summaryrefslogtreecommitdiffstats
path: root/src/sqlite/date.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/sqlite/date.c')
-rw-r--r--src/sqlite/date.c1000
1 files changed, 1000 insertions, 0 deletions
diff --git a/src/sqlite/date.c b/src/sqlite/date.c
new file mode 100644
index 0000000..dd6e521
--- /dev/null
+++ b/src/sqlite/date.c
@@ -0,0 +1,1000 @@
+/*
+** 2003 October 31
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement date and time
+** functions for SQLite.
+**
+** There is only one exported symbol in this file - the function
+** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
+** All other code has file scope.
+**
+** $Id: date.c,v 1.1.1.1 2006/02/03 20:35:11 hoganrobert Exp $
+**
+** NOTES:
+**
+** SQLite processes all times and dates as Julian Day numbers. The
+** dates and times are stored as the number of days since noon
+** in Greenwich on November 24, 4714 B.C. according to the Gregorian
+** calendar system.
+**
+** 1970-01-01 00:00:00 is JD 2440587.5
+** 2000-01-01 00:00:00 is JD 2451544.5
+**
+** This implemention requires years to be expressed as a 4-digit number
+** which means that only dates between 0000-01-01 and 9999-12-31 can
+** be represented, even though julian day numbers allow a much wider
+** range of dates.
+**
+** The Gregorian calendar system is used for all dates and times,
+** even those that predate the Gregorian calendar. Historians usually
+** use the Julian calendar for dates prior to 1582-10-15 and for some
+** dates afterwards, depending on locale. Beware of this difference.
+**
+** The conversion algorithms are implemented based on descriptions
+** in the following text:
+**
+** Jean Meeus
+** Astronomical Algorithms, 2nd Edition, 1998
+** ISBM 0-943396-61-1
+** Willmann-Bell, Inc
+** Richmond, Virginia (USA)
+*/
+#include "sqliteInt.h"
+#include "os.h"
+#include <ctype.h>
+#include <stdlib.h>
+#include <assert.h>
+#include <time.h>
+
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+
+/*
+** A structure for holding a single date and time.
+*/
+typedef struct DateTime DateTime;
+struct DateTime {
+ double rJD; /* The julian day number */
+ int Y, M, D; /* Year, month, and day */
+ int h, m; /* Hour and minutes */
+ int tz; /* Timezone offset in minutes */
+ double s; /* Seconds */
+ char validYMD; /* True if Y,M,D are valid */
+ char validHMS; /* True if h,m,s are valid */
+ char validJD; /* True if rJD is valid */
+ char validTZ; /* True if tz is valid */
+};
+
+
+/*
+** Convert zDate into one or more integers. Additional arguments
+** come in groups of 5 as follows:
+**
+** N number of digits in the integer
+** min minimum allowed value of the integer
+** max maximum allowed value of the integer
+** nextC first character after the integer
+** pVal where to write the integers value.
+**
+** Conversions continue until one with nextC==0 is encountered.
+** The function returns the number of successful conversions.
+*/
+static int getDigits(const char *zDate, ...){
+ va_list ap;
+ int val;
+ int N;
+ int min;
+ int max;
+ int nextC;
+ int *pVal;
+ int cnt = 0;
+ va_start(ap, zDate);
+ do{
+ N = va_arg(ap, int);
+ min = va_arg(ap, int);
+ max = va_arg(ap, int);
+ nextC = va_arg(ap, int);
+ pVal = va_arg(ap, int*);
+ val = 0;
+ while( N-- ){
+ if( !isdigit(*(u8*)zDate) ){
+ return cnt;
+ }
+ val = val*10 + *zDate - '0';
+ zDate++;
+ }
+ if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
+ return cnt;
+ }
+ *pVal = val;
+ zDate++;
+ cnt++;
+ }while( nextC );
+ return cnt;
+}
+
+/*
+** Read text from z[] and convert into a floating point number. Return
+** the number of digits converted.
