/**************************************************************************** ** ** Implementation of the QString class and related Unicode functions ** ** Created : 920722 ** ** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved. ** ** This file is part of the tools module of the Qt GUI Toolkit. ** ** This file may be used under the terms of the GNU General ** Public License versions 2.0 or 3.0 as published by the Free ** Software Foundation and appearing in the files LICENSE.GPL2 ** and LICENSE.GPL3 included in the packaging of this file. ** Alternatively you may (at your option) use any later version ** of the GNU General Public License if such license has been ** publicly approved by Trolltech ASA (or its successors, if any) ** and the KDE Free Qt Foundation. ** ** Please review the following information to ensure GNU General ** Public Licensing requirements will be met: ** http://trolltech.com/products/qt/licenses/licensing/opensource/. ** If you are unsure which license is appropriate for your use, please ** review the following information: ** http://trolltech.com/products/qt/licenses/licensing/licensingoverview ** or contact the sales department at sales@trolltech.com. ** ** This file may be used under the terms of the Q Public License as ** defined by Trolltech ASA and appearing in the file LICENSE.QPL ** included in the packaging of this file. Licensees holding valid Qt ** Commercial licenses may use this file in accordance with the Qt ** Commercial License Agreement provided with the Software. ** ** This file is provided "AS IS" with NO WARRANTY OF ANY KIND, ** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted ** herein. ** **********************************************************************/ // Don't define it while compiling this module, or USERS of Qt will // not be able to link. #ifdef QT_NO_CAST_ASCII #undef QT_NO_CAST_ASCII #endif // WARNING // When MAKE_QSTRING_THREAD_SAFE is defined, overall Qt3 performance suffers badly! // QString is thread unsafe in many other areas; perhaps this option is not even useful? // #define MAKE_QSTRING_THREAD_SAFE 1 #include "qstring.h" #include "qregexp.h" #include "qdatastream.h" #ifndef QT_NO_TEXTCODEC #include "qtextcodec.h" #endif #include "qlocale.h" #include "qlocale_p.h" #include "qunicodetables_p.h" #include #include #include #include #include #ifndef Q_OS_TEMP #include #endif #if defined(Q_WS_WIN) #include "qt_windows.h" #endif #if defined(Q_OS_LINUX) #include #endif #if !defined( QT_NO_COMPONENT ) && !defined( QT_LITE_COMPONENT ) #include "qcleanuphandler.h" #endif #if defined(Q_OS_LINUX) #define LINUX_MEMLOCK_LIMIT_BYTES 16384 #define LINUX_MEMLOCK_LIMIT_CHARACTERS LINUX_MEMLOCK_LIMIT_BYTES/sizeof(QChar) #endif #ifndef LLONG_MAX #define LLONG_MAX Q_INT64_C(9223372036854775807) #endif #ifndef LLONG_MIN #define LLONG_MIN (-LLONG_MAX - Q_INT64_C(1)) #endif #ifndef ULLONG_MAX #define ULLONG_MAX Q_UINT64_C(18446744073709551615) #endif #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) #include "qmutex.h" #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE extern QMutex *qt_sharedStringMutex; static int ucstrcmp( const QString &as, const QString &bs ) { const QChar *a = as.unicode(); const QChar *b = bs.unicode(); if ( a == b ) return 0; if ( a == 0 ) return 1; if ( b == 0 ) return -1; int l=QMIN(as.length(),bs.length()); while ( l-- && *a == *b ) a++,b++; if ( l==-1 ) return ( as.length()-bs.length() ); return a->unicode() - b->unicode(); } static int ucstrncmp( const QChar *a, const QChar *b, int l ) { while ( l-- && *a == *b ) a++,b++; if ( l==-1 ) return 0; return a->unicode() - b->unicode(); } static int ucstrnicmp( const QChar *a, const QChar *b, int l ) { while ( l-- && ::lower( *a ) == ::lower( *b ) ) a++,b++; if ( l==-1 ) return 0; return ::lower( *a ).unicode() - ::lower( *b ).unicode(); } static uint computeNewMax( uint len ) { if (len >= 0x80000000) return len; uint newMax = 4; while ( newMax < len ) newMax *= 2; // try to save some memory if ( newMax >= 1024 * 1024 && len <= newMax - (newMax >> 2) ) newMax -= newMax >> 2; return newMax; } static bool qIsUpper(char c) { return c >= 'A' && c <= 'Z'; } static bool qIsDigit(char c) { return c >= '0' && c <= '9'; } static char qToLower(char c) { if (c >= 'A' && c <= 'Z') return c - 'A' + 'a'; else return c; } /*! \class QCharRef qstring.h \reentrant \brief The QCharRef class is a helper class for QString. \ingroup text When you get an object of type QCharRef, if you can assign to it, the assignment will apply to the character in the string from which you got the reference. That is its whole purpose in life. The QCharRef becomes invalid once modifications are made to the string: if you want to keep the character, copy it into a QChar. Most of the QChar member functions also exist in QCharRef. However, they are not explicitly documented here. \sa QString::operator[]() QString::at() QChar */ /*! \class QChar qstring.h \reentrant \brief The QChar class provides a lightweight Unicode character. \ingroup text Unicode characters are (so far) 16-bit entities without any markup or structure. This class represents such an entity. It is lightweight, so it can be used everywhere. Most compilers treat it like a "short int". (In a few years it may be necessary to make QChar 32-bit when more than 65536 Unicode code points have been defined and come into use.) QChar provides a full complement of testing/classification functions, converting to and from other formats, converting from composed to decomposed Unicode, and trying to compare and case-convert if you ask it to. The classification functions include functions like those in ctype.h, but operating on the full range of Unicode characters. They all return TRUE if the character is a certain type of character; otherwise they return FALSE. These classification functions are isNull() (returns TRUE if the character is U+0000), isPrint() (TRUE if the character is any sort of printable character, including whitespace), isPunct() (any sort of punctation), isMark() (Unicode Mark), isLetter (a letter), isNumber() (any sort of numeric character), isLetterOrNumber(), and isDigit() (decimal digits). All of these are wrappers around category() which return the Unicode-defined category of each character. QChar further provides direction(), which indicates the "natural" writing direction of this character. The joining() function indicates how the character joins with its neighbors (needed mostly for Arabic) and finally mirrored(), which indicates whether the character needs to be mirrored when it is printed in its "unnatural" writing direction. Composed Unicode characters (like å) can be converted to decomposed Unicode ("a" followed by "ring above") by using decomposition(). In Unicode, comparison is not necessarily possible and case conversion is very difficult at best. Unicode, covering the "entire" world, also includes most of the world's case and sorting problems. Qt tries, but not very hard: operator==() and friends will do comparison based purely on the numeric Unicode value (code point) of the characters, and upper() and lower() will do case changes when the character has a well-defined upper/lower-case equivalent. There is no provision for locale-dependent case folding rules or comparison; these functions are meant to be fast so they can be used unambiguously in data structures. (See QString::localeAwareCompare() though.) The conversion functions include unicode() (to a scalar), latin1() (to scalar, but converts all non-Latin-1 characters to 0), row() (gives the Unicode row), cell() (gives the Unicode cell), digitValue() (gives the integer value of any of the numerous digit characters), and a host of constructors. More information can be found in the document \link unicode.html About Unicode. \endlink \sa QString QCharRef */ /*! \enum QChar::Category This enum maps the Unicode character categories. The following characters are normative in Unicode: \value Mark_NonSpacing Unicode class name Mn \value Mark_SpacingCombining Unicode class name Mc \value Mark_Enclosing Unicode class name Me \value Number_DecimalDigit Unicode class name Nd \value Number_Letter Unicode class name Nl \value Number_Other Unicode class name No \value Separator_Space Unicode class name Zs \value Separator_Line Unicode class name Zl \value Separator_Paragraph Unicode class name Zp \value Other_Control Unicode class name Cc \value Other_Format Unicode class name Cf \value Other_Surrogate Unicode class name Cs \value Other_PrivateUse Unicode class name