1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
/* ============================================================
*
* This file is a part of digiKam project
* http://www.digikam.org
*
* Date : 2005-05-25
* Description : Infrared threaded image filter.
*
* Copyright (C) 2005-2007 by Gilles Caulier <caulier dot gilles at gmail dot com>
* Copyright (C) 2006-2007 by Marcel Wiesweg <marcel dot wiesweg at gmx dot de>
*
* This program is free software; you can redistribute it
* and/or modify it under the terms of the GNU General
* Public License as published by the Free Software Foundation;
* either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* ============================================================ */
// C++ includes.
#include <cmath>
#include <cstdlib>
// TQt includes.
#include <tqdatetime.h>
// Local includes.
#include "ddebug.h"
#include "dimg.h"
#include "dimggaussianblur.h"
#include "imagecurves.h"
#include "imagehistogram.h"
#include "dimgimagefilters.h"
#include "infrared.h"
namespace DigikamInfraredImagesPlugin
{
Infrared::Infrared(Digikam::DImg *orgImage, TQObject *parent, int sensibility, bool grain)
: Digikam::DImgThreadedFilter(orgImage, parent, "Infrared")
{
m_sensibility = sensibility;
m_grain = grain;
initFilter();
}
void Infrared::filterImage(void)
{
infraredImage(&m_orgImage, m_sensibility, m_grain);
}
// This method is based on the Simulate Infrared Film tutorial from GimpGuru.org web site
// available at this url : http://www.gimpguru.org/Tutorials/SimulatedInfrared/
inline static int intMult8(uint a, uint b)
{
uint t = a * b + 0x80;
return ((t >> 8) + t) >> 8;
}
inline static int intMult16(uint a, uint b)
{
uint t = a * b + 0x8000;
return ((t >> 16) + t) >> 16;
}
/* More info about IR film can be seen at this url :
http://www.pauck.de/marco/photo/infrared/comparison_of_films/comparison_of_films.html
*/
void Infrared::infraredImage(Digikam::DImg *orgImage, int Sensibility, bool Grain)
{
// Sensibility: 200..2600
if (Sensibility <= 0) return;
int Width = orgImage->width();
int Height = orgImage->height();
int bytesDepth = orgImage->bytesDepth();
uint numBytes = orgImage->numBytes();
bool sixteenBit = orgImage->sixteenBit();
uchar* data = orgImage->bits();
// Infrared film variables depending on Sensibility.
// We can reproduce famous Ilford SFX200 infrared film
// http://www.ilford.com/html/us_english/prod_html/sfx200/sfx200.html
// This film have a sensibility escursion from 200 to 800 ISO.
// Over 800 ISO, we reproduce The Kodak HIE hight speed infrared film.
// Infrared film grain.
int Noise = (Sensibility + 3000) / 10;
if (sixteenBit)
Noise = (Noise + 1) * 256 - 1;
int blurRadius = (int)((Sensibility / 200.0) + 1.0); // Gaussian blur infrared hightlight effect
// [2 to 5].
float greenBoost = 2.1 - (Sensibility / 2000.0); // Infrared green color boost [1.7 to 2.0].
int nRand, offset, progress;
uchar* pBWBits = 0; // Black and White conversion.
uchar* pBWBlurBits = 0; // Black and White with blur.
uchar* pGrainBits = 0; // Grain blured without curves adjustment.
uchar* pMaskBits = 0; // Grain mask with curves adjustment.
uchar* pOverlayBits = 0; // Overlay to merge with original converted in gray scale.
uchar* pOutBits = m_destImage.bits(); // Destination image with merged grain mask and original.
Digikam::DColor bwData, bwBlurData, grainData, maskData, overData, outData;
//------------------------------------------
// 1 - Create GrayScale green boosted image.
//------------------------------------------
// Convert to gray scale with boosting Green channel.
// Infrared film increase green color.