+*/
+static int getValue(const char *z, double *pR){
+ const char *zEnd;
+ *pR = sqlite3AtoF(z, &zEnd);
+ return zEnd - z;
+}
+
+/*
+** Parse a timezone extension on the end of a date-time.
+** The extension is of the form:
+**
+** (+/-)HH:MM
+**
+** If the parse is successful, write the number of minutes
+** of change in *pnMin and return 0. If a parser error occurs,
+** return 0.
+**
+** A missing specifier is not considered an error.
+*/
+static int parseTimezone(const char *zDate, DateTime *p){
+ int sgn = 0;
+ int nHr, nMn;
+ while( isspace(*(u8*)zDate) ){ zDate++; }
+ p->tz = 0;
+ if( *zDate=='-' ){
+ sgn = -1;
+ }else if( *zDate=='+' ){
+ sgn = +1;
+ }else{
+ return *zDate!=0;
+ }
+ zDate++;
+ if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ p->tz = sgn*(nMn + nHr*60);
+ while( isspace(*(u8*)zDate) ){ zDate++; }
+ return *zDate!=0;
+}
+
+/*
+** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
+** The HH, MM, and SS must each be exactly 2 digits. The
+** fractional seconds FFFF can be one or more digits.
+**
+** Return 1 if there is a parsing error and 0 on success.
+*/
+static int parseHhMmSs(const char *zDate, DateTime *p){
+ int h, m, s;
+ double ms = 0.0;
+ if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
+ return 1;
+ }
+ zDate += 5;
+ if( *zDate==':' ){
+ zDate++;
+ if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
+ return 1;
+ }
+ zDate += 2;
+ if( *zDate=='.' && isdigit((u8)zDate[1]) ){
+ double rScale = 1.0;
+ zDate++;
+ while( isdigit(*(u8*)zDate) ){
+ ms = ms*10.0 + *zDate - '0';
+ rScale *= 10.0;
+ zDate++;
+ }
+ ms /= rScale;
+ }
+ }else{
+ s = 0;
+ }
+ p->validJD = 0;
+ p->validHMS = 1;
+ p->h = h;
+ p->m = m;
+ p->s = s + ms;
+ if( parseTimezone(zDate, p) ) return 1;
+ p->validTZ = p->tz!=0;
+ return 0;
+}
+
+/*
+** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
+** that the YYYY-MM-DD is according to the Gregorian calendar.
+**
+** Reference: Meeus page 61
+*/
+static void computeJD(DateTime *p){
+ int Y, M, D, A, B, X1, X2;
+
+ if( p->validJD ) return;
+ if( p->validYMD ){
+ Y = p->Y;
+ M = p->M;
+ D = p->D;
+ }else{
+ Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
+ M = 1;
+ D = 1;
+ }
+ if( M<=2 ){
+ Y--;
+ M += 12;
+ }
+ A = Y/100;
+ B = 2 - A + (A/4);
+ X1 = 365.25*(Y+4716);
+ X2 = 30.6001*(M+1);
+ p->rJD = X1 + X2 + D + B - 1524.5;
+ p->validJD = 1;
+ p->validYMD = 0;
+ if( p->validHMS ){
+ p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0;
+ if( p->validTZ ){
+ p->rJD += p->tz*60/86400.0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+ }
+ }
+}
+
+/*
+** Parse dates of the form
+**
+** YYYY-MM-DD HH:MM:SS.FFF
+** YYYY-MM-DD HH:MM:SS
+** YYYY-MM-DD HH:MM
+** YYYY-MM-DD
+**
+** Write the result into the DateTime structure and return 0
+** on success and 1 if the input string is not a well-formed
+** date.