Co \value Other_NotAssigned Unicode class name Cn The following categories are informative in Unicode: \value Letter_Uppercase Unicode class name Lu \value Letter_Lowercase Unicode class name Ll \value Letter_Titlecase Unicode class name Lt \value Letter_Modifier Unicode class name Lm \value Letter_Other Unicode class name Lo \value Punctuation_Connector Unicode class name Pc \value Punctuation_Dash Unicode class name Pd \value Punctuation_Open Unicode class name Ps \value Punctuation_Close Unicode class name Pe \value Punctuation_InitialQuote Unicode class name Pi \value Punctuation_FinalQuote Unicode class name Pf \value Punctuation_Other Unicode class name Po \value Symbol_Math Unicode class name Sm \value Symbol_Currency Unicode class name Sc \value Symbol_Modifier Unicode class name Sk \value Symbol_Other Unicode class name So There are two categories that are specific to Qt: \value NoCategory used when Qt is dazed and confused and cannot make sense of anything. \value Punctuation_Dask old typo alias for Punctuation_Dash */ /*! \enum QChar::Direction This enum type defines the Unicode direction attributes. See \link http://www.unicode.org/ the Unicode Standard\endlink for a description of the values. In order to conform to C/C++ naming conventions "Dir" is prepended to the codes used in the Unicode Standard. */ /*! \enum QChar::Decomposition This enum type defines the Unicode decomposition attributes. See \link http://www.unicode.org/ the Unicode Standard\endlink for a description of the values. */ /*! \enum QChar::Joining This enum type defines the Unicode joining attributes. See \link http://www.unicode.org/ the Unicode Standard\endlink for a description of the values. */ /*! \enum QChar::CombiningClass This enum type defines names for some of the Unicode combining classes. See \link http://www.unicode.org/ the Unicode Standard\endlink for a description of the values. */ /*! \fn void QChar::setCell( uchar cell ) \internal */ /*! \fn void QChar::setRow( uchar row ) \internal */ /*! \fn QChar::QChar() Constructs a null QChar (one that isNull()). */ /*! \fn QChar::QChar( char c ) Constructs a QChar corresponding to ASCII/Latin-1 character \a c. */ /*! \fn QChar::QChar( uchar c ) Constructs a QChar corresponding to ASCII/Latin-1 character \a c. */ /*! \fn QChar::QChar( uchar c, uchar r ) Constructs a QChar for Unicode cell \a c in row \a r. */ /*! \fn QChar::QChar( const QChar& c ) Constructs a copy of \a c. This is a deep copy, if such a lightweight object can be said to have deep copies. */ /*! \fn QChar::QChar( ushort rc ) Constructs a QChar for the character with Unicode code point \a rc. */ /*! \fn QChar::QChar( short rc ) Constructs a QChar for the character with Unicode code point \a rc. */ /*! \fn QChar::QChar( uint rc ) Constructs a QChar for the character with Unicode code point \a rc. */ /*! \fn QChar::QChar( int rc ) Constructs a QChar for the character with Unicode code point \a rc. */ /*! \fn bool QChar::networkOrdered () \obsolete Returns TRUE if this character is in network byte order (MSB first); otherwise returns FALSE. This is platform dependent. */ /*! \fn bool QChar::isNull() const Returns TRUE if the character is the Unicode character 0x0000 (ASCII NUL); otherwise returns FALSE. */ /*! \fn uchar QChar::cell () const Returns the cell (least significant byte) of the Unicode character. */ /*! \fn uchar QChar::row () const Returns the row (most significant byte) of the Unicode character. */ /*! Returns TRUE if the character is a printable character; otherwise returns FALSE. This is any character not of category Cc or Cn. Note that this gives no indication of whether the character is available in a particular \link QFont font\endlink. */ bool QChar::isPrint() const { Category c = ::category( *this ); return !