Digikam::DImg BWImage(Width, Height, sixteenBit); // Black and White conversion.
pBWBits = BWImage.bits();
memcpy (pBWBits, data, numBytes);
Digikam::DImgImageFilters().channelMixerImage(pBWBits, Width, Height, sixteenBit, // Image data.
true, // Preserve luminosity.
true, // Monochrome.
0.4, greenBoost, -0.8, // Red channel gains.
0.0, 1.0, 0.0, // Green channel gains (not used).
0.0, 0.0, 1.0); // Blue channel gains (not used).
postProgress( 10 );
if (m_cancel)
{
return;
}
// Apply a Gaussian blur to the black and white image.
// This way simulate Infrared film dispersion for the highlights.
Digikam::DImg BWBlurImage(Width, Height, sixteenBit);
pBWBlurBits = BWBlurImage.bits();
Digikam::DImgGaussianBlur(this, BWImage, BWBlurImage, 10, 20, blurRadius);
if (m_cancel)
{
return;
}
//-----------------------------------------------------------------
// 2 - Create Gaussian blured averlay mask with grain if necessary.
//-----------------------------------------------------------------
if (Grain)
{
// Create gray grain mask.
TQDateTime dt = TQDateTime::currentDateTime();
TQDateTime Y2000( TQDate(2000, 1, 1), TQTime(0, 0, 0) );
uint seed = ((uint) dt.secsTo(Y2000));
pGrainBits = new uchar[numBytes]; // Grain blured without curves adjustment.
uchar *ptr;
int component;
grainData.setSixteenBit(sixteenBit);
for (int x = 0; !m_cancel && x < Width; x++)
{
for (int y = 0; !m_cancel && y < Height; y++)
{
ptr = pGrainBits + x*bytesDepth + (y*Width*bytesDepth);
nRand = (rand_r(&seed) % Noise) - (Noise / 2);
if (sixteenBit)
component = CLAMP(32768 + nRand, 0, 65535);
else
component = CLAMP(128 + nRand, 0, 255);
grainData.setRed (component);
grainData.setGreen(component);
grainData.setBlue (component);
grainData.setAlpha(0);
grainData.setPixel(ptr);
}
// Update progress bar in dialog.
progress = (int) (30.0 + ((double)x * 10.0) / Width);
if (progress%5 == 0)
postProgress( progress );
}
// Smooth grain mask using gaussian blur.
Digikam::DImgImageFilters().gaussianBlurImage(pGrainBits, Width, Height, sixteenBit, 1);
postProgress( 40 );
if (m_cancel)
{
delete [] pGrainBits;
return;
}
}
postProgress( 50 );
if (m_cancel)
{
delete [] pGrainBits;
return;
}
// Normally, film grain tends to be most noticeable in the midtones, and much less
// so in the shadows and highlights. Adjust histogram curve to adjust grain like this.
if (Grain)
{
Digikam::ImageCurves *grainCurves = new Digikam::ImageCurves(sixteenBit);
pMaskBits = new uchar[numBytes]; // Grain mask with curves adjustment.
// We modify only global luminosity of the grain.
if (sixteenBit)
{
grainCurves->setCurvePoint(Digikam::ImageHistogram::ValueChannel, 0, TQPoint(0, 0));
grainCurves->setCurvePoint(Digikam::ImageHistogram::ValueChannel, 8, TQPoint(32768, 32768));
grainCurves->setCurvePoint(Digikam::ImageHistogram::ValueChannel, 16, TQPoint(65535, 0));
}
else
{
grainCurves->setCurvePoint(Digikam::ImageHistogram::ValueChannel, 0, TQPoint(0, 0));
grainCurves->setCurvePoint(Digikam::ImageHistogram::ValueChannel, 8, TQPoint(128, 128));
grainCurves->setCurvePoint(Digikam::ImageHistogram::ValueChannel, 16, TQPoint(255, 0));
}
// Calculate curves and lut to apply on grain.
grainCurves->curvesCalculateCurve(Digikam::ImageHistogram::ValueChannel);
grainCurves->curvesLutSetup(Digikam::ImageHistogram::AlphaChannel);
grainCurves->curvesLutProcess(pGrainBits, pMaskBits, Width, Height);
delete grainCurves;
// delete it here, not used any more
delete [] pGrainBits;
pGrainBits = 0;
}
postProgress( 60 );
if (m_cancel)
{
delete [] pGrainBits;
delete [] pMaskBits;
return;
}
// Merge gray scale image with grain using shade coefficient.
if (Grain)
{
pOverlayBits = new uchar[numBytes]; // Overlay to merge with original converted in gray scale.
