40 +#endif +#if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>255 +# error SQLITE_MAX_FUNCTION_ARG must be between 0 and 255 +#endif +#if SQLITE_MAX_ATTACH<0 || SQLITE_MAX_ATTACH>30 +# error SQLITE_MAX_ATTACH must be between 0 and 30 +#endif +#if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 +# error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 +#endif +#if SQLITE_MAX_VARIABLE_NUMBER<1 +# error SQLITE_MAX_VARIABLE_NUMBER must be at least 1 +#endif + + +/* +** Change the value of a limit. Report the old value. +** If an invalid limit index is supplied, report -1. +** Make no changes but still report the old value if the +** new limit is negative. +** +** A new lower limit does not shrink existing constructs. +** It merely prevents new constructs that exceed the limit +** from forming. +*/ +SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ + int oldLimit; + if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ + return -1; + } + oldLimit = db->aLimit[limitId]; + if( newLimit>=0 ){ + if( newLimit>aHardLimit[limitId] ){ + newLimit = aHardLimit[limitId]; + } + db->aLimit[limitId] = newLimit; + } + return oldLimit; +} + +/* +** This routine does the work of opening a database on behalf of +** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" +** is UTF-8 encoded. +*/ +static int openDatabase( + const char *zFilename, /* Database filename UTF-8 encoded */ + sqlite3 **ppDb, /* OUT: Returned database handle */ + unsigned flags, /* Operational flags */ + const char *zVfs /* Name of the VFS to use */ +){ + sqlite3 *db; + int rc; + CollSeq *pColl; + + /* Remove harmful bits from the flags parameter */ + flags &= ~( SQLITE_OPEN_DELETEONCLOSE | + SQLITE_OPEN_MAIN_DB | + SQLITE_OPEN_TEMP_DB | + SQLITE_OPEN_TRANSIENT_DB | + SQLITE_OPEN_MAIN_JOURNAL | + SQLITE_OPEN_TEMP_JOURNAL | + SQLITE_OPEN_SUBJOURNAL | + SQLITE_OPEN_MASTER_JOURNAL + ); + + /* Allocate the sqlite data structure */ + db = sqlite3MallocZero( sizeof(sqlite3) ); + if( db==0 ) goto opendb_out; + db->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE); + if( db->mutex==0 ){ + sqlite3_free(db); + db = 0; + goto opendb_out; + } + sqlite3_mutex_enter(db->mutex); + db->errMask = 0xff; + db->priorNewRowid = 0; + db->nDb = 2; + db->magic = SQLITE_MAGIC_BUSY; + db->aDb = db->aDbStatic; + assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); + memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); + db->autoCommit = 1; + db->nextAutovac = -1; + db->nextPagesize = 0; + db->flags |= SQLITE_ShortColNames +#if SQLITE_DEFAULT_FILE_FORMAT<4 + | SQLITE_LegacyFileFmt +#endif +#ifdef SQLITE_ENABLE_LOAD_EXTENSION + | SQLITE_LoadExtension +#endif + ; + sqlite3HashInit(&db->aFunc, SQLITE_HASH_STRING, 0); + sqlite3HashInit(&db->aCollSeq, SQLITE_HASH_STRING, 0); +#ifndef SQLITE_OMIT_VIRTUALTABLE + sqlite3HashInit(&db->aModule, SQLITE_HASH_STRING, 0); +#endif + + db->pVfs = sqlite3_vfs_find(zVfs); + if( !db->pVfs ){ + rc = SQLITE_ERROR; + db->magic = SQLITE_MAGIC_SICK; + sqlite3Error(db, rc, "no such vfs: %s", zVfs); + goto opendb_out; + } + + /* Add the default collation sequence BINARY. BINARY works for both UTF-8 + ** and UTF-16, so add a version for each to avoid any unnecessary + ** conversions. The only error that can occur here is a malloc() failure. + */ + createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); + createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); + createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); + createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); + if( db->mallocFailed ){ + db->magic = SQLITE_MAGIC_SICK; + goto opendb_out; + } + db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0); + assert( db->pDfltColl!=0 ); + + /* Also add a UTF-8 case-insensitive collation sequence. */ + createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); + + /* Set flags on the built-in collating sequences */ + db->pDfltColl->type = SQLITE_COLL_BINARY; + pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0); + if( pColl ){ + pColl->type = SQLITE_COLL_NOCASE; + } + + /* Open the backend database driver */ + db->openFlags = flags; + rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, + flags | SQLITE_OPEN_MAIN_DB, + &db->aDb[0].pBt); + if( rc!=SQLITE_OK ){ + sqlite3Error(db, rc, 0); + db->magic = SQLITE_MAGIC_SICK; + goto opendb_out; + } + db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); + db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); + + + /* The default safety_level for the main database is 'full'; for the temp + ** database it is 'NONE'. This matches the pager layer defaults. + */ + db->aDb[0].zName = "main"; + db->aDb[0].safety_level = 3; +#ifndef SQLITE_OMIT_TEMPDB + db->aDb[1].zName = "temp"; + db->aDb[1].safety_level = 1; +#endif + + db->magic = SQLITE_MAGIC_OPEN; + if( db->mallocFailed ){ + goto opendb_out; + } + + /* Register all built-in functions, but do not attempt to read the + ** database schema yet. This is delayed until the first time the database + ** is accessed. + */ + sqlite3Error(db, SQLITE_OK, 0); + sqlite3RegisterBuiltinFunctions(db); + + /* Load automatic extensions - extensions that have been registered + ** using the sqlite3_automatic_extension() API. + */ + (void)sqlite3AutoLoadExtensions(db); + if( sqlite3_errcode(db)!=SQLITE_OK ){ + goto opendb_out; + } + +#ifdef SQLITE_ENABLE_FTS1 + if( !db->mallocFailed ){ + extern int sqlite3Fts1Init(sqlite3*); + rc = sqlite3Fts1Init(db); + } +#endif + +#ifdef SQLITE_ENABLE_FTS2 + if( !db->mallocFailed && rc==SQLITE_OK ){ + extern int sqlite3Fts2Init(sqlite3*); + rc = sqlite3Fts2Init(db); + } +#endif + +#ifdef SQLITE_ENABLE_FTS3 + if( !db->mallocFailed && rc==SQLITE_OK ){ + rc = sqlite3Fts3Init(db); + } +#endif + +#ifdef SQLITE_ENABLE_ICU + if( !db->mallocFailed && rc==SQLITE_OK ){ + extern int sqlite3IcuInit(sqlite3*); + rc = sqlite3IcuInit(db); + } +#endif + sqlite3Error(db, rc, 0); + + /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking + ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking + ** mode. Doing nothing at all also makes NORMAL the default. + */ +#ifdef SQLITE_DEFAULT_LOCKING_MODE + db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; + sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), + SQLITE_DEFAULT_LOCKING_MODE); +#endif + +opendb_out: + if( db ){ + assert( db->mutex!=0 ); + sqlite3_mutex_leave(db->mutex); + } + if( SQLITE_NOMEM==(rc = sqlite3_errcode(db)) ){ + sqlite3_close(db); + db = 0; + } + *ppDb = db; + return sqlite3ApiExit(0, rc); +} + +/* +** Open a new database handle. +*/ +SQLITE_API int sqlite3_open( + const char *zFilename, + sqlite3 **ppDb +){ + return openDatabase(zFilename, ppDb, + SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); +} +SQLITE_API int sqlite3_open_v2( + const char *filename, /* Database filename (UTF-8) */ + sqlite3 **ppDb, /* OUT: SQLite db handle */ + int flags, /* Flags */ + const char *zVfs /* Name of VFS module to use */ +){ + return openDatabase(filename, ppDb, flags, zVfs); +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** Open a new database handle. +*/ +SQLITE_API int sqlite3_open16( + const void *zFilename, + sqlite3 **ppDb +){ + char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ + sqlite3_value *pVal; + int rc = SQLITE_NOMEM; + + assert( zFilename ); + assert( ppDb ); + *ppDb = 0; + pVal = sqlite3ValueNew(0); + sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); + zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); + if( zFilename8 ){ + rc = openDatabase(zFilename8, ppDb, + SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); + assert( *ppDb || rc==SQLITE_NOMEM ); + if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ + ENC(*ppDb) = SQLITE_UTF16NATIVE; + } + } + sqlite3ValueFree(pVal); + + return sqlite3ApiExit(0, rc); +} +#endif /* SQLITE_OMIT_UTF16 */ + +/* +** Register a new collation sequence with the database handle db. +*/ +SQLITE_API int sqlite3_create_collation( + sqlite3* db, + const char *zName, + int enc, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*) +){ + int rc; + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + rc = createCollation(db, zName, enc, pCtx, xCompare, 0); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Register a new collation sequence with the database handle db. +*/ +SQLITE_API int sqlite3_create_collation_v2( + sqlite3* db, + const char *zName, + int enc, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*), + void(*xDel)(void*) +){ + int rc; + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + rc = createCollation(db, zName, enc, pCtx, xCompare, xDel); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** Register a new collation sequence with the database handle db. +*/ +SQLITE_API int sqlite3_create_collation16( + sqlite3* db, + const char *zName, + int enc, + void* pCtx, + int(*xCompare)(void*,int,const void*,int,const void*) +){ + int rc = SQLITE_OK; + char *zName8; + sqlite3_mutex_enter(db->mutex); + assert( !db->mallocFailed ); + zName8 = sqlite3Utf16to8(db, zName, -1); + if( zName8 ){ + rc = createCollation(db, zName8, enc, pCtx, xCompare, 0); + sqlite3_free(zName8); + } + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} +#endif /* SQLITE_OMIT_UTF16 */ + +/* +** Register a collation sequence factory callback with the database handle +** db. Replace any previously installed collation sequence factory. +*/ +SQLITE_API int sqlite3_collation_needed( + sqlite3 *db, + void *pCollNeededArg, + void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) +){ + sqlite3_mutex_enter(db->mutex); + db->xCollNeeded = xCollNeeded; + db->xCollNeeded16 = 0; + db->pCollNeededArg = pCollNeededArg; + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +#ifndef SQLITE_OMIT_UTF16 +/* +** Register a collation sequence factory callback with the database handle +** db. Replace any previously installed collation sequence factory. +*/ +SQLITE_API int sqlite3_collation_needed16( + sqlite3 *db, + void *pCollNeededArg, + void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) +){ + sqlite3_mutex_enter(db->mutex); + db->xCollNeeded = 0; + db->xCollNeeded16 = xCollNeeded16; + db->pCollNeededArg = pCollNeededArg; + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} +#endif /* SQLITE_OMIT_UTF16 */ + +#ifndef SQLITE_OMIT_GLOBALRECOVER +/* +** This function is now an anachronism. It used to be used to recover from a +** malloc() failure, but SQLite now does this automatically. +*/ +SQLITE_API int sqlite3_global_recover(void){ + return SQLITE_OK; +} +#endif + +/* +** Test to see whether or not the database connection is in autocommit +** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on +** by default. Autocommit is disabled by a BEGIN statement and reenabled +** by the next COMMIT or ROLLBACK. +** +******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** +*/ +SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){ + return db->autoCommit; +} + +#ifdef SQLITE_DEBUG +/* +** The following routine is subtituted for constant SQLITE_CORRUPT in +** debugging builds. This provides a way to set a breakpoint for when +** corruption is first detected. +*/ +SQLITE_PRIVATE int sqlite3Corrupt(void){ + return SQLITE_CORRUPT; +} +#endif + +/* +** This is a convenience routine that makes sure that all thread-specific +** data for this thread has been deallocated. +** +** SQLite no longer uses thread-specific data so this routine is now a +** no-op. It is retained for historical compatibility. +*/ +SQLITE_API void sqlite3_thread_cleanup(void){ +} + +/* +** Return meta information about a specific column of a database table. +** See comment in sqlite3.h (sqlite.h.in) for details. +*/ +#ifdef SQLITE_ENABLE_COLUMN_METADATA +SQLITE_API int sqlite3_table_column_metadata( + sqlite3 *db, /* Connection handle */ + const char *zDbName, /* Database name or NULL */ + const char *zTableName, /* Table name */ + const char *zColumnName, /* Column name */ + char const **pzDataType, /* OUTPUT: Declared data type */ + char const **pzCollSeq, /* OUTPUT: Collation sequence name */ + int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ + int *pPrimaryKey, /* OUTPUT: True if column part of PK */ + int *pAutoinc /* OUTPUT: True if colums is auto-increment */ +){ + int rc; + char *zErrMsg = 0; + Table *pTab = 0; + Column *pCol = 0; + int iCol; + + char const *zDataType = 0; + char const *zCollSeq = 0; + int notnull = 0; + int primarykey = 0; + int autoinc = 0; + + /* Ensure the database schema has been loaded */ + sqlite3_mutex_enter(db->mutex); + (void)sqlite3SafetyOn(db); + sqlite3BtreeEnterAll(db); + rc = sqlite3Init(db, &zErrMsg); + sqlite3BtreeLeaveAll(db); + if( SQLITE_OK!=rc ){ + goto error_out; + } + + /* Locate the table in question */ + pTab = sqlite3FindTable(db, zTableName, zDbName); + if( !pTab || pTab->pSelect ){ + pTab = 0; + goto error_out; + } + + /* Find the column for which info is requested */ + if( sqlite3IsRowid(zColumnName) ){ + iCol = pTab->iPKey; + if( iCol>=0 ){ + pCol = &pTab->aCol[iCol]; + } + }else{ + for(iCol=0; iCol<pTab->nCol; iCol++){ + pCol = &pTab->aCol[iCol]; + if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ + break; + } + } + if( iCol==pTab->nCol ){ + pTab = 0; + goto error_out; + } + } + + /* The following block stores the meta information that will be returned + ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey + ** and autoinc. At this point there are two possibilities: + ** + ** 1. The specified column name was rowid", "oid" or "_rowid_" + ** and there is no explicitly declared IPK column. + ** + ** 2. The table is not a view and the column name identified an + ** explicitly declared column. Copy meta information from *pCol. + */ + if( pCol ){ + zDataType = pCol->zType; + zCollSeq = pCol->zColl; + notnull = (pCol->notNull?1:0); + primarykey = (pCol->isPrimKey?1:0); + autoinc = ((pTab->iPKey==iCol && pTab->autoInc)?1:0); + }else{ + zDataType = "INTEGER"; + primarykey = 1; + } + if( !zCollSeq ){ + zCollSeq = "BINARY"; + } + +error_out: + (void)sqlite3SafetyOff(db); + + /* Whether the function call succeeded or failed, set the output parameters + ** to whatever their local counterparts contain. If an error did occur, + ** this has the effect of zeroing all output parameters. + */ + if( pzDataType ) *pzDataType = zDataType; + if( pzCollSeq ) *pzCollSeq = zCollSeq; + if( pNotNull ) *pNotNull = notnull; + if( pPrimaryKey ) *pPrimaryKey = primarykey; + if( pAutoinc ) *pAutoinc = autoinc; + + if( SQLITE_OK==rc && !pTab ){ + sqlite3SetString(&zErrMsg, "no such table column: ", zTableName, ".", + zColumnName, 0); + rc = SQLITE_ERROR; + } + sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); + sqlite3_free(zErrMsg); + rc = sqlite3ApiExit(db, rc); + sqlite3_mutex_leave(db->mutex); + return rc; +} +#endif + +/* +** Sleep for a little while. Return the amount of time slept. +*/ +SQLITE_API int sqlite3_sleep(int ms){ + sqlite3_vfs *pVfs; + int rc; + pVfs = sqlite3_vfs_find(0); + + /* This function works in milliseconds, but the underlying OsSleep() + ** API uses microseconds. Hence the 1000's. + */ + rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); + return rc; +} + +/* +** Enable or disable the extended result codes. +*/ +SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ + sqlite3_mutex_enter(db->mutex); + db->errMask = onoff ? 0xffffffff : 0xff; + sqlite3_mutex_leave(db->mutex); + return SQLITE_OK; +} + +/* +** Invoke the xFileControl method on a particular database. +*/ +SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ + int rc = SQLITE_ERROR; + int iDb; + sqlite3_mutex_enter(db->mutex); + if( zDbName==0 ){ + iDb = 0; + }else{ + for(iDb=0; iDb<db->nDb; iDb++){ + if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break; + } + } + if( iDb<db->nDb ){ + Btree *pBtree = db->aDb[iDb].pBt; + if( pBtree ){ + Pager *pPager; + sqlite3_file *fd; + sqlite3BtreeEnter(pBtree); + pPager = sqlite3BtreePager(pBtree); + assert( pPager!=0 ); + fd = sqlite3PagerFile(pPager); + assert( fd!=0 ); + if( fd->pMethods ){ + rc = sqlite3OsFileControl(fd, op, pArg); + } + sqlite3BtreeLeave(pBtree); + } + } + sqlite3_mutex_leave(db->mutex); + return rc; +} + +/* +** Interface to the testing logic. +*/ +SQLITE_API int sqlite3_test_control(int op, ...){ + int rc = 0; +#ifndef SQLITE_OMIT_BUILTIN_TEST + va_list ap; + va_start(ap, op); + switch( op ){ + /* + ** sqlite3_test_control(FAULT_CONFIG, fault_id, nDelay, nRepeat) + ** + ** Configure a fault injector. The specific fault injector is + ** identified by the fault_id argument. (ex: SQLITE_FAULTINJECTOR_MALLOC) + ** The fault will occur after a delay of nDelay calls. The fault + ** will repeat nRepeat times. + */ + case SQLITE_TESTCTRL_FAULT_CONFIG: { + int id = va_arg(ap, int); + int nDelay = va_arg(ap, int); + int nRepeat = va_arg(ap, int); + sqlite3FaultConfig(id, nDelay, nRepeat); + break; + } + + /* + ** sqlite3_test_control(FAULT_FAILURES, fault_id) + ** + ** Return the number of faults (both hard and benign faults) that have + ** occurred since the injector identified by fault_id) was last configured. + */ + case SQLITE_TESTCTRL_FAULT_FAILURES: { + int id = va_arg(ap, int); + rc = sqlite3FaultFailures(id); + break; + } + + /* + ** sqlite3_test_control(FAULT_BENIGN_FAILURES, fault_id) + ** + ** Return the number of benign faults that have occurred since the + ** injector identified by fault_id was last configured. + */ + case SQLITE_TESTCTRL_FAULT_BENIGN_FAILURES: { + int id = va_arg(ap, int); + rc = sqlite3FaultBenignFailures(id); + break; + } + + /* + ** sqlite3_test_control(FAULT_PENDING, fault_id) + ** + ** Return the number of successes that will occur before the next + ** scheduled failure on fault injector fault_id. + ** If no failures are scheduled, return -1. + */ + case SQLITE_TESTCTRL_FAULT_PENDING: { + int id = va_arg(ap, int); + rc = sqlite3FaultPending(id); + break; + } + + /* + ** Save the current state of the PRNG. + */ + case SQLITE_TESTCTRL_PRNG_SAVE: { + sqlite3PrngSaveState(); + break; + } + + /* + ** Restore the state of the PRNG to the last state saved using + ** PRNG_SAVE. If PRNG_SAVE has never before been called, then + ** this verb acts like PRNG_RESET. + */ + case SQLITE_TESTCTRL_PRNG_RESTORE: { + sqlite3PrngRestoreState(); + break; + } + + /* + ** Reset the PRNG back to its uninitialized state. The next call + ** to sqlite3_randomness() will reseed the PRNG using a single call + ** to the xRandomness method of the default VFS. + */ + case SQLITE_TESTCTRL_PRNG_RESET: { + sqlite3PrngResetState(); + break; + } + + /* + ** sqlite3_test_control(BITVEC_TEST, size, program) + ** + ** Run a test against a Bitvec object of size. The program argument + ** is an array of integers that defines the test. Return -1 on a + ** memory allocation error, 0 on success, or non-zero for an error. + ** See the sqlite3BitvecBuiltinTest() for additional information. + */ + case SQLITE_TESTCTRL_BITVEC_TEST: { + int sz = va_arg(ap, int); + int *aProg = va_arg(ap, int*); + rc = sqlite3BitvecBuiltinTest(sz, aProg); + break; + } + } + va_end(ap); +#endif /* SQLITE_OMIT_BUILTIN_TEST */ + return rc; +} + +/************** End of main.c ************************************************/ +/************** Begin file fts3.c ********************************************/ +/* +** 2006 Oct 10 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This is an SQLite module implementing full-text search. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ + +/* TODO(shess) Consider exporting this comment to an HTML file or the +** wiki. +*/ +/* The full-text index is stored in a series of b+tree (-like) +** structures called segments which map terms to doclists. The +** structures are like b+trees in layout, but are constructed from the +** bottom up in optimal fashion and are not updatable. Since trees +** are built from the bottom up, things will be described from the +** bottom up. +** +** +**** Varints **** +** The basic unit of encoding is a variable-length integer called a +** varint. We encode variable-length integers in little-endian order +** using seven bits * per byte as follows: +** +** KEY: +** A = 0xxxxxxx 7 bits of data and one flag bit +** B = 1xxxxxxx 7 bits of data and one flag bit +** +** 7 bits - A +** 14 bits - BA +** 21 bits - BBA +** and so on. +** +** This is identical to how sqlite encodes varints (see util.c). +** +** +**** Document lists **** +** A doclist (document list) holds a docid-sorted list of hits for a +** given term. Doclists hold docids, and can optionally associate +** token positions and offsets with docids. +** +** A DL_POSITIONS_OFFSETS doclist is stored like this: +** +** array { +** varint docid; +** array { (position list for column 0) +** varint position; (delta from previous position plus POS_BASE) +** varint startOffset; (delta from previous startOffset) +** varint endOffset; (delta from startOffset) +** } +** array { +** varint POS_COLUMN; (marks start of position list for new column) +** varint column; (index of new column) +** array { +** varint position; (delta from previous position plus POS_BASE) +** varint startOffset;(delta from previous startOffset) +** varint endOffset; (delta from startOffset) +** } +** } +** varint POS_END; (marks end of positions for this document. +** } +** +** Here, array { X } means zero or more occurrences of X, adjacent in +** memory. A "position" is an index of a token in the token stream +** generated by the tokenizer, while an "offset" is a byte offset, +** both based at 0. Note that POS_END and POS_COLUMN occur in the +** same logical place as the position element, and act as sentinals +** ending a position list array. +** +** A DL_POSITIONS doclist omits the startOffset and endOffset +** information. A DL_DOCIDS doclist omits both the position and +** offset information, becoming an array of varint-encoded docids. +** +** On-disk data is stored as type DL_DEFAULT, so we don't serialize +** the type. Due to how deletion is implemented in the segmentation +** system, on-disk doclists MUST store at least positions. +** +** +**** Segment leaf nodes **** +** Segment leaf nodes store terms and doclists, ordered by term. Leaf +** nodes are written using LeafWriter, and read using LeafReader (to +** iterate through a single leaf node's data) and LeavesReader (to +** iterate through a segment's entire leaf layer). Leaf nodes have +** the format: +** +** varint iHeight; (height from leaf level, always 0) +** varint nTerm; (length of first term) +** char pTerm[nTerm]; (content of first term) +** varint nDoclist; (length of term's associated doclist) +** char pDoclist[nDoclist]; (content of doclist) +** array { +** (further terms are delta-encoded) +** varint nPrefix; (length of prefix shared with previous term) +** varint nSuffix; (length of unshared suffix) +** char pTermSuffix[nSuffix];(unshared suffix of next term) +** varint nDoclist; (length of term's associated doclist) +** char pDoclist[nDoclist]; (content of doclist) +** } +** +** Here, array { X } means zero or more occurrences of X, adjacent in +** memory. +** +** Leaf nodes are broken into blocks which are stored contiguously in +** the %_segments table in sorted order. This means that when the end +** of a node is reached, the next term is in the node with the next +** greater node id. +** +** New data is spilled to a new leaf node when the current node +** exceeds LEAF_MAX bytes (default 2048). New data which itself is +** larger than STANDALONE_MIN (default 1024) is placed in a standalone +** node (a leaf node with a single term and doclist). The goal of +** these settings is to pack together groups of small doclists while +** making it efficient to directly access large doclists. The +** assumption is that large doclists represent terms which are more +** likely to be query targets. +** +** TODO(shess) It may be useful for blocking decisions to be more +** dynamic. For instance, it may make more sense to have a 2.5k leaf +** node rather than splitting into 2k and .5k nodes. My intuition is +** that this might extend through 2x or 4x the pagesize. +** +** +**** Segment interior nodes **** +** Segment interior nodes store blockids for subtree nodes and terms +** to describe what data is stored by the each subtree. Interior +** nodes are written using InteriorWriter, and read using +** InteriorReader. InteriorWriters are created as needed when +** SegmentWriter creates new leaf nodes, or when an interior node +** itself grows too big and must be split. The format of interior +** nodes: +** +** varint iHeight; (height from leaf level, always >0) +** varint iBlockid; (block id of node's leftmost subtree) +** optional { +** varint nTerm; (length of first term) +** char pTerm[nTerm]; (content of first term) +** array { +** (further terms are delta-encoded) +** varint nPrefix; (length of shared prefix with previous term) +** varint nSuffix; (length of unshared suffix) +** char pTermSuffix[nSuffix]; (unshared suffix of next term) +** } +** } +** +** Here, optional { X } means an optional element, while array { X } +** means zero or more occurrences of X, adjacent in memory. +** +** An interior node encodes n terms separating n+1 subtrees. The +** subtree blocks are contiguous, so only the first subtree's blockid +** is encoded. The subtree at iBlockid will contain all terms less +** than the first term encoded (or all terms if no term is encoded). +** Otherwise, for terms greater than or equal to pTerm[i] but less +** than pTerm[i+1], the subtree for that term will be rooted at +** iBlockid+i. Interior nodes only store enough term data to +** distinguish adjacent children (if the rightmost term of the left +** child is "something", and the leftmost term of the right child is +** "wicked", only "w" is stored). +** +** New data is spilled to a new interior node at the same height when +** the current node exceeds INTERIOR_MAX bytes (default 2048). +** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing +** interior nodes and making the tree too skinny. The interior nodes +** at a given height are naturally tracked by interior nodes at +** height+1, and so on. +** +** +**** Segment directory **** +** The segment directory in table %_segdir stores meta-information for +** merging and deleting segments, and also the root node of the +** segment's tree. +** +** The root node is the top node of the segment's tree after encoding +** the entire segment, restricted to ROOT_MAX bytes (default 1024). +** This could be either a leaf node or an interior node. If the top +** node requires more than ROOT_MAX bytes, it is flushed to %_segments +** and a new root interior node is generated (which should always fit +** within ROOT_MAX because it only needs space for 2 varints, the +** height and the blockid of the previous root). +** +** The meta-information in the segment directory is: +** level - segment level (see below) +** idx - index within level +** - (level,idx uniquely identify a segment) +** start_block - first leaf node +** leaves_end_block - last leaf node +** end_block - last block (including interior nodes) +** root - contents of root node +** +** If the root node is a leaf node, then start_block, +** leaves_end_block, and end_block are all 0. +** +** +**** Segment merging **** +** To amortize update costs, segments are groups into levels and +** merged in matches. Each increase in level represents exponentially +** more documents. +** +** New documents (actually, document updates) are tokenized and +** written individually (using LeafWriter) to a level 0 segment, with +** incrementing idx. When idx reaches MERGE_COUNT (default 16), all +** level 0 segments are merged into a single level 1 segment. Level 1 +** is populated like level 0, and eventually MERGE_COUNT level 1 +** segments are merged to a single level 2 segment (representing +** MERGE_COUNT^2 updates), and so on. +** +** A segment merge traverses all segments at a given level in +** parallel, performing a straightforward sorted merge. Since segment +** leaf nodes are written in to the %_segments table in order, this +** merge traverses the underlying sqlite disk structures efficiently. +** After the merge, all segment blocks from the merged level are +** deleted. +** +** MERGE_COUNT controls how often we merge segments. 16 seems to be +** somewhat of a sweet spot for insertion performance. 32 and 64 show +** very similar performance numbers to 16 on insertion, though they're +** a tiny bit slower (perhaps due to more overhead in merge-time +** sorting). 