(c == Other_Control || c == Other_NotAssigned); } /*! Returns TRUE if the character is a separator character (Separator_* categories); otherwise returns FALSE. */ bool QChar::isSpace() const { return ::isSpace( *this ); } /*! Returns TRUE if the character is a mark (Mark_* categories); otherwise returns FALSE. */ bool QChar::isMark() const { Category c = ::category( *this ); return c >= Mark_NonSpacing && c <= Mark_Enclosing; } /*! Returns TRUE if the character is a punctuation mark (Punctuation_* categories); otherwise returns FALSE. */ bool QChar::isPunct() const { Category c = ::category( *this ); return (c >= Punctuation_Connector && c <= Punctuation_Other); } /*! Returns TRUE if the character is a letter (Letter_* categories); otherwise returns FALSE. */ bool QChar::isLetter() const { Category c = ::category( *this ); return (c >= Letter_Uppercase && c <= Letter_Other); } /*! Returns TRUE if the character is a number (of any sort - Number_* categories); otherwise returns FALSE. \sa isDigit() */ bool QChar::isNumber() const { Category c = ::category( *this ); return c >= Number_DecimalDigit && c <= Number_Other; } /*! Returns TRUE if the character is a letter or number (Letter_* or Number_* categories); otherwise returns FALSE. */ bool QChar::isLetterOrNumber() const { Category c = ::category( *this ); return (c >= Letter_Uppercase && c <= Letter_Other) || (c >= Number_DecimalDigit && c <= Number_Other); } /*! Returns TRUE if the character is a decimal digit (Number_DecimalDigit); otherwise returns FALSE. */ bool QChar::isDigit() const { return (::category( *this ) == Number_DecimalDigit); } /*! Returns TRUE if the character is a symbol (Symbol_* categories); otherwise returns FALSE. */ bool QChar::isSymbol() const { Category c = ::category( *this ); return c >= Symbol_Math && c <= Symbol_Other; } /*! Returns the numeric value of the digit, or -1 if the character is not a digit. */ int QChar::digitValue() const { #ifndef QT_NO_UNICODETABLES int pos = QUnicodeTables::decimal_info[row()]; if( !pos ) return -1; return QUnicodeTables::decimal_info[(pos<<8) + cell()]; #else // ##### just latin1 if ( ucs < '0' || ucs > '9' ) return -1; else return ucs - '0'; #endif } /*! Returns the character category. \sa Category */ QChar::Category QChar::category() const { return ::category( *this ); } /*! Returns the character's direction. \sa Direction */ QChar::Direction QChar::direction() const { return ::direction( *this ); } /*! \warning This function is not supported (it may change to use Unicode character classes). Returns information about the joining properties of the character (needed for example, for Arabic). */ QChar::Joining QChar::joining() const { return ::joining( *this ); } /*! Returns TRUE if the character is a mirrored character (one that should be reversed if the text direction is reversed); otherwise returns FALSE. */ bool QChar::mirrored() const { return ::mirrored( *this ); } /*! Returns the mirrored character if this character is a mirrored character, otherwise returns the character itself. */ QChar QChar::mirroredChar() const { return ::mirroredChar( *this ); } #ifndef QT_NO_UNICODETABLES // ### REMOVE ME 4.0 static QString shared_decomp; #endif /*! \nonreentrant Decomposes a character into its parts. Returns QString::null if no decomposition exists. */ const QString &QChar::decomposition() const { #ifndef QT_NO_UNICODETABLES int pos = QUnicodeTables::decomposition_info[row()]; if(!pos) return QString::null; pos = QUnicodeTables::decomposition_info[(pos<<8)+cell()]; if(!pos) return QString::null; pos+=2; QString s; Q_UINT16 c; while ( (c = QUnicodeTables::decomposition_map[pos++]) != 0 ) s += QChar( c ); // ### In 4.0, return s, and not shared_decomp. shared_decomp // prevents this function from being reentrant. shared_decomp = s; return shared_decomp; #else return QString::null; #endif } /*! Returns the tag defining the composition of the character. Returns QChar::Single if no decomposition exists. */ QChar::Decomposition QChar::decompositionTag() const { #ifndef QT_NO_UNICODETABLES int pos = QUnicodeTables::decomposition_info[row()]; if(!pos) return QChar::Single; pos = QUnicodeTables::decomposition_info[(pos<<8)+cell()]; if(!pos) return QChar::Single; return (QChar::Decomposition) QUnicodeTables::decomposition_map[pos]; #else return Single; // ########### FIX eg. just latin1 #endif } /*! Returns the combining class for the character as defined in the Unicode standard. This is mainly useful as a positioning hint for marks attached to a base character. The Qt text rendering engine uses this information to correctly position non spacing marks around a base character. */ unsigned char QChar::combiningClass() const { return ::combiningClass( *this ); } /*! Returns the lowercase equivalent if the character is uppercase; otherwise returns the character itself. */ QChar QChar::lower() const { return ::lower( *this ); } /*! Returns the uppercase equivalent if the character is lowercase; otherwise returns the character itself. */ QChar QChar::upper() const { return ::upper( *this ); } /*! \fn QChar::operator char() const Returns the Latin-1 character equivalent to the QChar, or 0. This is mainly useful for non-internationalized software. \sa unicode() */ /*! \fn ushort QChar::unicode() const Returns the numeric Unicode value equal to the QChar. Normally, you should use QChar objects as they are equivalent, but for some low-level tasks (e.g. indexing into an array of Unicode information), this function is useful. */ /*! \fn ushort & QChar::unicode() \overload Returns a reference to the numeric Unicode value equal to the QChar. */ /***************************************************************************** Documentation of QChar related functions *****************************************************************************/ /*! \fn bool operator==( QChar c1, QChar c2 ) \relates QChar Returns TRUE if \a c1 and \a c2 are the same Unicode character; otherwise returns FALSE. */ /*! \fn bool operator==( char ch, QChar c ) \overload \relates QChar Returns TRUE if \a c is the ASCII/Latin-1 character \a ch; otherwise returns FALSE. */ /*! \fn bool operator==( QChar c, char ch ) \overload \relates QChar Returns TRUE if \a c is the ASCII/Latin-1 character \a ch; otherwise returns FALSE. */ /*! \fn int operator!=( QChar c1, QChar c2 ) \relates QChar Returns TRUE if \a c1 and \a c2 are not the same Unicode character; otherwise returns FALSE. */ /*! \fn int operator!=( char ch, QChar c ) \overload \relates QChar Returns TRUE if \a c is not the ASCII/Latin-1 character \a ch; otherwise returns FALSE. */ /*! \fn int operator!=( QChar c, char ch ) \overload \relates QChar Returns TRUE if \a c is not the ASCII/Latin-1 character \a ch; otherwise returns FALSE. */ /*! \fn int operator<=( QChar c1, QChar c2 ) \relates QChar Returns TRUE if the numeric Unicode value of \a c1 is less than that of \a c2, or they are the same Unicode character; otherwise returns FALSE. */ /*! \fn int operator<=( QChar c, char ch ) \overload \relates QChar Returns TRUE if the numeric Unicode value of \a c is less than or equal to that of the ASCII/Latin-1 character \a ch; otherwise returns FALSE. */ /*! \fn int operator<=( char ch, QChar c ) \overload \relates QChar Returns TRUE if the numeric Unicode value of the ASCII/Latin-1 character \a ch is less than or equal to that of \a c; otherwise returns FALSE. */ /*! \fn int operator>=( QChar c1, QChar c2 ) \relates QChar Returns TRUE if the numeric Unicode value of \a c1 is greater than that of \a c2, or they are the same Unicode character; otherwise returns FALSE. */ /*! \fn int operator>=( QChar c, char ch ) \overload \relates QChar Returns TRUE if the numeric Unicode value of \a c is greater than or equal to that of the ASCII/Latin-1 character \a ch; otherwise returns FALSE. */ /*! \fn int operator>=( char ch, QChar c ) \overload \relates QChar Returns TRUE if the numeric Unicode value of the ASCII/Latin-1 character \a ch is greater than or equal to that of \a c; otherwise returns FALSE. */ /*! \fn int operator<( QChar c1, QChar c2 ) \relates QChar Returns TRUE if the numeric Unicode value of \a c1 is less than that of \a c2; otherwise returns FALSE. */ /*! \fn int operator<( QChar c, char ch ) \overload \relates QChar Returns TRUE if the numeric Unicode value of \a c is less than that of the ASCII/Latin-1 character \a ch; otherwise returns FALSE. */ /*! \fn int operator<( char ch, QChar c ) \overload \relates QChar Returns TRUE if the numeric Unicode value of the ASCII/Latin-1 character \a ch is less than that of \a c; otherwise returns FALSE. */ /*! \fn int operator>( QChar c1, QChar c2 ) \relates QChar Returns TRUE if the numeric Unicode value of \a c1 is greater than that of \a c2; otherwise returns FALSE. */ /*! \fn int operator>( QChar c, char ch ) \overload \relates QChar Returns TRUE if the numeric Unicode value of \a c is greater than that of the ASCII/Latin-1 character \a ch; otherwise returns FALSE. */ /*! \fn int operator>( char