summaryrefslogtreecommitdiffstats
path: root/kspread/kspread_functions_math.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'kspread/kspread_functions_math.cpp')
-rw-r--r--kspread/kspread_functions_math.cpp1144
1 files changed, 1144 insertions, 0 deletions
diff --git a/kspread/kspread_functions_math.cpp b/kspread/kspread_functions_math.cpp
new file mode 100644
index 00000000..06b6da2b
--- /dev/null
+++ b/kspread/kspread_functions_math.cpp
@@ -0,0 +1,1144 @@
+/* This file is part of the KDE project
+ Copyright (C) 1998-2002 The KSpread Team
+ www.koffice.org/kspread
+ Copyright (C) 2005 Tomas Mecir <mecirt@gmail.com>
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public
+ License as published by the Free Software Foundation; either
+ version 2 of the License.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public License
+ along with this library; see the file COPYING.LIB. If not, write to
+ the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+*/
+
+// built-in math functions
+
+#include <kdebug.h>
+#include <tdelocale.h>
+
+#include "functions.h"
+#include "valuecalc.h"
+#include "valueconverter.h"
+
+// these two are needed for SUBTOTAL:
+#include "kspread_cell.h"
+#include "kspread_sheet.h"
+
+// needed for RANDBINOM and so
+#include <math.h>
+
+using namespace KSpread;
+
+// RANDBINOM and RANDNEGBINOM won't support arbitrary precision
+
+// prototypes
+Value func_abs (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_ceil (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_ceiling (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_count (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_counta (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_countblank (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_countif (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_cur (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_div (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_eps (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_even (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_exp (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_fact (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_factdouble (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_fib (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_floor (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_gcd (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_int (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_inv (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_kproduct (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_lcm (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_ln (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_log2 (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_log10 (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_logn (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_max (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_maxa (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_mdeterm (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_min (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_mina (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_mmult (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_mod (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_mround (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_mult (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_multinomial (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_odd (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_pow (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_quotient (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_product (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_rand (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_randbetween (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_randbernoulli (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_randbinom (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_randexp (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_randnegbinom (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_randnorm (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_randpoisson (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_rootn (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_round (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_rounddown (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_roundup (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sign (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sqrt (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sqrtpi (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_subtotal (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sum (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_suma (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sumif (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_sumsq (valVector args, ValueCalc *calc, FuncExtra *);
+Value func_trunc (valVector args, ValueCalc *calc, FuncExtra *);
+
+
+// Value func_multipleOP (valVector args, ValueCalc *calc, FuncExtra *);
+
+// registers all math functions
+void RegisterMathFunctions()
+{
+ FunctionRepository* repo = FunctionRepository::self();
+ Function *f;
+
+/*
+ f = new Function ("MULTIPLEOPERATIONS", func_multipleOP);
+ repo->add (f);
+*/
+
+ // functions that don't take array parameters
+ f = new Function ("ABS", func_abs);
+ repo->add (f);
+ f = new Function ("CEIL", func_ceil);
+ repo->add (f);
+ f = new Function ("CEILING", func_ceiling);
+ f->setParamCount (1, 2);
+ repo->add (f);
+ f = new Function ("CUR", func_cur);
+ repo->add (f);