8 is about 20% slower than 16, 4 about 50% slower than +** 16, 2 about 66% slower than 16. +** +** At query time, high MERGE_COUNT increases the number of segments +** which need to be scanned and merged. For instance, with 100k docs +** inserted: +** +** MERGE_COUNT segments +** 16 25 +** 8 12 +** 4 10 +** 2 6 +** +** This appears to have only a moderate impact on queries for very +** frequent terms (which are somewhat dominated by segment merge +** costs), and infrequent and non-existent terms still seem to be fast +** even with many segments. +** +** TODO(shess) That said, it would be nice to have a better query-side +** argument for MERGE_COUNT of 16. Also, it is possible/likely that +** optimizations to things like doclist merging will swing the sweet +** spot around. +** +** +** +**** Handling of deletions and updates **** +** Since we're using a segmented structure, with no docid-oriented +** index into the term index, we clearly cannot simply update the term +** index when a document is deleted or updated. For deletions, we +** write an empty doclist (varint(docid) varint(POS_END)), for updates +** we simply write the new doclist. Segment merges overwrite older +** data for a particular docid with newer data, so deletes or updates +** will eventually overtake the earlier data and knock it out. The +** query logic likewise merges doclists so that newer data knocks out +** older data. +** +** TODO(shess) Provide a VACUUM type operation to clear out all +** deletions and duplications. This would basically be a forced merge +** into a single segment. +*/ + +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + +#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) +# define SQLITE_CORE 1 +#endif + + +/************** Include fts3_hash.h in the middle of fts3.c ******************/ +/************** Begin file fts3_hash.h ***************************************/ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the header file for the generic hash-table implemenation +** used in SQLite. We've modified it slightly to serve as a standalone +** hash table implementation for the full-text indexing module. +** +*/ +#ifndef _FTS3_HASH_H_ +#define _FTS3_HASH_H_ + +/* Forward declarations of structures. */ +typedef struct fts3Hash fts3Hash; +typedef struct fts3HashElem fts3HashElem; + +/* A complete hash table is an instance of the following structure. +** The internals of this structure are intended to be opaque -- client +** code should not attempt to access or modify the fields of this structure +** directly. Change this structure only by using the routines below. +** However, many of the "procedures" and "functions" for modifying and +** accessing this structure are really macros, so we can't really make +** this structure opaque. +*/ +struct fts3Hash { + char keyClass; /* HASH_INT, _POINTER, _STRING, _BINARY */ + char copyKey; /* True if copy of key made on insert */ + int count; /* Number of entries in this table */ + fts3HashElem *first; /* The first element of the array */ + int htsize; /* Number of buckets in the hash table */ + struct _fts3ht { /* the hash table */ + int count; /* Number of entries with this hash */ + fts3HashElem *chain; /* Pointer to first entry with this hash */ + } *ht; +}; + +/* Each element in the hash table is an instance of the following +** structure. All elements are stored on a single doubly-linked list. +** +** Again, this structure is intended to be opaque, but it can't really +** be opaque because it is used by macros. +*/ +struct fts3HashElem { + fts3HashElem *next, *prev; /* Next and previous elements in the table */ + void *data; /* Data associated with this element */ + void *pKey; int nKey; /* Key associated with this element */ +}; + +/* +** There are 2 different modes of operation for a hash table: +** +** FTS3_HASH_STRING pKey points to a string that is nKey bytes long +** (including the null-terminator, if any). Case +** is respected in comparisons. +** +** FTS3_HASH_BINARY pKey points to binary data nKey bytes long. +** memcmp() is used to compare keys. +** +** A copy of the key is made if the copyKey parameter to fts3HashInit is 1. +*/ +#define FTS3_HASH_STRING 1 +#define FTS3_HASH_BINARY 2 + +/* +** Access routines. To delete, insert a NULL pointer. +*/ +SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash*, int keytype, int copyKey); +SQLITE_PRIVATE void *sqlite3Fts3HashInsert(fts3Hash*, const void *pKey, int nKey, void *pData); +SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash*, const void *pKey, int nKey); +SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash*); + +/* +** Shorthand for the functions above +*/ +#define fts3HashInit sqlite3Fts3HashInit +#define fts3HashInsert sqlite3Fts3HashInsert +#define fts3HashFind sqlite3Fts3HashFind +#define fts3HashClear sqlite3Fts3HashClear + +/* +** Macros for looping over all elements of a hash table. The idiom is +** like this: +** +** fts3Hash h; +** fts3HashElem *p; +** ... +** for(p=fts3HashFirst(&h); p; p=fts3HashNext(p)){ +** SomeStructure *pData = fts3HashData(p); +** // do something with pData +** } +*/ +#define fts3HashFirst(H) ((H)->first) +#define fts3HashNext(E) ((E)->next) +#define fts3HashData(E) ((E)->data) +#define fts3HashKey(E) ((E)->pKey) +#define fts3HashKeysize(E) ((E)->nKey) + +/* +** Number of entries in a hash table +*/ +#define fts3HashCount(H) ((H)->count) + +#endif /* _FTS3_HASH_H_ */ + +/************** End of fts3_hash.h *******************************************/ +/************** Continuing where we left off in fts3.c ***********************/ +/************** Include fts3_tokenizer.h in the middle of fts3.c *************/ +/************** Begin file fts3_tokenizer.h **********************************/ +/* +** 2006 July 10 +** +** The author disclaims copyright to this source code. +** +************************************************************************* +** Defines the interface to tokenizers used by fulltext-search. There +** are three basic components: +** +** sqlite3_tokenizer_module is a singleton defining the tokenizer +** interface functions. This is essentially the class structure for +** tokenizers. +** +** sqlite3_tokenizer is used to define a particular tokenizer, perhaps +** including customization information defined at creation time. +** +** sqlite3_tokenizer_cursor is generated by a tokenizer to generate +** tokens from a particular input. +*/ +#ifndef _FTS3_TOKENIZER_H_ +#define _FTS3_TOKENIZER_H_ + +/* TODO(shess) Only used for SQLITE_OK and SQLITE_DONE at this time. +** If tokenizers are to be allowed to call sqlite3_*() functions, then +** we will need a way to register the API consistently. +*/ + +/* +** Structures used by the tokenizer interface. When a new tokenizer +** implementation is registered, the caller provides a pointer to +** an sqlite3_tokenizer_module containing pointers to the callback +** functions that make up an implementation. +** +** When an fts3 table is created, it passes any arguments passed to +** the tokenizer clause of the CREATE VIRTUAL TABLE statement to the +** sqlite3_tokenizer_module.xCreate() function of the requested tokenizer +** implementation. The xCreate() function in turn returns an +** sqlite3_tokenizer structure representing the specific tokenizer to +** be used for the fts3 table (customized by the tokenizer clause arguments). +** +** To tokenize an input buffer, the sqlite3_tokenizer_module.xOpen() +** method is called. It returns an sqlite3_tokenizer_cursor object +** that may be used to tokenize a specific input buffer based on +** the tokenization rules supplied by a specific sqlite3_tokenizer +** object. +*/ +typedef struct sqlite3_tokenizer_module sqlite3_tokenizer_module; +typedef struct sqlite3_tokenizer sqlite3_tokenizer; +typedef struct sqlite3_tokenizer_cursor sqlite3_tokenizer_cursor; + +struct sqlite3_tokenizer_module { + + /* + ** Structure version. Should always be set to 0. + */ + int iVersion; + + /* + ** Create a new tokenizer. The values in the argv[] array are the + ** arguments passed to the "tokenizer" clause of the CREATE VIRTUAL + ** TABLE statement that created the fts3 table. For example, if + ** the following SQL is executed: + ** + ** CREATE .. USING fts3( ... , tokenizer <tokenizer-name> arg1 arg2) + ** + ** then argc is set to 2, and the argv[] array contains pointers + ** to the strings "arg1" and "arg2". + ** + ** This method should return either SQLITE_OK (0), or an SQLite error + ** code. If SQLITE_OK is returned, then *ppTokenizer should be set + ** to point at the newly created tokenizer structure. The generic + ** sqlite3_tokenizer.pModule variable should not be initialised by + ** this callback. The caller will do so. + */ + int (*xCreate)( + int argc, /* Size of argv array */ + const char *const*argv, /* Tokenizer argument strings */ + sqlite3_tokenizer **ppTokenizer /* OUT: Created tokenizer */ + ); + + /* + ** Destroy an existing tokenizer. The fts3 module calls this method + ** exactly once for each successful call to xCreate(). + */ + int (*xDestroy)(sqlite3_tokenizer *pTokenizer); + + /* + ** Create a tokenizer cursor to tokenize an input buffer. The caller + ** is responsible for ensuring that the input buffer remains valid + ** until the cursor is closed (using the xClose() method). + */ + int (*xOpen)( + sqlite3_tokenizer *pTokenizer, /* Tokenizer object */ + const char *pInput, int nBytes, /* Input buffer */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Created tokenizer cursor */ + ); + + /* + ** Destroy an existing tokenizer cursor. The fts3 module calls this + ** method exactly once for each successful call to xOpen(). + */ + int (*xClose)(sqlite3_tokenizer_cursor *pCursor); + + /* + ** Retrieve the next token from the tokenizer cursor pCursor. This + ** method should either return SQLITE_OK and set the values of the + ** "OUT" variables identified below, or SQLITE_DONE to indicate that + ** the end of the buffer has been reached, or an SQLite error code. + ** + ** *ppToken should be set to point at a buffer containing the + ** normalized version of the token (i.e. after any case-folding and/or + ** stemming has been performed). *pnBytes should be set to the length + ** of this buffer in bytes. The input text that generated the token is + ** identified by the byte offsets returned in *piStartOffset and + ** *piEndOffset. + ** + ** The buffer *ppToken is set to point at is managed by the tokenizer + ** implementation. It is only required to be valid until the next call + ** to xNext() or xClose(). + */ + /* TODO(shess) current implementation requires pInput to be + ** nul-terminated. This should either be fixed, or pInput/nBytes + ** should be converted to zInput. + */ + int (*xNext)( + sqlite3_tokenizer_cursor *pCursor, /* Tokenizer cursor */ + const char **ppToken, int *pnBytes, /* OUT: Normalized text for token */ + int *piStartOffset, /* OUT: Byte offset of token in input buffer */ + int *piEndOffset, /* OUT: Byte offset of end of token in input buffer */ + int *piPosition /* OUT: Number of tokens returned before this one */ + ); +}; + +struct sqlite3_tokenizer { + const sqlite3_tokenizer_module *pModule; /* The module for this tokenizer */ + /* Tokenizer implementations will typically add additional fields */ +}; + +struct sqlite3_tokenizer_cursor { + sqlite3_tokenizer *pTokenizer; /* Tokenizer for this cursor. */ + /* Tokenizer implementations will typically add additional fields */ +}; + +#endif /* _FTS3_TOKENIZER_H_ */ + +/************** End of fts3_tokenizer.h **************************************/ +/************** Continuing where we left off in fts3.c ***********************/ +#ifndef SQLITE_CORE + SQLITE_EXTENSION_INIT1 +#endif + + +/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it +** would be nice to order the file better, perhaps something along the +** lines of: +** +** - utility functions +** - table setup functions +** - table update functions +** - table query functions +** +** Put the query functions last because they're likely to reference +** typedefs or functions from the table update section. +*/ + +#if 0 +# define FTSTRACE(A) printf A; fflush(stdout) +#else +# define FTSTRACE(A) +#endif + +/* +** Default span for NEAR operators. +*/ +#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10 + +/* It is not safe to call isspace(), tolower(), or isalnum() on +** hi-bit-set characters. This is the same solution used in the +** tokenizer. +*/ +/* TODO(shess) The snippet-generation code should be using the +** tokenizer-generated tokens rather than doing its own local +** tokenization. +*/ +/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ +static int safe_isspace(char c){ + return (c&0x80)==0 ? isspace(c) : 0; +} +static int safe_tolower(char c){ + return (c&0x80)==0 ? tolower(c) : c; +} +static int safe_isalnum(char c){ + return (c&0x80)==0 ? isalnum(c) : 0; +} + +typedef enum DocListType { + DL_DOCIDS, /* docids only */ + DL_POSITIONS, /* docids + positions */ + DL_POSITIONS_OFFSETS /* docids + positions + offsets */ +} DocListType; + +/* +** By default, only positions and not offsets are stored in the doclists. +** To change this so that offsets are stored too, compile with +** +** -DDL_DEFAULT=DL_POSITIONS_OFFSETS +** +** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted +** into (no deletes or updates). +*/ +#ifndef DL_DEFAULT +# define DL_DEFAULT DL_POSITIONS +#endif + +enum { + POS_END = 0, /* end of this position list */ + POS_COLUMN, /* followed by new column number */ + POS_BASE +}; + +/* MERGE_COUNT controls how often we merge segments (see comment at +** top of file). +*/ +#define MERGE_COUNT 16 + +/* utility functions */ + +/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single +** record to prevent errors of the form: +** +** my_function(SomeType *b){ +** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b) +** } +*/ +/* TODO(shess) Obvious candidates for a header file. */ +#define CLEAR(b) memset(b, '\0', sizeof(*(b))) + +#ifndef NDEBUG +# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) +#else +# define SCRAMBLE(b) +#endif + +/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ +#define VARINT_MAX 10 + +/* Write a 64-bit variable-length integer to memory starting at p[0]. + * The length of data written will be between 1 and VARINT_MAX bytes. + * The number of bytes written is returned. */ +static int fts3PutVarint(char *p, sqlite_int64 v){ + unsigned char *q = (unsigned char *) p; + sqlite_uint64 vu = v; + do{ + *q++ = (unsigned char) ((vu & 0x7f) | 0x80); + vu >>= 7; + }while( vu!=0 ); + q[-1] &= 0x7f; /* turn off high bit in final byte */ + assert( q - (unsigned char *)p <= VARINT_MAX ); + return (int) (q - (unsigned char *)p); +} + +/* Read a 64-bit variable-length integer from memory starting at p[0]. + * Return the number of bytes read, or 0 on error. + * The value is stored in *v. */ +static int fts3GetVarint(const char *p, sqlite_int64 *v){ + const unsigned char *q = (const unsigned char *) p; + sqlite_uint64 x = 0, y = 1; + while( (*q & 0x80) == 0x80 ){ + x += y * (*q++ & 0x7f); + y <<= 7; + if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ + assert( 0 ); + return 0; + } + } + x += y * (*q++); + *v = (sqlite_int64) x; + return (int) (q - (unsigned char *)p); +} + +static int fts3GetVarint32(const char *p, int *pi){ + sqlite_int64 i; + int ret = fts3GetVarint(p, &i); + *pi = (int) i; + assert( *pi==i ); + return ret; +} + +/*******************************************************************/ +/* DataBuffer is used to collect data into a buffer in piecemeal +** fashion. It implements the usual distinction between amount of +** data currently stored (nData) and buffer capacity (nCapacity). +** +** dataBufferInit - create a buffer with given initial capacity. +** dataBufferReset - forget buffer's data, retaining capacity. +** dataBufferDestroy - free buffer's data. +** dataBufferSwap - swap contents of two buffers. +** dataBufferExpand - expand capacity without adding data. +** dataBufferAppend - append data. +** dataBufferAppend2 - append two pieces of data at once. +** dataBufferReplace - replace buffer's data. +*/ +typedef struct DataBuffer { + char *pData; /* Pointer to malloc'ed buffer. */ + int nCapacity; /* Size of pData buffer. */ + int nData; /* End of data loaded into pData. */ +} DataBuffer; + +static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ + assert( nCapacity>=0 ); + pBuffer->nData = 0; + pBuffer->nCapacity = nCapacity; + pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); +} +static void dataBufferReset(DataBuffer *pBuffer){ + pBuffer->nData = 0; +} +static void dataBufferDestroy(DataBuffer *pBuffer){ + if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); + SCRAMBLE(pBuffer); +} +static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ + DataBuffer tmp = *pBuffer1; + *pBuffer1 = *pBuffer2; + *pBuffer2 = tmp; +} +static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ + assert( nAddCapacity>0 ); + /* TODO(shess) Consider expanding more aggressively. Note that the + ** underlying malloc implementation may take care of such things for + ** us already. + */ + if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ + pBuffer->nCapacity = pBuffer->nData+nAddCapacity; + pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); + } +} +static void dataBufferAppend(DataBuffer *pBuffer, + const char *pSource, int nSource){ + assert( nSource>0 && pSource!=NULL ); + dataBufferExpand(pBuffer, nSource); + memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); + pBuffer->nData += nSource; +} +static void dataBufferAppend2(DataBuffer *pBuffer, + const char *pSource1, int nSource1, + const char *pSource2, int nSource2){ + assert( nSource1>0 && pSource1!=NULL ); + assert( nSource2>0 && pSource2!=NULL ); + dataBufferExpand(pBuffer, nSource1+nSource2); + memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); + memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); + pBuffer->nData += nSource1+nSource2; +} +static void dataBufferReplace(DataBuffer *pBuffer, + const char *pSource, int nSource){ + dataBufferReset(pBuffer); + dataBufferAppend(pBuffer, pSource, nSource); +} + +/* StringBuffer is a null-terminated version of DataBuffer. */ +typedef struct StringBuffer { + DataBuffer b; /* Includes null terminator. */ +} StringBuffer; + +static void initStringBuffer(StringBuffer *sb){ + dataBufferInit(&sb->b, 100); + dataBufferReplace(&sb->b, "", 1); +} +static int stringBufferLength(StringBuffer *sb){ + return sb->b.nData-1; +} +static char *stringBufferData(StringBuffer *sb){ + return sb->b.pData; +} +static void stringBufferDestroy(StringBuffer *sb){ + dataBufferDestroy(&sb->b); +} + +static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ + assert( sb->b.nData>0 ); + if( nFrom>0 ){ + sb->b.nData--; + dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); + } +} +static void append(StringBuffer *sb, const char *zFrom){ + nappend(sb, zFrom, strlen(zFrom)); +} + +/* Append a list of strings separated by commas. */ +static void appendList(StringBuffer *sb, int nString, char **azString){ + int i; + for(i=0; i<nString; ++i){ + if( i>0 ) append(sb, ", "); + append(sb, azString[i]); + } +} + +static int endsInWhiteSpace(StringBuffer *p){ + return stringBufferLength(p)>0 && + safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); +} + +/* If the StringBuffer ends in something other than white space, add a +** single space character to the end. +*/ +static void appendWhiteSpace(StringBuffer *p){ + if( stringBufferLength(p)==0 ) return; + if( !endsInWhiteSpace(p) ) append(p, " "); +} + +/* Remove white space from the end of the StringBuffer */ +static void trimWhiteSpace(StringBuffer *p){ + while( endsInWhiteSpace(p) ){ + p->b.pData[--p->b.nData-1] = '\0'; + } +} + +/*******************************************************************/ +/* DLReader is used to read document elements from a doclist. The +** current docid is cached, so dlrDocid() is fast. DLReader does not +** own the doclist buffer. +** +** dlrAtEnd - true if there's no more data to read. +** dlrDocid - docid of current document. +** dlrDocData - doclist data for current document (including docid). +** dlrDocDataBytes - length of same. +** dlrAllDataBytes - length of all remaining data. +** dlrPosData - position data for current document. +** dlrPosDataLen - length of pos data for current document (incl POS_END). +** dlrStep - step to current document. +** dlrInit - initial for doclist of given type against given data. +** dlrDestroy - clean up. +** +** Expected usage is something like: +** +** DLReader reader; +** dlrInit(&reader, pData, nData); +** while( !dlrAtEnd(&reader) ){ +** // calls to dlrDocid() and kin. +** dlrStep(&reader); +** } +** dlrDestroy(&reader); +*/ +typedef struct DLReader { + DocListType iType; + const char *pData; + int nData; + + sqlite_int64 iDocid; + int nElement; +} DLReader; + +static int dlrAtEnd(DLReader *pReader){ + assert( pReader->nData>=0 ); + return pReader->nData==0; +} +static sqlite_int64 dlrDocid(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->iDocid; +} +static const char *dlrDocData(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->pData; +} +static int dlrDocDataBytes(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->nElement; +} +static int dlrAllDataBytes(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + return pReader->nData; +} +/* TODO(shess) Consider adding a field to track iDocid varint length +** to make these two functions faster. This might matter (a tiny bit) +** for queries. +*/ +static const char *dlrPosData(DLReader *pReader){ + sqlite_int64 iDummy; + int n = fts3GetVarint(pReader->pData, &iDummy); + assert( !dlrAtEnd(pReader) ); + return pReader->pData+n; +} +static int dlrPosDataLen(DLReader *pReader){ + sqlite_int64 iDummy; + int n = fts3GetVarint(pReader->pData, &iDummy); + assert( !dlrAtEnd(pReader) ); + return pReader->nElement-n; +} +static void dlrStep(DLReader *pReader){ + assert( !dlrAtEnd(pReader) ); + + /* Skip past current doclist element. */ + assert( pReader->nElement<=pReader->nData ); + pReader->pData += pReader->nElement; + pReader->nData -= pReader->nElement; + + /* If there is more data, read the next doclist element. */ + if( pReader->nData!=0 ){ + sqlite_int64 iDocidDelta; + int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta); + pReader->iDocid += iDocidDelta; + if( pReader->iType>=DL_POSITIONS ){ + assert( n<pReader->nData ); + while( 1 ){ + n += fts3GetVarint32(pReader->pData+n, &iDummy); + assert( n<=pReader->nData ); + if( iDummy==POS_END ) break; + if( iDummy==POS_COLUMN ){ + n += fts3GetVarint32(pReader->pData+n, &iDummy); + assert( n<pReader->nData ); + }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ + n += fts3GetVarint32(pReader->pData+n, &iDummy); + n += fts3GetVarint32(pReader->pData+n, &iDummy); + assert( n<pReader->nData ); + } + } + } + pReader->nElement = n; + assert( pReader->nElement<=pReader->nData ); + } +} +static void dlrInit(DLReader *pReader, DocListType iType, + const char *pData, int nData){ + assert( pData!=NULL && nData!=0 ); + pReader->iType = iType; + pReader->pData = pData; + pReader->nData = nData; + pReader->nElement = 0; + pReader->iDocid = 0; + + /* Load the first element's data. There must be a first element. */ + dlrStep(pReader); +} +static void dlrDestroy(DLReader *pReader){ + SCRAMBLE(pReader); +} + +#ifndef NDEBUG +/* Verify that the doclist can be validly decoded. Also returns the +** last docid found because it is convenient in other assertions for +** DLWriter. +*/ +static void docListValidate(DocListType iType, const char *pData, int nData, + sqlite_int64 *pLastDocid){ + sqlite_int64 iPrevDocid = 0; + assert( nData>0 ); + assert( pData!=0 ); + assert( pData+nData>pData ); + while( nData!=0 ){ + sqlite_int64 iDocidDelta; + int n = fts3GetVarint(pData, &iDocidDelta); + iPrevDocid += iDocidDelta; + if( iType>DL_DOCIDS ){ + int iDummy; + while( 1 ){ + n += fts3GetVarint32(pData+n, &iDummy); + if( iDummy==POS_END ) break; + if( iDummy==POS_COLUMN ){ + n += fts3GetVarint32(pData+n, &iDummy); + }else if( iType>DL_POSITIONS ){ + n += fts3GetVarint32(pData+n, &iDummy); + n += fts3GetVarint32(pData+n, &iDummy); + } + assert( n<=nData ); + } + } + assert( n<=nData ); + pData += n; + nData -= n; + } + if( pLastDocid ) *pLastDocid = iPrevDocid; +} +#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) +#else +#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) +#endif + +/*******************************************************************/ +/* DLWriter is used to write doclist data to a DataBuffer. DLWriter +** always appends to the buffer and does not own it. +** +** dlwInit - initialize to write a given type doclistto a buffer. +** dlwDestroy - clear the writer's memory. Does not free buffer. +** dlwAppend - append raw doclist data to buffer. +** dlwCopy - copy next doclist from reader to writer. +** dlwAdd - construct doclist element and append to buffer. +** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). +*/ +typedef struct DLWriter { + DocListType iType; + DataBuffer *b; + sqlite_int64 iPrevDocid; +#ifndef NDEBUG + int has_iPrevDocid; +#endif +} DLWriter; + +static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ + pWriter->b = b; + pWriter->iType = iType; + pWriter->iPrevDocid = 0; +#ifndef NDEBUG + pWriter->has_iPrevDocid = 0; +#endif +} +static void dlwDestroy(DLWriter *pWriter){ + SCRAMBLE(pWriter); +} +/* iFirstDocid is the first docid in the doclist in pData. It is +** needed because pData may point within a larger doclist, in which +** case the first item would be delta-encoded. +** +** iLastDocid is the final docid in the doclist in pData. It is +** needed to create the new iPrevDocid for future delta-encoding. The +** code could decode the passed doclist to recreate iLastDocid, but +** the only current user (docListMerge) already has decoded this +** information. +*/ +/* TODO(shess) This has become just a helper for docListMerge. +** Consider a refactor to make this cleaner. +*/ +static void dlwAppend(DLWriter *pWriter, + const char *pData, int nData, + sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ + sqlite_int64 iDocid = 0; + char c[VARINT_MAX]; + int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */ +#ifndef NDEBUG + sqlite_int64 iLastDocidDelta; +#endif + + /* Recode the initial docid as delta from iPrevDocid. */ + nFirstOld = fts3GetVarint(pData, &iDocid); + assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) ); + nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid); + + /* Verify that the incoming doclist is valid AND that it ends with + ** the expected docid. This is essential because we'll trust this + ** docid in future delta-encoding. + */ + ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); + assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); + + /* Append recoded initial docid and everything else. Rest of docids + ** should have been delta-encoded from previous initial docid. + */ + if( nFirstOld<nData ){ + dataBufferAppend2(pWriter->b, c, nFirstNew, + pData+nFirstOld, nData-nFirstOld); + }else{ + dataBufferAppend(pWriter->b, c, nFirstNew); + } + pWriter->iPrevDocid = iLastDocid; +} +static void dlwCopy(DLWriter *pWriter, DLReader *pReader){ + dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), + dlrDocid(pReader), dlrDocid(pReader)); +} +static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ + char c[VARINT_MAX]; + int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid); + + /* Docids must ascend. */ + assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); + assert( pWriter->iType==DL_DOCIDS ); + + dataBufferAppend(pWriter->b, c, n); + pWriter->iPrevDocid = iDocid; +#ifndef NDEBUG + pWriter->has_iPrevDocid = 1; +#endif +} + +/*******************************************************************/ +/* PLReader is used to read data from a document's position list. As +** the caller steps through the list, data is cached so that varints +** only need to be decoded once. +** +** plrInit, plrDestroy - create/destroy a reader. +** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors +** plrAtEnd - at end of stream, only call plrDestroy once true. +** plrStep - step to the next element. +*/ +typedef struct PLReader { + /* These refer to the next position's data. nData will reach 0 when + ** reading the last position, so plrStep() signals EOF by setting + ** pData to NULL. + */ + const char *pData; + int nData; + + DocListType iType; + int iColumn; /* the last column read */ + int iPosition; /* the last position read */ + int iStartOffset; /* the last start offset read */ + int iEndOffset; /* the last end offset read */ +} PLReader; + +static int plrAtEnd(PLReader *pReader){ + return pReader->pData==NULL; +} +static int plrColumn(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iColumn; +} +static int plrPosition(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iPosition; +} +static int plrStartOffset(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iStartOffset; +} +static int plrEndOffset(PLReader *pReader){ + assert( !plrAtEnd(pReader) ); + return pReader->iEndOffset; +} +static void plrStep(PLReader *pReader){ + int i, n; + + assert( !plrAtEnd(pReader) ); + + if( pReader->nData==0 ){ + pReader->pData = NULL; + return; + } + + n = fts3GetVarint32(pReader->pData, &i); + if( i==POS_COLUMN ){ + n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn); + pReader->iPosition = 0; + pReader->iStartOffset = 0; + n += fts3GetVarint32(pReader->pData+n, &i); + } + /* Should never see adjacent column changes. */ + assert( i!=POS_COLUMN ); + + if( i==POS_END ){ + pReader->nData = 0; + pReader->pData = NULL; + return; + } + + pReader->iPosition += i-POS_BASE; + if( pReader->iType==DL_POSITIONS_OFFSETS ){ + n += fts3GetVarint32(pReader->pData+n, &i); + pReader->iStartOffset += i; + n += fts3GetVarint32(pReader->pData+n, &i); + pReader->iEndOffset = pReader->iStartOffset+i; + } + assert( n<=pReader->nData ); + pReader->pData += n; + pReader->nData -= n; +} + +static void plrInit(PLReader *pReader, DLReader *pDLReader){ + pReader->pData = dlrPosData(pDLReader); + pReader->nData = dlrPosDataLen(pDLReader); + pReader->iType = pDLReader->iType; + pReader->iColumn = 0; + pReader->iPosition = 0; + pReader->iStartOffset = 0; + pReader->iEndOffset = 0; + plrStep(pReader); +} +static void plrDestroy(PLReader *pReader){ + SCRAMBLE(pReader); +} + +/*******************************************************************/ +/* PLWriter is used in constructing a document's position list. As a +** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. +** PLWriter writes to the associated DLWriter's buffer. +** +** plwInit - init for writing a document's poslist. +** plwDestroy - clear a writer. +** plwAdd - append position and offset information. +** plwCopy - copy next position's data from reader to writer. +** plwTerminate - add any necessary doclist terminator. +** +** Calling plwAdd() after plwTerminate() may result in a corrupt +** doclist. +*/ +/* TODO(shess) Until we've written the second item, we can cache the +** first item's information. Then we'd have three states: +** +** - initialized with docid, no positions. +** - docid and one position. +** - docid and multiple positions. +** +** Only the last state needs to actually write to dlw->b, which would +** be an improvement in the DLCollector case. +*/ +typedef struct PLWriter { + DLWriter *dlw; + + int iColumn; /* the last column written */ + int iPos; /* the last position written */ + int iOffset; /* the last start offset written */ +} PLWriter; + +/* TODO(shess) In the case where the parent is reading these values +** from a PLReader, we could optimize to a copy if that PLReader has +** the same type as pWriter. +*/ +static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, + int iStartOffset, int iEndOffset){ + /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, + ** iStartOffsetDelta, and iEndOffsetDelta. + */ + char c[5*VARINT_MAX]; + int n = 0; + + /* Ban plwAdd() after plwTerminate(). */ + assert( pWriter->iPos!=-1 ); + + if( pWriter->dlw->iType==DL_DOCIDS ) return; + + if( iColumn!