+*/
+static int parseYyyyMmDd(const char *zDate, DateTime *p){
+ int Y, M, D, neg;
+
+ if( zDate[0]=='-' ){
+ zDate++;
+ neg = 1;
+ }else{
+ neg = 0;
+ }
+ if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
+ return 1;
+ }
+ zDate += 10;
+ while( isspace(*(u8*)zDate) || 'T'==*(u8*)zDate ){ zDate++; }
+ if( parseHhMmSs(zDate, p)==0 ){
+ /* We got the time */
+ }else if( *zDate==0 ){
+ p->validHMS = 0;
+ }else{
+ return 1;
+ }
+ p->validJD = 0;
+ p->validYMD = 1;
+ p->Y = neg ? -Y : Y;
+ p->M = M;
+ p->D = D;
+ if( p->validTZ ){
+ computeJD(p);
+ }
+ return 0;
+}
+
+/*
+** Attempt to parse the given string into a Julian Day Number. Return
+** the number of errors.
+**
+** The following are acceptable forms for the input string:
+**
+** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
+** DDDD.DD
+** now
+**
+** In the first form, the +/-HH:MM is always optional. The fractional
+** seconds extension (the ".FFF") is optional. The seconds portion
+** (":SS.FFF") is option. The year and date can be omitted as long
+** as there is a time string. The time string can be omitted as long
+** as there is a year and date.
+*/
+static int parseDateOrTime(const char *zDate, DateTime *p){
+ memset(p, 0, sizeof(*p));
+ if( parseYyyyMmDd(zDate,p)==0 ){
+ return 0;
+ }else if( parseHhMmSs(zDate, p)==0 ){
+ return 0;
+ }else if( sqlite3StrICmp(zDate,"now")==0){
+ double r;
+ sqlite3OsCurrentTime(&r);
+ p->rJD = r;
+ p->validJD = 1;
+ return 0;
+ }else if( sqlite3IsNumber(zDate, 0, SQLITE_UTF8) ){
+ p->rJD = sqlite3AtoF(zDate, 0);
+ p->validJD = 1;
+ return 0;
+ }
+ return 1;
+}
+
+/*
+** Compute the Year, Month, and Day from the julian day number.
+*/
+static void computeYMD(DateTime *p){
+ int Z, A, B, C, D, E, X1;
+ if( p->validYMD ) return;
+ if( !p->validJD ){
+ p->Y = 2000;
+ p->M = 1;
+ p->D = 1;
+ }else{
+ Z = p->rJD + 0.5;
+ A = (Z - 1867216.25)/36524.25;
+ A = Z + 1 + A - (A/4);
+ B = A + 1524;
+ C = (B - 122.1)/365.25;
+ D = 365.25*C;
+ E = (B-D)/30.6001;
+ X1 = 30.6001*E;
+ p->D = B - D - X1;
+ p->M = E<14 ? E-1 : E-13;
+ p->Y = p->M>2 ? C - 4716 : C - 4715;
+ }
+ p->validYMD = 1;
+}
+
+/*
+** Compute the Hour, Minute, and Seconds from the julian day number.
+*/
+static void computeHMS(DateTime *p){
+ int Z, s;
+ if( p->validHMS ) return;
+ Z = p->rJD + 0.5;
+ s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5;
+ p->s = 0.001*s;
+ s = p->s;
+ p->s -= s;
+ p->h = s/3600;
+ s -= p->h*3600;
+ p->m = s/60;
+ p->s += s - p->m*60;
+ p->validHMS = 1;
+}
+
+/*
+** Compute both YMD and HMS
+*/
+static void computeYMD_HMS(DateTime *p){
+ computeYMD(p);
+ computeHMS(p);
+}
+
+/*
+** Clear the YMD and HMS and the TZ
+*/
+static void clearYMD_HMS_TZ(DateTime *p){
+ p->validYMD = 0;
+ p->validHMS = 0;
+ p->validTZ = 0;
+}
+
+/*
+** Compute the difference (in days) between localtime and UTC (a.k.a. GMT)
+** for the time value p where p is in UTC.