+ f = new Function ("EPS", func_eps);
+ f->setParamCount (0);
+ repo->add (f);
+ f = new Function ("EVEN", func_even);
+ repo->add (f);
+ f = new Function ("EXP", func_exp);
+ repo->add (f);
+ f = new Function ("FACT", func_fact);
+ repo->add (f);
+ f = new Function ("FACTDOUBLE", func_factdouble);
+ repo->add (f);
+ f = new Function ("FIB", func_fib); // KSpread-specific, like Quattro-Pro's FIB
+ repo->add (f);
+ f = new Function ("FLOOR", func_floor);
+ repo->add (f);
+ f = new Function ("INT", func_int);
+ repo->add (f);
+ f = new Function ("INV", func_inv);
+ repo->add (f);
+ f = new Function ("LN", func_ln);
+ repo->add (f);
+ f = new Function ("LOG", func_log10);
+ repo->add (f);
+ f = new Function ("LOG2", func_log2);
+ repo->add (f);
+ f = new Function ("LOG10", func_log10); // same as LOG
+ repo->add (f);
+ f = new Function ("LOGN", func_logn);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("MOD", func_mod);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("MROUND", func_mround);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("MULTINOMIAL", func_multinomial);
+ f->setParamCount (1, -1);
+ repo->add (f);
+ f = new Function ("ODD", func_odd);
+ repo->add (f);
+ f = new Function ("POW", func_pow);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("POWER", func_pow);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("QUOTIENT", func_quotient);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("RAND", func_rand);
+ f->setParamCount (0);
+ repo->add (f);
+ f = new Function ("RANDBERNOULLI", func_randbernoulli);
+ repo->add (f);
+ f = new Function ("RANDBETWEEN", func_randbetween);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("RANDBINOM", func_randbinom);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("RANDEXP", func_randexp);
+ repo->add (f);
+ f = new Function ("RANDNEGBINOM", func_randnegbinom);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("RANDNORM", func_randnorm);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("RANDPOISSON", func_randpoisson);
+ repo->add (f);
+ f = new Function ("ROOTN", func_rootn);
+ f->setParamCount (2);
+ repo->add (f);
+ f = new Function ("ROUND", func_round);
+ f->setParamCount (1, 2);
+ repo->add (f);
+ f = new Function ("ROUNDDOWN", func_rounddown);
+ f->setParamCount (1, 2);
+ repo->add (f);
+ f = new Function ("ROUNDUP", func_roundup);
+ f->setParamCount (1, 2);
+ repo->add (f);
+ f = new Function ("SIGN", func_sign);
+ repo->add (f);
+ f = new Function ("SQRT", func_sqrt);
+ repo->add (f);
+ f = new Function ("SQRTPI", func_sqrtpi);
+ repo->add (f);
+ f = new Function ("TRUNC", func_trunc);
+ f->setParamCount (1, 2);
+ repo->add (f);
+
+ // functions that operate over arrays
+ f = new Function ("COUNT", func_count);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("COUNTA", func_counta);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("COUNTBLANK", func_countblank);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("COUNTIF", func_countif);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("DIV", func_div);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("G_PRODUCT", func_kproduct); // Gnumeric compatibility
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("GCD", func_gcd);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("KPRODUCT", func_kproduct);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("LCM", func_lcm);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("MAX", func_max);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("MAXA", func_maxa);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("MDETERM", func_mdeterm);
+ f->setParamCount (1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("MIN", func_min);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("MINA", func_mina);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("MMULT", func_mmult);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("MULTIPLY", func_product); // same as PRODUCT
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("PRODUCT", func_product);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SUM", func_sum);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SUMA", func_suma);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SUBTOTAL", func_subtotal);
+ f->setParamCount (2);
+ f->setAcceptArray ();
+ f->setNeedsExtra (true);
+ repo->add (f);
+ f = new Function ("SUMIF", func_sumif);
+ f->setParamCount (2, 3);
+ f->setAcceptArray ();
+ repo->add (f);
+ f = new Function ("SUMSQ", func_sumsq);
+ f->setParamCount (1, -1);
+ f->setAcceptArray ();
+ repo->add (f);
+}
+
+// Function: SQRT
+Value func_sqrt (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->sqrt (args[0]);
+}
+
+// Function: SQRTPI
+Value func_sqrtpi (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ // sqrt (val * PI)
+ return calc->sqrt (calc->mul (args[0], calc->pi()));
+}
+
+// Function: ROOTN
+Value func_rootn (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->pow (args[0], calc->div (1, args[1]));
+}
+
+// Function: CUR
+Value func_cur (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->pow (args[0], 1.0/3.0);
+}
+
+// Function: ABS
+Value func_abs (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->abs (args[0]);
+}
+
+// Function: exp
+Value func_exp (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->exp (args[0]);
+}
+
+// Function: ceil
+Value func_ceil (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->roundUp (args[0], 0);
+}
+
+// Function: ceiling
+Value func_ceiling (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value number = args[0];
+ Value res;
+ if (args.count() == 2)
+ res = args[1];
+ else
+ res = calc->gequal (number, 0.0) ? 1.0 : -1.0;
+
+ if (calc->isZero(res))