=pWriter->iColumn ){ + n += fts3PutVarint(c+n, POS_COLUMN); + n += fts3PutVarint(c+n, iColumn); + pWriter->iColumn = iColumn; + pWriter->iPos = 0; + pWriter->iOffset = 0; + } + assert( iPos>=pWriter->iPos ); + n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); + pWriter->iPos = iPos; + if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ + assert( iStartOffset>=pWriter->iOffset ); + n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset); + pWriter->iOffset = iStartOffset; + assert( iEndOffset>=iStartOffset ); + n += fts3PutVarint(c+n, iEndOffset-iStartOffset); + } + dataBufferAppend(pWriter->dlw->b, c, n); +} +static void plwCopy(PLWriter *pWriter, PLReader *pReader){ + plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), + plrStartOffset(pReader), plrEndOffset(pReader)); +} +static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ + char c[VARINT_MAX]; + int n; + + pWriter->dlw = dlw; + + /* Docids must ascend. */ + assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); + n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid); + dataBufferAppend(pWriter->dlw->b, c, n); + pWriter->dlw->iPrevDocid = iDocid; +#ifndef NDEBUG + pWriter->dlw->has_iPrevDocid = 1; +#endif + + pWriter->iColumn = 0; + pWriter->iPos = 0; + pWriter->iOffset = 0; +} +/* TODO(shess) Should plwDestroy() also terminate the doclist? But +** then plwDestroy() would no longer be just a destructor, it would +** also be doing work, which isn't consistent with the overall idiom. +** Another option would be for plwAdd() to always append any necessary +** terminator, so that the output is always correct. But that would +** add incremental work to the common case with the only benefit being +** API elegance. Punt for now. +*/ +static void plwTerminate(PLWriter *pWriter){ + if( pWriter->dlw->iType>DL_DOCIDS ){ + char c[VARINT_MAX]; + int n = fts3PutVarint(c, POS_END); + dataBufferAppend(pWriter->dlw->b, c, n); + } +#ifndef NDEBUG + /* Mark as terminated for assert in plwAdd(). */ + pWriter->iPos = -1; +#endif +} +static void plwDestroy(PLWriter *pWriter){ + SCRAMBLE(pWriter); +} + +/*******************************************************************/ +/* DLCollector wraps PLWriter and DLWriter to provide a +** dynamically-allocated doclist area to use during tokenization. +** +** dlcNew - malloc up and initialize a collector. +** dlcDelete - destroy a collector and all contained items. +** dlcAddPos - append position and offset information. +** dlcAddDoclist - add the collected doclist to the given buffer. +** dlcNext - terminate the current document and open another. +*/ +typedef struct DLCollector { + DataBuffer b; + DLWriter dlw; + PLWriter plw; +} DLCollector; + +/* TODO(shess) This could also be done by calling plwTerminate() and +** dataBufferAppend(). I tried that, expecting nominal performance +** differences, but it seemed to pretty reliably be worth 1% to code +** it this way. I suspect it is the incremental malloc overhead (some +** percentage of the plwTerminate() calls will cause a realloc), so +** this might be worth revisiting if the DataBuffer implementation +** changes. +*/ +static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ + if( pCollector->dlw.iType>DL_DOCIDS ){ + char c[VARINT_MAX]; + int n = fts3PutVarint(c, POS_END); + dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); + }else{ + dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); + } +} +static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ + plwTerminate(&pCollector->plw); + plwDestroy(&pCollector->plw); + plwInit(&pCollector->plw, &pCollector->dlw, iDocid); +} +static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, + int iStartOffset, int iEndOffset){ + plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); +} + +static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ + DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); + dataBufferInit(&pCollector->b, 0); + dlwInit(&pCollector->dlw, iType, &pCollector->b); + plwInit(&pCollector->plw, &pCollector->dlw, iDocid); + return pCollector; +} +static void dlcDelete(DLCollector *pCollector){ + plwDestroy(&pCollector->plw); + dlwDestroy(&pCollector->dlw); + dataBufferDestroy(&pCollector->b); + SCRAMBLE(pCollector); + sqlite3_free(pCollector); +} + + +/* Copy the doclist data of iType in pData/nData into *out, trimming +** unnecessary data as we go. Only columns matching iColumn are +** copied, all columns copied if iColumn is -1. Elements with no +** matching columns are dropped. The output is an iOutType doclist. +*/ +/* NOTE(shess) This code is only valid after all doclists are merged. +** If this is run before merges, then doclist items which represent +** deletion will be trimmed, and will thus not effect a deletion +** during the merge. +*/ +static void docListTrim(DocListType iType, const char *pData, int nData, + int iColumn, DocListType iOutType, DataBuffer *out){ + DLReader dlReader; + DLWriter dlWriter; + + assert( iOutType<=iType ); + + dlrInit(&dlReader, iType, pData, nData); + dlwInit(&dlWriter, iOutType, out); + + while( !dlrAtEnd(&dlReader) ){ + PLReader plReader; + PLWriter plWriter; + int match = 0; + + plrInit(&plReader, &dlReader); + + while( !plrAtEnd(&plReader) ){ + if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ + if( !match ){ + plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); + match = 1; + } + plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), + plrStartOffset(&plReader), plrEndOffset(&plReader)); + } + plrStep(&plReader); + } + if( match ){ + plwTerminate(&plWriter); + plwDestroy(&plWriter); + } + + plrDestroy(&plReader); + dlrStep(&dlReader); + } + dlwDestroy(&dlWriter); + dlrDestroy(&dlReader); +} + +/* Used by docListMerge() to keep doclists in the ascending order by +** docid, then ascending order by age (so the newest comes first). +*/ +typedef struct OrderedDLReader { + DLReader *pReader; + + /* TODO(shess) If we assume that docListMerge pReaders is ordered by + ** age (which we do), then we could use pReader comparisons to break + ** ties. + */ + int idx; +} OrderedDLReader; + +/* Order eof to end, then by docid asc, idx desc. */ +static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ + if( dlrAtEnd(r1->pReader) ){ + if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */ + return 1; /* Only r1 atEnd(). */ + } + if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */ + + if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1; + if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; + + /* Descending on idx. */ + return r2->idx-r1->idx; +} + +/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that +** p[1..n-1] is already sorted. +*/ +/* TODO(shess) Is this frequent enough to warrant a binary search? +** Before implementing that, instrument the code to check. In most +** current usage, I expect that p[0] will be less than p[1] a very +** high proportion of the time. +*/ +static void orderedDLReaderReorder(OrderedDLReader *p, int n){ + while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ + OrderedDLReader tmp = p[0]; + p[0] = p[1]; + p[1] = tmp; + n--; + p++; + } +} + +/* Given an array of doclist readers, merge their doclist elements +** into out in sorted order (by docid), dropping elements from older +** readers when there is a duplicate docid. pReaders is assumed to be +** ordered by age, oldest first. +*/ +/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably +** be fixed. +*/ +static void docListMerge(DataBuffer *out, + DLReader *pReaders, int nReaders){ + OrderedDLReader readers[MERGE_COUNT]; + DLWriter writer; + int i, n; + const char *pStart = 0; + int nStart = 0; + sqlite_int64 iFirstDocid = 0, iLastDocid = 0; + + assert( nReaders>0 ); + if( nReaders==1 ){ + dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); + return; + } + + assert( nReaders<=MERGE_COUNT ); + n = 0; + for(i=0; i<nReaders; i++){ + assert( pReaders[i].iType==pReaders[0].iType ); + readers[i].pReader = pReaders+i; + readers[i].idx = i; + n += dlrAllDataBytes(&pReaders[i]); + } + /* Conservatively size output to sum of inputs. Output should end + ** up strictly smaller than input. + */ + dataBufferExpand(out, n); + + /* Get the readers into sorted order. */ + while( i-->0 ){ + orderedDLReaderReorder(readers+i, nReaders-i); + } + + dlwInit(&writer, pReaders[0].iType, out); + while( !dlrAtEnd(readers[0].pReader) ){ + sqlite_int64 iDocid = dlrDocid(readers[0].pReader); + + /* If this is a continuation of the current buffer to copy, extend + ** that buffer. memcpy() seems to be more efficient if it has a + ** lots of data to copy. + */ + if( dlrDocData(readers[0].pReader)==pStart+nStart ){ + nStart += dlrDocDataBytes(readers[0].pReader); + }else{ + if( pStart!=0 ){ + dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); + } + pStart = dlrDocData(readers[0].pReader); + nStart = dlrDocDataBytes(readers[0].pReader); + iFirstDocid = iDocid; + } + iLastDocid = iDocid; + dlrStep(readers[0].pReader); + + /* Drop all of the older elements with the same docid. */ + for(i=1; i<nReaders && + !dlrAtEnd(readers[i].pReader) && + dlrDocid(readers[i].pReader)==iDocid; i++){ + dlrStep(readers[i].pReader); + } + + /* Get the readers back into order. */ + while( i-->0 ){ + orderedDLReaderReorder(readers+i, nReaders-i); + } + } + + /* Copy over any remaining elements. */ + if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); + dlwDestroy(&writer); +} + +/* Helper function for posListUnion(). Compares the current position +** between left and right, returning as standard C idiom of <0 if +** left<right, >0 if left>right, and 0 if left==right. "End" always +** compares greater. +*/ +static int posListCmp(PLReader *pLeft, PLReader *pRight){ + assert( pLeft->iType==pRight->iType ); + if( pLeft->iType==DL_DOCIDS ) return 0; + + if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; + if( plrAtEnd(pRight) ) return -1; + + if( plrColumn(pLeft)<plrColumn(pRight) ) return -1; + if( plrColumn(pLeft)>plrColumn(pRight) ) return 1; + + if( plrPosition(pLeft)<plrPosition(pRight) ) return -1; + if( plrPosition(pLeft)>plrPosition(pRight) ) return 1; + if( pLeft->iType==DL_POSITIONS ) return 0; + + if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1; + if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1; + + if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1; + if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1; + + return 0; +} + +/* Write the union of position lists in pLeft and pRight to pOut. +** "Union" in this case meaning "All unique position tuples". Should +** work with any doclist type, though both inputs and the output +** should be the same type. +*/ +static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ + PLReader left, right; + PLWriter writer; + + assert( dlrDocid(pLeft)==dlrDocid(pRight) ); + assert( pLeft->iType==pRight->iType ); + assert( pLeft->iType==pOut->iType ); + + plrInit(&left, pLeft); + plrInit(&right, pRight); + plwInit(&writer, pOut, dlrDocid(pLeft)); + + while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ + int c = posListCmp(&left, &right); + if( c<0 ){ + plwCopy(&writer, &left); + plrStep(&left); + }else if( c>0 ){ + plwCopy(&writer, &right); + plrStep(&right); + }else{ + plwCopy(&writer, &left); + plrStep(&left); + plrStep(&right); + } + } + + plwTerminate(&writer); + plwDestroy(&writer); + plrDestroy(&left); + plrDestroy(&right); +} + +/* Write the union of doclists in pLeft and pRight to pOut. For +** docids in common between the inputs, the union of the position +** lists is written. Inputs and outputs are always type DL_DEFAULT. +*/ +static void docListUnion( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 ){ + if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); + return; + } + if( nRight==0 ){ + dataBufferAppend(pOut, pLeft, nLeft); + return; + } + + dlrInit(&left, DL_DEFAULT, pLeft, nLeft); + dlrInit(&right, DL_DEFAULT, pRight, nRight); + dlwInit(&writer, DL_DEFAULT, pOut); + + while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ + if( dlrAtEnd(&right) ){ + dlwCopy(&writer, &left); + dlrStep(&left); + }else if( dlrAtEnd(&left) ){ + dlwCopy(&writer, &right); + dlrStep(&right); + }else if( dlrDocid(&left)<dlrDocid(&right) ){ + dlwCopy(&writer, &left); + dlrStep(&left); + }else if( dlrDocid(&left)>dlrDocid(&right) ){ + dlwCopy(&writer, &right); + dlrStep(&right); + }else{ + posListUnion(&left, &right, &writer); + dlrStep(&left); + dlrStep(&right); + } + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +/* +** This function is used as part of the implementation of phrase and +** NEAR matching. +** +** pLeft and pRight are DLReaders positioned to the same docid in +** lists of type DL_POSITION. This function writes an entry to the +** DLWriter pOut for each position in pRight that is less than +** (nNear+1) greater (but not equal to or smaller) than a position +** in pLeft. For example, if nNear is 0, and the positions contained +** by pLeft and pRight are: +** +** pLeft: 5 10 15 20 +** pRight: 6 9 17 21 +** +** then the docid is added to pOut. If pOut is of type DL_POSITIONS, +** then a positionids "6" and "21" are also added to pOut. +** +** If boolean argument isSaveLeft is true, then positionids are copied +** from pLeft instead of pRight. In the example above, the positions "5" +** and "20" would be added instead of "6" and "21". +*/ +static void posListPhraseMerge( + DLReader *pLeft, + DLReader *pRight, + int nNear, + int isSaveLeft, + DLWriter *pOut +){ + PLReader left, right; + PLWriter writer; + int match = 0; + + assert( dlrDocid(pLeft)==dlrDocid(pRight) ); + assert( pOut->iType!=DL_POSITIONS_OFFSETS ); + + plrInit(&left, pLeft); + plrInit(&right, pRight); + + while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ + if( plrColumn(&left)<plrColumn(&right) ){ + plrStep(&left); + }else if( plrColumn(&left)>plrColumn(&right) ){ + plrStep(&right); + }else if( plrPosition(&left)>=plrPosition(&right) ){ + plrStep(&right); + }else{ + if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){ + if( !match ){ + plwInit(&writer, pOut, dlrDocid(pLeft)); + match = 1; + } + if( !isSaveLeft ){ + plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); + }else{ + plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0); + } + plrStep(&right); + }else{ + plrStep(&left); + } + } + } + + if( match ){ + plwTerminate(&writer); + plwDestroy(&writer); + } + + plrDestroy(&left); + plrDestroy(&right); +} + +/* +** Compare the values pointed to by the PLReaders passed as arguments. +** Return -1 if the value pointed to by pLeft is considered less than +** the value pointed to by pRight, +1 if it is considered greater +** than it, or 0 if it is equal. i.e. +** +** (*pLeft - *pRight) +** +** A PLReader that is in the EOF condition is considered greater than +** any other. If neither argument is in EOF state, the return value of +** plrColumn() is used. If the plrColumn() values are equal, the +** comparison is on the basis of plrPosition(). +*/ +static int plrCompare(PLReader *pLeft, PLReader *pRight){ + assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight)); + + if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){ + return (plrAtEnd(pRight) ? -1 : 1); + } + if( plrColumn(pLeft)!=plrColumn(pRight) ){ + return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1); + } + if( plrPosition(pLeft)!=plrPosition(pRight) ){ + return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1); + } + return 0; +} + +/* We have two doclists with positions: pLeft and pRight. Depending +** on the value of the nNear parameter, perform either a phrase +** intersection (if nNear==0) or a NEAR intersection (if nNear>0) +** and write the results into pOut. +** +** A phrase intersection means that two documents only match +** if pLeft.iPos+1==pRight.iPos. +** +** A NEAR intersection means that two documents only match if +** (abs(pLeft.iPos-pRight.iPos)<nNear). +** +** If a NEAR intersection is requested, then the nPhrase argument should +** be passed the number of tokens in the two operands to the NEAR operator +** combined. For example: +** +** Query syntax nPhrase +** ------------------------------------ +** "A B C" NEAR "D E" 5 +** A NEAR B 2 +** +** iType controls the type of data written to pOut. If iType is +** DL_POSITIONS, the positions are those from pRight. +*/ +static void docListPhraseMerge( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + int nNear, /* 0 for a phrase merge, non-zero for a NEAR merge */ + int nPhrase, /* Number of tokens in left+right operands to NEAR */ + DocListType iType, /* Type of doclist to write to pOut */ + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 || nRight==0 ) return; + + assert( iType!=DL_POSITIONS_OFFSETS ); + + dlrInit(&left, DL_POSITIONS, pLeft, nLeft); + dlrInit(&right, DL_POSITIONS, pRight, nRight); + dlwInit(&writer, iType, pOut); + + while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ + if( dlrDocid(&left)<dlrDocid(&right) ){ + dlrStep(&left); + }else if( dlrDocid(&right)<dlrDocid(&left) ){ + dlrStep(&right); + }else{ + if( nNear==0 ){ + posListPhraseMerge(&left, &right, 0, 0, &writer); + }else{ + /* This case occurs when two terms (simple terms or phrases) are + * connected by a NEAR operator, span (nNear+1). i.e. + * + * '"terrible company" NEAR widget' + */ + DataBuffer one = {0, 0, 0}; + DataBuffer two = {0, 0, 0}; + + DLWriter dlwriter2; + DLReader dr1 = {0, 0, 0, 0, 0}; + DLReader dr2 = {0, 0, 0, 0, 0}; + + dlwInit(&dlwriter2, iType, &one); + posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2); + dlwInit(&dlwriter2, iType, &two); + posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2); + + if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData); + if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData); + + if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){ + PLReader pr1 = {0}; + PLReader pr2 = {0}; + + PLWriter plwriter; + plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1)); + + if( one.nData ) plrInit(&pr1, &dr1); + if( two.nData ) plrInit(&pr2, &dr2); + while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){ + int iCompare = plrCompare(&pr1, &pr2); + switch( iCompare ){ + case -1: + plwCopy(&plwriter, &pr1); + plrStep(&pr1); + break; + case 1: + plwCopy(&plwriter, &pr2); + plrStep(&pr2); + break; + case 0: + plwCopy(&plwriter, &pr1); + plrStep(&pr1); + plrStep(&pr2); + break; + } + } + plwTerminate(&plwriter); + } + dataBufferDestroy(&one); + dataBufferDestroy(&two); + } + dlrStep(&left); + dlrStep(&right); + } + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +/* We have two DL_DOCIDS doclists: pLeft and pRight. +** Write the intersection of these two doclists into pOut as a +** DL_DOCIDS doclist. +*/ +static void docListAndMerge( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 || nRight==0 ) return; + + dlrInit(&left, DL_DOCIDS, pLeft, nLeft); + dlrInit(&right, DL_DOCIDS, pRight, nRight); + dlwInit(&writer, DL_DOCIDS, pOut); + + while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ + if( dlrDocid(&left)<dlrDocid(&right) ){ + dlrStep(&left); + }else if( dlrDocid(&right)<dlrDocid(&left) ){ + dlrStep(&right); + }else{ + dlwAdd(&writer, dlrDocid(&left)); + dlrStep(&left); + dlrStep(&right); + } + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +/* We have two DL_DOCIDS doclists: pLeft and pRight. +** Write the union of these two doclists into pOut as a +** DL_DOCIDS doclist. +*/ +static void docListOrMerge( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 ){ + if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight); + return; + } + if( nRight==0 ){ + dataBufferAppend(pOut, pLeft, nLeft); + return; + } + + dlrInit(&left, DL_DOCIDS, pLeft, nLeft); + dlrInit(&right, DL_DOCIDS, pRight, nRight); + dlwInit(&writer, DL_DOCIDS, pOut); + + while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ + if( dlrAtEnd(&right) ){ + dlwAdd(&writer, dlrDocid(&left)); + dlrStep(&left); + }else if( dlrAtEnd(&left) ){ + dlwAdd(&writer, dlrDocid(&right)); + dlrStep(&right); + }else if( dlrDocid(&left)<dlrDocid(&right) ){ + dlwAdd(&writer, dlrDocid(&left)); + dlrStep(&left); + }else if( dlrDocid(&right)<dlrDocid(&left) ){ + dlwAdd(&writer, dlrDocid(&right)); + dlrStep(&right); + }else{ + dlwAdd(&writer, dlrDocid(&left)); + dlrStep(&left); + dlrStep(&right); + } + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +/* We have two DL_DOCIDS doclists: pLeft and pRight. +** Write into pOut as DL_DOCIDS doclist containing all documents that +** occur in pLeft but not in pRight. +*/ +static void docListExceptMerge( + const char *pLeft, int nLeft, + const char *pRight, int nRight, + DataBuffer *pOut /* Write the combined doclist here */ +){ + DLReader left, right; + DLWriter writer; + + if( nLeft==0 ) return; + if( nRight==0 ){ + dataBufferAppend(pOut, pLeft, nLeft); + return; + } + + dlrInit(&left, DL_DOCIDS, pLeft, nLeft); + dlrInit(&right, DL_DOCIDS, pRight, nRight); + dlwInit(&writer, DL_DOCIDS, pOut); + + while( !dlrAtEnd(&left) ){ + while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){ + dlrStep(&right); + } + if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){ + dlwAdd(&writer, dlrDocid(&left)); + } + dlrStep(&left); + } + + dlrDestroy(&left); + dlrDestroy(&right); + dlwDestroy(&writer); +} + +static char *string_dup_n(const char *s, int n){ + char *str = sqlite3_malloc(n + 1); + memcpy(str, s, n); + str[n] = '\0'; + return str; +} + +/* Duplicate a string; the caller must free() the returned string. + * (We don't use strdup() since it is not part of the standard C library and + * may not be available everywhere.) */ +static char *string_dup(const char *s){ + return string_dup_n(s, strlen(s)); +} + +/* Format a string, replacing each occurrence of the % character with + * zDb.zName. This may be more convenient than sqlite_mprintf() + * when one string is used repeatedly in a format string. + * The caller must free() the returned string. */ +static char *string_format(const char *zFormat, + const char *zDb, const char *zName){ + const char *p; + size_t len = 0; + size_t nDb = strlen(zDb); + size_t nName = strlen(zName); + size_t nFullTableName = nDb+1+nName; + char *result; + char *r; + + /* first compute length needed */ + for(p = zFormat ; *p ; ++p){ + len += (*p=='%' ? nFullTableName : 1); + } + len += 1; /* for null terminator */ + + r = result = sqlite3_malloc(len); + for(p = zFormat; *p; ++p){ + if( *p=='%' ){ + memcpy(r, zDb, nDb); + r += nDb; + *r++ = '.'; + memcpy(r, zName, nName); + r += nName; + } else { + *r++ = *p; + } + } + *r++ = '\0'; + assert( r == result + len ); + return result; +} + +static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, + const char *zFormat){ + char *zCommand = string_format(zFormat, zDb, zName); + int rc; + FTSTRACE(("FTS3 sql: %s\n", zCommand)); + rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); + sqlite3_free(zCommand); + return rc; +} + +static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, + sqlite3_stmt **ppStmt, const char *zFormat){ + char *zCommand = string_format(zFormat, zDb, zName); + int rc; + FTSTRACE(("FTS3 prepare: %s\n", zCommand)); + rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL); + sqlite3_free(zCommand); + return rc; +} + +/* end utility functions */ + +/* Forward reference */ +typedef struct fulltext_vtab fulltext_vtab; + +/* A single term in a query is represented by an instances of +** the following structure. Each word which may match against +** document content is a term. Operators, like NEAR or OR, are +** not terms. Query terms are organized as a flat list stored +** in the Query.pTerms array. +** +** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm +** is the first in a contiguous string of terms that are either part +** of the same phrase, or connected by the NEAR operator. +** +** If the QueryTerm.nNear variable is non-zero, then the token is followed +** by a NEAR operator with span set to (nNear-1). For example, the +** following query: +** +** The QueryTerm.iPhrase variable stores the index of the token within +** its phrase, indexed starting at 1, or 1 if the token is not part +** of any phrase. +** +** For example, the data structure used to represent the following query: +** +** ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"' +** +** is: +** +** {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"}, +** {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"}, +** {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"}, +** {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"}, +** +** compiling the FTS3 syntax to Query structures is done by the parseQuery() +** function. +*/ +typedef struct QueryTerm { + short int nPhrase; /* How many following terms are part of the same phrase */ + short int iPhrase; /* This is the i-th term of a phrase. */ + short int iColumn; /* Column of the index that must match this term */ + signed char nNear; /* term followed by a NEAR operator with span=(nNear-1) */ + signed char isOr; /* this term is preceded by "OR" */ + signed char isNot; /* this term is preceded by "-" */ + signed char isPrefix; /* this term is followed by "*" */ + char *pTerm; /* text of the term. '\000' terminated. malloced */ + int nTerm; /* Number of bytes in pTerm[] */ +} QueryTerm; + + +/* A query string is parsed into a Query structure. + * + * We could, in theory, allow query strings to be complicated + * nested expressions with precedence determined by parentheses. + * But none of the major search engines do this. (Perhaps the + * feeling is that an parenthesized expression is two complex of + * an idea for the average user to grasp.) Taking our lead from + * the major search engines, we will allow queries to be a list + * of terms (with an implied AND operator) or phrases in double-quotes, + * with a single optional "-" before each non-phrase term to designate + * negation and an optional OR connector. + * + * OR binds more tightly than the implied AND, which is what the + * major search engines seem to do. So, for example: + * + * [one two OR three] ==> one AND (two OR three) + * [one OR two three] ==> (one OR two) AND three + * + * A "-" before a term matches all entries that lack that term. + * The "-" must occur immediately before the term with in intervening + * space. This is how the search engines do it. + * + * A NOT term cannot be the right-hand operand of an OR. If this + * occurs in the query string, the NOT is ignored: + * + * [one OR -two] ==> one OR two + * + */ +typedef struct Query { + fulltext_vtab *pFts; /* The full text index */ + int nTerms; /* Number of terms in the query */ + QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ + int nextIsOr; /* Set the isOr flag on the next inserted term */ + int nextIsNear; /* Set the isOr flag on the next inserted term */ + int nextColumn; /* Next word parsed must be in this column */ + int dfltColumn; /* The default column */ +} Query; + + +/* +** An instance of the following structure keeps track of generated +** matching-word offset information and snippets. +*/ +typedef struct Snippet { + int nMatch; /* Total number of matches */ + int nAlloc; /* Space allocated for aMatch[] */ + struct snippetMatch { /* One entry for each matching term */ + char snStatus; /* Status flag for use while constructing snippets */ + short int iCol; /* The column that contains the match */ + short int iTerm; /* The index in Query.pTerms[] of the matching term */ + int iToken; /* The index of the matching document token */ + short int nByte; /* Number of bytes in the term */ + int iStart; /* The offset to the first character of the term */ + } *aMatch; /* Points to space obtained from malloc */ + char *zOffset; /* Text rendering of aMatch[] */ + int nOffset; /* strlen(zOffset) */ + char *zSnippet; /* Snippet text */ + int nSnippet; /* strlen(zSnippet) */ +} Snippet; + + +typedef enum QueryType { + QUERY_GENERIC, /* table scan */ + QUERY_DOCID, /* lookup by docid */ + QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ +} QueryType; + +typedef enum fulltext_statement { + CONTENT_INSERT_STMT, + CONTENT_SELECT_STMT, + CONTENT_UPDATE_STMT, + CONTENT_DELETE_STMT, + + BLOCK_INSERT_STMT, + BLOCK_SELECT_STMT, + BLOCK_DELETE_STMT, + + SEGDIR_MAX_INDEX_STMT, + SEGDIR_SET_STMT, + SEGDIR_SELECT_STMT, + SEGDIR_SPAN_STMT, + SEGDIR_DELETE_STMT, + SEGDIR_SELECT_ALL_STMT, + + MAX_STMT /* Always at end! */ +} fulltext_statement; + +/* These must exactly match the enum above. */ +/* TODO(shess): Is there some risk that a statement will be used in two +** cursors at once, e.g. if a query joins a virtual table to itself? +** If so perhaps we should move some of these to the cursor object. +*/ +static const char *const fulltext_zStatement[MAX_STMT] = { + /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ + /* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */ + /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ + /* CONTENT_DELETE */ "delete from %_content where docid = ?", + + /* BLOCK_INSERT */ + "insert into %_segments (blockid, block) values (null, ?)", + /* BLOCK_SELECT */ "select block from %_segments where blockid = ?", + /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?", + + /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", + /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", + /* SEGDIR_SELECT */ + "select start_block, leaves_end_block, root from %_segdir " + " where level = ? order by idx", + /* SEGDIR_SPAN */ + "select min(start_block), max(end_block) from %_segdir " + " where level = ? and start_block <> 0", + /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", + /* SEGDIR_SELECT_ALL */ + "select root, leaves_end_block from %_segdir order by level desc, idx", +}; + +/* +** A connection to a fulltext index is an instance of the following +** structure. The xCreate and xConnect methods create an instance +** of this structure and xDestroy and xDisconnect free that instance. +** All other methods receive a pointer to the structure as one of their +** arguments. +*/ +struct fulltext_vtab { + sqlite3_vtab base; /* Base class used by SQLite core */ + sqlite3 *db; /* The database connection */ + const char *zDb; /* logical database name */ + const char *zName; /* virtual table name */ + int nColumn; /* number of columns in virtual table */ + char **azColumn; /* column names. malloced */ + char **azContentColumn; /* column names in content table; malloced */ + sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ + + /* Precompiled statements which we keep as long as the table is + ** open. + */ + sqlite3_stmt *pFulltextStatements[MAX_STMT]; + + /* Precompiled statements used for segment merges. We run a + ** separate select across the leaf level of each tree being merged. + */ + sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; + /* The statement used to prepare pLeafSelectStmts. */ +#define LEAF_SELECT \ + "select block from %_segments where blockid between ? and ? order by blockid" + + /* These buffer pending index updates during transactions. + ** nPendingData estimates the memory size of the pending data. It + ** doesn't include the hash-bucket overhead, nor any malloc + ** overhead. When nPendingData exceeds kPendingThreshold, the + ** buffer is flushed even before the transaction closes. + ** pendingTerms stores the data, and is only valid when nPendingData + ** is >=0 (nPendingData<0 means pendingTerms has not been + ** initialized). iPrevDocid is the last docid written, used to make + ** certain we're inserting in sorted order. + */ + int nPendingData; +#define kPendingThreshold (1*1024*1024) + sqlite_int64 iPrevDocid; + fts3Hash pendingTerms; +}; + +/* +** When the core wants to do a query, it create a cursor using a +** call to xOpen. This structure is an instance of a cursor. It +** is destroyed by xClose. +*/ +typedef struct fulltext_cursor { + sqlite3_vtab_cursor base; /* Base class used by SQLite core */ + QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ + sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ + int eof; /* True if at End Of Results */ + Query q; /* Parsed query string */ + Snippet snippet; /* Cached snippet for the current row */ + int iColumn; /* Column being searched */ + DataBuffer result; /* Doclist results from fulltextQuery */ + DLReader reader; /* Result reader if result not empty */ +} fulltext_cursor; + +static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ + return (fulltext_vtab *) c->base.pVtab; +} + +static const sqlite3_module fts3Module; /* forward declaration */ + +/* Return a dynamically generated statement of the form + * insert into %_content (docid, ...) values (?, ...) + */ +static const char *contentInsertStatement(fulltext_vtab *v){ + StringBuffer sb; + int i; + + initStringBuffer(&sb); + append(&sb, "insert into %_content (docid, "); + appendList(&sb, v->nColumn, v->azContentColumn); + append(&sb, ") values (?"); + for(i=0; i<v->nColumn; ++i) + append(&sb, ", ?"); + append(&sb, ")"); + return stringBufferData(&sb); +} + +/* Return a dynamically generated statement of the form + * select <content columns> from %_content where docid = ? + */ +static const char *contentSelectStatement(fulltext_vtab *v){ + StringBuffer sb; + initStringBuffer(&sb); + append(&sb, "SELECT "); + appendList(&sb, v->nColumn, v->azContentColumn); + append(&sb, " FROM %_content WHERE docid = ?"); + return stringBufferData(&sb); +} + +/* Return a dynamically generated statement of the form + * update %_content set [col_0] = ?, [col_1] = ?, ... + * where docid = ? + */ +static const char *contentUpdateStatement(fulltext_vtab *v){ + StringBuffer sb; + int i; + + initStringBuffer(&sb); + append(&sb, "update %_content set "); + for(i=0; i<v->nColumn; ++i) { + if( i>0 ){ + append(&sb, ", "); + } + append(&sb, v->azContentColumn[i]); + append(&sb, " = ?"); + } + append(&sb, " where docid = ?"); + return stringBufferData(&sb); +} + +/* Puts a freshly-prepared statement determined by iStmt in *ppStmt. +** If the indicated statement has never been prepared, it is prepared +** and cached, otherwise the cached version is reset. +*/ +static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, + sqlite3_stmt **ppStmt){ + assert( iStmt<MAX_STMT ); + if( v->pFulltextStatements[iStmt]==NULL ){ + const char *zStmt; + int rc; + switch( iStmt ){ + case CONTENT_INSERT_STMT: + zStmt = contentInsertStatement(v); break; + case CONTENT_SELECT_STMT: + zStmt = contentSelectStatement(v); break; + case CONTENT_UPDATE_STMT: + zStmt = contentUpdateStatement(v); break; + default: + zStmt = fulltext_zStatement[iStmt]; + } + rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], + zStmt); + if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); + if( rc!=SQLITE_OK ) return rc; + } else { + int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); + if( rc!=SQLITE_OK ) return rc; + } + + *ppStmt = v->pFulltextStatements[iStmt]; + return SQLITE_OK; +} + +/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and +** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE, +** where we expect no results. +*/ +static int sql_single_step(sqlite3_stmt *s){ + int rc = sqlite3_step(s); + return (rc==SQLITE_DONE) ? SQLITE_OK : rc; +} + +/* Like sql_get_statement(), but for special replicated LEAF_SELECT +** statements. +*/ +/* TODO(shess) Write version for generic statements and then share +** that between the cached-statement functions. +*/ +static int sql_get_leaf_statement(fulltext_vtab *v, int idx, + sqlite3_stmt **ppStmt){ + assert( idx>=0 && idx<MERGE_COUNT ); + if( v->pLeafSelectStmts[idx]==NULL ){ + int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], + LEAF_SELECT); + if( rc!=SQLITE_OK ) return rc; + }else{ + int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); + if( rc!=SQLITE_OK ) return rc; + } + + *ppStmt = v->pLeafSelectStmts[idx]; + return SQLITE_OK; +} + +/* insert into %_content (docid, ...) values ([docid], [pValues]) +** If the docid contains SQL NULL, then a unique docid will be +** generated. +*/ +static int content_insert(fulltext_vtab *v, sqlite3_value *docid, + sqlite3_value **pValues){ + sqlite3_stmt *s; + int i; + int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_value(s, 1, docid); + if( rc!=SQLITE_OK ) return rc; + + for(i=0; i<v->nColumn; ++i){ + rc = sqlite3_bind_value(s, 2+i, pValues[i]); + if( rc!