+*/
+static double localtimeOffset(DateTime *p){
+ DateTime x, y;
+ time_t t;
+ struct tm *pTm;
+ x = *p;
+ computeYMD_HMS(&x);
+ if( x.Y<1971 || x.Y>=2038 ){
+ x.Y = 2000;
+ x.M = 1;
+ x.D = 1;
+ x.h = 0;
+ x.m = 0;
+ x.s = 0.0;
+ } else {
+ int s = x.s + 0.5;
+ x.s = s;
+ }
+ x.tz = 0;
+ x.validJD = 0;
+ computeJD(&x);
+ t = (x.rJD-2440587.5)*86400.0 + 0.5;
+ sqlite3OsEnterMutex();
+ pTm = localtime(&t);
+ y.Y = pTm->tm_year + 1900;
+ y.M = pTm->tm_mon + 1;
+ y.D = pTm->tm_mday;
+ y.h = pTm->tm_hour;
+ y.m = pTm->tm_min;
+ y.s = pTm->tm_sec;
+ sqlite3OsLeaveMutex();
+ y.validYMD = 1;
+ y.validHMS = 1;
+ y.validJD = 0;
+ y.validTZ = 0;
+ computeJD(&y);
+ return y.rJD - x.rJD;
+}
+
+/*
+** Process a modifier to a date-time stamp. The modifiers are
+** as follows:
+**
+** NNN days
+** NNN hours
+** NNN minutes
+** NNN.NNNN seconds
+** NNN months
+** NNN years
+** start of month
+** start of year
+** start of week
+** start of day
+** weekday N
+** unixepoch
+** localtime
+** utc
+**
+** Return 0 on success and 1 if there is any kind of error.
+*/
+static int parseModifier(const char *zMod, DateTime *p){
+ int rc = 1;
+ int n;
+ double r;
+ char *z, zBuf[30];
+ z = zBuf;
+ for(n=0; n<sizeof(zBuf)-1 && zMod[n]; n++){
+ z[n] = tolower(zMod[n]);
+ }
+ z[n] = 0;
+ switch( z[0] ){
+ case 'l': {
+ /* localtime
+ **
+ ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
+ ** show local time.
+ */
+ if( strcmp(z, "localtime")==0 ){
+ computeJD(p);
+ p->rJD += localtimeOffset(p);
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 'u': {
+ /*
+ ** unixepoch
+ **
+ ** Treat the current value of p->rJD as the number of
+ ** seconds since 1970. Convert to a real julian day number.
+ */
+ if( strcmp(z, "unixepoch")==0 && p->validJD ){
+ p->rJD = p->rJD/86400.0 + 2440587.5;
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }else if( strcmp(z, "utc")==0 ){
+ double c1;
+ computeJD(p);
+ c1 = localtimeOffset(p);
+ p->rJD -= c1;
+ clearYMD_HMS_TZ(p);
+ p->rJD += c1 - localtimeOffset(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 'w': {
+ /*
+ ** weekday N
+ **
+ ** Move the date to the same time on the next occurrence of
+ ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
+ ** date is already on the appropriate weekday, this is a no-op.
+ */
+ if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0
+ && (n=r)==r && n>=0 && r<7 ){
+ int Z;
+ computeYMD_HMS(p);
+ p->validTZ = 0;
+ p->validJD = 0;
+ computeJD(p);
+ Z = p->rJD + 1.5;
+ Z %= 7;
+ if( Z>n ) Z -= 7;
+ p->rJD += n - Z;
+ clearYMD_HMS_TZ(p);
+ rc = 0;
+ }
+ break;
+ }
+ case 's': {
+ /*
+ ** start of TTTTT
+ **
+ ** Move the date backwards to the beginning of the current day,
+ ** or month or year.