+ return Value::errorDIV0();
+
+ Value d = calc->div (number, res);
+ if (calc->greater (0, d))
+ return Value::errorVALUE();
+
+ Value rud = calc->roundDown (d);
+ if (calc->approxEqual (rud, d))
+ d = calc->mul (rud, res);
+ else
+ d = calc->mul (calc->roundUp (d), res);
+
+ return d;
+}
+
+// Function: floor
+Value func_floor (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->roundDown (args[0], 0);
+}
+
+// Function: ln
+Value func_ln (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->ln (args[0]);
+}
+
+// Function: LOGn
+Value func_logn (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->log (args[0], args[1]);
+}
+
+// Function: LOG2
+Value func_log2 (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->log (args[0], 2.0);
+}
+
+// Function: LOG10
+Value func_log10 (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->log (args[0]);
+}
+
+// Function: sum
+Value func_sum (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->sum (args, false);
+}
+
+// Function: suma
+Value func_suma (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->sum (args, true);
+}
+
+Value func_sumif (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value checkRange = args[0];
+ TQString condition = calc->conv()->asString (args[1]).asString();
+ Value sumRange = checkRange;
+ if (args.count() == 3)
+ sumRange = args[2];
+
+ Condition cond;
+ calc->getCond (cond, condition);
+
+ return calc->sumIf (sumRange, checkRange, cond);
+}
+
+// Function: product
+Value func_product (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->product (args, 0.0);
+}
+
+// Function: kproduct
+Value func_kproduct (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->product (args, 1.0);
+}
+
+// Function: DIV
+Value func_div (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value val = args[0];
+ for (unsigned int i = 1; i < args.count(); ++i)
+ {
+ val = calc->div (val, args[i]);
+ if (val.isError())
+ return val;
+ }
+ return val;
+}
+
+// Function: SUMSQ
+Value func_sumsq (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value res;
+ calc->arrayWalk (args, res, calc->awFunc ("sumsq"), 0);
+ return res;
+}
+
+// Function: MAX
+Value func_max (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value m = calc->max (args, false);
+ return m.isEmpty() ? Value(0.0) : m;
+}
+
+// Function: MAXA
+Value func_maxa (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value m = calc->max (args);
+ return m.isEmpty() ? Value(0.0) : m;
+}
+
+// Function: MIN
+Value func_min (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value m = calc->min (args, false);
+ return m.isEmpty() ? Value(0.0) : m;
+}
+
+// Function: MINA
+Value func_mina (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value m = calc->min (args);
+ return m.isEmpty() ? Value(0.0) : m;
+}
+
+// Function: INT
+Value func_int (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->conv()->asInteger (args[0]);
+}
+
+// Function: QUOTIENT
+Value func_quotient (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ if (calc->isZero (args[1]))
+ return Value::errorDIV0();
+ return calc->conv()->asInteger (calc->div (args[0], args[1]));
+}
+
+
+// Function: eps
+Value func_eps (valVector, ValueCalc *calc, FuncExtra *)
+{
+ return calc->eps ();
+}
+
+Value func_randexp (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ // -1 * d * log (random)
+ return calc->mul (calc->mul (args[0], -1), calc->random());
+}
+
+Value func_randbinom (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ // this function will not support arbitrary precision
+
+ double d = calc->conv()->asFloat (args[0]).asFloat();
+ int tr = calc->conv()->asInteger (args[1]).asInteger();
+
+ if ( d < 0 || d > 1 )
+ return Value::errorVALUE();
+
+ if ( tr < 0 )
+ return Value::errorVALUE();
+
+ // taken from gnumeric
+ double x = pow(1 - d, tr);
+ double r = (double) rand() / ( RAND_MAX + 1.0 );
+ double t = x;
+ int i = 0;
+
+ while (r > t)
+ {
+ x *= (((tr - i) * d) / ((1 + i) * (1 - d)));
+ i++;
+ t += x;
+ }
+
+ return Value (i);
+}
+
+Value func_randnegbinom (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ // this function will not support arbitrary precision
+
+ double d = calc->conv()->asFloat (args[0]).asFloat();
+ int f = calc->conv()->asInteger (args[1]).asInteger();
+
+ if ( d < 0 || d > 1 )
+ return Value::errorVALUE();
+
+ if ( f < 0 )
+ return Value::errorVALUE();
+
+
+ // taken from Gnumeric
+ double x = pow(d, f);
+ double r = (double) rand() / ( RAND_MAX + 1.0 );
+ double t = x;
+ int i = 0;
+
+ while (r > t)
+ {
+ x *= ( ( ( f + i ) * ( 1 - d ) ) / (1 + i) ) ;
+ i++;
+ t += x;
+ }
+
+ return Value (i);
+}
+
+Value func_randbernoulli (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value rnd = calc->random ();
+ return Value (calc->greater (rnd, args[0]) ? 1.0 : 0.0);
+}
+
+Value func_randnorm (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value mu = args[0];
+ Value sigma = args[1];
+
+ //using polar form of the Box-Muller transformation
+ //refer to http://www.taygeta.com/random/gaussian.html for more info
+
+ Value x1, x2, w;
+ do {
+ // x1,x2 = 2 * random() - 1
+ x1 = calc->random (2.0);
+ x2 = calc->random (2.0);
+ x1 = calc->sub (x1, 1);
+ x1 = calc->sub (x2, 1);
+ w = calc->add (calc->sqr(x1), calc->sqr (x2));
+ } while (calc->gequal (w, 1.0)); // w >= 1.0
+
+ //sqrt ((-2.0 * log (w)) / w) :
+ w = calc->sqrt (calc->div (calc->mul (-2.0, calc->ln (w)), w));
+ Value res = calc->mul (x1, w);
+
+ res = calc->add (calc->mul (res, sigma), mu); // res*sigma + mu
+ return res;
+}
+
+Value func_randpoisson (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ if (calc->lower (args[0], 0))
+ return Value::errorVALUE();
+
+ // taken from Gnumeric...