=SQLITE_OK ) return rc; + } + + return sql_single_step(s); +} + +/* update %_content set col0 = pValues[0], col1 = pValues[1], ... + * where docid = [iDocid] */ +static int content_update(fulltext_vtab *v, sqlite3_value **pValues, + sqlite_int64 iDocid){ + sqlite3_stmt *s; + int i; + int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + for(i=0; i<v->nColumn; ++i){ + rc = sqlite3_bind_value(s, 1+i, pValues[i]); + if( rc!=SQLITE_OK ) return rc; + } + + rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +static void freeStringArray(int nString, const char **pString){ + int i; + + for (i=0 ; i < nString ; ++i) { + if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); + } + sqlite3_free((void *) pString); +} + +/* select * from %_content where docid = [iDocid] + * The caller must delete the returned array and all strings in it. + * null fields will be NULL in the returned array. + * + * TODO: Perhaps we should return pointer/length strings here for consistency + * with other code which uses pointer/length. */ +static int content_select(fulltext_vtab *v, sqlite_int64 iDocid, + const char ***pValues){ + sqlite3_stmt *s; + const char **values; + int i; + int rc; + + *pValues = NULL; + + rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iDocid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc!=SQLITE_ROW ) return rc; + + values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); + for(i=0; i<v->nColumn; ++i){ + if( sqlite3_column_type(s, i)==SQLITE_NULL ){ + values[i] = NULL; + }else{ + values[i] = string_dup((char*)sqlite3_column_text(s, i)); + } + } + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ){ + *pValues = values; + return SQLITE_OK; + } + + freeStringArray(v->nColumn, values); + return rc; +} + +/* delete from %_content where docid = [iDocid ] */ +static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iDocid); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* insert into %_segments values ([pData]) +** returns assigned blockid in *piBlockid +*/ +static int block_insert(fulltext_vtab *v, const char *pData, int nData, + sqlite_int64 *piBlockid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + + /* blockid column is an alias for rowid. */ + *piBlockid = sqlite3_last_insert_rowid(v->db); + return SQLITE_OK; +} + +/* delete from %_segments +** where blockid between [iStartBlockid] and [iEndBlockid] +** +** Deletes the range of blocks, inclusive, used to delete the blocks +** which form a segment. +*/ +static int block_delete(fulltext_vtab *v, + sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iStartBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 2, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found +** at iLevel. Returns SQLITE_DONE if there are no segments at +** iLevel. Otherwise returns an error. +*/ +static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + /* Should always get at least one row due to how max() works. */ + if( rc==SQLITE_DONE ) return SQLITE_DONE; + if( rc!=SQLITE_ROW ) return rc; + + /* NULL means that there were no inputs to max(). */ + if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + return rc; + } + + *pidx = sqlite3_column_int(s, 0); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + return SQLITE_ROW; +} + +/* insert into %_segdir values ( +** [iLevel], [idx], +** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], +** [pRootData] +** ) +*/ +static int segdir_set(fulltext_vtab *v, int iLevel, int idx, + sqlite_int64 iStartBlockid, + sqlite_int64 iLeavesEndBlockid, + sqlite_int64 iEndBlockid, + const char *pRootData, int nRootData){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 2, idx); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 3, iStartBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 5, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* Queries %_segdir for the block span of the segments in level +** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel, +** SQLITE_ROW if there are blocks, else an error. +*/ +static int segdir_span(fulltext_vtab *v, int iLevel, + sqlite_int64 *piStartBlockid, + sqlite_int64 *piEndBlockid){ + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */ + if( rc!=SQLITE_ROW ) return rc; + + /* This happens if all segments at this level are entirely inline. */ + if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + int rc2 = sqlite3_step(s); + if( rc2==SQLITE_ROW ) return SQLITE_ERROR; + return rc2; + } + + *piStartBlockid = sqlite3_column_int64(s, 0); + *piEndBlockid = sqlite3_column_int64(s, 1); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + return SQLITE_ROW; +} + +/* Delete the segment blocks and segment directory records for all +** segments at iLevel. +*/ +static int segdir_delete(fulltext_vtab *v, int iLevel){ + sqlite3_stmt *s; + sqlite_int64 iStartBlockid, iEndBlockid; + int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); + if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; + + if( rc==SQLITE_ROW ){ + rc = block_delete(v, iStartBlockid, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + } + + /* Delete the segment directory itself. */ + rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + return sql_single_step(s); +} + +/* TODO(shess) clearPendingTerms() is far down the file because +** writeZeroSegment() is far down the file because LeafWriter is far +** down the file. Consider refactoring the code to move the non-vtab +** code above the vtab code so that we don't need this forward +** reference. +*/ +static int clearPendingTerms(fulltext_vtab *v); + +/* +** Free the memory used to contain a fulltext_vtab structure. +*/ +static void fulltext_vtab_destroy(fulltext_vtab *v){ + int iStmt, i; + + FTSTRACE(("FTS3 Destroy %p\n", v)); + for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ + if( v->pFulltextStatements[iStmt]!=NULL ){ + sqlite3_finalize(v->pFulltextStatements[iStmt]); + v->pFulltextStatements[iStmt] = NULL; + } + } + + for( i=0; i<MERGE_COUNT; i++ ){ + if( v->pLeafSelectStmts[i]!=NULL ){ + sqlite3_finalize(v->pLeafSelectStmts[i]); + v->pLeafSelectStmts[i] = NULL; + } + } + + if( v->pTokenizer!=NULL ){ + v->pTokenizer->pModule->xDestroy(v->pTokenizer); + v->pTokenizer = NULL; + } + + clearPendingTerms(v); + + sqlite3_free(v->azColumn); + for(i = 0; i < v->nColumn; ++i) { + sqlite3_free(v->azContentColumn[i]); + } + sqlite3_free(v->azContentColumn); + sqlite3_free(v); +} + +/* +** Token types for parsing the arguments to xConnect or xCreate. +*/ +#define TOKEN_EOF 0 /* End of file */ +#define TOKEN_SPACE 1 /* Any kind of whitespace */ +#define TOKEN_ID 2 /* An identifier */ +#define TOKEN_STRING 3 /* A string literal */ +#define TOKEN_PUNCT 4 /* A single punctuation character */ + +/* +** If X is a character that can be used in an identifier then +** ftsIdChar(X) will be true. Otherwise it is false. +** +** For ASCII, any character with the high-order bit set is +** allowed in an identifier. For 7-bit characters, +** isFtsIdChar[X] must be 1. +** +** Ticket #1066. the SQL standard does not allow '$' in the +** middle of identfiers. But many SQL implementations do. +** SQLite will allow '$' in identifiers for compatibility. +** But the feature is undocumented. +*/ +static const char isFtsIdChar[] = { +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ + 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ +}; +#define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20])) + + +/* +** Return the length of the token that begins at z[0]. +** Store the token type in *tokenType before returning. +*/ +static int ftsGetToken(const char *z, int *tokenType){ + int i, c; + switch( *z ){ + case 0: { + *tokenType = TOKEN_EOF; + return 0; + } + case ' ': case '\t': case '\n': case '\f': case '\r': { + for(i=1; safe_isspace(z[i]); i++){} + *tokenType = TOKEN_SPACE; + return i; + } + case '`': + case '\'': + case '"': { + int delim = z[0]; + for(i=1; (c=z[i])!=0; i++){ + if( c==delim ){ + if( z[i+1]==delim ){ + i++; + }else{ + break; + } + } + } + *tokenType = TOKEN_STRING; + return i + (c!=0); + } + case '[': { + for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} + *tokenType = TOKEN_ID; + return i; + } + default: { + if( !ftsIdChar(*z) ){ + break; + } + for(i=1; ftsIdChar(z[i]); i++){} + *tokenType = TOKEN_ID; + return i; + } + } + *tokenType = TOKEN_PUNCT; + return 1; +} + +/* +** A token extracted from a string is an instance of the following +** structure. +*/ +typedef struct FtsToken { + const char *z; /* Pointer to token text. Not '\000' terminated */ + short int n; /* Length of the token text in bytes. */ +} FtsToken; + +/* +** Given a input string (which is really one of the argv[] parameters +** passed into xConnect or xCreate) split the string up into tokens. +** Return an array of pointers to '\000' terminated strings, one string +** for each non-whitespace token. +** +** The returned array is terminated by a single NULL pointer. +** +** Space to hold the returned array is obtained from a single +** malloc and should be freed by passing the return value to free(). +** The individual strings within the token list are all a part of +** the single memory allocation and will all be freed at once. +*/ +static char **tokenizeString(const char *z, int *pnToken){ + int nToken = 0; + FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); + int n = 1; + int e, i; + int totalSize = 0; + char **azToken; + char *zCopy; + while( n>0 ){ + n = ftsGetToken(z, &e); + if( e!=TOKEN_SPACE ){ + aToken[nToken].z = z; + aToken[nToken].n = n; + nToken++; + totalSize += n+1; + } + z += n; + } + azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); + zCopy = (char*)&azToken[nToken]; + nToken--; + for(i=0; i<nToken; i++){ + azToken[i] = zCopy; + n = aToken[i].n; + memcpy(zCopy, aToken[i].z, n); + zCopy[n] = 0; + zCopy += n+1; + } + azToken[nToken] = 0; + sqlite3_free(aToken); + *pnToken = nToken; + return azToken; +} + +/* +** Convert an SQL-style quoted string into a normal string by removing +** the quote characters. The conversion is done in-place. If the +** input does not begin with a quote character, then this routine +** is a no-op. +** +** Examples: +** +** "abc" becomes abc +** 'xyz' becomes xyz +** [pqr] becomes pqr +** `mno` becomes mno +*/ +static void dequoteString(char *z){ + int quote; + int i, j; + if( z==0 ) return; + quote = z[0]; + switch( quote ){ + case '\'': break; + case '"': break; + case '`': break; /* For MySQL compatibility */ + case '[': quote = ']'; break; /* For MS SqlServer compatibility */ + default: return; + } + for(i=1, j=0; z[i]; i++){ + if( z[i]==quote ){ + if( z[i+1]==quote ){ + z[j++] = quote; + i++; + }else{ + z[j++] = 0; + break; + } + }else{ + z[j++] = z[i]; + } + } +} + +/* +** The input azIn is a NULL-terminated list of tokens. Remove the first +** token and all punctuation tokens. Remove the quotes from +** around string literal tokens. +** +** Example: +** +** input: tokenize chinese ( 'simplifed' , 'mixed' ) +** output: chinese simplifed mixed +** +** Another example: +** +** input: delimiters ( '[' , ']' , '...' ) +** output: [ ] ... +*/ +static void tokenListToIdList(char **azIn){ + int i, j; + if( azIn ){ + for(i=0, j=-1; azIn[i]; i++){ + if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ + dequoteString(azIn[i]); + if( j>=0 ){ + azIn[j] = azIn[i]; + } + j++; + } + } + azIn[j] = 0; + } +} + + +/* +** Find the first alphanumeric token in the string zIn. Null-terminate +** this token. Remove any quotation marks. And return a pointer to +** the result. +*/ +static char *firstToken(char *zIn, char **pzTail){ + int n, ttype; + while(1){ + n = ftsGetToken(zIn, &ttype); + if( ttype==TOKEN_SPACE ){ + zIn += n; + }else if( ttype==TOKEN_EOF ){ + *pzTail = zIn; + return 0; + }else{ + zIn[n] = 0; + *pzTail = &zIn[1]; + dequoteString(zIn); + return zIn; + } + } + /*NOTREACHED*/ +} + +/* Return true if... +** +** * s begins with the string t, ignoring case +** * s is longer than t +** * The first character of s beyond t is not a alphanumeric +** +** Ignore leading space in *s. +** +** To put it another way, return true if the first token of +** s[] is t[]. +*/ +static int startsWith(const char *s, const char *t){ + while( safe_isspace(*s) ){ s++; } + while( *t ){ + if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; + } + return *s!='_' && !safe_isalnum(*s); +} + +/* +** An instance of this structure defines the "spec" of a +** full text index. This structure is populated by parseSpec +** and use by fulltextConnect and fulltextCreate. +*/ +typedef struct TableSpec { + const char *zDb; /* Logical database name */ + const char *zName; /* Name of the full-text index */ + int nColumn; /* Number of columns to be indexed */ + char **azColumn; /* Original names of columns to be indexed */ + char **azContentColumn; /* Column names for %_content */ + char **azTokenizer; /* Name of tokenizer and its arguments */ +} TableSpec; + +/* +** Reclaim all of the memory used by a TableSpec +*/ +static void clearTableSpec(TableSpec *p) { + sqlite3_free(p->azColumn); + sqlite3_free(p->azContentColumn); + sqlite3_free(p->azTokenizer); +} + +/* Parse a CREATE VIRTUAL TABLE statement, which looks like this: + * + * CREATE VIRTUAL TABLE email + * USING fts3(subject, body, tokenize mytokenizer(myarg)) + * + * We return parsed information in a TableSpec structure. + * + */ +static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, + char**pzErr){ + int i, n; + char *z, *zDummy; + char **azArg; + const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ + + assert( argc>=3 ); + /* Current interface: + ** argv[0] - module name + ** argv[1] - database name + ** argv[2] - table name + ** argv[3..] - columns, optionally followed by tokenizer specification + ** and snippet delimiters specification. + */ + + /* Make a copy of the complete argv[][] array in a single allocation. + ** The argv[][] array is read-only and transient. We can write to the + ** copy in order to modify things and the copy is persistent. + */ + CLEAR(pSpec); + for(i=n=0; i<argc; i++){ + n += strlen(argv[i]) + 1; + } + azArg = sqlite3_malloc( sizeof(char*)*argc + n ); + if( azArg==0 ){ + return SQLITE_NOMEM; + } + z = (char*)&azArg[argc]; + for(i=0; i<argc; i++){ + azArg[i] = z; + strcpy(z, argv[i]); + z += strlen(z)+1; + } + + /* Identify the column names and the tokenizer and delimiter arguments + ** in the argv[][] array. + */ + pSpec->zDb = azArg[1]; + pSpec->zName = azArg[2]; + pSpec->nColumn = 0; + pSpec->azColumn = azArg; + zTokenizer = "tokenize simple"; + for(i=3; i<argc; ++i){ + if( startsWith(azArg[i],"tokenize") ){ + zTokenizer = azArg[i]; + }else{ + z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); + pSpec->nColumn++; + } + } + if( pSpec->nColumn==0 ){ + azArg[0] = "content"; + pSpec->nColumn = 1; + } + + /* + ** Construct the list of content column names. + ** + ** Each content column name will be of the form cNNAAAA + ** where NN is the column number and AAAA is the sanitized + ** column name. "sanitized" means that special characters are + ** converted to "_". The cNN prefix guarantees that all column + ** names are unique. + ** + ** The AAAA suffix is not strictly necessary. It is included + ** for the convenience of people who might examine the generated + ** %_content table and wonder what the columns are used for. + */ + pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); + if( pSpec->azContentColumn==0 ){ + clearTableSpec(pSpec); + return SQLITE_NOMEM; + } + for(i=0; i<pSpec->nColumn; i++){ + char *p; + pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); + for (p = pSpec->azContentColumn[i]; *p ; ++p) { + if( !safe_isalnum(*p) ) *p = '_'; + } + } + + /* + ** Parse the tokenizer specification string. + */ + pSpec->azTokenizer = tokenizeString(zTokenizer, &n); + tokenListToIdList(pSpec->azTokenizer); + + return SQLITE_OK; +} + +/* +** Generate a CREATE TABLE statement that describes the schema of +** the virtual table. Return a pointer to this schema string. +** +** Space is obtained from sqlite3_mprintf() and should be freed +** using sqlite3_free(). +*/ +static char *fulltextSchema( + int nColumn, /* Number of columns */ + const char *const* azColumn, /* List of columns */ + const char *zTableName /* Name of the table */ +){ + int i; + char *zSchema, *zNext; + const char *zSep = "("; + zSchema = sqlite3_mprintf("CREATE TABLE x"); + for(i=0; i<nColumn; i++){ + zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); + sqlite3_free(zSchema); + zSchema = zNext; + zSep = ","; + } + zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName); + sqlite3_free(zSchema); + zSchema = zNext; + zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema); + sqlite3_free(zSchema); + return zNext; +} + +/* +** Build a new sqlite3_vtab structure that will describe the +** fulltext index defined by spec. +*/ +static int constructVtab( + sqlite3 *db, /* The SQLite database connection */ + fts3Hash *pHash, /* Hash table containing tokenizers */ + TableSpec *spec, /* Parsed spec information from parseSpec() */ + sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ + char **pzErr /* Write any error message here */ +){ + int rc; + int n; + fulltext_vtab *v = 0; + const sqlite3_tokenizer_module *m = NULL; + char *schema; + + char const *zTok; /* Name of tokenizer to use for this fts table */ + int nTok; /* Length of zTok, including nul terminator */ + + v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab)); + if( v==0 ) return SQLITE_NOMEM; + CLEAR(v); + /* sqlite will initialize v->base */ + v->db = db; + v->zDb = spec->zDb; /* Freed when azColumn is freed */ + v->zName = spec->zName; /* Freed when azColumn is freed */ + v->nColumn = spec->nColumn; + v->azContentColumn = spec->azContentColumn; + spec->azContentColumn = 0; + v->azColumn = spec->azColumn; + spec->azColumn = 0; + + if( spec->azTokenizer==0 ){ + return SQLITE_NOMEM; + } + + zTok = spec->azTokenizer[0]; + if( !zTok ){ + zTok = "simple"; + } + nTok = strlen(zTok)+1; + + m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok); + if( !m ){ + *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); + rc = SQLITE_ERROR; + goto err; + } + + for(n=0; spec->azTokenizer[n]; n++){} + if( n ){ + rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], + &v->pTokenizer); + }else{ + rc = m->xCreate(0, 0, &v->pTokenizer); + } + if( rc!=SQLITE_OK ) goto err; + v->pTokenizer->pModule = m; + + /* TODO: verify the existence of backing tables foo_content, foo_term */ + + schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, + spec->zName); + rc = sqlite3_declare_vtab(db, schema); + sqlite3_free(schema); + if( rc!=SQLITE_OK ) goto err; + + memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); + + /* Indicate that the buffer is not live. */ + v->nPendingData = -1; + + *ppVTab = &v->base; + FTSTRACE(("FTS3 Connect %p\n", v)); + + return rc; + +err: + fulltext_vtab_destroy(v); + return rc; +} + +static int fulltextConnect( + sqlite3 *db, + void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVTab, + char **pzErr +){ + TableSpec spec; + int rc = parseSpec(&spec, argc, argv, pzErr); + if( rc!=SQLITE_OK ) return rc; + + rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr); + clearTableSpec(&spec); + return rc; +} + +/* The %_content table holds the text of each document, with +** the docid column exposed as the SQLite rowid for the table. +*/ +/* TODO(shess) This comment needs elaboration to match the updated +** code. Work it into the top-of-file comment at that time. +*/ +static int fulltextCreate(sqlite3 *db, void *pAux, + int argc, const char * const *argv, + sqlite3_vtab **ppVTab, char **pzErr){ + int rc; + TableSpec spec; + StringBuffer schema; + FTSTRACE(("FTS3 Create\n")); + + rc = parseSpec(&spec, argc, argv, pzErr); + if( rc!=SQLITE_OK ) return rc; + + initStringBuffer(&schema); + append(&schema, "CREATE TABLE %_content("); + append(&schema, " docid INTEGER PRIMARY KEY,"); + appendList(&schema, spec.nColumn, spec.azContentColumn); + append(&schema, ")"); + rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); + stringBufferDestroy(&schema); + if( rc!=SQLITE_OK ) goto out; + + rc = sql_exec(db, spec.zDb, spec.zName, + "create table %_segments(" + " blockid INTEGER PRIMARY KEY," + " block blob" + ");" + ); + if( rc!=SQLITE_OK ) goto out; + + rc = sql_exec(db, spec.zDb, spec.zName, + "create table %_segdir(" + " level integer," + " idx integer," + " start_block integer," + " leaves_end_block integer," + " end_block integer," + " root blob," + " primary key(level, idx)" + ");"); + if( rc!=SQLITE_OK ) goto out; + + rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr); + +out: + clearTableSpec(&spec); + return rc; +} + +/* Decide how to handle an SQL query. */ +static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ + fulltext_vtab *v = (fulltext_vtab *)pVTab; + int i; + FTSTRACE(("FTS3 BestIndex\n")); + + for(i=0; i<pInfo->nConstraint; ++i){ + const struct sqlite3_index_constraint *pConstraint; + pConstraint = &pInfo->aConstraint[i]; + if( pConstraint->usable ) { + if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) && + pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ + pInfo->idxNum = QUERY_DOCID; /* lookup by docid */ + FTSTRACE(("FTS3 QUERY_DOCID\n")); + } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn && + pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ + /* full-text search */ + pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; + FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); + } else continue; + + pInfo->aConstraintUsage[i].argvIndex = 1; + pInfo->aConstraintUsage[i].omit = 1; + + /* An arbitrary value for now. + * TODO: Perhaps docid matches should be considered cheaper than + * full-text searches. */ + pInfo->estimatedCost = 1.0; + + return SQLITE_OK; + } + } + pInfo->idxNum = QUERY_GENERIC; + return SQLITE_OK; +} + +static int fulltextDisconnect(sqlite3_vtab *pVTab){ + FTSTRACE(("FTS3 Disconnect %p\n", pVTab)); + fulltext_vtab_destroy((fulltext_vtab *)pVTab); + return SQLITE_OK; +} + +static int fulltextDestroy(sqlite3_vtab *pVTab){ + fulltext_vtab *v = (fulltext_vtab *)pVTab; + int rc; + + FTSTRACE(("FTS3 Destroy %p\n", pVTab)); + rc = sql_exec(v->db, v->zDb, v->zName, + "drop table if exists %_content;" + "drop table if exists %_segments;" + "drop table if exists %_segdir;" + ); + if( rc!=SQLITE_OK ) return rc; + + fulltext_vtab_destroy((fulltext_vtab *)pVTab); + return SQLITE_OK; +} + +static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ + fulltext_cursor *c; + + c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); + if( c ){ + memset(c, 0, sizeof(fulltext_cursor)); + /* sqlite will initialize c->base */ + *ppCursor = &c->base; + FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c)); + return SQLITE_OK; + }else{ + return SQLITE_NOMEM; + } +} + + +/* Free all of the dynamically allocated memory held by *q +*/ +static void queryClear(Query *q){ + int i; + for(i = 0; i < q->nTerms; ++i){ + sqlite3_free(q->pTerms[i].pTerm); + } + sqlite3_free(q->pTerms); + CLEAR(q); +} + +/* Free all of the dynamically allocated memory held by the +** Snippet +*/ +static void snippetClear(Snippet *p){ + sqlite3_free(p->aMatch); + sqlite3_free(p->zOffset); + sqlite3_free(p->zSnippet); + CLEAR(p); +} +/* +** Append a single entry to the p->aMatch[] log. +*/ +static void snippetAppendMatch( + Snippet *p, /* Append the entry to this snippet */ + int iCol, int iTerm, /* The column and query term */ + int iToken, /* Matching token in document */ + int iStart, int nByte /* Offset and size of the match */ +){ + int i; + struct snippetMatch *pMatch; + if( p->nMatch+1>=p->nAlloc ){ + p->nAlloc = p->nAlloc*2 + 10; + p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); + if( p->aMatch==0 ){ + p->nMatch = 0; + p->nAlloc = 0; + return; + } + } + i = p->nMatch++; + pMatch = &p->aMatch[i]; + pMatch->iCol = iCol; + pMatch->iTerm = iTerm; + pMatch->iToken = iToken; + pMatch->iStart = iStart; + pMatch->nByte = nByte; +} + +/* +** Sizing information for the circular buffer used in snippetOffsetsOfColumn() +*/ +#define FTS3_ROTOR_SZ (32) +#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1) + +/* +** Add entries to pSnippet->aMatch[] for every match that occurs against +** document zDoc[0..nDoc-1] which is stored in column iColumn. +*/ +static void snippetOffsetsOfColumn( + Query *pQuery, + Snippet *pSnippet, + int iColumn, + const char *zDoc, + int nDoc +){ + const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ + sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ + sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ + fulltext_vtab *pVtab; /* The full text index */ + int nColumn; /* Number of columns in the index */ + const QueryTerm *aTerm; /* Query string terms */ + int nTerm; /* Number of query string terms */ + int i, j; /* Loop counters */ + int rc; /* Return code */ + unsigned int match, prevMatch; /* Phrase search bitmasks */ + const char *zToken; /* Next token from the tokenizer */ + int nToken; /* Size of zToken */ + int iBegin, iEnd, iPos; /* Offsets of beginning and end */ + + /* The following variables keep a circular buffer of the last + ** few tokens */ + unsigned int iRotor = 0; /* Index of current token */ + int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */ + int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */ + + pVtab = pQuery->pFts; + nColumn = pVtab->nColumn; + pTokenizer = pVtab->pTokenizer; + pTModule = pTokenizer->pModule; + rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); + if( rc ) return; + pTCursor->pTokenizer = pTokenizer; + aTerm = pQuery->pTerms; + nTerm = pQuery->nTerms; + if( nTerm>=FTS3_ROTOR_SZ ){ + nTerm = FTS3_ROTOR_SZ - 1; + } + prevMatch = 0; + while(1){ + rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); + if( rc ) break; + iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin; + iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin; + match = 0; + for(i=0; i<nTerm; i++){ + int iCol; + iCol = aTerm[i].iColumn; + if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; + if( aTerm[i].nTerm>nToken ) continue; + if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue; + assert( aTerm[i].nTerm<=nToken ); + if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue; + if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; + match |= 1<<i; + if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ + for(j=aTerm[i].iPhrase-1; j>=0; j--){ + int k = (iRotor-j) & FTS3_ROTOR_MASK; + snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j, + iRotorBegin[k], iRotorLen[k]); + } + } + } + prevMatch = match<<1; + iRotor++; + } + pTModule->xClose(pTCursor); +} + +/* +** Remove entries from the pSnippet structure to account for the NEAR +** operator. When this is called, pSnippet contains the list of token +** offsets produced by treating all NEAR operators as AND operators. +** This function removes any entries that should not be present after +** accounting for the NEAR restriction. For example, if the queried +** document is: +** +** "A B C D E A" +** +** and the query is: +** +** A NEAR/0 E +** +** then when this function is called the Snippet contains token offsets +** 0, 4 and 5. This function removes the "0" entry (because the first A +** is not near enough to an E). +*/ +static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){ + int ii; + int iDir = 1; + + while(iDir>-2) { + assert( iDir==1 || iDir==-1 ); + for(ii=0; ii<pSnippet->nMatch; ii++){ + int jj; + int nNear; + struct snippetMatch *pMatch = &pSnippet->aMatch[ii]; + QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm]; + + if( (pMatch->iTerm+iDir)<0 + || (pMatch->iTerm+iDir)>=pQuery->nTerms + ){ + continue; + } + + nNear = pQueryTerm->nNear; + if( iDir<0 ){ + nNear = pQueryTerm[-1].nNear; + } + + if( pMatch->iTerm>=0 && nNear ){ + int isOk = 0; + int iNextTerm = pMatch->iTerm+iDir; + int iPrevTerm = iNextTerm; + + int iEndToken; + int iStartToken; + + if( iDir<0 ){ + int nPhrase = 1; + iStartToken = pMatch->iToken; + while( (pMatch->iTerm+nPhrase)<pQuery->nTerms + && pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1 + ){ + nPhrase++; + } + iEndToken = iStartToken + nPhrase - 1; + }else{ + iEndToken = pMatch->iToken; + iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase; + } + + while( pQuery->pTerms[iNextTerm].iPhrase>1 ){ + iNextTerm--; + } + while( (iPrevTerm+1)<pQuery->nTerms && + pQuery->pTerms[iPrevTerm+1].iPhrase>1 + ){ + iPrevTerm++; + } + + for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){ + struct snippetMatch *p = &pSnippet->aMatch[jj]; + if( p->iCol==pMatch->iCol && (( + p->iTerm==iNextTerm && + p->iToken>iEndToken && + p->iToken<=iEndToken+nNear + ) || ( + p->iTerm==iPrevTerm && + p->iToken<iStartToken && + p->iToken>=iStartToken-nNear + ))){ + isOk = 1; + } + } + if( !isOk ){ + for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){ + pMatch[jj].iTerm = -1; + } + ii = -1; + iDir = 1; + } + } + } + iDir -= 2; + } +} + +/* +** Compute all offsets for the current row of the query. +** If the offsets have already been computed, this routine is a no-op. +*/ +static void snippetAllOffsets(fulltext_cursor *p){ + int nColumn; + int iColumn, i; + int iFirst, iLast; + fulltext_vtab *pFts; + + if( p->snippet.nMatch ) return; + if( p->q.nTerms==0 ) return; + pFts = p->q.pFts; + nColumn = pFts->nColumn; + iColumn = (p->iCursorType - QUERY_FULLTEXT); + if( iColumn<0 || iColumn>=nColumn ){ + iFirst = 0; + iLast = nColumn-1; + }else{ + iFirst = iColumn; + iLast = iColumn; + } + for(i=iFirst; i<=iLast; i++){ + const char *zDoc; + int nDoc; + zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); + nDoc = sqlite3_column_bytes(p->pStmt, i+1); + snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); + } + + trimSnippetOffsetsForNear(&p->q, &p->snippet); +} + +/* +** Convert the information in the aMatch[] array of the snippet +** into the string zOffset[0..nOffset-1]. +*/ +static void snippetOffsetText(Snippet *p){ + int i; + int cnt = 0; + StringBuffer sb; + char zBuf[200]; + if( p->zOffset ) return; + initStringBuffer(&sb); + for(i=0; i<p->nMatch; i++){ + struct snippetMatch *pMatch = &p->aMatch[i]; + if( pMatch->iTerm>=0 ){ + /* If snippetMatch.iTerm is less than 0, then the match was + ** discarded as part of processing the NEAR operator (see the + ** trimSnippetOffsetsForNear() function for details). Ignore + ** it in this case + */ + zBuf[0] = ' '; + sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", + pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); + append(&sb, zBuf); + cnt++; + } + } + p->zOffset = stringBufferData(&sb); + p->nOffset = stringBufferLength(&sb); +} + +/* +** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set +** of matching words some of which might be in zDoc. zDoc is column +** number iCol. +** +** iBreak is suggested spot in zDoc where we could begin or end an +** excerpt. Return a value similar to iBreak but possibly adjusted +** to be a little left or right so that the break point is better. +*/ +static int wordBoundary( + int iBreak, /* The suggested break point */ + const char *zDoc, /* Document text */ + int nDoc, /* Number of bytes in zDoc[] */ + struct snippetMatch *aMatch, /* Matching words */ + int nMatch, /* Number of entries in aMatch[] */ + int iCol /* The column number for zDoc[] */ +){ + int i; + if( iBreak<=10 ){ + return 0; + } + if( iBreak>=nDoc-10 ){ + return nDoc; + } + for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} + while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } + if( i<nMatch ){ + if( aMatch[i].iStart<iBreak+10 ){ + return aMatch[i].iStart; + } + if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ + return aMatch[i-1].iStart; + } + } + for(i=1; i<=10; i++){ + if( safe_isspace(zDoc[iBreak-i]) ){ + return iBreak - i + 1; + } + if( safe_isspace(zDoc[iBreak+i]) ){ + return iBreak + i + 1; + } + } + return iBreak; +} + + + +/* +** Allowed values for Snippet.aMatch[].snStatus +*/ +#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ +#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ + +/* +** Generate the text of a snippet. +*/ +static void snippetText( + fulltext_cursor *pCursor, /* The cursor we need the snippet for */ + const char *zStartMark, /* Markup to appear before each match */ + const char *zEndMark, /* Markup to appear after each match */ + const char *zEllipsis /* Ellipsis mark */ +){ + int i, j; + struct snippetMatch *aMatch; + int nMatch; + int nDesired; + StringBuffer sb; + int tailCol; + int tailOffset; + int iCol; + int nDoc; + const char *zDoc; + int iStart, iEnd; + int tailEllipsis = 0; + int iMatch; + + + sqlite3_free(pCursor->snippet.zSnippet); + pCursor->snippet.zSnippet = 0; + aMatch = pCursor->snippet.aMatch; + nMatch = pCursor->snippet.nMatch; + initStringBuffer(&sb); + + for(i=0; i<nMatch; i++){ + aMatch[i].snStatus = SNIPPET_IGNORE; + } + nDesired = 0; + for(i=0; i<pCursor->q.nTerms; i++){ + for(j=0; j<nMatch; j++){ + if( aMatch[j].iTerm==i ){ + aMatch[j].snStatus = SNIPPET_DESIRED; + nDesired++; + break; + } + } + } + + iMatch = 0; + tailCol = -1; + tailOffset = 0; + for(i=0; i<nMatch && nDesired>0; i++){ + if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; + nDesired--; + iCol = aMatch[i].iCol; + zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); + nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); + iStart = aMatch[i].iStart - 40; + iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); + if( iStart<=10 ){ + iStart = 0; + } + if( iCol==tailCol && iStart<=tailOffset+20 ){ + iStart = tailOffset; + } + if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ + trimWhiteSpace(&sb); + appendWhiteSpace(&sb); + append(&sb, zEllipsis); + appendWhiteSpace(&sb); + } + iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; + iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); + if( iEnd>=nDoc-10 ){ + iEnd = nDoc; + tailEllipsis = 0; + }else{ + tailEllipsis = 1; + } + while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } + while( iStart<iEnd ){ + while( iMatch<nMatch && aMatch[iMatch].iStart<iStart + && aMatch[iMatch].iCol<=iCol ){ + iMatch++; + } + if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd + && aMatch[iMatch].iCol==iCol ){ + nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); + iStart = aMatch[iMatch].iStart; + append(&sb, zStartMark); + nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); + append(&sb, zEndMark); + iStart += aMatch[iMatch].nByte; + for(j=iMatch+1; j<nMatch; j++){ + if( aMatch[j].iTerm==aMatch[iMatch].iTerm + && aMatch[j].snStatus==SNIPPET_DESIRED ){ + nDesired--; + aMatch[j].snStatus = SNIPPET_IGNORE; + } + } + }else{ + nappend(&sb, &zDoc[iStart], iEnd - iStart); + iStart = iEnd; + } + } + tailCol = iCol; + tailOffset = iEnd; + } + trimWhiteSpace(&sb); + if( tailEllipsis ){ + appendWhiteSpace(&sb); + append(&sb, zEllipsis); + } + pCursor->snippet.zSnippet = stringBufferData(&sb); + pCursor->snippet.nSnippet = stringBufferLength(&sb); +} + + +/* +** Close the cursor. For additional information see the documentation +** on the xClose method of the virtual table interface. +*/ +static int fulltextClose(sqlite3_vtab_cursor *pCursor){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + FTSTRACE(("FTS3 Close %p\n", c)); + sqlite3_finalize(c->pStmt); + queryClear(&c->q); + snippetClear(&c->snippet); + if( c->result.nData!