+ */
+ if( strncmp(z, "start of ", 9)!=0 ) break;
+ z += 9;
+ computeYMD(p);
+ p->validHMS = 1;
+ p->h = p->m = 0;
+ p->s = 0.0;
+ p->validTZ = 0;
+ p->validJD = 0;
+ if( strcmp(z,"month")==0 ){
+ p->D = 1;
+ rc = 0;
+ }else if( strcmp(z,"year")==0 ){
+ computeYMD(p);
+ p->M = 1;
+ p->D = 1;
+ rc = 0;
+ }else if( strcmp(z,"day")==0 ){
+ rc = 0;
+ }
+ break;
+ }
+ case '+':
+ case '-':
+ case '0':
+ case '1':
+ case '2':
+ case '3':
+ case '4':
+ case '5':
+ case '6':
+ case '7':
+ case '8':
+ case '9': {
+ n = getValue(z, &r);
+ if( n<=0 ) break;
+ if( z[n]==':' ){
+ /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
+ ** specified number of hours, minutes, seconds, and fractional seconds
+ ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
+ ** omitted.
+ */
+ const char *z2 = z;
+ DateTime tx;
+ int day;
+ if( !isdigit(*(u8*)z2) ) z2++;
+ memset(&tx, 0, sizeof(tx));
+ if( parseHhMmSs(z2, &tx) ) break;
+ computeJD(&tx);
+ tx.rJD -= 0.5;
+ day = (int)tx.rJD;
+ tx.rJD -= day;
+ if( z[0]=='-' ) tx.rJD = -tx.rJD;
+ computeJD(p);
+ clearYMD_HMS_TZ(p);
+ p->rJD += tx.rJD;
+ rc = 0;
+ break;
+ }
+ z += n;
+ while( isspace(*(u8*)z) ) z++;
+ n = strlen(z);
+ if( n>10 || n<3 ) break;
+ if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
+ computeJD(p);
+ rc = 0;
+ if( n==3 && strcmp(z,"day")==0 ){
+ p->rJD += r;
+ }else if( n==4 && strcmp(z,"hour")==0 ){
+ p->rJD += r/24.0;
+ }else if( n==6 && strcmp(z,"minute")==0 ){
+ p->rJD += r/(24.0*60.0);
+ }else if( n==6 && strcmp(z,"second")==0 ){
+ p->rJD += r/(24.0*60.0*60.0);
+ }else if( n==5 && strcmp(z,"month")==0 ){
+ int x, y;
+ computeYMD_HMS(p);
+ p->M += r;
+ x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
+ p->Y += x;
+ p->M -= x*12;
+ p->validJD = 0;
+ computeJD(p);
+ y = r;
+ if( y!=r ){
+ p->rJD += (r - y)*30.0;
+ }
+ }else if( n==4 && strcmp(z,"year")==0 ){
+ computeYMD_HMS(p);
+ p->Y += r;
+ p->validJD = 0;
+ computeJD(p);
+ }else{
+ rc = 1;
+ }
+ clearYMD_HMS_TZ(p);
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+ return rc;
+}
+
+/*
+** Process time function arguments. argv[0] is a date-time stamp.
+** argv[1] and following are modifiers. Parse them all and write
+** the resulting time into the DateTime structure p. Return 0
+** on success and 1 if there are any errors.
+*/
+static int isDate(int argc, sqlite3_value **argv, DateTime *p){
+ int i;
+ if( argc==0 ) return 1;
+ if( SQLITE_NULL==sqlite3_value_type(argv[0]) ||
+ parseDateOrTime(sqlite3_value_text(argv[0]), p) ) return 1;
+ for(i=1; i<argc; i++){
+ if( SQLITE_NULL==sqlite3_value_type(argv[i]) ||
+ parseModifier(sqlite3_value_text(argv[i]), p) ) return 1;
+ }
+ return 0;
+}
+
+
+/*
+** The following routines implement the various date and time functions
+** of SQLite.
+*/
+
+/*
+** julianday( TIMESTRING, MOD, MOD, ...)