+ Value x = calc->exp (calc->mul (-1, args[0])); // e^(-A)
+ Value r = calc->random ();
+ Value t = x;
+ int i = 0;
+
+ while (calc->greater (r, t)) { // r > t
+ x = calc->mul (x, calc->div (args[0], i + 1)); // x *= (A/(i+1))
+ t = calc->add (t, x); //t += x
+ i++;
+ }
+
+ return Value (i);
+}
+
+// Function: rand
+Value func_rand (valVector, ValueCalc *calc, FuncExtra *)
+{
+ return calc->random ();
+}
+
+// Function: RANDBETWEEN
+Value func_randbetween (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value v1 = args[0];
+ Value v2 = args[1];
+ if (calc->greater (v2, v1)) {
+ v1 = args[1];
+ v2 = args[0];
+ }
+ return calc->add (v1, calc->random (calc->sub (v2, v1)));
+}
+
+// Function: POW
+Value func_pow (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->pow (args[0], args[1]);
+}
+
+// Function: MOD
+Value func_mod (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->mod (args[0], args[1]);
+}
+
+// Function: fact
+Value func_fact (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->fact (args[0]);
+}
+
+// Function: FACTDOUBLE
+Value func_factdouble (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->factDouble (args[0]);
+}
+
+// Function: MULTINOMIAL
+Value func_multinomial (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ // (a+b+c)! / a!b!c! (any number of params possible)
+ Value num = 0, den = 1;
+ for (unsigned int i = 0; i < args.count(); ++i) {
+ num = calc->add (num, args[i]);
+ den = calc->mul (den, calc->fact (args[i]));
+ }
+ num = calc->fact (num);
+ return calc->div (num, den);
+}
+
+// Function: sign
+Value func_sign (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return Value (calc->sign (args[0]));
+}
+
+// Function: INV
+Value func_inv (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->mul (args[0], -1);
+}
+
+Value func_mround (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value d = args[0];
+ Value m = args[1];
+
+ // signs must be the same
+ if ((calc->greater (d, 0) && calc->lower (m, 0))
+ || (calc->lower (d, 0) && calc->greater (m, 0)))
+ return Value::errorVALUE();
+
+ int sign = 1;
+
+ if (calc->lower (d, 0))
+ {
+ sign = -1;
+ d = calc->mul (d, -1);
+ m = calc->mul (m, -1);
+ }
+
+ // from gnumeric:
+ Value mod = calc->mod (d, m);
+ Value div = calc->sub (d, mod);
+
+ Value result = div;
+ if (calc->greater (mod, calc->div (m, 2))) // mod > m/2
+ result = calc->add (result, m); // result += m
+ result = calc->mul (result, sign); // add the sign
+
+ return result;
+}
+
+// Function: ROUNDDOWN
+Value func_rounddown (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ if (args.count() == 2)
+ return calc->roundDown (args[0], args[1]);
+ return calc->roundDown (args[0], 0);
+}
+
+// Function: ROUNDUP
+Value func_roundup (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ if (args.count() == 2)
+ return calc->roundUp (args[0], args[1]);
+ return calc->roundUp (args[0], 0);
+}
+
+// Function: ROUND
+Value func_round (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ if (args.count() == 2)
+ return calc->round (args[0], args[1]);
+ return calc->round (args[0], 0);
+}
+
+// Function: EVEN
+Value func_even (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ const Value value = calc->roundUp (args[0], 0);
+ return calc->isZero( calc->mod(value, 2) ) ? value : calc->add(value, 1);