=0 ) dlrDestroy(&c->reader); + dataBufferDestroy(&c->result); + sqlite3_free(c); + return SQLITE_OK; +} + +static int fulltextNext(sqlite3_vtab_cursor *pCursor){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + int rc; + + FTSTRACE(("FTS3 Next %p\n", pCursor)); + snippetClear(&c->snippet); + if( c->iCursorType < QUERY_FULLTEXT ){ + /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ + rc = sqlite3_step(c->pStmt); + switch( rc ){ + case SQLITE_ROW: + c->eof = 0; + return SQLITE_OK; + case SQLITE_DONE: + c->eof = 1; + return SQLITE_OK; + default: + c->eof = 1; + return rc; + } + } else { /* full-text query */ + rc = sqlite3_reset(c->pStmt); + if( rc!=SQLITE_OK ) return rc; + + if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ + c->eof = 1; + return SQLITE_OK; + } + rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); + dlrStep(&c->reader); + if( rc!=SQLITE_OK ) return rc; + /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ + rc = sqlite3_step(c->pStmt); + if( rc==SQLITE_ROW ){ /* the case we expect */ + c->eof = 0; + return SQLITE_OK; + } + /* an error occurred; abort */ + return rc==SQLITE_DONE ? SQLITE_ERROR : rc; + } +} + + +/* TODO(shess) If we pushed LeafReader to the top of the file, or to +** another file, term_select() could be pushed above +** docListOfTerm(). +*/ +static int termSelect(fulltext_vtab *v, int iColumn, + const char *pTerm, int nTerm, int isPrefix, + DocListType iType, DataBuffer *out); + +/* Return a DocList corresponding to the query term *pTerm. If *pTerm +** is the first term of a phrase query, go ahead and evaluate the phrase +** query and return the doclist for the entire phrase query. +** +** The resulting DL_DOCIDS doclist is stored in pResult, which is +** overwritten. +*/ +static int docListOfTerm( + fulltext_vtab *v, /* The full text index */ + int iColumn, /* column to restrict to. No restriction if >=nColumn */ + QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ + DataBuffer *pResult /* Write the result here */ +){ + DataBuffer left, right, new; + int i, rc; + + /* No phrase search if no position info. */ + assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); + + /* This code should never be called with buffered updates. */ + assert( v->nPendingData<0 ); + + dataBufferInit(&left, 0); + rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, + (0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left); + if( rc ) return rc; + for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ + /* If this token is connected to the next by a NEAR operator, and + ** the next token is the start of a phrase, then set nPhraseRight + ** to the number of tokens in the phrase. Otherwise leave it at 1. + */ + int nPhraseRight = 1; + while( (i+nPhraseRight)<=pQTerm->nPhrase + && pQTerm[i+nPhraseRight].nNear==0 + ){ + nPhraseRight++; + } + + dataBufferInit(&right, 0); + rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, + pQTerm[i].isPrefix, DL_POSITIONS, &right); + if( rc ){ + dataBufferDestroy(&left); + return rc; + } + dataBufferInit(&new, 0); + docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, + pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight, + ((i<pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS), + &new); + dataBufferDestroy(&left); + dataBufferDestroy(&right); + left = new; + } + *pResult = left; + return SQLITE_OK; +} + +/* Add a new term pTerm[0..nTerm-1] to the query *q. +*/ +static void queryAdd(Query *q, const char *pTerm, int nTerm){ + QueryTerm *t; + ++q->nTerms; + q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); + if( q->pTerms==0 ){ + q->nTerms = 0; + return; + } + t = &q->pTerms[q->nTerms - 1]; + CLEAR(t); + t->pTerm = sqlite3_malloc(nTerm+1); + memcpy(t->pTerm, pTerm, nTerm); + t->pTerm[nTerm] = 0; + t->nTerm = nTerm; + t->isOr = q->nextIsOr; + t->isPrefix = 0; + q->nextIsOr = 0; + t->iColumn = q->nextColumn; + q->nextColumn = q->dfltColumn; +} + +/* +** Check to see if the string zToken[0...nToken-1] matches any +** column name in the virtual table. If it does, +** return the zero-indexed column number. If not, return -1. +*/ +static int checkColumnSpecifier( + fulltext_vtab *pVtab, /* The virtual table */ + const char *zToken, /* Text of the token */ + int nToken /* Number of characters in the token */ +){ + int i; + for(i=0; i<pVtab->nColumn; i++){ + if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 + && pVtab->azColumn[i][nToken]==0 ){ + return i; + } + } + return -1; +} + +/* +** Parse the text at pSegment[0..nSegment-1]. Add additional terms +** to the query being assemblied in pQuery. +** +** inPhrase is true if pSegment[0..nSegement-1] is contained within +** double-quotes. If inPhrase is true, then the first term +** is marked with the number of terms in the phrase less one and +** OR and "-" syntax is ignored. If inPhrase is false, then every +** term found is marked with nPhrase=0 and OR and "-" syntax is significant. +*/ +static int tokenizeSegment( + sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ + const char *pSegment, int nSegment, /* Query expression being parsed */ + int inPhrase, /* True if within "..." */ + Query *pQuery /* Append results here */ +){ + const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; + sqlite3_tokenizer_cursor *pCursor; + int firstIndex = pQuery->nTerms; + int iCol; + int nTerm = 1; + + int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); + if( rc!=SQLITE_OK ) return rc; + pCursor->pTokenizer = pTokenizer; + + while( 1 ){ + const char *pToken; + int nToken, iBegin, iEnd, iPos; + + rc = pModule->xNext(pCursor, + &pToken, &nToken, + &iBegin, &iEnd, &iPos); + if( rc!=SQLITE_OK ) break; + if( !inPhrase && + pSegment[iEnd]==':' && + (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ + pQuery->nextColumn = iCol; + continue; + } + if( !inPhrase && pQuery->nTerms>0 && nToken==2 + && pSegment[iBegin+0]=='O' + && pSegment[iBegin+1]=='R' + ){ + pQuery->nextIsOr = 1; + continue; + } + if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4 + && pSegment[iBegin+0]=='N' + && pSegment[iBegin+1]=='E' + && pSegment[iBegin+2]=='A' + && pSegment[iBegin+3]=='R' + ){ + QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1]; + if( (iBegin+6)<nSegment + && pSegment[iBegin+4] == '/' + && pSegment[iBegin+5]>='0' && pSegment[iBegin+5]<='9' + ){ + pTerm->nNear = (pSegment[iBegin+5] - '0'); + nToken += 2; + if( pSegment[iBegin+6]>='0' && pSegment[iBegin+6]<=9 ){ + pTerm->nNear = pTerm->nNear * 10 + (pSegment[iBegin+6] - '0'); + iEnd++; + } + pModule->xNext(pCursor, &pToken, &nToken, &iBegin, &iEnd, &iPos); + } else { + pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM; + } + pTerm->nNear++; + continue; + } + + queryAdd(pQuery, pToken, nToken); + if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ + pQuery->pTerms[pQuery->nTerms-1].isNot = 1; + } + if( iEnd<nSegment && pSegment[iEnd]=='*' ){ + pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1; + } + pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; + if( inPhrase ){ + nTerm++; + } + } + + if( inPhrase && pQuery->nTerms>firstIndex ){ + pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; + } + + return pModule->xClose(pCursor); +} + +/* Parse a query string, yielding a Query object pQuery. +** +** The calling function will need to queryClear() to clean up +** the dynamically allocated memory held by pQuery. +*/ +static int parseQuery( + fulltext_vtab *v, /* The fulltext index */ + const char *zInput, /* Input text of the query string */ + int nInput, /* Size of the input text */ + int dfltColumn, /* Default column of the index to match against */ + Query *pQuery /* Write the parse results here. */ +){ + int iInput, inPhrase = 0; + int ii; + QueryTerm *aTerm; + + if( zInput==0 ) nInput = 0; + if( nInput<0 ) nInput = strlen(zInput); + pQuery->nTerms = 0; + pQuery->pTerms = NULL; + pQuery->nextIsOr = 0; + pQuery->nextColumn = dfltColumn; + pQuery->dfltColumn = dfltColumn; + pQuery->pFts = v; + + for(iInput=0; iInput<nInput; ++iInput){ + int i; + for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} + if( i>iInput ){ + tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, + pQuery); + } + iInput = i; + if( i<nInput ){ + assert( zInput[i]=='"' ); + inPhrase = !inPhrase; + } + } + + if( inPhrase ){ + /* unmatched quote */ + queryClear(pQuery); + return SQLITE_ERROR; + } + + /* Modify the values of the QueryTerm.nPhrase variables to account for + ** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases + ** and tokens connected by the NEAR operator are handled as a single + ** phrase. See comments above the QueryTerm structure for details. + */ + aTerm = pQuery->pTerms; + for(ii=0; ii<pQuery->nTerms; ii++){ + if( aTerm[ii].nNear || aTerm[ii].nPhrase ){ + while (aTerm[ii+aTerm[ii].nPhrase].nNear) { + aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase); + } + } + } + + return SQLITE_OK; +} + +/* TODO(shess) Refactor the code to remove this forward decl. */ +static int flushPendingTerms(fulltext_vtab *v); + +/* Perform a full-text query using the search expression in +** zInput[0..nInput-1]. Return a list of matching documents +** in pResult. +** +** Queries must match column iColumn. Or if iColumn>=nColumn +** they are allowed to match against any column. +*/ +static int fulltextQuery( + fulltext_vtab *v, /* The full text index */ + int iColumn, /* Match against this column by default */ + const char *zInput, /* The query string */ + int nInput, /* Number of bytes in zInput[] */ + DataBuffer *pResult, /* Write the result doclist here */ + Query *pQuery /* Put parsed query string here */ +){ + int i, iNext, rc; + DataBuffer left, right, or, new; + int nNot = 0; + QueryTerm *aTerm; + + /* TODO(shess) Instead of flushing pendingTerms, we could query for + ** the relevant term and merge the doclist into what we receive from + ** the database. Wait and see if this is a common issue, first. + ** + ** A good reason not to flush is to not generate update-related + ** error codes from here. + */ + + /* Flush any buffered updates before executing the query. */ + rc = flushPendingTerms(v); + if( rc!=SQLITE_OK ) return rc; + + /* TODO(shess) I think that the queryClear() calls below are not + ** necessary, because fulltextClose() already clears the query. + */ + rc = parseQuery(v, zInput, nInput, iColumn, pQuery); + if( rc!=SQLITE_OK ) return rc; + + /* Empty or NULL queries return no results. */ + if( pQuery->nTerms==0 ){ + dataBufferInit(pResult, 0); + return SQLITE_OK; + } + + /* Merge AND terms. */ + /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ + aTerm = pQuery->pTerms; + for(i = 0; i<pQuery->nTerms; i=iNext){ + if( aTerm[i].isNot ){ + /* Handle all NOT terms in a separate pass */ + nNot++; + iNext = i + aTerm[i].nPhrase+1; + continue; + } + iNext = i + aTerm[i].nPhrase + 1; + rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); + if( rc ){ + if( i!=nNot ) dataBufferDestroy(&left); + queryClear(pQuery); + return rc; + } + while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ + rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); + iNext += aTerm[iNext].nPhrase + 1; + if( rc ){ + if( i!=nNot ) dataBufferDestroy(&left); + dataBufferDestroy(&right); + queryClear(pQuery); + return rc; + } + dataBufferInit(&new, 0); + docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); + dataBufferDestroy(&right); + dataBufferDestroy(&or); + right = new; + } + if( i==nNot ){ /* first term processed. */ + left = right; + }else{ + dataBufferInit(&new, 0); + docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new); + dataBufferDestroy(&right); + dataBufferDestroy(&left); + left = new; + } + } + + if( nNot==pQuery->nTerms ){ + /* We do not yet know how to handle a query of only NOT terms */ + return SQLITE_ERROR; + } + + /* Do the EXCEPT terms */ + for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ + if( !aTerm[i].isNot ) continue; + rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); + if( rc ){ + queryClear(pQuery); + dataBufferDestroy(&left); + return rc; + } + dataBufferInit(&new, 0); + docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new); + dataBufferDestroy(&right); + dataBufferDestroy(&left); + left = new; + } + + *pResult = left; + return rc; +} + +/* +** This is the xFilter interface for the virtual table. See +** the virtual table xFilter method documentation for additional +** information. +** +** If idxNum==QUERY_GENERIC then do a full table scan against +** the %_content table. +** +** If idxNum==QUERY_DOCID then do a docid lookup for a single entry +** in the %_content table. +** +** If idxNum>=QUERY_FULLTEXT then use the full text index. The +** column on the left-hand side of the MATCH operator is column +** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand +** side of the MATCH operator. +*/ +/* TODO(shess) Upgrade the cursor initialization and destruction to +** account for fulltextFilter() being called multiple times on the +** same cursor. The current solution is very fragile. Apply fix to +** fts3 as appropriate. +*/ +static int fulltextFilter( + sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ + int idxNum, const char *idxStr, /* Which indexing scheme to use */ + int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ +){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + fulltext_vtab *v = cursor_vtab(c); + int rc; + StringBuffer sb; + + FTSTRACE(("FTS3 Filter %p\n",pCursor)); + + initStringBuffer(&sb); + append(&sb, "SELECT docid, "); + appendList(&sb, v->nColumn, v->azContentColumn); + append(&sb, " FROM %_content"); + if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?"); + sqlite3_finalize(c->pStmt); + rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, stringBufferData(&sb)); + stringBufferDestroy(&sb); + if( rc!=SQLITE_OK ) return rc; + + c->iCursorType = idxNum; + switch( idxNum ){ + case QUERY_GENERIC: + break; + + case QUERY_DOCID: + rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); + if( rc!=SQLITE_OK ) return rc; + break; + + default: /* full-text search */ + { + const char *zQuery = (const char *)sqlite3_value_text(argv[0]); + assert( idxNum<=QUERY_FULLTEXT+v->nColumn); + assert( argc==1 ); + queryClear(&c->q); + if( c->result.nData!=0 ){ + /* This case happens if the same cursor is used repeatedly. */ + dlrDestroy(&c->reader); + dataBufferReset(&c->result); + }else{ + dataBufferInit(&c->result, 0); + } + rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q); + if( rc!=SQLITE_OK ) return rc; + if( c->result.nData!=0 ){ + dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); + } + break; + } + } + + return fulltextNext(pCursor); +} + +/* This is the xEof method of the virtual table. The SQLite core +** calls this routine to find out if it has reached the end of +** a query's results set. +*/ +static int fulltextEof(sqlite3_vtab_cursor *pCursor){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + return c->eof; +} + +/* This is the xColumn method of the virtual table. The SQLite +** core calls this method during a query when it needs the value +** of a column from the virtual table. This method needs to use +** one of the sqlite3_result_*() routines to store the requested +** value back in the pContext. +*/ +static int fulltextColumn(sqlite3_vtab_cursor *pCursor, + sqlite3_context *pContext, int idxCol){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + fulltext_vtab *v = cursor_vtab(c); + + if( idxCol<v->nColumn ){ + sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); + sqlite3_result_value(pContext, pVal); + }else if( idxCol==v->nColumn ){ + /* The extra column whose name is the same as the table. + ** Return a blob which is a pointer to the cursor + */ + sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); + }else if( idxCol==v->nColumn+1 ){ + /* The docid column, which is an alias for rowid. */ + sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0); + sqlite3_result_value(pContext, pVal); + } + return SQLITE_OK; +} + +/* This is the xRowid method. The SQLite core calls this routine to +** retrieve the rowid for the current row of the result set. fts3 +** exposes %_content.docid as the rowid for the virtual table. The +** rowid should be written to *pRowid. +*/ +static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ + fulltext_cursor *c = (fulltext_cursor *) pCursor; + + *pRowid = sqlite3_column_int64(c->pStmt, 0); + return SQLITE_OK; +} + +/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0, +** we also store positions and offsets in the hash table using that +** column number. +*/ +static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, + const char *zText, int iColumn){ + sqlite3_tokenizer *pTokenizer = v->pTokenizer; + sqlite3_tokenizer_cursor *pCursor; + const char *pToken; + int nTokenBytes; + int iStartOffset, iEndOffset, iPosition; + int rc; + + rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); + if( rc!=SQLITE_OK ) return rc; + + pCursor->pTokenizer = pTokenizer; + while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, + &pToken, &nTokenBytes, + &iStartOffset, &iEndOffset, + &iPosition)) ){ + DLCollector *p; + int nData; /* Size of doclist before our update. */ + + /* Positions can't be negative; we use -1 as a terminator + * internally. Token can't be NULL or empty. */ + if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ + rc = SQLITE_ERROR; + break; + } + + p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes); + if( p==NULL ){ + nData = 0; + p = dlcNew(iDocid, DL_DEFAULT); + fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); + + /* Overhead for our hash table entry, the key, and the value. */ + v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes; + }else{ + nData = p->b.nData; + if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); + } + if( iColumn>=0 ){ + dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); + } + + /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ + v->nPendingData += p->b.nData-nData; + } + + /* TODO(shess) Check return? Should this be able to cause errors at + ** this point? Actually, same question about sqlite3_finalize(), + ** though one could argue that failure there means that the data is + ** not durable. *ponder* + */ + pTokenizer->pModule->xClose(pCursor); + if( SQLITE_DONE == rc ) return SQLITE_OK; + return rc; +} + +/* Add doclists for all terms in [pValues] to pendingTerms table. */ +static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid, + sqlite3_value **pValues){ + int i; + for(i = 0; i < v->nColumn ; ++i){ + char *zText = (char*)sqlite3_value_text(pValues[i]); + int rc = buildTerms(v, iDocid, zText, i); + if( rc!=SQLITE_OK ) return rc; + } + return SQLITE_OK; +} + +/* Add empty doclists for all terms in the given row's content to +** pendingTerms. +*/ +static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){ + const char **pValues; + int i, rc; + + /* TODO(shess) Should we allow such tables at all? */ + if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; + + rc = content_select(v, iDocid, &pValues); + if( rc!=SQLITE_OK ) return rc; + + for(i = 0 ; i < v->nColumn; ++i) { + rc = buildTerms(v, iDocid, pValues[i], -1); + if( rc!=SQLITE_OK ) break; + } + + freeStringArray(v->nColumn, pValues); + return SQLITE_OK; +} + +/* TODO(shess) Refactor the code to remove this forward decl. */ +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); + +/* Insert a row into the %_content table; set *piDocid to be the ID of the +** new row. Add doclists for terms to pendingTerms. +*/ +static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid, + sqlite3_value **pValues, sqlite_int64 *piDocid){ + int rc; + + rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */ + if( rc!=SQLITE_OK ) return rc; + + /* docid column is an alias for rowid. */ + *piDocid = sqlite3_last_insert_rowid(v->db); + rc = initPendingTerms(v, *piDocid); + if( rc!=SQLITE_OK ) return rc; + + return insertTerms(v, *piDocid, pValues); +} + +/* Delete a row from the %_content table; add empty doclists for terms +** to pendingTerms. +*/ +static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ + int rc = initPendingTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + rc = deleteTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + return content_delete(v, iRow); /* execute an SQL DELETE */ +} + +/* Update a row in the %_content table; add delete doclists to +** pendingTerms for old terms not in the new data, add insert doclists +** to pendingTerms for terms in the new data. +*/ +static int index_update(fulltext_vtab *v, sqlite_int64 iRow, + sqlite3_value **pValues){ + int rc = initPendingTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + /* Generate an empty doclist for each term that previously appeared in this + * row. */ + rc = deleteTerms(v, iRow); + if( rc!=SQLITE_OK ) return rc; + + rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ + if( rc!=SQLITE_OK ) return rc; + + /* Now add positions for terms which appear in the updated row. */ + return insertTerms(v, iRow, pValues); +} + +/*******************************************************************/ +/* InteriorWriter is used to collect terms and block references into +** interior nodes in %_segments. See commentary at top of file for +** format. +*/ + +/* How large interior nodes can grow. */ +#define INTERIOR_MAX 2048 + +/* Minimum number of terms per interior node (except the root). This +** prevents large terms from making the tree too skinny - must be >0 +** so that the tree always makes progress. Note that the min tree +** fanout will be INTERIOR_MIN_TERMS+1. +*/ +#define INTERIOR_MIN_TERMS 7 +#if INTERIOR_MIN_TERMS<1 +# error INTERIOR_MIN_TERMS must be greater than 0. +#endif + +/* ROOT_MAX controls how much data is stored inline in the segment +** directory. +*/ +/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's +** only here so that interiorWriterRootInfo() and leafWriterRootInfo() +** can both see it, but if the caller passed it in, we wouldn't even +** need a define. +*/ +#define ROOT_MAX 1024 +#if ROOT_MAX<VARINT_MAX*2 +# error ROOT_MAX must have enough space for a header. +#endif + +/* InteriorBlock stores a linked-list of interior blocks while a lower +** layer is being constructed. +*/ +typedef struct InteriorBlock { + DataBuffer term; /* Leftmost term in block's subtree. */ + DataBuffer data; /* Accumulated data for the block. */ + struct InteriorBlock *next; +} InteriorBlock; + +static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock, + const char *pTerm, int nTerm){ + InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock)); + char c[VARINT_MAX+VARINT_MAX]; + int n; + + if( block ){ + memset(block, 0, sizeof(*block)); + dataBufferInit(&block->term, 0); + dataBufferReplace(&block->term, pTerm, nTerm); + + n = fts3PutVarint(c, iHeight); + n += fts3PutVarint(c+n, iChildBlock); + dataBufferInit(&block->data, INTERIOR_MAX); + dataBufferReplace(&block->data, c, n); + } + return block; +} + +#ifndef NDEBUG +/* Verify that the data is readable as an interior node. */ +static void interiorBlockValidate(InteriorBlock *pBlock){ + const char *pData = pBlock->data.pData; + int nData = pBlock->data.nData; + int n, iDummy; + sqlite_int64 iBlockid; + + assert( nData>0 ); + assert( pData!=0 ); + assert( pData+nData>pData ); + + /* Must lead with height of node as a varint(n), n>0 */ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n<nData ); + pData += n; + nData -= n; + + /* Must contain iBlockid. */ + n = fts3GetVarint(pData, &iBlockid); + assert( n>0 ); + assert( n<=nData ); + pData += n; + nData -= n; + + /* Zero or more terms of positive length */ + if( nData!=0 ){ + /* First term is not delta-encoded. */ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0); + assert( n+iDummy<=nData ); + pData += n+iDummy; + nData -= n+iDummy; + + /* Following terms delta-encoded. */ + while( nData!=0 ){ + /* Length of shared prefix. */ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>=0 ); + assert( n<nData ); + pData += n; + nData -= n; + + /* Length and data of distinct suffix. */ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0); + assert( n+iDummy<=nData ); + pData += n+iDummy; + nData -= n+iDummy; + } + } +} +#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) +#else +#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) +#endif + +typedef struct InteriorWriter { + int iHeight; /* from 0 at leaves. */ + InteriorBlock *first, *last; + struct InteriorWriter *parentWriter; + + DataBuffer term; /* Last term written to block "last". */ + sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ +#ifndef NDEBUG + sqlite_int64 iLastChildBlock; /* for consistency checks. */ +#endif +} InteriorWriter; + +/* Initialize an interior node where pTerm[nTerm] marks the leftmost +** term in the tree. iChildBlock is the leftmost child block at the +** next level down the tree. +*/ +static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, + sqlite_int64 iChildBlock, + InteriorWriter *pWriter){ + InteriorBlock *block; + assert( iHeight>0 ); + CLEAR(pWriter); + + pWriter->iHeight = iHeight; + pWriter->iOpeningChildBlock = iChildBlock; +#ifndef NDEBUG + pWriter->iLastChildBlock = iChildBlock; +#endif + block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); + pWriter->last = pWriter->first = block; + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); + dataBufferInit(&pWriter->term, 0); +} + +/* Append the child node rooted at iChildBlock to the interior node, +** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. +*/ +static void interiorWriterAppend(InteriorWriter *pWriter, + const char *pTerm, int nTerm, + sqlite_int64 iChildBlock){ + char c[VARINT_MAX+VARINT_MAX]; + int n, nPrefix = 0; + + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); + + /* The first term written into an interior node is actually + ** associated with the second child added (the first child was added + ** in interiorWriterInit, or in the if clause at the bottom of this + ** function). That term gets encoded straight up, with nPrefix left + ** at 0. + */ + if( pWriter->term.nData==0 ){ + n = fts3PutVarint(c, nTerm); + }else{ + while( nPrefix<pWriter->term.nData && + pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ + nPrefix++; + } + + n = fts3PutVarint(c, nPrefix); + n += fts3PutVarint(c+n, nTerm-nPrefix); + } + +#ifndef NDEBUG + pWriter->iLastChildBlock++; +#endif + assert( pWriter->iLastChildBlock==iChildBlock ); + + /* Overflow to a new block if the new term makes the current block + ** too big, and the current block already has enough terms. + */ + if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && + iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ + pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, + pTerm, nTerm); + pWriter->last = pWriter->last->next; + pWriter->iOpeningChildBlock = iChildBlock; + dataBufferReset(&pWriter->term); + }else{ + dataBufferAppend2(&pWriter->last->data, c, n, + pTerm+nPrefix, nTerm-nPrefix); + dataBufferReplace(&pWriter->term, pTerm, nTerm); + } + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); +} + +/* Free the space used by pWriter, including the linked-list of +** InteriorBlocks, and parentWriter, if present. +*/ +static int interiorWriterDestroy(InteriorWriter *pWriter){ + InteriorBlock *block = pWriter->first; + + while( block!=NULL ){ + InteriorBlock *b = block; + block = block->next; + dataBufferDestroy(&b->term); + dataBufferDestroy(&b->data); + sqlite3_free(b); + } + if( pWriter->parentWriter!=NULL ){ + interiorWriterDestroy(pWriter->parentWriter); + sqlite3_free(pWriter->parentWriter); + } + dataBufferDestroy(&pWriter->term); + SCRAMBLE(pWriter); + return SQLITE_OK; +} + +/* If pWriter can fit entirely in ROOT_MAX, return it as the root info +** directly, leaving *piEndBlockid unchanged. Otherwise, flush +** pWriter to %_segments, building a new layer of interior nodes, and +** recursively ask for their root into. +*/ +static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, + char **ppRootInfo, int *pnRootInfo, + sqlite_int64 *piEndBlockid){ + InteriorBlock *block = pWriter->first; + sqlite_int64 iBlockid = 0; + int rc; + + /* If we can fit the segment inline */ + if( block==pWriter->last && block->data.nData<ROOT_MAX ){ + *ppRootInfo = block->data.pData; + *pnRootInfo = block->data.nData; + return SQLITE_OK; + } + + /* Flush the first block to %_segments, and create a new level of + ** interior node. + */ + ASSERT_VALID_INTERIOR_BLOCK(block); + rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); + if( rc!=SQLITE_OK ) return rc; + *piEndBlockid = iBlockid; + + pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); + interiorWriterInit(pWriter->iHeight+1, + block->term.pData, block->term.nData, + iBlockid, pWriter->parentWriter); + + /* Flush additional blocks and append to the higher interior + ** node. + */ + for(block=block->next; block!=NULL; block=block->next){ + ASSERT_VALID_INTERIOR_BLOCK(block); + rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); + if( rc!=SQLITE_OK ) return rc; + *piEndBlockid = iBlockid; + + interiorWriterAppend(pWriter->parentWriter, + block->term.pData, block->term.nData, iBlockid); + } + + /* Parent node gets the chance to be the root. */ + return interiorWriterRootInfo(v, pWriter->parentWriter, + ppRootInfo, pnRootInfo, piEndBlockid); +} + +/****************************************************************/ +/* InteriorReader is used to read off the data from an interior node +** (see comment at top of file for the format). +*/ +typedef struct InteriorReader { + const char *pData; + int nData; + + DataBuffer term; /* previous term, for decoding term delta. */ + + sqlite_int64 iBlockid; +} InteriorReader; + +static void interiorReaderDestroy(InteriorReader *pReader){ + dataBufferDestroy(&pReader->term); + SCRAMBLE(pReader); +} + +/* TODO(shess) The assertions are great, but what if we're in NDEBUG +** and the blob is empty or otherwise contains suspect data? +*/ +static void interiorReaderInit(const char *pData, int nData, + InteriorReader *pReader){ + int n, nTerm; + + /* Require at least the leading flag byte */ + assert( nData>0 ); + assert( pData[0]!