+**
+** Return the julian day number of the date specified in the arguments
+*/
+static void juliandayFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(argc, argv, &x)==0 ){
+ computeJD(&x);
+ sqlite3_result_double(context, x.rJD);
+ }
+}
+
+/*
+** datetime( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD HH:MM:SS
+*/
+static void datetimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(argc, argv, &x)==0 ){
+ char zBuf[100];
+ computeYMD_HMS(&x);
+ sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m,
+ (int)(x.s));
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** time( TIMESTRING, MOD, MOD, ...)
+**
+** Return HH:MM:SS
+*/
+static void timeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(argc, argv, &x)==0 ){
+ char zBuf[100];
+ computeHMS(&x);
+ sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** date( TIMESTRING, MOD, MOD, ...)
+**
+** Return YYYY-MM-DD
+*/
+static void dateFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ if( isDate(argc, argv, &x)==0 ){
+ char zBuf[100];
+ computeYMD(&x);
+ sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
+**
+** Return a string described by FORMAT. Conversions as follows:
+**
+** %d day of month
+** %f ** fractional seconds SS.SSS
+** %H hour 00-24
+** %j day of year 000-366
+** %J ** Julian day number
+** %m month 01-12
+** %M minute 00-59
+** %s seconds since 1970-01-01
+** %S seconds 00-59
+** %w day of week 0-6 sunday==0
+** %W week of year 00-53
+** %Y year 0000-9999
+** %% %
+*/
+static void strftimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ DateTime x;
+ int n, i, j;
+ char *z;
+ const char *zFmt = sqlite3_value_text(argv[0]);
+ char zBuf[100];
+ if( zFmt==0 || isDate(argc-1, argv+1, &x) ) return;
+ for(i=0, n=1; zFmt[i]; i++, n++){
+ if( zFmt[i]=='%' ){
+ switch( zFmt[i+1] ){
+ case 'd':
+ case 'H':
+ case 'm':
+ case 'M':
+ case 'S':
+ case 'W':
+ n++;
+ /* fall thru */
+ case 'w':
+ case '%':
+ break;
+ case 'f':
+ n += 8;
+ break;
+ case 'j':
+ n += 3;
+ break;
+ case 'Y':
+ n += 8;
+ break;
+ case 's':
+ case 'J':
+ n += 50;
+ break;
+ default:
+ return; /* ERROR. return a NULL */
+ }
+ i++;
+ }
+ }
+ if( n<sizeof(zBuf) ){
+ z = zBuf;
+ }else{
+ z = sqliteMalloc( n );
+ if( z==0 ) return;
+ }
+ computeJD(&x);
+ computeYMD_HMS(&x);
+ for(i=j=0; zFmt[i]; i++){
+ if( zFmt[i]!='%' ){
+ z[j++] = zFmt[i];
+ }else{
+ i++;
+ switch( zFmt[i] ){
+ case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break;
+ case 'f': {
+ int s = x.s;
+ int ms = (x.s - s)*1000.0;
+ sprintf(&z[j],"%02d.%03d",s,ms);
+ j += strlen(&z[j]);
+ break;
+ }
+ case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break;
+ case 'W': /* Fall thru */
+ case 'j': {
+ int n; /* Number of days since 1st day of year */
+ DateTime y = x;
+ y.validJD = 0;
+ y.M = 1;
+ y.D = 1;
+ computeJD(&y);
+ n = x.rJD - y.rJD;
+ if( zFmt[i]=='W' ){
+ int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
+ wd = ((int)(x.rJD+0.5)) % 7;
+ sprintf(&z[j],"%02d",(n+7-wd)/7);
+ j += 2;
+ }else{
+ sprintf(&z[j],"%03d",n+1);
+ j += 3;
+ }
+ break;
+ }
+ case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break;
+ case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break;
+ case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break;
+ case 's': {
+ sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0 + 0.5));
+ j += strlen(&z[j]);
+ break;
+ }
+ case 'S': sprintf(&z[j],"%02d",(int)(x.s+0.5)); j+=2; break;
+ case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break;
+ case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break;
+ case '%': z[j++] = '%'; break;
+ }
+ }
+ }
+ z[j] = 0;
+ sqlite3_result_text(context, z, -1, SQLITE_TRANSIENT);
+ if( z!=zBuf ){
+ sqliteFree(z);
+ }
+}
+
+/*
+** current_time()
+**
+** This function returns the same value as time('now').