+}
+
+// Function: ODD
+Value func_odd (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ const Value value = calc->roundUp (args[0], 0);
+ return calc->isZero( calc->mod(value, 2) ) ? calc->add(value, 1) : value;
+}
+
+Value func_trunc (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ if (args.count() == 1)
+ return calc->roundDown (args[0]);
+ return calc->roundDown (args[0], args[1]);
+}
+
+// Function: COUNT
+Value func_count (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->count (args, false);
+}
+
+// Function: COUNTA
+Value func_counta (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ return calc->count (args);
+}
+
+// Function: COUNTBLANK
+Value func_countblank (valVector args, ValueCalc *, FuncExtra *)
+{
+ int cnt = 0;
+ for (unsigned int i = 0; i < args.count(); ++i)
+ if (args[i].isArray()) {
+ int rows = args[i].rows();
+ int cols = args[i].columns();
+ for (int r = 0; r < rows; ++r)
+ for (int c = 0; c < cols; ++c)
+ if (args[i].element (c, r).isEmpty())
+ cnt++;
+ } else
+ if (args[i].isEmpty())
+ cnt++;
+ return Value (cnt);
+}
+
+// Function: COUNTIF
+Value func_countif (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value range = args[0];
+ TQString condition = calc->conv()->asString (args[1]).asString();
+
+ Condition cond;
+ calc->getCond (cond, condition);
+
+ return calc->countIf (range, cond);
+}
+
+// Function: FIB
+Value func_fib (valVector args, ValueCalc *calc, FuncExtra *)
+{
+/*
+Lucas' formula for the nth Fibonacci number F(n) is given by
+
+ ((1+sqrt(5))/2)^n - ((1-sqrt(5))/2)^n
+ F(n) = ------------------------------------- .
+ sqrt(5)
+
+*/
+ Value n = args[0];
+ Value s = calc->sqrt (5.0);
+ // u1 = ((1+sqrt(5))/2)^n
+ Value u1 = calc->pow (calc->div (calc->add (1, s), 2), n);
+ // u2 = ((1-sqrt(5))/2)^n
+ Value u2 = calc->pow (calc->div (calc->sub (1, s), 2), n);
+
+ Value result = calc->div (calc->sub (u1, u2), s);
+ return result;
+}
+
+static Value func_gcd_helper(const Value &val, ValueCalc *calc)
+{
+ Value res = 0;
+ if (!val.isArray ())
+ return val;
+ for (unsigned int row = 0; row < val.rows(); ++row)
+ for (unsigned int col = 0; col < val.columns(); ++col)
+ {
+ Value v = val.element (col, row);
+ if (v.isArray ())
+ v = func_gcd_helper (v, calc);
+ res = calc->gcd (res, v);
+ }
+ return res;
+}
+
+// Function: GCD
+Value func_gcd (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value result = 0;
+ for (unsigned int i = 0; i < args.count(); ++i)
+ if (args[i].isArray())
+ result = calc->gcd (result, func_gcd_helper (args[i], calc));
+ else
+ result = calc->gcd (result, args[i]);
+ return result;
+}
+
+static Value func_lcm_helper(const Value &val, ValueCalc *calc)
+{
+ Value res = 0;
+ if (!val.isArray ())
+ return val;
+ for (unsigned int row = 0; row < val.rows(); ++row)
+ for (unsigned int col = 0; col < val.columns(); ++col)
+ {
+ Value v = val.element (col, row);
+ if (v.isArray ())
+ v = func_lcm_helper (v, calc);
+ res = calc->lcm (res, v);
+ }
+ return res;
+}
+
+// Function: lcm
+Value func_lcm (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value result = 0;
+ for (unsigned int i = 0; i < args.count(); ++i)
+ if (args[i].isArray())
+ result = calc->lcm (result, func_lcm_helper (args[i], calc));
+ else