='\0' ); + + CLEAR(pReader); + + /* Decode the base blockid, and set the cursor to the first term. */ + n = fts3GetVarint(pData+1, &pReader->iBlockid); + assert( 1+n<=nData ); + pReader->pData = pData+1+n; + pReader->nData = nData-(1+n); + + /* A single-child interior node (such as when a leaf node was too + ** large for the segment directory) won't have any terms. + ** Otherwise, decode the first term. + */ + if( pReader->nData==0 ){ + dataBufferInit(&pReader->term, 0); + }else{ + n = fts3GetVarint32(pReader->pData, &nTerm); + dataBufferInit(&pReader->term, nTerm); + dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); + assert( n+nTerm<=pReader->nData ); + pReader->pData += n+nTerm; + pReader->nData -= n+nTerm; + } +} + +static int interiorReaderAtEnd(InteriorReader *pReader){ + return pReader->term.nData==0; +} + +static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ + return pReader->iBlockid; +} + +static int interiorReaderTermBytes(InteriorReader *pReader){ + assert( !interiorReaderAtEnd(pReader) ); + return pReader->term.nData; +} +static const char *interiorReaderTerm(InteriorReader *pReader){ + assert( !interiorReaderAtEnd(pReader) ); + return pReader->term.pData; +} + +/* Step forward to the next term in the node. */ +static void interiorReaderStep(InteriorReader *pReader){ + assert( !interiorReaderAtEnd(pReader) ); + + /* If the last term has been read, signal eof, else construct the + ** next term. + */ + if( pReader->nData==0 ){ + dataBufferReset(&pReader->term); + }else{ + int n, nPrefix, nSuffix; + + n = fts3GetVarint32(pReader->pData, &nPrefix); + n += fts3GetVarint32(pReader->pData+n, &nSuffix); + + /* Truncate the current term and append suffix data. */ + pReader->term.nData = nPrefix; + dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); + + assert( n+nSuffix<=pReader->nData ); + pReader->pData += n+nSuffix; + pReader->nData -= n+nSuffix; + } + pReader->iBlockid++; +} + +/* Compare the current term to pTerm[nTerm], returning strcmp-style +** results. If isPrefix, equality means equal through nTerm bytes. +*/ +static int interiorReaderTermCmp(InteriorReader *pReader, + const char *pTerm, int nTerm, int isPrefix){ + const char *pReaderTerm = interiorReaderTerm(pReader); + int nReaderTerm = interiorReaderTermBytes(pReader); + int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm; + + if( n==0 ){ + if( nReaderTerm>0 ) return -1; + if( nTerm>0 ) return 1; + return 0; + } + + c = memcmp(pReaderTerm, pTerm, n); + if( c!=0 ) return c; + if( isPrefix && n==nTerm ) return 0; + return nReaderTerm - nTerm; +} + +/****************************************************************/ +/* LeafWriter is used to collect terms and associated doclist data +** into leaf blocks in %_segments (see top of file for format info). +** Expected usage is: +** +** LeafWriter writer; +** leafWriterInit(0, 0, &writer); +** while( sorted_terms_left_to_process ){ +** // data is doclist data for that term. +** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); +** if( rc!=SQLITE_OK ) goto err; +** } +** rc = leafWriterFinalize(v, &writer); +**err: +** leafWriterDestroy(&writer); +** return rc; +** +** leafWriterStep() may write a collected leaf out to %_segments. +** leafWriterFinalize() finishes writing any buffered data and stores +** a root node in %_segdir. leafWriterDestroy() frees all buffers and +** InteriorWriters allocated as part of writing this segment. +** +** TODO(shess) Document leafWriterStepMerge(). +*/ + +/* Put terms with data this big in their own block. */ +#define STANDALONE_MIN 1024 + +/* Keep leaf blocks below this size. */ +#define LEAF_MAX 2048 + +typedef struct LeafWriter { + int iLevel; + int idx; + sqlite_int64 iStartBlockid; /* needed to create the root info */ + sqlite_int64 iEndBlockid; /* when we're done writing. */ + + DataBuffer term; /* previous encoded term */ + DataBuffer data; /* encoding buffer */ + + /* bytes of first term in the current node which distinguishes that + ** term from the last term of the previous node. + */ + int nTermDistinct; + + InteriorWriter parentWriter; /* if we overflow */ + int has_parent; +} LeafWriter; + +static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ + CLEAR(pWriter); + pWriter->iLevel = iLevel; + pWriter->idx = idx; + + dataBufferInit(&pWriter->term, 32); + + /* Start out with a reasonably sized block, though it can grow. */ + dataBufferInit(&pWriter->data, LEAF_MAX); +} + +#ifndef NDEBUG +/* Verify that the data is readable as a leaf node. */ +static void leafNodeValidate(const char *pData, int nData){ + int n, iDummy; + + if( nData==0 ) return; + assert( nData>0 ); + assert( pData!=0 ); + assert( pData+nData>pData ); + + /* Must lead with a varint(0) */ + n = fts3GetVarint32(pData, &iDummy); + assert( iDummy==0 ); + assert( n>0 ); + assert( n<nData ); + pData += n; + nData -= n; + + /* Leading term length and data must fit in buffer. */ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<nData ); + pData += n+iDummy; + nData -= n+iDummy; + + /* Leading term's doclist length and data must fit. */ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<=nData ); + ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); + pData += n+iDummy; + nData -= n+iDummy; + + /* Verify that trailing terms and doclists also are readable. */ + while( nData!=0 ){ + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>=0 ); + assert( n<nData ); + pData += n; + nData -= n; + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<nData ); + pData += n+iDummy; + nData -= n+iDummy; + + n = fts3GetVarint32(pData, &iDummy); + assert( n>0 ); + assert( iDummy>0 ); + assert( n+iDummy>0 ); + assert( n+iDummy<=nData ); + ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); + pData += n+iDummy; + nData -= n+iDummy; + } +} +#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) +#else +#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) +#endif + +/* Flush the current leaf node to %_segments, and adding the resulting +** blockid and the starting term to the interior node which will +** contain it. +*/ +static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, + int iData, int nData){ + sqlite_int64 iBlockid = 0; + const char *pStartingTerm; + int nStartingTerm, rc, n; + + /* Must have the leading varint(0) flag, plus at least some + ** valid-looking data. + */ + assert( nData>2 ); + assert( iData>=0 ); + assert( iData+nData<=pWriter->data.nData ); + ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); + + rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); + if( rc!=SQLITE_OK ) return rc; + assert( iBlockid!=0 ); + + /* Reconstruct the first term in the leaf for purposes of building + ** the interior node. + */ + n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm); + pStartingTerm = pWriter->data.pData+iData+1+n; + assert( pWriter->data.nData>iData+1+n+nStartingTerm ); + assert( pWriter->nTermDistinct>0 ); + assert( pWriter->nTermDistinct<=nStartingTerm ); + nStartingTerm = pWriter->nTermDistinct; + + if( pWriter->has_parent ){ + interiorWriterAppend(&pWriter->parentWriter, + pStartingTerm, nStartingTerm, iBlockid); + }else{ + interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, + &pWriter->parentWriter); + pWriter->has_parent = 1; + } + + /* Track the span of this segment's leaf nodes. */ + if( pWriter->iEndBlockid==0 ){ + pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; + }else{ + pWriter->iEndBlockid++; + assert( iBlockid==pWriter->iEndBlockid ); + } + + return SQLITE_OK; +} +static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ + int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); + if( rc!=SQLITE_OK ) return rc; + + /* Re-initialize the output buffer. */ + dataBufferReset(&pWriter->data); + + return SQLITE_OK; +} + +/* Fetch the root info for the segment. If the entire leaf fits +** within ROOT_MAX, then it will be returned directly, otherwise it +** will be flushed and the root info will be returned from the +** interior node. *piEndBlockid is set to the blockid of the last +** interior or leaf node written to disk (0 if none are written at +** all). +*/ +static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, + char **ppRootInfo, int *pnRootInfo, + sqlite_int64 *piEndBlockid){ + /* we can fit the segment entirely inline */ + if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){ + *ppRootInfo = pWriter->data.pData; + *pnRootInfo = pWriter->data.nData; + *piEndBlockid = 0; + return SQLITE_OK; + } + + /* Flush remaining leaf data. */ + if( pWriter->data.nData>0 ){ + int rc = leafWriterFlush(v, pWriter); + if( rc!=SQLITE_OK ) return rc; + } + + /* We must have flushed a leaf at some point. */ + assert( pWriter->has_parent ); + + /* Tenatively set the end leaf blockid as the end blockid. If the + ** interior node can be returned inline, this will be the final + ** blockid, otherwise it will be overwritten by + ** interiorWriterRootInfo(). + */ + *piEndBlockid = pWriter->iEndBlockid; + + return interiorWriterRootInfo(v, &pWriter->parentWriter, + ppRootInfo, pnRootInfo, piEndBlockid); +} + +/* Collect the rootInfo data and store it into the segment directory. +** This has the effect of flushing the segment's leaf data to +** %_segments, and also flushing any interior nodes to %_segments. +*/ +static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ + sqlite_int64 iEndBlockid; + char *pRootInfo; + int rc, nRootInfo; + + rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + /* Don't bother storing an entirely empty segment. */ + if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; + + return segdir_set(v, pWriter->iLevel, pWriter->idx, + pWriter->iStartBlockid, pWriter->iEndBlockid, + iEndBlockid, pRootInfo, nRootInfo); +} + +static void leafWriterDestroy(LeafWriter *pWriter){ + if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); + dataBufferDestroy(&pWriter->term); + dataBufferDestroy(&pWriter->data); +} + +/* Encode a term into the leafWriter, delta-encoding as appropriate. +** Returns the length of the new term which distinguishes it from the +** previous term, which can be used to set nTermDistinct when a node +** boundary is crossed. +*/ +static int leafWriterEncodeTerm(LeafWriter *pWriter, + const char *pTerm, int nTerm){ + char c[VARINT_MAX+VARINT_MAX]; + int n, nPrefix = 0; + + assert( nTerm>0 ); + while( nPrefix<pWriter->term.nData && + pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ + nPrefix++; + /* Failing this implies that the terms weren't in order. */ + assert( nPrefix<nTerm ); + } + + if( pWriter->data.nData==0 ){ + /* Encode the node header and leading term as: + ** varint(0) + ** varint(nTerm) + ** char pTerm[nTerm] + */ + n = fts3PutVarint(c, '\0'); + n += fts3PutVarint(c+n, nTerm); + dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); + }else{ + /* Delta-encode the term as: + ** varint(nPrefix) + ** varint(nSuffix) + ** char pTermSuffix[nSuffix] + */ + n = fts3PutVarint(c, nPrefix); + n += fts3PutVarint(c+n, nTerm-nPrefix); + dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); + } + dataBufferReplace(&pWriter->term, pTerm, nTerm); + + return nPrefix+1; +} + +/* Used to avoid a memmove when a large amount of doclist data is in +** the buffer. This constructs a node and term header before +** iDoclistData and flushes the resulting complete node using +** leafWriterInternalFlush(). +*/ +static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, + const char *pTerm, int nTerm, + int iDoclistData){ + char c[VARINT_MAX+VARINT_MAX]; + int iData, n = fts3PutVarint(c, 0); + n += fts3PutVarint(c+n, nTerm); + + /* There should always be room for the header. Even if pTerm shared + ** a substantial prefix with the previous term, the entire prefix + ** could be constructed from earlier data in the doclist, so there + ** should be room. + */ + assert( iDoclistData>=n+nTerm ); + + iData = iDoclistData-(n+nTerm); + memcpy(pWriter->data.pData+iData, c, n); + memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); + + return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); +} + +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of +** %_segments. +*/ +static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, + const char *pTerm, int nTerm, + DLReader *pReaders, int nReaders){ + char c[VARINT_MAX+VARINT_MAX]; + int iTermData = pWriter->data.nData, iDoclistData; + int i, nData, n, nActualData, nActual, rc, nTermDistinct; + + ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); + nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); + + /* Remember nTermDistinct if opening a new node. */ + if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; + + iDoclistData = pWriter->data.nData; + + /* Estimate the length of the merged doclist so we can leave space + ** to encode it. + */ + for(i=0, nData=0; i<nReaders; i++){ + nData += dlrAllDataBytes(&pReaders[i]); + } + n = fts3PutVarint(c, nData); + dataBufferAppend(&pWriter->data, c, n); + + docListMerge(&pWriter->data, pReaders, nReaders); + ASSERT_VALID_DOCLIST(DL_DEFAULT, + pWriter->data.pData+iDoclistData+n, + pWriter->data.nData-iDoclistData-n, NULL); + + /* The actual amount of doclist data at this point could be smaller + ** than the length we encoded. Additionally, the space required to + ** encode this length could be smaller. For small doclists, this is + ** not a big deal, we can just use memmove() to adjust things. + */ + nActualData = pWriter->data.nData-(iDoclistData+n); + nActual = fts3PutVarint(c, nActualData); + assert( nActualData<=nData ); + assert( nActual<=n ); + + /* If the new doclist is big enough for force a standalone leaf + ** node, we can immediately flush it inline without doing the + ** memmove(). + */ + /* TODO(shess) This test matches leafWriterStep(), which does this + ** test before it knows the cost to varint-encode the term and + ** doclist lengths. At some point, change to + ** pWriter->data.nData-iTermData>STANDALONE_MIN. + */ + if( nTerm+nActualData>STANDALONE_MIN ){ + /* Push leaf node from before this term. */ + if( iTermData>0 ){ + rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); + if( rc!=SQLITE_OK ) return rc; + + pWriter->nTermDistinct = nTermDistinct; + } + + /* Fix the encoded doclist length. */ + iDoclistData += n - nActual; + memcpy(pWriter->data.pData+iDoclistData, c, nActual); + + /* Push the standalone leaf node. */ + rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); + if( rc!=SQLITE_OK ) return rc; + + /* Leave the node empty. */ + dataBufferReset(&pWriter->data); + + return rc; + } + + /* At this point, we know that the doclist was small, so do the + ** memmove if indicated. + */ + if( nActual<n ){ + memmove(pWriter->data.pData+iDoclistData+nActual, + pWriter->data.pData+iDoclistData+n, + pWriter->data.nData-(iDoclistData+n)); + pWriter->data.nData -= n-nActual; + } + + /* Replace written length with actual length. */ + memcpy(pWriter->data.pData+iDoclistData, c, nActual); + + /* If the node is too large, break things up. */ + /* TODO(shess) This test matches leafWriterStep(), which does this + ** test before it knows the cost to varint-encode the term and + ** doclist lengths. At some point, change to + ** pWriter->data.nData>LEAF_MAX. + */ + if( iTermData+nTerm+nActualData>LEAF_MAX ){ + /* Flush out the leading data as a node */ + rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); + if( rc!=SQLITE_OK ) return rc; + + pWriter->nTermDistinct = nTermDistinct; + + /* Rebuild header using the current term */ + n = fts3PutVarint(pWriter->data.pData, 0); + n += fts3PutVarint(pWriter->data.pData+n, nTerm); + memcpy(pWriter->data.pData+n, pTerm, nTerm); + n += nTerm; + + /* There should always be room, because the previous encoding + ** included all data necessary to construct the term. + */ + assert( n<iDoclistData ); + /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the + ** following memcpy() is safe (as opposed to needing a memmove). + */ + assert( 2*STANDALONE_MIN<=LEAF_MAX ); + assert( n+pWriter->data.nData-iDoclistData<iDoclistData ); + memcpy(pWriter->data.pData+n, + pWriter->data.pData+iDoclistData, + pWriter->data.nData-iDoclistData); + pWriter->data.nData -= iDoclistData-n; + } + ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); + + return SQLITE_OK; +} + +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of +** %_segments. +*/ +/* TODO(shess) Revise writeZeroSegment() so that doclists are +** constructed directly in pWriter->data. +*/ +static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, + const char *pTerm, int nTerm, + const char *pData, int nData){ + int rc; + DLReader reader; + + dlrInit(&reader, DL_DEFAULT, pData, nData); + rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); + dlrDestroy(&reader); + + return rc; +} + + +/****************************************************************/ +/* LeafReader is used to iterate over an individual leaf node. */ +typedef struct LeafReader { + DataBuffer term; /* copy of current term. */ + + const char *pData; /* data for current term. */ + int nData; +} LeafReader; + +static void leafReaderDestroy(LeafReader *pReader){ + dataBufferDestroy(&pReader->term); + SCRAMBLE(pReader); +} + +static int leafReaderAtEnd(LeafReader *pReader){ + return pReader->nData<=0; +} + +/* Access the current term. */ +static int leafReaderTermBytes(LeafReader *pReader){ + return pReader->term.nData; +} +static const char *leafReaderTerm(LeafReader *pReader){ + assert( pReader->term.nData>0 ); + return pReader->term.pData; +} + +/* Access the doclist data for the current term. */ +static int leafReaderDataBytes(LeafReader *pReader){ + int nData; + assert( pReader->term.nData>0 ); + fts3GetVarint32(pReader->pData, &nData); + return nData; +} +static const char *leafReaderData(LeafReader *pReader){ + int n, nData; + assert( pReader->term.nData>0 ); + n = fts3GetVarint32(pReader->pData, &nData); + return pReader->pData+n; +} + +static void leafReaderInit(const char *pData, int nData, + LeafReader *pReader){ + int nTerm, n; + + assert( nData>0 ); + assert( pData[0]=='\0' ); + + CLEAR(pReader); + + /* Read the first term, skipping the header byte. */ + n = fts3GetVarint32(pData+1, &nTerm); + dataBufferInit(&pReader->term, nTerm); + dataBufferReplace(&pReader->term, pData+1+n, nTerm); + + /* Position after the first term. */ + assert( 1+n+nTerm<nData ); + pReader->pData = pData+1+n+nTerm; + pReader->nData = nData-1-n-nTerm; +} + +/* Step the reader forward to the next term. */ +static void leafReaderStep(LeafReader *pReader){ + int n, nData, nPrefix, nSuffix; + assert( !leafReaderAtEnd(pReader) ); + + /* Skip previous entry's data block. */ + n = fts3GetVarint32(pReader->pData, &nData); + assert( n+nData<=pReader->nData ); + pReader->pData += n+nData; + pReader->nData -= n+nData; + + if( !leafReaderAtEnd(pReader) ){ + /* Construct the new term using a prefix from the old term plus a + ** suffix from the leaf data. + */ + n = fts3GetVarint32(pReader->pData, &nPrefix); + n += fts3GetVarint32(pReader->pData+n, &nSuffix); + assert( n+nSuffix<pReader->nData ); + pReader->term.nData = nPrefix; + dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); + + pReader->pData += n+nSuffix; + pReader->nData -= n+nSuffix; + } +} + +/* strcmp-style comparison of pReader's current term against pTerm. +** If isPrefix, equality means equal through nTerm bytes. +*/ +static int leafReaderTermCmp(LeafReader *pReader, + const char *pTerm, int nTerm, int isPrefix){ + int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm; + if( n==0 ){ + if( pReader->term.nData>0 ) return -1; + if(nTerm>0 ) return 1; + return 0; + } + + c = memcmp(pReader->term.pData, pTerm, n); + if( c!=0 ) return c; + if( isPrefix && n==nTerm ) return 0; + return pReader->term.nData - nTerm; +} + + +/****************************************************************/ +/* LeavesReader wraps LeafReader to allow iterating over the entire +** leaf layer of the tree. +*/ +typedef struct LeavesReader { + int idx; /* Index within the segment. */ + + sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */ + int eof; /* we've seen SQLITE_DONE from pStmt. */ + + LeafReader leafReader; /* reader for the current leaf. */ + DataBuffer rootData; /* root data for inline. */ +} LeavesReader; + +/* Access the current term. */ +static int leavesReaderTermBytes(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderTermBytes(&pReader->leafReader); +} +static const char *leavesReaderTerm(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderTerm(&pReader->leafReader); +} + +/* Access the doclist data for the current term. */ +static int leavesReaderDataBytes(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderDataBytes(&pReader->leafReader); +} +static const char *leavesReaderData(LeavesReader *pReader){ + assert( !pReader->eof ); + return leafReaderData(&pReader->leafReader); +} + +static int leavesReaderAtEnd(LeavesReader *pReader){ + return pReader->eof; +} + +/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus +** leaving the statement handle open, which locks the table. +*/ +/* TODO(shess) This "solution" is not satisfactory. Really, there +** should be check-in function for all statement handles which +** arranges to call sqlite3_reset(). This most likely will require +** modification to control flow all over the place, though, so for now +** just punt. +** +** Note the the current system assumes that segment merges will run to +** completion, which is why this particular probably hasn't arisen in +** this case. Probably a brittle assumption. +*/ +static int leavesReaderReset(LeavesReader *pReader){ + return sqlite3_reset(pReader->pStmt); +} + +static void leavesReaderDestroy(LeavesReader *pReader){ + leafReaderDestroy(&pReader->leafReader); + dataBufferDestroy(&pReader->rootData); + SCRAMBLE(pReader); +} + +/* Initialize pReader with the given root data (if iStartBlockid==0 +** the leaf data was entirely contained in the root), or from the +** stream of blocks between iStartBlockid and iEndBlockid, inclusive. +*/ +static int leavesReaderInit(fulltext_vtab *v, + int idx, + sqlite_int64 iStartBlockid, + sqlite_int64 iEndBlockid, + const char *pRootData, int nRootData, + LeavesReader *pReader){ + CLEAR(pReader); + pReader->idx = idx; + + dataBufferInit(&pReader->rootData, 0); + if( iStartBlockid==0 ){ + /* Entire leaf level fit in root data. */ + dataBufferReplace(&pReader->rootData, pRootData, nRootData); + leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, + &pReader->leafReader); + }else{ + sqlite3_stmt *s; + int rc = sql_get_leaf_statement(v, idx, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iStartBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 2, iEndBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ){ + pReader->eof = 1; + return SQLITE_OK; + } + if( rc!=SQLITE_ROW ) return rc; + + pReader->pStmt = s; + leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), + sqlite3_column_bytes(pReader->pStmt, 0), + &pReader->leafReader); + } + return SQLITE_OK; +} + +/* Step the current leaf forward to the next term. If we reach the +** end of the current leaf, step forward to the next leaf block. +*/ +static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ + assert( !leavesReaderAtEnd(pReader) ); + leafReaderStep(&pReader->leafReader); + + if( leafReaderAtEnd(&pReader->leafReader) ){ + int rc; + if( pReader->rootData.pData ){ + pReader->eof = 1; + return SQLITE_OK; + } + rc = sqlite3_step(pReader->pStmt); + if( rc!=SQLITE_ROW ){ + pReader->eof = 1; + return rc==SQLITE_DONE ? SQLITE_OK : rc; + } + leafReaderDestroy(&pReader->leafReader); + leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), + sqlite3_column_bytes(pReader->pStmt, 0), + &pReader->leafReader); + } + return SQLITE_OK; +} + +/* Order LeavesReaders by their term, ignoring idx. Readers at eof +** always sort to the end. +*/ +static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ + if( leavesReaderAtEnd(lr1) ){ + if( leavesReaderAtEnd(lr2) ) return 0; + return 1; + } + if( leavesReaderAtEnd(lr2) ) return -1; + + return leafReaderTermCmp(&lr1->leafReader, + leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), + 0); +} + +/* Similar to leavesReaderTermCmp(), with additional ordering by idx +** so that older segments sort before newer segments. +*/ +static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ + int c = leavesReaderTermCmp(lr1, lr2); + if( c!=0 ) return c; + return lr1->idx-lr2->idx; +} + +/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its +** sorted position. +*/ +static void leavesReaderReorder(LeavesReader *pLr, int nLr){ + while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ + LeavesReader tmp = pLr[0]; + pLr[0] = pLr[1]; + pLr[1] = tmp; + nLr--; + pLr++; + } +} + +/* Initializes pReaders with the segments from level iLevel, returning +** the number of segments in *piReaders. Leaves pReaders in sorted +** order. +*/ +static int leavesReadersInit(fulltext_vtab *v, int iLevel, + LeavesReader *pReaders, int *piReaders){ + sqlite3_stmt *s; + int i, rc = sql_get_statement(v, SEGDIR_SELECT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int(s, 1, iLevel); + if( rc!=SQLITE_OK ) return rc; + + i = 0; + while( (rc = sqlite3_step(s))==SQLITE_ROW ){ + sqlite_int64 iStart = sqlite3_column_int64(s, 0); + sqlite_int64 iEnd = sqlite3_column_int64(s, 1); + const char *pRootData = sqlite3_column_blob(s, 2); + int nRootData = sqlite3_column_bytes(s, 2); + + assert( i<MERGE_COUNT ); + rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData, + &pReaders[i]); + if( rc!=SQLITE_OK ) break; + + i++; + } + if( rc!=SQLITE_DONE ){ + while( i-->0 ){ + leavesReaderDestroy(&pReaders[i]); + } + return rc; + } + + *piReaders = i; + + /* Leave our results sorted by term, then age. */ + while( i-- ){ + leavesReaderReorder(pReaders+i, *piReaders-i); + } + return SQLITE_OK; +} + +/* Merge doclists from pReaders[nReaders] into a single doclist, which +** is written to pWriter. Assumes pReaders is ordered oldest to +** newest. +*/ +/* TODO(shess) Consider putting this inline in segmentMerge(). */ +static int leavesReadersMerge(fulltext_vtab *v, + LeavesReader *pReaders, int nReaders, + LeafWriter *pWriter){ + DLReader dlReaders[MERGE_COUNT]; + const char *pTerm = leavesReaderTerm(pReaders); + int i, nTerm = leavesReaderTermBytes(pReaders); + + assert( nReaders<=MERGE_COUNT ); + + for(i=0; i<nReaders; i++){ + dlrInit(&dlReaders[i], DL_DEFAULT, + leavesReaderData(pReaders+i), + leavesReaderDataBytes(pReaders+i)); + } + + return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders); +} + +/* Forward ref due to mutual recursion with segdirNextIndex(). */ +static int segmentMerge(fulltext_vtab *v, int iLevel); + +/* Put the next available index at iLevel into *pidx. If iLevel +** already has MERGE_COUNT segments, they are merged to a higher +** level to make room. +*/ +static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){ + int rc = segdir_max_index(v, iLevel, pidx); + if( rc==SQLITE_DONE ){ /* No segments at iLevel. */ + *pidx = 0; + }else if( rc==SQLITE_ROW ){ + if( *pidx==(MERGE_COUNT-1) ){ + rc = segmentMerge(v, iLevel); + if( rc!=SQLITE_OK ) return rc; + *pidx = 0; + }else{ + (*pidx)++; + } + }else{ + return rc; + } + return SQLITE_OK; +} + +/* Merge MERGE_COUNT segments at iLevel into a new segment at +** iLevel+1. If iLevel+1 is already full of segments, those will be +** merged to make room. +*/ +static int segmentMerge(fulltext_vtab *v, int iLevel){ + LeafWriter writer; + LeavesReader lrs[MERGE_COUNT]; + int i, rc, idx = 0; + + /* Determine the next available segment index at the next level, + ** merging as necessary. + */ + rc = segdirNextIndex(v, iLevel+1, &idx); + if( rc!=SQLITE_OK ) return rc; + + /* TODO(shess) This assumes that we'll always see exactly + ** MERGE_COUNT segments to merge at a given level. That will be + ** broken if we allow the developer to request preemptive or + ** deferred merging. + */ + memset(&lrs, '\0', sizeof(lrs)); + rc = leavesReadersInit(v, iLevel, lrs, &i); + if( rc!=SQLITE_OK ) return rc; + assert( i==MERGE_COUNT ); + + leafWriterInit(iLevel+1, idx, &writer); + + /* Since leavesReaderReorder() pushes readers at eof to the end, + ** when the first reader is empty, all will be empty. + */ + while( !leavesReaderAtEnd(lrs) ){ + /* Figure out how many readers share their next term. */ + for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){ + if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break; + } + + rc = leavesReadersMerge(v, lrs, i, &writer); + if( rc!=SQLITE_OK ) goto err; + + /* Step forward those that were merged. */ + while( i-->0 ){ + rc = leavesReaderStep(v, lrs+i); + if( rc!=SQLITE_OK ) goto err; + + /* Reorder by term, then by age. */ + leavesReaderReorder(lrs+i, MERGE_COUNT-i); + } + } + + for(i=0; i<MERGE_COUNT; i++){ + leavesReaderDestroy(&lrs[i]); + } + + rc = leafWriterFinalize(v, &writer); + leafWriterDestroy(&writer); + if( rc!=SQLITE_OK ) return rc; + + /* Delete the merged segment data. */ + return segdir_delete(v, iLevel); + + err: + for(i=0; i<MERGE_COUNT; i++){ + leavesReaderDestroy(&lrs[i]); + } + leafWriterDestroy(&writer); + return rc; +} + +/* Accumulate the union of *acc and *pData into *acc. */ +static void docListAccumulateUnion(DataBuffer *acc, + const char *pData, int nData) { + DataBuffer tmp = *acc; + dataBufferInit(acc, tmp.nData+nData); + docListUnion(tmp.pData, tmp.nData, pData, nData, acc); + dataBufferDestroy(&tmp); +} + +/* TODO(shess) It might be interesting to explore different merge +** strategies, here. For instance, since this is a sorted merge, we +** could easily merge many doclists in parallel. With some +** comprehension of the storage format, we could merge all of the +** doclists within a leaf node directly from the leaf node's storage. +** It may be worthwhile to merge smaller doclists before larger +** doclists, since they can be traversed more quickly - but the +** results may have less overlap, making them more expensive in a +** different way. +*/ + +/* Scan pReader for pTerm/nTerm, and merge the term's doclist over +** *out (any doclists with duplicate docids overwrite those in *out). +** Internal function for loadSegmentLeaf(). +*/ +static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + /* doclist data is accumulated into pBuffers similar to how one does + ** increment in binary arithmetic. If index 0 is empty, the data is + ** stored there. If there is data there, it is merged and the + ** results carried into position 1, with further merge-and-carry + ** until an empty position is found. + */ + DataBuffer *pBuffers = NULL; + int nBuffers = 0, nMaxBuffers = 0, rc; + + assert( nTerm>0 ); + + for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); + rc=leavesReaderStep(v, pReader)){ + /* TODO(shess) Really want leavesReaderTermCmp(), but that name is + ** already taken to compare the terms of two LeavesReaders. Think + ** on a better name. [Meanwhile, break encapsulation rather than + ** use a confusing name.] + */ + int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); + if( c>0 ) break; /* Past any possible matches. */ + if( c==0 ){ + const char *pData = leavesReaderData(pReader); + int iBuffer, nData = leavesReaderDataBytes(pReader); + + /* Find the first empty buffer. */ + for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ + if( 0==pBuffers[iBuffer].nData ) break; + } + + /* Out of buffers, add an empty one. */ + if( iBuffer==nBuffers ){ + if( nBuffers==nMaxBuffers ){ + DataBuffer *p; + nMaxBuffers += 20; + + /* Manual realloc so we can handle NULL appropriately. */ + p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers)); + if( p==NULL ){ + rc = SQLITE_NOMEM; + break; + } + + if( nBuffers>0 ){ + assert(pBuffers!