+*/
+static void ctimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_value *pVal = sqlite3ValueNew();
+ if( pVal ){
+ sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
+ timeFunc(context, 1, &pVal);
+ sqlite3ValueFree(pVal);
+ }
+}
+
+/*
+** current_date()
+**
+** This function returns the same value as date('now').
+*/
+static void cdateFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_value *pVal = sqlite3ValueNew();
+ if( pVal ){
+ sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
+ dateFunc(context, 1, &pVal);
+ sqlite3ValueFree(pVal);
+ }
+}
+
+/*
+** current_timestamp()
+**
+** This function returns the same value as datetime('now').
+*/
+static void ctimestampFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_value *pVal = sqlite3ValueNew();
+ if( pVal ){
+ sqlite3ValueSetStr(pVal, -1, "now", SQLITE_UTF8, SQLITE_STATIC);
+ datetimeFunc(context, 1, &pVal);
+ sqlite3ValueFree(pVal);
+ }
+}
+#endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
+
+#ifdef SQLITE_OMIT_DATETIME_FUNCS
+/*
+** If the library is compiled to omit the full-scale date and time
+** handling (to get a smaller binary), the following minimal version
+** of the functions current_time(), current_date() and current_timestamp()
+** are included instead. This is to support column declarations that
+** include "DEFAULT CURRENT_TIME" etc.
+**
+** This function uses the C-library functions time(), gmtime()
+** and strftime(). The format string to pass to strftime() is supplied
+** as the user-data for the function.
+*/
+static void currentTimeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ time_t t;
+ char *zFormat = (char *)sqlite3_user_data(context);
+ char zBuf[20];
+
+ time(&t);
+#ifdef SQLITE_TEST
+ {
+ extern int sqlite3_current_time; /* See os_XXX.c */
+ if( sqlite3_current_time ){
+ t = sqlite3_current_time;
+ }
+ }
+#endif
+
+ sqlite3OsEnterMutex();
+ strftime(zBuf, 20, zFormat, gmtime(&t));
+ sqlite3OsLeaveMutex();
+
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+}
+#endif
+
+/*
+** This function registered all of the above C functions as SQL
+** functions. This should be the only routine in this file with
+** external linkage.
+*/
+void sqlite3RegisterDateTimeFunctions(sqlite3 *db){
+#ifndef SQLITE_OMIT_DATETIME_FUNCS
+ static const struct {
+ char *zName;
+ int nArg;
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
+ } aFuncs[] = {
+ { "julianday", -1, juliandayFunc },
+ { "date", -1, dateFunc },
+ { "time", -1, timeFunc },
+ { "datetime", -1, datetimeFunc },
+ { "strftime", -1, strftimeFunc },
+ { "current_time", 0, ctimeFunc },
+ { "current_timestamp", 0, ctimestampFunc },
+ { "current_date", 0, cdateFunc },
+ };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
+ SQLITE_UTF8, 0, aFuncs[i].xFunc, 0, 0);
+ }
+#else
+ static const struct {
+ char *zName;
+ char *zFormat;
+ } aFuncs[] = {
+ { "current_time", "%H:%M:%S" },
+ { "current_date", "%Y-%m-%d" },
+ { "current_timestamp", "%Y-%m-%d %H:%M:%S" }
+ };
+ int i;
+
+ for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
+ sqlite3_create_function(db, aFuncs[i].zName, 0, SQLITE_UTF8,
+ aFuncs[i].zFormat, currentTimeFunc, 0, 0);
+ }
+#endif
+}