+ result = calc->lcm (result, args[i]);
+ return result;
+}
+
+Value determinant (ValueCalc *calc, Value matrix)
+{
+ // this is a --- SLOOOW --- recursive function
+ // using this for something bigger than 10x10 or so = suicide :P
+ // but I'm too lazy to adjust gnumeric's code - remains as a TODO then
+ // as a note, gnumeric uses LUP decomposition to compute this
+
+ // take first row, generate smaller matrices, recursion, multiply
+ Value res = 0.0;
+ int n = matrix.columns();
+ if (n == 1) return matrix.element (0, 0);
+ if (n == 2) return calc->sub (
+ calc->mul (matrix.element (1,1), matrix.element (0,0)),
+ calc->mul (matrix.element (1,0), matrix.element (0,1)));
+
+ // n >= 3
+ for (int i = 0; i < n; ++i) {
+ Value smaller (n-1, n-1);
+ int col = 0;
+ for (int c = 0; c < n; ++c)
+ if (c != i) {
+ // copy column c to column col in new matrix
+ for (int r = 1; r < n; r++)
+ smaller.setElement (col, r-1, matrix.element (c, r));
+ col++;
+ }
+ Value minor = determinant (calc, smaller);
+ if (i % 2 == 1) minor = calc->mul (minor, -1);
+ res = calc->add (res, calc->mul (minor, matrix.element (i, 0)));
+ }
+ return res;
+}
+
+// Function: mdeterm
+Value func_mdeterm (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value m = args[0];
+ unsigned r = m.rows ();
+ unsigned c = m.columns ();
+ if (r != c) // must be a square matrix
+ return Value::errorVALUE();
+
+ return determinant (calc, args[0]);
+}
+
+// Function: mmult
+Value func_mmult (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ Value m1 = args[0];
+ Value m2 = args[1];
+ unsigned r1 = m1.rows ();
+ unsigned c1 = m1.columns ();
+ unsigned r2 = m2.rows ();
+ unsigned c2 = m2.columns ();
+ if (c1 != r2) // row/column counts must match
+ return Value::errorVALUE();
+
+ // create the resulting matrix
+ Value res (c2, r1);
+
+ // perform the multiplication - O(n^3) algorithm
+ for (uint row = 0; row < r1; ++row)
+ for (uint col = 0; col < c2; ++col) {
+ Value val = 0.0;
+ for (uint pos = 0; pos < c1; ++pos)
+ val = calc->add (val,
+ calc->mul (m1.element (pos, row), m2.element (col, pos)));
+ res.setElement (col, row, val);
+ }
+ return res;
+}
+
+// Function: SUBTOTAL
+// This function requires access to the Sheet and so on, because
+// it needs to check whether cells contain the SUBTOTAL formula or not ...
+// Cells containing a SUBTOTAL formula must be ignored.
+Value func_subtotal (valVector args, ValueCalc *calc, FuncExtra *e)
+{
+ int function = calc->conv()->asInteger (args[0]).asInteger();
+ Value range = args[1];
+ int r1 = -1, c1 = -1, r2 = -1, c2 = -1;
+ if (e) {
+ r1 = e->ranges[1].row1;
+ c1 = e->ranges[1].col1;
+ r2 = e->ranges[1].row2;
+ c2 = e->ranges[1].col2;
+ }
+
+ // if we have a range, run through it, and put an empty value to the place
+ // of all occurences of the SUBTOTAL function
+ Value empty;
+ if ((r1 > 0) && (c1 > 0) && (r2 > 0) && (c2 > 0)) {
+ for (int r = r1; r <= r2; ++r)
+ for (int c = c1; c <= c2; ++c) {
+ Cell *cell = e->sheet->cellAt (c, r);
+ if (cell->isDefault())
+ continue;
+ if (cell->isFormula() && cell->text().find ("SUBTOTAL", 0, false) != -1)
+ // cell contains the word SUBTOTAL - replace value with empty
+ range.setElement (c-c1, r-r1, empty);
+ }
+ }
+
+ // Good. Now we can execute the necessary function on the range.