=NULL); + memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); + sqlite3_free(pBuffers); + } + pBuffers = p; + } + dataBufferInit(&(pBuffers[nBuffers]), 0); + nBuffers++; + } + + /* At this point, must have an empty at iBuffer. */ + assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0); + + /* If empty was first buffer, no need for merge logic. */ + if( iBuffer==0 ){ + dataBufferReplace(&(pBuffers[0]), pData, nData); + }else{ + /* pAcc is the empty buffer the merged data will end up in. */ + DataBuffer *pAcc = &(pBuffers[iBuffer]); + DataBuffer *p = &(pBuffers[0]); + + /* Handle position 0 specially to avoid need to prime pAcc + ** with pData/nData. + */ + dataBufferSwap(p, pAcc); + docListAccumulateUnion(pAcc, pData, nData); + + /* Accumulate remaining doclists into pAcc. */ + for(++p; p<pAcc; ++p){ + docListAccumulateUnion(pAcc, p->pData, p->nData); + + /* dataBufferReset() could allow a large doclist to blow up + ** our memory requirements. + */ + if( p->nCapacity<1024 ){ + dataBufferReset(p); + }else{ + dataBufferDestroy(p); + dataBufferInit(p, 0); + } + } + } + } + } + + /* Union all the doclists together into *out. */ + /* TODO(shess) What if *out is big? Sigh. */ + if( rc==SQLITE_OK && nBuffers>0 ){ + int iBuffer; + for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ + if( pBuffers[iBuffer].nData>0 ){ + if( out->nData==0 ){ + dataBufferSwap(out, &(pBuffers[iBuffer])); + }else{ + docListAccumulateUnion(out, pBuffers[iBuffer].pData, + pBuffers[iBuffer].nData); + } + } + } + } + + while( nBuffers-- ){ + dataBufferDestroy(&(pBuffers[nBuffers])); + } + if( pBuffers!=NULL ) sqlite3_free(pBuffers); + + return rc; +} + +/* Call loadSegmentLeavesInt() with pData/nData as input. */ +static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + LeavesReader reader; + int rc; + + assert( nData>1 ); + assert( *pData=='\0' ); + rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); + if( rc!=SQLITE_OK ) return rc; + + rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); + leavesReaderReset(&reader); + leavesReaderDestroy(&reader); + return rc; +} + +/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to +** iEndLeaf (inclusive) as input, and merge the resulting doclist into +** out. +*/ +static int loadSegmentLeaves(fulltext_vtab *v, + sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + int rc; + LeavesReader reader; + + assert( iStartLeaf<=iEndLeaf ); + rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); + if( rc!=SQLITE_OK ) return rc; + + rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); + leavesReaderReset(&reader); + leavesReaderDestroy(&reader); + return rc; +} + +/* Taking pData/nData as an interior node, find the sequence of child +** nodes which could include pTerm/nTerm/isPrefix. Note that the +** interior node terms logically come between the blocks, so there is +** one more blockid than there are terms (that block contains terms >= +** the last interior-node term). +*/ +/* TODO(shess) The calling code may already know that the end child is +** not worth calculating, because the end may be in a later sibling +** node. Consider whether breaking symmetry is worthwhile. I suspect +** it is not worthwhile. +*/ +static void getChildrenContaining(const char *pData, int nData, + const char *pTerm, int nTerm, int isPrefix, + sqlite_int64 *piStartChild, + sqlite_int64 *piEndChild){ + InteriorReader reader; + + assert( nData>1 ); + assert( *pData!='\0' ); + interiorReaderInit(pData, nData, &reader); + + /* Scan for the first child which could contain pTerm/nTerm. */ + while( !interiorReaderAtEnd(&reader) ){ + if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; + interiorReaderStep(&reader); + } + *piStartChild = interiorReaderCurrentBlockid(&reader); + + /* Keep scanning to find a term greater than our term, using prefix + ** comparison if indicated. If isPrefix is false, this will be the + ** same blockid as the starting block. + */ + while( !interiorReaderAtEnd(&reader) ){ + if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; + interiorReaderStep(&reader); + } + *piEndChild = interiorReaderCurrentBlockid(&reader); + + interiorReaderDestroy(&reader); + + /* Children must ascend, and if !prefix, both must be the same. */ + assert( *piEndChild>=*piStartChild ); + assert( isPrefix || *piStartChild==*piEndChild ); +} + +/* Read block at iBlockid and pass it with other params to +** getChildrenContaining(). +*/ +static int loadAndGetChildrenContaining( + fulltext_vtab *v, + sqlite_int64 iBlockid, + const char *pTerm, int nTerm, int isPrefix, + sqlite_int64 *piStartChild, sqlite_int64 *piEndChild +){ + sqlite3_stmt *s = NULL; + int rc; + + assert( iBlockid!=0 ); + assert( pTerm!=NULL ); + assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */ + assert( piStartChild!=NULL ); + assert( piEndChild!=NULL ); + + rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_bind_int64(s, 1, iBlockid); + if( rc!=SQLITE_OK ) return rc; + + rc = sqlite3_step(s); + if( rc==SQLITE_DONE ) return SQLITE_ERROR; + if( rc!=SQLITE_ROW ) return rc; + + getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0), + pTerm, nTerm, isPrefix, piStartChild, piEndChild); + + /* We expect only one row. We must execute another sqlite3_step() + * to complete the iteration; otherwise the table will remain + * locked. */ + rc = sqlite3_step(s); + if( rc==SQLITE_ROW ) return SQLITE_ERROR; + if( rc!=SQLITE_DONE ) return rc; + + return SQLITE_OK; +} + +/* Traverse the tree represented by pData[nData] looking for +** pTerm[nTerm], placing its doclist into *out. This is internal to +** loadSegment() to make error-handling cleaner. +*/ +static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, + sqlite_int64 iLeavesEnd, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + /* Special case where root is a leaf. */ + if( *pData=='\0' ){ + return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); + }else{ + int rc; + sqlite_int64 iStartChild, iEndChild; + + /* Process pData as an interior node, then loop down the tree + ** until we find the set of leaf nodes to scan for the term. + */ + getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, + &iStartChild, &iEndChild); + while( iStartChild>iLeavesEnd ){ + sqlite_int64 iNextStart, iNextEnd; + rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, + &iNextStart, &iNextEnd); + if( rc!=SQLITE_OK ) return rc; + + /* If we've branched, follow the end branch, too. */ + if( iStartChild!=iEndChild ){ + sqlite_int64 iDummy; + rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, + &iDummy, &iNextEnd); + if( rc!=SQLITE_OK ) return rc; + } + + assert( iNextStart<=iNextEnd ); + iStartChild = iNextStart; + iEndChild = iNextEnd; + } + assert( iStartChild<=iLeavesEnd ); + assert( iEndChild<=iLeavesEnd ); + + /* Scan through the leaf segments for doclists. */ + return loadSegmentLeaves(v, iStartChild, iEndChild, + pTerm, nTerm, isPrefix, out); + } +} + +/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then +** merge its doclist over *out (any duplicate doclists read from the +** segment rooted at pData will overwrite those in *out). +*/ +/* TODO(shess) Consider changing this to determine the depth of the +** leaves using either the first characters of interior nodes (when +** ==1, we're one level above the leaves), or the first character of +** the root (which will describe the height of the tree directly). +** Either feels somewhat tricky to me. +*/ +/* TODO(shess) The current merge is likely to be slow for large +** doclists (though it should process from newest/smallest to +** oldest/largest, so it may not be that bad). It might be useful to +** modify things to allow for N-way merging. This could either be +** within a segment, with pairwise merges across segments, or across +** all segments at once. +*/ +static int loadSegment(fulltext_vtab *v, const char *pData, int nData, + sqlite_int64 iLeavesEnd, + const char *pTerm, int nTerm, int isPrefix, + DataBuffer *out){ + DataBuffer result; + int rc; + + assert( nData>1 ); + + /* This code should never be called with buffered updates. */ + assert( v->nPendingData<0 ); + + dataBufferInit(&result, 0); + rc = loadSegmentInt(v, pData, nData, iLeavesEnd, + pTerm, nTerm, isPrefix, &result); + if( rc==SQLITE_OK && result.nData>0 ){ + if( out->nData==0 ){ + DataBuffer tmp = *out; + *out = result; + result = tmp; + }else{ + DataBuffer merged; + DLReader readers[2]; + + dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); + dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); + dataBufferInit(&merged, out->nData+result.nData); + docListMerge(&merged, readers, 2); + dataBufferDestroy(out); + *out = merged; + dlrDestroy(&readers[0]); + dlrDestroy(&readers[1]); + } + } + dataBufferDestroy(&result); + return rc; +} + +/* Scan the database and merge together the posting lists for the term +** into *out. +*/ +static int termSelect(fulltext_vtab *v, int iColumn, + const char *pTerm, int nTerm, int isPrefix, + DocListType iType, DataBuffer *out){ + DataBuffer doclist; + sqlite3_stmt *s; + int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); + if( rc!=SQLITE_OK ) return rc; + + /* This code should never be called with buffered updates. */ + assert( v->nPendingData<0 ); + + dataBufferInit(&doclist, 0); + + /* Traverse the segments from oldest to newest so that newer doclist + ** elements for given docids overwrite older elements. + */ + while( (rc = sqlite3_step(s))==SQLITE_ROW ){ + const char *pData = sqlite3_column_blob(s, 0); + const int nData = sqlite3_column_bytes(s, 0); + const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); + rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, + &doclist); + if( rc!=SQLITE_OK ) goto err; + } + if( rc==SQLITE_DONE ){ + if( doclist.nData!=0 ){ + /* TODO(shess) The old term_select_all() code applied the column + ** restrict as we merged segments, leading to smaller buffers. + ** This is probably worthwhile to bring back, once the new storage + ** system is checked in. + */ + if( iColumn==v->nColumn) iColumn = -1; + docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, + iColumn, iType, out); + } + rc = SQLITE_OK; + } + + err: + dataBufferDestroy(&doclist); + return rc; +} + +/****************************************************************/ +/* Used to hold hashtable data for sorting. */ +typedef struct TermData { + const char *pTerm; + int nTerm; + DLCollector *pCollector; +} TermData; + +/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 +** for equal, >0 for greater-than). +*/ +static int termDataCmp(const void *av, const void *bv){ + const TermData *a = (const TermData *)av; + const TermData *b = (const TermData *)bv; + int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm; + int c = memcmp(a->pTerm, b->pTerm, n); + if( c!=0 ) return c; + return a->nTerm-b->nTerm; +} + +/* Order pTerms data by term, then write a new level 0 segment using +** LeafWriter. +*/ +static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){ + fts3HashElem *e; + int idx, rc, i, n; + TermData *pData; + LeafWriter writer; + DataBuffer dl; + + /* Determine the next index at level 0, merging as necessary. */ + rc = segdirNextIndex(v, 0, &idx); + if( rc!=SQLITE_OK ) return rc; + + n = fts3HashCount(pTerms); + pData = sqlite3_malloc(n*sizeof(TermData)); + + for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){ + assert( i<n ); + pData[i].pTerm = fts3HashKey(e); + pData[i].nTerm = fts3HashKeysize(e); + pData[i].pCollector = fts3HashData(e); + } + assert( i==n ); + + /* TODO(shess) Should we allow user-defined collation sequences, + ** here? I think we only need that once we support prefix searches. + */ + if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp); + + /* TODO(shess) Refactor so that we can write directly to the segment + ** DataBuffer, as happens for segment merges. + */ + leafWriterInit(0, idx, &writer); + dataBufferInit(&dl, 0); + for(i=0; i<n; i++){ + dataBufferReset(&dl); + dlcAddDoclist(pData[i].pCollector, &dl); + rc = leafWriterStep(v, &writer, + pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData); + if( rc!=SQLITE_OK ) goto err; + } + rc = leafWriterFinalize(v, &writer); + + err: + dataBufferDestroy(&dl); + sqlite3_free(pData); + leafWriterDestroy(&writer); + return rc; +} + +/* If pendingTerms has data, free it. */ +static int clearPendingTerms(fulltext_vtab *v){ + if( v->nPendingData>=0 ){ + fts3HashElem *e; + for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){ + dlcDelete(fts3HashData(e)); + } + fts3HashClear(&v->pendingTerms); + v->nPendingData = -1; + } + return SQLITE_OK; +} + +/* If pendingTerms has data, flush it to a level-zero segment, and +** free it. +*/ +static int flushPendingTerms(fulltext_vtab *v){ + if( v->nPendingData>=0 ){ + int rc = writeZeroSegment(v, &v->pendingTerms); + if( rc==SQLITE_OK ) clearPendingTerms(v); + return rc; + } + return SQLITE_OK; +} + +/* If pendingTerms is "too big", or docid is out of order, flush it. +** Regardless, be certain that pendingTerms is initialized for use. +*/ +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ + /* TODO(shess) Explore whether partially flushing the buffer on + ** forced-flush would provide better performance. I suspect that if + ** we ordered the doclists by size and flushed the largest until the + ** buffer was half empty, that would let the less frequent terms + ** generate longer doclists. + */ + if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ + int rc = flushPendingTerms(v); + if( rc!=SQLITE_OK ) return rc; + } + if( v->nPendingData<0 ){ + fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1); + v->nPendingData = 0; + } + v->iPrevDocid = iDocid; + return SQLITE_OK; +} + +/* This function implements the xUpdate callback; it is the top-level entry + * point for inserting, deleting or updating a row in a full-text table. */ +static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, + sqlite_int64 *pRowid){ + fulltext_vtab *v = (fulltext_vtab *) pVtab; + int rc; + + FTSTRACE(("FTS3 Update %p\n", pVtab)); + + if( nArg<2 ){ + rc = index_delete(v, sqlite3_value_int64(ppArg[0])); + } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ + /* An update: + * ppArg[0] = old rowid + * ppArg[1] = new rowid + * ppArg[2..2+v->nColumn-1] = values + * ppArg[2+v->nColumn] = value for magic column (we ignore this) + * ppArg[2+v->nColumn+1] = value for docid + */ + sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); + if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || + sqlite3_value_int64(ppArg[1]) != rowid ){ + rc = SQLITE_ERROR; /* we don't allow changing the rowid */ + }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER || + sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){ + rc = SQLITE_ERROR; /* we don't allow changing the docid */ + }else{ + assert( nArg==2+v->nColumn+2); + rc = index_update(v, rowid, &ppArg[2]); + } + } else { + /* An insert: + * ppArg[1] = requested rowid + * ppArg[2..2+v->nColumn-1] = values + * ppArg[2+v->nColumn] = value for magic column (we ignore this) + * ppArg[2+v->nColumn+1] = value for docid + */ + sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1]; + assert( nArg==2+v->nColumn+2); + if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) && + SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){ + /* TODO(shess) Consider allowing this to work if the values are + ** identical. I'm inclined to discourage that usage, though, + ** given that both rowid and docid are special columns. Better + ** would be to define one or the other as the default winner, + ** but should it be fts3-centric (docid) or SQLite-centric + ** (rowid)? + */ + rc = SQLITE_ERROR; + }else{ + if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){ + pRequestDocid = ppArg[1]; + } + rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid); + } + } + + return rc; +} + +static int fulltextSync(sqlite3_vtab *pVtab){ + FTSTRACE(("FTS3 xSync()\n")); + return flushPendingTerms((fulltext_vtab *)pVtab); +} + +static int fulltextBegin(sqlite3_vtab *pVtab){ + fulltext_vtab *v = (fulltext_vtab *) pVtab; + FTSTRACE(("FTS3 xBegin()\n")); + + /* Any buffered updates should have been cleared by the previous + ** transaction. + */ + assert( v->nPendingData<0 ); + return clearPendingTerms(v); +} + +static int fulltextCommit(sqlite3_vtab *pVtab){ + fulltext_vtab *v = (fulltext_vtab *) pVtab; + FTSTRACE(("FTS3 xCommit()\n")); + + /* Buffered updates should have been cleared by fulltextSync(). */ + assert( v->nPendingData<0 ); + return clearPendingTerms(v); +} + +static int fulltextRollback(sqlite3_vtab *pVtab){ + FTSTRACE(("FTS3 xRollback()\n")); + return clearPendingTerms((fulltext_vtab *)pVtab); +} + +/* +** Implementation of the snippet() function for FTS3 +*/ +static void snippetFunc( + sqlite3_context *pContext, + int argc, + sqlite3_value **argv +){ + fulltext_cursor *pCursor; + if( argc<1 ) return; + if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ + sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); + }else{ + const char *zStart = "<b>"; + const char *zEnd = "</b>"; + const char *zEllipsis = "<b>...</b>"; + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); + if( argc>=2 ){ + zStart = (const char*)sqlite3_value_text(argv[1]); + if( argc>=3 ){ + zEnd = (const char*)sqlite3_value_text(argv[2]); + if( argc>=4 ){ + zEllipsis = (const char*)sqlite3_value_text(argv[3]); + } + } + } + snippetAllOffsets(pCursor); + snippetText(pCursor, zStart, zEnd, zEllipsis); + sqlite3_result_text(pContext, pCursor->snippet.zSnippet, + pCursor->snippet.nSnippet, SQLITE_STATIC); + } +} + +/* +** Implementation of the offsets() function for FTS3 +*/ +static void snippetOffsetsFunc( + sqlite3_context *pContext, + int argc, + sqlite3_value **argv +){ + fulltext_cursor *pCursor; + if( argc<1 ) return; + if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ + sqlite3_result_error(pContext, "illegal first argument to offsets",-1); + }else{ + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); + snippetAllOffsets(pCursor); + snippetOffsetText(&pCursor->snippet); + sqlite3_result_text(pContext, + pCursor->snippet.zOffset, pCursor->snippet.nOffset, + SQLITE_STATIC); + } +} + +/* +** This routine implements the xFindFunction method for the FTS3 +** virtual table. +*/ +static int fulltextFindFunction( + sqlite3_vtab *pVtab, + int nArg, + const char *zName, + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), + void **ppArg +){ + if( strcmp(zName,"snippet")==0 ){ + *pxFunc = snippetFunc; + return 1; + }else if( strcmp(zName,"offsets")==0 ){ + *pxFunc = snippetOffsetsFunc; + return 1; + } + return 0; +} + +/* +** Rename an fts3 table. +*/ +static int fulltextRename( + sqlite3_vtab *pVtab, + const char *zName +){ + fulltext_vtab *p = (fulltext_vtab *)pVtab; + int rc = SQLITE_NOMEM; + char *zSql = sqlite3_mprintf( + "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" + "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" + "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';" + , p->zDb, p->zName, zName + , p->zDb, p->zName, zName + , p->zDb, p->zName, zName + ); + if( zSql ){ + rc = sqlite3_exec(p->db, zSql, 0, 0, 0); + sqlite3_free(zSql); + } + return rc; +} + +static const sqlite3_module fts3Module = { + /* iVersion */ 0, + /* xCreate */ fulltextCreate, + /* xConnect */ fulltextConnect, + /* xBestIndex */ fulltextBestIndex, + /* xDisconnect */ fulltextDisconnect, + /* xDestroy */ fulltextDestroy, + /* xOpen */ fulltextOpen, + /* xClose */ fulltextClose, + /* xFilter */ fulltextFilter, + /* xNext */ fulltextNext, + /* xEof */ fulltextEof, + /* xColumn */ fulltextColumn, + /* xRowid */ fulltextRowid, + /* xUpdate */ fulltextUpdate, + /* xBegin */ fulltextBegin, + /* xSync */ fulltextSync, + /* xCommit */ fulltextCommit, + /* xRollback */ fulltextRollback, + /* xFindFunction */ fulltextFindFunction, + /* xRename */ fulltextRename, +}; + +static void hashDestroy(void *p){ + fts3Hash *pHash = (fts3Hash *)p; + sqlite3Fts3HashClear(pHash); + sqlite3_free(pHash); +} + +/* +** The fts3 built-in tokenizers - "simple" and "porter" - are implemented +** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following +** two forward declarations are for functions declared in these files +** used to retrieve the respective implementations. +** +** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed +** to by the argument to point a the "simple" tokenizer implementation. +** Function ...PorterTokenizerModule() sets *pModule to point to the +** porter tokenizer/stemmer implementation. +*/ +SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); +SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); +SQLITE_PRIVATE void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); + +SQLITE_PRIVATE int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *); + +/* +** Initialise the fts3 extension. If this extension is built as part +** of the sqlite library, then this function is called directly by +** SQLite. If fts3 is built as a dynamically loadable extension, this +** function is called by the sqlite3_extension_init() entry point. +*/ +SQLITE_PRIVATE int sqlite3Fts3Init(sqlite3 *db){ + int rc = SQLITE_OK; + fts3Hash *pHash = 0; + const sqlite3_tokenizer_module *pSimple = 0; + const sqlite3_tokenizer_module *pPorter = 0; + const sqlite3_tokenizer_module *pIcu = 0; + + sqlite3Fts3SimpleTokenizerModule(&pSimple); + sqlite3Fts3PorterTokenizerModule(&pPorter); +#ifdef SQLITE_ENABLE_ICU + sqlite3Fts3IcuTokenizerModule(&pIcu); +#endif + + /* Allocate and initialise the hash-table used to store tokenizers. */ + pHash = sqlite3_malloc(sizeof(fts3Hash)); + if( !pHash ){ + rc = SQLITE_NOMEM; + }else{ + sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); + } + + /* Load the built-in tokenizers into the hash table */ + if( rc==SQLITE_OK ){ + if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple) + || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) + || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu)) + ){ + rc = SQLITE_NOMEM; + } + } + + /* Create the virtual table wrapper around the hash-table and overload + ** the two scalar functions. If this is successful, register the + ** module with sqlite. + */ + if( SQLITE_OK==rc + && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) + && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) + && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) + ){ + return sqlite3_create_module_v2( + db, "fts3", &fts3Module, (void *)pHash, hashDestroy + ); + } + + /* An error has occured. Delete the hash table and return the error code. */ + assert( rc!=SQLITE_OK ); + if( pHash ){ + sqlite3Fts3HashClear(pHash); + sqlite3_free(pHash); + } + return rc; +} + +#if !SQLITE_CORE +SQLITE_API int sqlite3_extension_init( + sqlite3 *db, + char **pzErrMsg, + const sqlite3_api_routines *pApi +){ + SQLITE_EXTENSION_INIT2(pApi) + return sqlite3Fts3Init(db); +} +#endif + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3.c ************************************************/ +/************** Begin file fts3_hash.c ***************************************/ +/* +** 2001 September 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This is the implementation of generic hash-tables used in SQLite. +** We've modified it slightly to serve as a standalone hash table +** implementation for the full-text indexing module. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + + + +/* +** Malloc and Free functions +*/ +static void *fts3HashMalloc(int n){ + void *p = sqlite3_malloc(n); + if( p ){ + memset(p, 0, n); + } + return p; +} +static void fts3HashFree(void *p){ + sqlite3_free(p); +} + +/* Turn bulk memory into a hash table object by initializing the +** fields of the Hash structure. +** +** "pNew" is a pointer to the hash table that is to be initialized. +** keyClass is one of the constants +** FTS3_HASH_BINARY or FTS3_HASH_STRING. The value of keyClass +** determines what kind of key the hash table will use. "copyKey" is +** true if the hash table should make its own private copy of keys and +** false if it should just use the supplied pointer. +*/ +SQLITE_PRIVATE void sqlite3Fts3HashInit(fts3Hash *pNew, int keyClass, int copyKey){ + assert( pNew!=0 ); + assert( keyClass>=FTS3_HASH_STRING && keyClass<=FTS3_HASH_BINARY ); + pNew->keyClass = keyClass; + pNew->copyKey = copyKey; + pNew->first = 0; + pNew->count = 0; + pNew->htsize = 0; + pNew->ht = 0; +} + +/* Remove all entries from a hash table. Reclaim all memory. +** Call this routine to delete a hash table or to reset a hash table +** to the empty state. +*/ +SQLITE_PRIVATE void sqlite3Fts3HashClear(fts3Hash *pH){ + fts3HashElem *elem; /* For looping over all elements of the table */ + + assert( pH!=0 ); + elem = pH->first; + pH->first = 0; + fts3HashFree(pH->ht); + pH->ht = 0; + pH->htsize = 0; + while( elem ){ + fts3HashElem *next_elem = elem->next; + if( pH->copyKey && elem->pKey ){ + fts3HashFree(elem->pKey); + } + fts3HashFree(elem); + elem = next_elem; + } + pH->count = 0; +} + +/* +** Hash and comparison functions when the mode is FTS3_HASH_STRING +*/ +static int fts3StrHash(const void *pKey, int nKey){ + const char *z = (const char *)pKey; + int h = 0; + if( nKey<=0 ) nKey = (int) strlen(z); + while( nKey > 0 ){ + h = (h<<3) ^ h ^ *z++; + nKey--; + } + return h & 0x7fffffff; +} +static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( n1!=n2 ) return 1; + return strncmp((const char*)pKey1,(const char*)pKey2,n1); +} + +/* +** Hash and comparison functions when the mode is FTS3_HASH_BINARY +*/ +static int fts3BinHash(const void *pKey, int nKey){ + int h = 0; + const char *z = (const char *)pKey; + while( nKey-- > 0 ){ + h = (h<<3) ^ h ^ *(z++); + } + return h & 0x7fffffff; +} +static int fts3BinCompare(const void *pKey1, int n1, const void *pKey2, int n2){ + if( n1!=n2 ) return 1; + return memcmp(pKey1,pKey2,n1); +} + +/* +** Return a pointer to the appropriate hash function given the key class. +** +** The C syntax in this function definition may be unfamilar to some +** programmers, so we provide the following additional explanation: +** +** The name of the function is "ftsHashFunction". The function takes a +** single parameter "keyClass". The return value of ftsHashFunction() +** is a pointer to another function. Specifically, the return value +** of ftsHashFunction() is a pointer to a function that takes two parameters +** with types "const void*" and "int" and returns an "int". +*/ +static int (*ftsHashFunction(int keyClass))(const void*,int){ + if( keyClass==FTS3_HASH_STRING ){ + return &fts3StrHash; + }else{ + assert( keyClass==FTS3_HASH_BINARY ); + return &fts3BinHash; + } +} + +/* +** Return a pointer to the appropriate hash function given the key class. +** +** For help in interpreted the obscure C code in the function definition, +** see the header comment on the previous function. +*/ +static int (*ftsCompareFunction(int keyClass))(const void*,int,const void*,int){ + if( keyClass==FTS3_HASH_STRING ){ + return &fts3StrCompare; + }else{ + assert( keyClass==FTS3_HASH_BINARY ); + return &fts3BinCompare; + } +} + +/* Link an element into the hash table +*/ +static void fts3HashInsertElement( + fts3Hash *pH, /* The complete hash table */ + struct _fts3ht *pEntry, /* The entry into which pNew is inserted */ + fts3HashElem *pNew /* The element to be inserted */ +){ + fts3HashElem *pHead; /* First element already in pEntry */ + pHead = pEntry->chain; + if( pHead ){ + pNew->next = pHead; + pNew->prev = pHead->prev; + if( pHead->prev ){ pHead->prev->next = pNew; } + else { pH->first = pNew; } + pHead->prev = pNew; + }else{ + pNew->next = pH->first; + if( pH->first ){ pH->first->prev = pNew; } + pNew->prev = 0; + pH->first = pNew; + } + pEntry->count++; + pEntry->chain = pNew; +} + + +/* Resize the hash table so that it cantains "new_size" buckets. +** "new_size" must be a power of 2. The hash table might fail +** to resize if sqliteMalloc() fails. +*/ +static void fts3Rehash(fts3Hash *pH, int new_size){ + struct _fts3ht *new_ht; /* The new hash table */ + fts3HashElem *elem, *next_elem; /* For looping over existing elements */ + int (*xHash)(const void*,int); /* The hash function */ + + assert( (new_size & (new_size-1))==0 ); + new_ht = (struct _fts3ht *)fts3HashMalloc( new_size*sizeof(struct _fts3ht) ); + if( new_ht==0 ) return; + fts3HashFree(pH->ht); + pH->ht = new_ht; + pH->htsize = new_size; + xHash = ftsHashFunction(pH->keyClass); + for(elem=pH->first, pH->first=0; elem; elem = next_elem){ + int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1); + next_elem = elem->next; + fts3HashInsertElement(pH, &new_ht[h], elem); + } +} + +/* This function (for internal use only) locates an element in an +** hash table that matches the given key. The hash for this key has +** already been computed and is passed as the 4th parameter. +*/ +static fts3HashElem *fts3FindElementByHash( + const fts3Hash *pH, /* The pH to be searched */ + const void *pKey, /* The key we are searching for */ + int nKey, + int h /* The hash for this key. */ +){ + fts3HashElem *elem; /* Used to loop thru the element list */ + int count; /* Number of elements left to test */ + int (*xCompare)(const void*,int,const void*,int); /* comparison function */ + + if( pH->ht ){ + struct _fts3ht *pEntry = &pH->ht[h]; + elem = pEntry->chain; + count = pEntry->count; + xCompare = ftsCompareFunction(pH->keyClass); + while( count-- && elem ){ + if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ + return elem; + } + elem = elem->next; + } + } + return 0; +} + +/* Remove a single entry from the hash table given a pointer to that +** element and a hash on the element's key. +*/ +static void fts3RemoveElementByHash( + fts3Hash *pH, /* The pH containing "elem" */ + fts3HashElem* elem, /* The element to be removed from the pH */ + int h /* Hash value for the element */ +){ + struct _fts3ht *pEntry; + if( elem->prev ){ + elem->prev->next = elem->next; + }else{ + pH->first = elem->next; + } + if( elem->next ){ + elem->next->prev = elem->prev; + } + pEntry = &pH->ht[h]; + if( pEntry->chain==elem ){ + pEntry->chain = elem->next; + } + pEntry->count--; + if( pEntry->count<=0 ){ + pEntry->chain = 0; + } + if( pH->copyKey && elem->pKey ){ + fts3HashFree(elem->pKey); + } + fts3HashFree( elem ); + pH->count--; + if( pH->count<=0 ){ + assert( pH->first==0 ); + assert( pH->count==0 ); + fts3HashClear(pH); + } +} + +/* Attempt to locate an element of the hash table pH with a key +** that matches pKey,nKey. Return the data for this element if it is +** found, or NULL if there is no match. +*/ +SQLITE_PRIVATE void *sqlite3Fts3HashFind(const fts3Hash *pH, const void *pKey, int nKey){ + int h; /* A hash on key */ + fts3HashElem *elem; /* The element that matches key */ + int (*xHash)(const void*,int); /* The hash function */ + + if( pH==0 || pH->ht==0 ) return 0; + xHash = ftsHashFunction(pH->keyClass); + assert( xHash!=0 ); + h = (*xHash)(pKey,nKey); + assert( (pH->htsize & (pH->htsize-1))==0 ); + elem = fts3FindElementByHash(pH,pKey,nKey, h & (pH->htsize-1)); + return elem ? elem->data : 0; +} + +/* Insert an element into the hash table pH. The key is pKey,nKey +** and the data is "data". +** +** If no element exists with a matching key, then a new +** element is created. A copy of the key is made if the copyKey +** flag is set. NULL is returned. +** +** If another element already exists with the same key, then the +** new data replaces the old data and the old data is returned. +** The key is not copied in this instance. If a malloc fails, then +** the new data is returned and the hash table is unchanged. +** +** If the "data" parameter to this function is NULL, then the +** element corresponding to "key" is removed from the hash table. +*/ +SQLITE_PRIVATE void *sqlite3Fts3HashInsert( + fts3Hash *pH, /* The hash table to insert into */ + const void *pKey, /* The key */ + int nKey, /* Number of bytes in the key */ + void *data /* The data */ +){ + int hraw; /* Raw hash value of the key */ + int h; /* the hash of the key modulo hash table size */ + fts3HashElem *elem; /* Used to loop thru the element list */ + fts3HashElem *new_elem; /* New element added to the pH */ + int (*xHash)(const void*,int); /* The hash function */ + + assert( pH!=0 ); + xHash = ftsHashFunction(pH->keyClass); + assert( xHash!=0 ); + hraw = (*xHash)(pKey, nKey); + assert( (pH->htsize & (pH->htsize-1))==0 ); + h = hraw & (pH->htsize-1); + elem = fts3FindElementByHash(pH,pKey,nKey,h); + if( elem ){ + void *old_data = elem->data; + if( data==0 ){ + fts3RemoveElementByHash(pH,elem,h); + }else{ + elem->data = data; + } + return old_data; + } + if( data==0 ) return 0; + new_elem = (fts3HashElem*)fts3HashMalloc( sizeof(fts3HashElem) ); + if( new_elem==0 ) return data; + if( pH->copyKey && pKey!