// get composer for default blending
Digikam::DColorComposer *composer = Digikam::DColorComposer::getComposer(Digikam::DColorComposer::PorterDuffNone);
int alpha;
int Shade = 52; // This value control the shading pixel effect between original image and grain mask.
if (sixteenBit)
Shade = (Shade + 1) * 256 - 1;
for (int x = 0; !m_cancel && x < Width; x++)
{
for (int y = 0; !m_cancel && y < Height; y++)
{
int offset = x*bytesDepth + (y*Width*bytesDepth);
// read color from orig image
bwBlurData.setColor(pBWBlurBits + offset, sixteenBit);
// read color from mask
maskData.setColor(pMaskBits + offset, sixteenBit);
// set shade as alpha value - it will be used as source alpha when blending
maskData.setAlpha(Shade);
// compose, write result to blendData.
// Preserve alpha, do not blend it (taken from old algorithm - correct?)
alpha = bwBlurData.alpha();
composer->compose(bwBlurData, maskData);
bwBlurData.setAlpha(alpha);
// write to destination
bwBlurData.setPixel(pOverlayBits + offset);
}
// Update progress bar in dialog.
progress = (int) (70.0 + ((double)x * 10.0) / Width);
if (progress%5 == 0)
postProgress( progress );
}
delete composer;
// delete it here, not used any more
BWBlurImage.reset();
delete [] pMaskBits;
pMaskBits = 0;
}
else
{
// save a memcpy
pOverlayBits = pBWBlurBits;
pBWBlurBits = 0;
}
//------------------------------------------
// 3 - Merge Grayscale image & overlay mask.
//------------------------------------------
// Merge overlay and gray scale image using 'Overlay' Gimp method for increase the highlight.
// The result is usually a brighter picture.
// Overlay mode composite value computation is D = A * (B + (2 * B) * (255 - A)).
outData.setSixteenBit(sixteenBit);
for (int x = 0; !m_cancel && x < Width; x++)
{
for (int y = 0; !m_cancel && y < Height; y++)
{
offset = x*bytesDepth + (y*Width*bytesDepth);
bwData.setColor (pBWBits + offset, sixteenBit);
overData.setColor(pOverlayBits + offset, sixteenBit);
if (sixteenBit)
{
outData.setRed ( intMult16 (bwData.red(), bwData.red() + intMult16(2 * overData.red(), 65535 - bwData.red()) ) );
outData.setGreen( intMult16 (bwData.green(), bwData.green() + intMult16(2 * overData.green(), 65535 - bwData.green()) ) );
outData.setBlue ( intMult16 (bwData.blue(), bwData.blue() + intMult16(2 * overData.blue(), 65535 - bwData.blue()) ) );
}
else
{
outData.setRed ( intMult8 (bwData.red(), bwData.red() + intMult8(2 * overData.red(), 255 - bwData.red()) ) );
outData.setGreen( intMult8 (bwData.green(), bwData.green() + intMult8(2 * overData.green(), 255 - bwData.green()) ) );
outData.setBlue ( intMult8 (bwData.blue(), bwData.blue() + intMult8(2 * overData.blue(), 255 - bwData.blue()) ) );
}
outData.setAlpha( bwData.alpha() );
outData.setPixel( pOutBits + offset );
}
// Update progress bar in dialog.
progress = (int) (80.0 + ((double)x * 20.0) / Width);
if (progress%5 == 0)
postProgress(progress);
}
delete [] pGrainBits;
delete [] pMaskBits;
if (Grain)
delete [] pOverlayBits;
}
} // NameSpace DigikamInfraredImagesPlugin
|