+ Value res;
+ Function *f;
+ valVector a;
+ switch (function) {
+ case 1: // Average
+ res = calc->avg (range, false);
+ break;
+ case 2: // Count
+ res = calc->count (range, false);
+ break;
+ case 3: // CountA
+ res = calc->count (range);
+ break;
+ case 4: // MAX
+ res = calc->max (range, false);
+ break;
+ case 5: // Min
+ res = calc->min (range, false);
+ break;
+ case 6: // Product
+ res = calc->product (range, 0.0, false);
+ break;
+ case 7: // StDev
+ res = calc->stddev (range, false);
+ break;
+ case 8: // StDevP
+ res = calc->stddevP (range, false);
+ break;
+ case 9: // Sum
+ res = calc->sum (range, false);
+ break;
+ case 10: // Var
+ f = FunctionRepository::self()->function ("VAR");
+ if (!f) return Value::errorVALUE();
+ a.reserve (1);
+ a[0] = range;
+ res = f->exec (a, calc, 0);
+ break;
+ case 11: // VarP
+ f = FunctionRepository::self()->function ("VARP");
+ if (!f) return Value::errorVALUE();
+ a.reserve (1);
+ a[0] = range;
+ res = f->exec (a, calc, 0);
+ break;
+ default:
+ return Value::errorVALUE();
+ }
+ return res;
+}
+
+/*
+Commented out.
+Absolutely no idea what this thing is supposed to do.
+To anyone who would enable this code: it still uses koscript calls - you need
+to convert it to the new style prior to uncommenting.
+
+// Function: MULTIPLEOPERATIONS
+Value func_multipleOP (valVector args, ValueCalc *calc, FuncExtra *)
+{
+ if (gCell)
+ {
+ context.setValue( new KSValue( ((Interpreter *) context.interpreter() )->cell()->value().asFloat() ) );
+ return true;
+ }
+
+ gCell = ((Interpreter *) context.interpreter() )->cell();
+
+ TQValueList<KSValue::Ptr>& args = context.value()->listValue();
+ TQValueList<KSValue::Ptr>& extra = context.extraData()->listValue();
+
+ if ( !KSUtil::checkArgumentsCount( context, 5, "MULTIPLEOPERATIONS", true ) )
+ {
+ gCell = 0;
+ return false;
+ }
+
+ // 0: cell must contain formula with double/int result
+ // 0, 1, 2, 3, 4: must contain integer/double
+ for (int i = 0; i < 5; ++i)
+ {
+ if ( !KSUtil::checkType( context, args[i], KSValue::DoubleType, true ) )
+ {
+ gCell = 0;
+ return false;
+ }
+ }
+
+ // ((Interpreter *) context.interpreter() )->document()->emitBeginOperation();
+
+ double oldCol = args[1]->doubleValue();
+ double oldRow = args[3]->doubleValue();
+ kdDebug() << "Old values: Col: " << oldCol << ", Row: " << oldRow << endl;
+
+ Cell * cell;
+ Sheet * sheet = ((Interpreter *) context.interpreter() )->sheet();
+
+ Point point( extra[1]->stringValue() );
+ Point point2( extra[3]->stringValue() );
+ Point point3( extra[0]->stringValue() );
+
+ if ( ( args[1]->doubleValue() != args[2]->doubleValue() )
+ || ( args[3]->doubleValue() != args[4]->doubleValue() ) )
+ {
+ cell = sheet->cellAt( point.pos.x(), point.pos.y() );
+ cell->setValue( args[2]->doubleValue() );
+ kdDebug() << "Setting value " << args[2]->doubleValue() << " on cell " << point.pos.x()
+ << ", " << point.pos.y() << endl;
+
+ cell = sheet->cellAt( point2.pos.x(), point.pos.y() );
+ cell->setValue( args[4]->doubleValue() );
+ kdDebug() << "Setting value " << args[4]->doubleValue() << " on cell " << point2.pos.x()
+ << ", " << point2.pos.y() << endl;
+ }
+
+ Cell * cell1 = sheet->cellAt( point3.pos.x(), point3.pos.y() );
+ cell1->calc( false );
+
+ double d = cell1->value().asFloat();
+ kdDebug() << "Cell: " << point3.pos.x() << "; " << point3.pos.y() << " with value "
+ << d << endl;
+
+ kdDebug() << "Resetting old values" << endl;
+
+ cell = sheet->cellAt( point.pos.x(), point.pos.y() );
+ cell->setValue( oldCol );
+
+ cell = sheet->cellAt( point2.pos.x(), point2.pos.y() );
+ cell->setValue( oldRow );
+
+ cell1->calc( false );
+
+ // ((Interpreter *) context.interpreter() )->document()->emitEndOperation();
+
+ context.setValue( new KSValue( (double) d ) );
+
+ gCell = 0;
+ return true;
+}
+
+*/