=0 ){ + new_elem->pKey = fts3HashMalloc( nKey ); + if( new_elem->pKey==0 ){ + fts3HashFree(new_elem); + return data; + } + memcpy((void*)new_elem->pKey, pKey, nKey); + }else{ + new_elem->pKey = (void*)pKey; + } + new_elem->nKey = nKey; + pH->count++; + if( pH->htsize==0 ){ + fts3Rehash(pH,8); + if( pH->htsize==0 ){ + pH->count = 0; + fts3HashFree(new_elem); + return data; + } + } + if( pH->count > pH->htsize ){ + fts3Rehash(pH,pH->htsize*2); + } + assert( pH->htsize>0 ); + assert( (pH->htsize & (pH->htsize-1))==0 ); + h = hraw & (pH->htsize-1); + fts3HashInsertElement(pH, &pH->ht[h], new_elem); + new_elem->data = data; + return 0; +} + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3_hash.c *******************************************/ +/************** Begin file fts3_porter.c *************************************/ +/* +** 2006 September 30 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** Implementation of the full-text-search tokenizer that implements +** a Porter stemmer. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + + + + +/* +** Class derived from sqlite3_tokenizer +*/ +typedef struct porter_tokenizer { + sqlite3_tokenizer base; /* Base class */ +} porter_tokenizer; + +/* +** Class derived from sqlit3_tokenizer_cursor +*/ +typedef struct porter_tokenizer_cursor { + sqlite3_tokenizer_cursor base; + const char *zInput; /* input we are tokenizing */ + int nInput; /* size of the input */ + int iOffset; /* current position in zInput */ + int iToken; /* index of next token to be returned */ + char *zToken; /* storage for current token */ + int nAllocated; /* space allocated to zToken buffer */ +} porter_tokenizer_cursor; + + +/* Forward declaration */ +static const sqlite3_tokenizer_module porterTokenizerModule; + + +/* +** Create a new tokenizer instance. +*/ +static int porterCreate( + int argc, const char * const *argv, + sqlite3_tokenizer **ppTokenizer +){ + porter_tokenizer *t; + t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t)); + if( t==NULL ) return SQLITE_NOMEM; + memset(t, 0, sizeof(*t)); + *ppTokenizer = &t->base; + return SQLITE_OK; +} + +/* +** Destroy a tokenizer +*/ +static int porterDestroy(sqlite3_tokenizer *pTokenizer){ + sqlite3_free(pTokenizer); + return SQLITE_OK; +} + +/* +** Prepare to begin tokenizing a particular string. The input +** string to be tokenized is zInput[0..nInput-1]. A cursor +** used to incrementally tokenize this string is returned in +** *ppCursor. +*/ +static int porterOpen( + sqlite3_tokenizer *pTokenizer, /* The tokenizer */ + const char *zInput, int nInput, /* String to be tokenized */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ +){ + porter_tokenizer_cursor *c; + + c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); + if( c==NULL ) return SQLITE_NOMEM; + + c->zInput = zInput; + if( zInput==0 ){ + c->nInput = 0; + }else if( nInput<0 ){ + c->nInput = (int)strlen(zInput); + }else{ + c->nInput = nInput; + } + c->iOffset = 0; /* start tokenizing at the beginning */ + c->iToken = 0; + c->zToken = NULL; /* no space allocated, yet. */ + c->nAllocated = 0; + + *ppCursor = &c->base; + return SQLITE_OK; +} + +/* +** Close a tokenization cursor previously opened by a call to +** porterOpen() above. +*/ +static int porterClose(sqlite3_tokenizer_cursor *pCursor){ + porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; + sqlite3_free(c->zToken); + sqlite3_free(c); + return SQLITE_OK; +} +/* +** Vowel or consonant +*/ +static const char cType[] = { + 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, + 1, 1, 1, 2, 1 +}; + +/* +** isConsonant() and isVowel() determine if their first character in +** the string they point to is a consonant or a vowel, according +** to Porter ruls. +** +** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'. +** 'Y' is a consonant unless it follows another consonant, +** in which case it is a vowel. +** +** In these routine, the letters are in reverse order. So the 'y' rule +** is that 'y' is a consonant unless it is followed by another +** consonent. +*/ +static int isVowel(const char*); +static int isConsonant(const char *z){ + int j; + char x = *z; + if( x==0 ) return 0; + assert( x>='a' && x<='z' ); + j = cType[x-'a']; + if( j<2 ) return j; + return z[1]==0 || isVowel(z + 1); +} +static int isVowel(const char *z){ + int j; + char x = *z; + if( x==0 ) return 0; + assert( x>='a' && x<='z' ); + j = cType[x-'a']; + if( j<2 ) return 1-j; + return isConsonant(z + 1); +} + +/* +** Let any sequence of one or more vowels be represented by V and let +** C be sequence of one or more consonants. Then every word can be +** represented as: +** +** [C] (VC){m} [V] +** +** In prose: A word is an optional consonant followed by zero or +** vowel-consonant pairs followed by an optional vowel. "m" is the +** number of vowel consonant pairs. This routine computes the value +** of m for the first i bytes of a word. +** +** Return true if the m-value for z is 1 or more. In other words, +** return true if z contains at least one vowel that is followed +** by a consonant. +** +** In this routine z[] is in reverse order. So we are really looking +** for an instance of of a consonant followed by a vowel. +*/ +static int m_gt_0(const char *z){ + while( isVowel(z) ){ z++; } + if( *z==0 ) return 0; + while( isConsonant(z) ){ z++; } + return *z!=0; +} + +/* Like mgt0 above except we are looking for a value of m which is +** exactly 1 +*/ +static int m_eq_1(const char *z){ + while( isVowel(z) ){ z++; } + if( *z==0 ) return 0; + while( isConsonant(z) ){ z++; } + if( *z==0 ) return 0; + while( isVowel(z) ){ z++; } + if( *z==0 ) return 1; + while( isConsonant(z) ){ z++; } + return *z==0; +} + +/* Like mgt0 above except we are looking for a value of m>1 instead +** or m>0 +*/ +static int m_gt_1(const char *z){ + while( isVowel(z) ){ z++; } + if( *z==0 ) return 0; + while( isConsonant(z) ){ z++; } + if( *z==0 ) return 0; + while( isVowel(z) ){ z++; } + if( *z==0 ) return 0; + while( isConsonant(z) ){ z++; } + return *z!=0; +} + +/* +** Return TRUE if there is a vowel anywhere within z[0..n-1] +*/ +static int hasVowel(const char *z){ + while( isConsonant(z) ){ z++; } + return *z!=0; +} + +/* +** Return TRUE if the word ends in a double consonant. +** +** The text is reversed here. So we are really looking at +** the first two characters of z[]. +*/ +static int doubleConsonant(const char *z){ + return isConsonant(z) && z[0]==z[1] && isConsonant(z+1); +} + +/* +** Return TRUE if the word ends with three letters which +** are consonant-vowel-consonent and where the final consonant +** is not 'w', 'x', or 'y'. +** +** The word is reversed here. So we are really checking the +** first three letters and the first one cannot be in [wxy]. +*/ +static int star_oh(const char *z){ + return + z[0]!=0 && isConsonant(z) && + z[0]!='w' && z[0]!='x' && z[0]!='y' && + z[1]!=0 && isVowel(z+1) && + z[2]!=0 && isConsonant(z+2); +} + +/* +** If the word ends with zFrom and xCond() is true for the stem +** of the word that preceeds the zFrom ending, then change the +** ending to zTo. +** +** The input word *pz and zFrom are both in reverse order. zTo +** is in normal order. +** +** Return TRUE if zFrom matches. Return FALSE if zFrom does not +** match. Not that TRUE is returned even if xCond() fails and +** no substitution occurs. +*/ +static int stem( + char **pz, /* The word being stemmed (Reversed) */ + const char *zFrom, /* If the ending matches this... (Reversed) */ + const char *zTo, /* ... change the ending to this (not reversed) */ + int (*xCond)(const char*) /* Condition that must be true */ +){ + char *z = *pz; + while( *zFrom && *zFrom==*z ){ z++; zFrom++; } + if( *zFrom!=0 ) return 0; + if( xCond && !xCond(z) ) return 1; + while( *zTo ){ + *(--z) = *(zTo++); + } + *pz = z; + return 1; +} + +/* +** This is the fallback stemmer used when the porter stemmer is +** inappropriate. The input word is copied into the output with +** US-ASCII case folding. If the input word is too long (more +** than 20 bytes if it contains no digits or more than 6 bytes if +** it contains digits) then word is truncated to 20 or 6 bytes +** by taking 10 or 3 bytes from the beginning and end. +*/ +static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ + int i, mx, j; + int hasDigit = 0; + for(i=0; i<nIn; i++){ + int c = zIn[i]; + if( c>='A' && c<='Z' ){ + zOut[i] = c - 'A' + 'a'; + }else{ + if( c>='0' && c<='9' ) hasDigit = 1; + zOut[i] = c; + } + } + mx = hasDigit ? 3 : 10; + if( nIn>mx*2 ){ + for(j=mx, i=nIn-mx; i<nIn; i++, j++){ + zOut[j] = zOut[i]; + } + i = j; + } + zOut[i] = 0; + *pnOut = i; +} + + +/* +** Stem the input word zIn[0..nIn-1]. Store the output in zOut. +** zOut is at least big enough to hold nIn bytes. Write the actual +** size of the output word (exclusive of the '\0' terminator) into *pnOut. +** +** Any upper-case characters in the US-ASCII character set ([A-Z]) +** are converted to lower case. Upper-case UTF characters are +** unchanged. +** +** Words that are longer than about 20 bytes are stemmed by retaining +** a few bytes from the beginning and the end of the word. If the +** word contains digits, 3 bytes are taken from the beginning and +** 3 bytes from the end. For long words without digits, 10 bytes +** are taken from each end. US-ASCII case folding still applies. +** +** If the input word contains not digits but does characters not +** in [a-zA-Z] then no stemming is attempted and this routine just +** copies the input into the input into the output with US-ASCII +** case folding. +** +** Stemming never increases the length of the word. So there is +** no chance of overflowing the zOut buffer. +*/ +static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ + int i, j, c; + char zReverse[28]; + char *z, *z2; + if( nIn<3 || nIn>=sizeof(zReverse)-7 ){ + /* The word is too big or too small for the porter stemmer. + ** Fallback to the copy stemmer */ + copy_stemmer(zIn, nIn, zOut, pnOut); + return; + } + for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){ + c = zIn[i]; + if( c>='A' && c<='Z' ){ + zReverse[j] = c + 'a' - 'A'; + }else if( c>='a' && c<='z' ){ + zReverse[j] = c; + }else{ + /* The use of a character not in [a-zA-Z] means that we fallback + ** to the copy stemmer */ + copy_stemmer(zIn, nIn, zOut, pnOut); + return; + } + } + memset(&zReverse[sizeof(zReverse)-5], 0, 5); + z = &zReverse[j+1]; + + + /* Step 1a */ + if( z[0]=='s' ){ + if( + !stem(&z, "sess", "ss", 0) && + !stem(&z, "sei", "i", 0) && + !stem(&z, "ss", "ss", 0) + ){ + z++; + } + } + + /* Step 1b */ + z2 = z; + if( stem(&z, "dee", "ee", m_gt_0) ){ + /* Do nothing. The work was all in the test */ + }else if( + (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel)) + && z!=z2 + ){ + if( stem(&z, "ta", "ate", 0) || + stem(&z, "lb", "ble", 0) || + stem(&z, "zi", "ize", 0) ){ + /* Do nothing. The work was all in the test */ + }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){ + z++; + }else if( m_eq_1(z) && star_oh(z) ){ + *(--z) = 'e'; + } + } + + /* Step 1c */ + if( z[0]=='y' && hasVowel(z+1) ){ + z[0] = 'i'; + } + + /* Step 2 */ + switch( z[1] ){ + case 'a': + stem(&z, "lanoita", "ate", m_gt_0) || + stem(&z, "lanoit", "tion", m_gt_0); + break; + case 'c': + stem(&z, "icne", "ence", m_gt_0) || + stem(&z, "icna", "ance", m_gt_0); + break; + case 'e': + stem(&z, "rezi", "ize", m_gt_0); + break; + case 'g': + stem(&z, "igol", "log", m_gt_0); + break; + case 'l': + stem(&z, "ilb", "ble", m_gt_0) || + stem(&z, "illa", "al", m_gt_0) || + stem(&z, "iltne", "ent", m_gt_0) || + stem(&z, "ile", "e", m_gt_0) || + stem(&z, "ilsuo", "ous", m_gt_0); + break; + case 'o': + stem(&z, "noitazi", "ize", m_gt_0) || + stem(&z, "noita", "ate", m_gt_0) || + stem(&z, "rota", "ate", m_gt_0); + break; + case 's': + stem(&z, "msila", "al", m_gt_0) || + stem(&z, "ssenevi", "ive", m_gt_0) || + stem(&z, "ssenluf", "ful", m_gt_0) || + stem(&z, "ssensuo", "ous", m_gt_0); + break; + case 't': + stem(&z, "itila", "al", m_gt_0) || + stem(&z, "itivi", "ive", m_gt_0) || + stem(&z, "itilib", "ble", m_gt_0); + break; + } + + /* Step 3 */ + switch( z[0] ){ + case 'e': + stem(&z, "etaci", "ic", m_gt_0) || + stem(&z, "evita", "", m_gt_0) || + stem(&z, "ezila", "al", m_gt_0); + break; + case 'i': + stem(&z, "itici", "ic", m_gt_0); + break; + case 'l': + stem(&z, "laci", "ic", m_gt_0) || + stem(&z, "luf", "", m_gt_0); + break; + case 's': + stem(&z, "ssen", "", m_gt_0); + break; + } + + /* Step 4 */ + switch( z[1] ){ + case 'a': + if( z[0]=='l' && m_gt_1(z+2) ){ + z += 2; + } + break; + case 'c': + if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){ + z += 4; + } + break; + case 'e': + if( z[0]=='r' && m_gt_1(z+2) ){ + z += 2; + } + break; + case 'i': + if( z[0]=='c' && m_gt_1(z+2) ){ + z += 2; + } + break; + case 'l': + if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){ + z += 4; + } + break; + case 'n': + if( z[0]=='t' ){ + if( z[2]=='a' ){ + if( m_gt_1(z+3) ){ + z += 3; + } + }else if( z[2]=='e' ){ + stem(&z, "tneme", "", m_gt_1) || + stem(&z, "tnem", "", m_gt_1) || + stem(&z, "tne", "", m_gt_1); + } + } + break; + case 'o': + if( z[0]=='u' ){ + if( m_gt_1(z+2) ){ + z += 2; + } + }else if( z[3]=='s' || z[3]=='t' ){ + stem(&z, "noi", "", m_gt_1); + } + break; + case 's': + if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){ + z += 3; + } + break; + case 't': + stem(&z, "eta", "", m_gt_1) || + stem(&z, "iti", "", m_gt_1); + break; + case 'u': + if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){ + z += 3; + } + break; + case 'v': + case 'z': + if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){ + z += 3; + } + break; + } + + /* Step 5a */ + if( z[0]=='e' ){ + if( m_gt_1(z+1) ){ + z++; + }else if( m_eq_1(z+1) && !star_oh(z+1) ){ + z++; + } + } + + /* Step 5b */ + if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){ + z++; + } + + /* z[] is now the stemmed word in reverse order. Flip it back + ** around into forward order and return. + */ + *pnOut = i = strlen(z); + zOut[i] = 0; + while( *z ){ + zOut[--i] = *(z++); + } +} + +/* +** Characters that can be part of a token. We assume any character +** whose value is greater than 0x80 (any UTF character) can be +** part of a token. In other words, delimiters all must have +** values of 0x7f or lower. +*/ +static const char porterIdChar[] = { +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ +}; +#define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30])) + +/* +** Extract the next token from a tokenization cursor. The cursor must +** have been opened by a prior call to porterOpen(). +*/ +static int porterNext( + sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */ + const char **pzToken, /* OUT: *pzToken is the token text */ + int *pnBytes, /* OUT: Number of bytes in token */ + int *piStartOffset, /* OUT: Starting offset of token */ + int *piEndOffset, /* OUT: Ending offset of token */ + int *piPosition /* OUT: Position integer of token */ +){ + porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; + const char *z = c->zInput; + + while( c->iOffset<c->nInput ){ + int iStartOffset, ch; + + /* Scan past delimiter characters */ + while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){ + c->iOffset++; + } + + /* Count non-delimiter characters. */ + iStartOffset = c->iOffset; + while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){ + c->iOffset++; + } + + if( c->iOffset>iStartOffset ){ + int n = c->iOffset-iStartOffset; + if( n>c->nAllocated ){ + c->nAllocated = n+20; + c->zToken = sqlite3_realloc(c->zToken, c->nAllocated); + if( c->zToken==NULL ) return SQLITE_NOMEM; + } + porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes); + *pzToken = c->zToken; + *piStartOffset = iStartOffset; + *piEndOffset = c->iOffset; + *piPosition = c->iToken++; + return SQLITE_OK; + } + } + return SQLITE_DONE; +} + +/* +** The set of routines that implement the porter-stemmer tokenizer +*/ +static const sqlite3_tokenizer_module porterTokenizerModule = { + 0, + porterCreate, + porterDestroy, + porterOpen, + porterClose, + porterNext, +}; + +/* +** Allocate a new porter tokenizer. Return a pointer to the new +** tokenizer in *ppModule +*/ +SQLITE_PRIVATE void sqlite3Fts3PorterTokenizerModule( + sqlite3_tokenizer_module const**ppModule +){ + *ppModule = &porterTokenizerModule; +} + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3_porter.c *****************************************/ +/************** Begin file fts3_tokenizer.c **********************************/ +/* +** 2007 June 22 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** This is part of an SQLite module implementing full-text search. +** This particular file implements the generic tokenizer interface. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + +#ifndef SQLITE_CORE + SQLITE_EXTENSION_INIT1 +#endif + + +/* +** Implementation of the SQL scalar function for accessing the underlying +** hash table. This function may be called as follows: +** +** SELECT <function-name>(<key-name>); +** SELECT <function-name>(<key-name>, <pointer>); +** +** where <function-name> is the name passed as the second argument +** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer'). +** +** If the <pointer> argument is specified, it must be a blob value +** containing a pointer to be stored as the hash data corresponding +** to the string <key-name>. If <pointer> is not specified, then +** the string <key-name> must already exist in the has table. Otherwise, +** an error is returned. +** +** Whether or not the <pointer> argument is specified, the value returned +** is a blob containing the pointer stored as the hash data corresponding +** to string <key-name> (after the hash-table is updated, if applicable). +*/ +static void scalarFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + fts3Hash *pHash; + void *pPtr = 0; + const unsigned char *zName; + int nName; + + assert( argc==1 || argc==2 ); + + pHash = (fts3Hash *)sqlite3_user_data(context); + + zName = sqlite3_value_text(argv[0]); + nName = sqlite3_value_bytes(argv[0])+1; + + if( argc==2 ){ + void *pOld; + int n = sqlite3_value_bytes(argv[1]); + if( n!=sizeof(pPtr) ){ + sqlite3_result_error(context, "argument type mismatch", -1); + return; + } + pPtr = *(void **)sqlite3_value_blob(argv[1]); + pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr); + if( pOld==pPtr ){ + sqlite3_result_error(context, "out of memory", -1); + return; + } + }else{ + pPtr = sqlite3Fts3HashFind(pHash, zName, nName); + if( !pPtr ){ + char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName); + sqlite3_result_error(context, zErr, -1); + sqlite3_free(zErr); + return; + } + } + + sqlite3_result_blob(context, (void *)&pPtr, sizeof(pPtr), SQLITE_TRANSIENT); +} + +#ifdef SQLITE_TEST + + +/* +** Implementation of a special SQL scalar function for testing tokenizers +** designed to be used in concert with the Tcl testing framework. This +** function must be called with two arguments: +** +** SELECT <function-name>(<key-name>, <input-string>); +** SELECT <function-name>(<key-name>, <pointer>); +** +** where <function-name> is the name passed as the second argument +** to the sqlite3Fts3InitHashTable() function (e.g. 'fts3_tokenizer') +** concatenated with the string '_test' (e.g. 'fts3_tokenizer_test'). +** +** The return value is a string that may be interpreted as a Tcl +** list. For each token in the <input-string>, three elements are +** added to the returned list. The first is the token position, the +** second is the token text (folded, stemmed, etc.) and the third is the +** substring of <input-string> associated with the token. For example, +** using the built-in "simple" tokenizer: +** +** SELECT fts_tokenizer_test('simple', 'I don't see how'); +** +** will return the string: +** +** "{0 i I 1 dont don't 2 see see 3 how how}" +** +*/ +static void testFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + fts3Hash *pHash; + sqlite3_tokenizer_module *p; + sqlite3_tokenizer *pTokenizer = 0; + sqlite3_tokenizer_cursor *pCsr = 0; + + const char *zErr = 0; + + const char *zName; + int nName; + const char *zInput; + int nInput; + + const char *zArg = 0; + + const char *zToken; + int nToken; + int iStart; + int iEnd; + int iPos; + + Tcl_Obj *pRet; + + assert( argc==2 || argc==3 ); + + nName = sqlite3_value_bytes(argv[0]); + zName = (const char *)sqlite3_value_text(argv[0]); + nInput = sqlite3_value_bytes(argv[argc-1]); + zInput = (const char *)sqlite3_value_text(argv[argc-1]); + + if( argc==3 ){ + zArg = (const char *)sqlite3_value_text(argv[1]); + } + + pHash = (fts3Hash *)sqlite3_user_data(context); + p = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zName, nName+1); + + if( !p ){ + char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName); + sqlite3_result_error(context, zErr, -1); + sqlite3_free(zErr); + return; + } + + pRet = Tcl_NewObj(); + Tcl_IncrRefCount(pRet); + + if( SQLITE_OK!=p->xCreate(zArg ? 1 : 0, &zArg, &pTokenizer) ){ + zErr = "error in xCreate()"; + goto finish; + } + pTokenizer->pModule = p; + if( SQLITE_OK!=p->xOpen(pTokenizer, zInput, nInput, &pCsr) ){ + zErr = "error in xOpen()"; + goto finish; + } + pCsr->pTokenizer = pTokenizer; + + while( SQLITE_OK==p->xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos) ){ + Tcl_ListObjAppendElement(0, pRet, Tcl_NewIntObj(iPos)); + Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); + zToken = &zInput[iStart]; + nToken = iEnd-iStart; + Tcl_ListObjAppendElement(0, pRet, Tcl_NewStringObj(zToken, nToken)); + } + + if( SQLITE_OK!=p->xClose(pCsr) ){ + zErr = "error in xClose()"; + goto finish; + } + if( SQLITE_OK!=p->xDestroy(pTokenizer) ){ + zErr = "error in xDestroy()"; + goto finish; + } + +finish: + if( zErr ){ + sqlite3_result_error(context, zErr, -1); + }else{ + sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT); + } + Tcl_DecrRefCount(pRet); +} + +static +int registerTokenizer( + sqlite3 *db, + char *zName, + const sqlite3_tokenizer_module *p +){ + int rc; + sqlite3_stmt *pStmt; + const char zSql[] = "SELECT fts3_tokenizer(?, ?)"; + + rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + + sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); + sqlite3_bind_blob(pStmt, 2, &p, sizeof(p), SQLITE_STATIC); + sqlite3_step(pStmt); + + return sqlite3_finalize(pStmt); +} + +static +int queryTokenizer( + sqlite3 *db, + char *zName, + const sqlite3_tokenizer_module **pp +){ + int rc; + sqlite3_stmt *pStmt; + const char zSql[] = "SELECT fts3_tokenizer(?)"; + + *pp = 0; + rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); + if( rc!=SQLITE_OK ){ + return rc; + } + + sqlite3_bind_text(pStmt, 1, zName, -1, SQLITE_STATIC); + if( SQLITE_ROW==sqlite3_step(pStmt) ){ + if( sqlite3_column_type(pStmt, 0)==SQLITE_BLOB ){ + memcpy(pp, sqlite3_column_blob(pStmt, 0), sizeof(*pp)); + } + } + + return sqlite3_finalize(pStmt); +} + +SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); + +/* +** Implementation of the scalar function fts3_tokenizer_internal_test(). +** This function is used for testing only, it is not included in the +** build unless SQLITE_TEST is defined. +** +** The purpose of this is to test that the fts3_tokenizer() function +** can be used as designed by the C-code in the queryTokenizer and +** registerTokenizer() functions above. These two functions are repeated +** in the README.tokenizer file as an example, so it is important to +** test them. +** +** To run the tests, evaluate the fts3_tokenizer_internal_test() scalar +** function with no arguments. An assert() will fail if a problem is +** detected. i.e.: +** +** SELECT fts3_tokenizer_internal_test(); +** +*/ +static void intTestFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int rc; + const sqlite3_tokenizer_module *p1; + const sqlite3_tokenizer_module *p2; + sqlite3 *db = (sqlite3 *)sqlite3_user_data(context); + + /* Test the query function */ + sqlite3Fts3SimpleTokenizerModule(&p1); + rc = queryTokenizer(db, "simple", &p2); + assert( rc==SQLITE_OK ); + assert( p1==p2 ); + rc = queryTokenizer(db, "nosuchtokenizer", &p2); + assert( rc==SQLITE_ERROR ); + assert( p2==0 ); + assert( 0==strcmp(sqlite3_errmsg(db), "unknown tokenizer: nosuchtokenizer") ); + + /* Test the storage function */ + rc = registerTokenizer(db, "nosuchtokenizer", p1); + assert( rc==SQLITE_OK ); + rc = queryTokenizer(db, "nosuchtokenizer", &p2); + assert( rc==SQLITE_OK ); + assert( p2==p1 ); + + sqlite3_result_text(context, "ok", -1, SQLITE_STATIC); +} + +#endif + +/* +** Set up SQL objects in database db used to access the contents of +** the hash table pointed to by argument pHash. The hash table must +** been initialised to use string keys, and to take a private copy +** of the key when a value is inserted. i.e. by a call similar to: +** +** sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); +** +** This function adds a scalar function (see header comment above +** scalarFunc() in this file for details) and, if ENABLE_TABLE is +** defined at compilation time, a temporary virtual table (see header +** comment above struct HashTableVtab) to the database schema. Both +** provide read/write access to the contents of *pHash. +** +** The third argument to this function, zName, is used as the name +** of both the scalar and, if created, the virtual table. +*/ +SQLITE_PRIVATE int sqlite3Fts3InitHashTable( + sqlite3 *db, + fts3Hash *pHash, + const char *zName +){ + int rc = SQLITE_OK; + void *p = (void *)pHash; + const int any = SQLITE_ANY; + char *zTest = 0; + char *zTest2 = 0; + +#ifdef SQLITE_TEST + void *pdb = (void *)db; + zTest = sqlite3_mprintf("%s_test", zName); + zTest2 = sqlite3_mprintf("%s_internal_test", zName); + if( !zTest || !zTest2 ){ + rc = SQLITE_NOMEM; + } +#endif + + if( rc!=SQLITE_OK + || (rc = sqlite3_create_function(db, zName, 1, any, p, scalarFunc, 0, 0)) + || (rc = sqlite3_create_function(db, zName, 2, any, p, scalarFunc, 0, 0)) +#ifdef SQLITE_TEST + || (rc = sqlite3_create_function(db, zTest, 2, any, p, testFunc, 0, 0)) + || (rc = sqlite3_create_function(db, zTest, 3, any, p, testFunc, 0, 0)) + || (rc = sqlite3_create_function(db, zTest2, 0, any, pdb, intTestFunc, 0, 0)) +#endif + ); + + sqlite3_free(zTest); + sqlite3_free(zTest2); + return rc; +} + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3_tokenizer.c **************************************/ +/************** Begin file fts3_tokenizer1.c *********************************/ +/* +** 2006 Oct 10 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +****************************************************************************** +** +** Implementation of the "simple" full-text-search tokenizer. +*/ + +/* +** The code in this file is only compiled if: +** +** * The FTS3 module is being built as an extension +** (in which case SQLITE_CORE is not defined), or +** +** * The FTS3 module is being built into the core of +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). +*/ +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) + + + + +typedef struct simple_tokenizer { + sqlite3_tokenizer base; + char delim[128]; /* flag ASCII delimiters */ +} simple_tokenizer; + +typedef struct simple_tokenizer_cursor { + sqlite3_tokenizer_cursor base; + const char *pInput; /* input we are tokenizing */ + int nBytes; /* size of the input */ + int iOffset; /* current position in pInput */ + int iToken; /* index of next token to be returned */ + char *pToken; /* storage for current token */ + int nTokenAllocated; /* space allocated to zToken buffer */ +} simple_tokenizer_cursor; + + +/* Forward declaration */ +static const sqlite3_tokenizer_module simpleTokenizerModule; + +static int simpleDelim(simple_tokenizer *t, unsigned char c){ + return c<0x80 && t->delim[c]; +} + +/* +** Create a new tokenizer instance. +*/ +static int simpleCreate( + int argc, const char * const *argv, + sqlite3_tokenizer **ppTokenizer +){ + simple_tokenizer *t; + + t = (simple_tokenizer *) sqlite3_malloc(sizeof(*t)); + if( t==NULL ) return SQLITE_NOMEM; + memset(t, 0, sizeof(*t)); + + /* TODO(shess) Delimiters need to remain the same from run to run, + ** else we need to reindex. One solution would be a meta-table to + ** track such information in the database, then we'd only want this + ** information on the initial create. + */ + if( argc>1 ){ + int i, n = strlen(argv[1]); + for(i=0; i<n; i++){ + unsigned char ch = argv[1][i]; + /* We explicitly don't support UTF-8 delimiters for now. */ + if( ch>=0x80 ){ + sqlite3_free(t); + return SQLITE_ERROR; + } + t->delim[ch] = 1; + } + } else { + /* Mark non-alphanumeric ASCII characters as delimiters */ + int i; + for(i=1; i<0x80; i++){ + t->delim[i] = !isalnum(i); + } + } + + *ppTokenizer = &t->base; + return SQLITE_OK; +} + +/* +** Destroy a tokenizer +*/ +static int simpleDestroy(sqlite3_tokenizer *pTokenizer){ + sqlite3_free(pTokenizer); + return SQLITE_OK; +} + +/* +** Prepare to begin tokenizing a particular string. The input +** string to be tokenized is pInput[0..nBytes-1]. A cursor +** used to incrementally tokenize this string is returned in +** *ppCursor. +*/ +static int simpleOpen( + sqlite3_tokenizer *pTokenizer, /* The tokenizer */ + const char *pInput, int nBytes, /* String to be tokenized */ + sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ +){ + simple_tokenizer_cursor *c; + + c = (simple_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); + if( c==NULL ) return SQLITE_NOMEM; + + c->pInput = pInput; + if( pInput==0 ){ + c->nBytes = 0; + }else if( nBytes<0 ){ + c->nBytes = (int)strlen(pInput); + }else{ + c->nBytes = nBytes; + } + c->iOffset = 0; /* start tokenizing at the beginning */ + c->iToken = 0; + c->pToken = NULL; /* no space allocated, yet. */ + c->nTokenAllocated = 0; + + *ppCursor = &c->base; + return SQLITE_OK; +} + +/* +** Close a tokenization cursor previously opened by a call to +** simpleOpen() above. +*/ +static int simpleClose(sqlite3_tokenizer_cursor *pCursor){ + simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; + sqlite3_free(c->pToken); + sqlite3_free(c); + return SQLITE_OK; +} + +/* +** Extract the next token from a tokenization cursor. The cursor must +** have been opened by a prior call to simpleOpen(). +*/ +static int simpleNext( + sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by simpleOpen */ + const char **ppToken, /* OUT: *ppToken is the token text */ + int *pnBytes, /* OUT: Number of bytes in token */ + int *piStartOffset, /* OUT: Starting offset of token */ + int *piEndOffset, /* OUT: Ending offset of token */ + int *piPosition /* OUT: Position integer of token */ +){ + simple_tokenizer_cursor *c = (simple_tokenizer_cursor *) pCursor; + simple_tokenizer *t = (simple_tokenizer *) pCursor->pTokenizer; + unsigned char *p = (unsigned char *)c->pInput; + + while( c->iOffset<c->nBytes ){ + int iStartOffset; + + /* Scan past delimiter characters */ + while( c->iOffset<c->nBytes && simpleDelim(t, p[c->iOffset]) ){ + c->iOffset++; + } + + /* Count non-delimiter characters. */ + iStartOffset = c->iOffset; + while( c->iOffset<c->nBytes && !simpleDelim(t, p[c->iOffset]) ){ + c->iOffset++; + } + + if( c->iOffset>iStartOffset ){ + int i, n = c->iOffset-iStartOffset; + if( n>c->nTokenAllocated ){ + c->nTokenAllocated = n+20; + c->pToken = sqlite3_realloc(c->pToken, c->nTokenAllocated); + if( c->pToken==NULL ) return SQLITE_NOMEM; + } + for(i=0; i<n; i++){ + /* TODO(shess) This needs expansion to handle UTF-8 + ** case-insensitivity. + */ + unsigned char ch = p[iStartOffset+i]; + c->pToken[i] = ch<0x80 ? tolower(ch) : ch; + } + *ppToken = c->pToken; + *pnBytes = n; + *piStartOffset = iStartOffset; + *piEndOffset = c->iOffset; + *piPosition = c->iToken++; + + return SQLITE_OK; + } + } + return SQLITE_DONE; +} + +/* +** The set of routines that implement the simple tokenizer +*/ +static const sqlite3_tokenizer_module simpleTokenizerModule = { + 0, + simpleCreate, + simpleDestroy, + simpleOpen, + simpleClose, + simpleNext, +}; + +/* +** Allocate a new simple tokenizer. Return a pointer to the new +** tokenizer in *ppModule +*/ +SQLITE_PRIVATE void sqlite3Fts3SimpleTokenizerModule( + sqlite3_tokenizer_module const**ppModule +){ + *ppModule = &simpleTokenizerModule; +} + +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */ + +/************** End of fts3_tokenizer1.c *************************************/ |