ch, QChar c ) \overload \relates QChar Returns TRUE if the numeric Unicode value of the ASCII/Latin-1 character \a ch is greater than that of \a c; otherwise returns FALSE. */ #ifndef QT_NO_UNICODETABLES // small class used internally in QString::Compose() class QLigature { public: QLigature( QChar c ); Q_UINT16 first() { cur = ligatures; return cur ? *cur : 0; } Q_UINT16 next() { return cur && *cur ? *(cur++) : 0; } Q_UINT16 current() { return cur ? *cur : 0; } int match(QString & str, unsigned int index); QChar head(); QChar::Decomposition tag(); private: Q_UINT16 *ligatures; Q_UINT16 *cur; }; QLigature::QLigature( QChar c ) { int pos = QUnicodeTables::ligature_info[c.row()]; if( !pos ) ligatures = 0; else { pos = QUnicodeTables::ligature_info[(pos<<8)+c.cell()]; ligatures = (Q_UINT16 *)&(QUnicodeTables::ligature_map[pos]); } cur = ligatures; } QChar QLigature::head() { if(current()) return QChar(QUnicodeTables::decomposition_map[current()+1]); return QChar::null; } QChar::Decomposition QLigature::tag() { if(current()) return (QChar::Decomposition) QUnicodeTables::decomposition_map[current()]; return QChar::Canonical; } int QLigature::match(QString & str, unsigned int index) { unsigned int i=index; if(!current()) return 0; Q_UINT16 lig = current() + 2; Q_UINT16 ch; while ((i < str.length()) && (ch = QUnicodeTables::decomposition_map[lig])) { if (str[(int)i] != QChar(ch)) return 0; i++; lig++; } if (!QUnicodeTables::decomposition_map[lig]) { return i-index; } return 0; } // this function is just used in QString::compose() static inline bool format(QChar::Decomposition tag, QString & str, int index, int len) { unsigned int l = index + len; unsigned int r = index; bool left = FALSE, right = FALSE; left = ((l < str.length()) && ((str[(int)l].joining() == QChar::Dual) || (str[(int)l].joining() == QChar::Right))); if (r > 0) { r--; //printf("joining(right) = %d\n", str[(int)r].joining()); right = (str[(int)r].joining() == QChar::Dual); } switch (tag) { case QChar::Medial: return (left & right); case QChar::Initial: return (left && !right); case QChar::Final: return (right);// && !left); case QChar::Isolated: default: return (!right && !left); } } // format() #endif QStringData::QStringData() : QShared(), unicode(0), ascii(0), len(0), issimpletext(TRUE), maxl(0), islatin1(FALSE), security_unpaged(FALSE), cString(0) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) mutex = new QMutex(FALSE); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE ref(); } QStringData::QStringData(QChar *u, uint l, uint m) : QShared(), unicode(u), ascii(0), len(l), issimpletext(FALSE), maxl(m), islatin1(FALSE), security_unpaged(FALSE), cString(0) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) mutex = new QMutex(FALSE); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE } QStringData::~QStringData() { if ( unicode ) { delete[] ((char*)unicode); } #if defined(Q_OS_LINUX) if ( ascii && security_unpaged ) { munlock(ascii, LINUX_MEMLOCK_LIMIT_BYTES); } #endif if ( ascii ) { delete[] ascii; } if (cString) { delete cString; } #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) if ( mutex ) { delete mutex; mutex = NULL; } #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE } void QStringData::setDirty() { if ( ascii ) { delete [] ascii; ascii = 0; } if (cString) { delete cString; cString = 0; } issimpletext = FALSE; } /* QString::compose() and visual() were developed by Gordon Tisher , with input from Lars Knoll , who developed the unicode data tables. */ /*! \warning This function is not supported in Qt 3.x. It is provided for experimental and illustrative purposes only. It is mainly of interest to those experimenting with Arabic and other composition-rich texts. Applies possible ligatures to a QString. Useful when composition-rich text requires rendering with glyph-poor fonts, but it also makes compositions such as QChar(0x0041) ('A') and QChar(0x0308) (Unicode accent diaresis), giving QChar(0x00c4) (German A Umlaut). */ void QString::compose() { #ifndef QT_NO_UNICODETABLES unsigned int index=0, len; unsigned int cindex = 0; QChar code, head; QMemArray dia; QString composed = *this; while (index < length()) { code = at(index); //printf("\n\nligature for 0x%x:\n", code.unicode()); QLigature ligature(code); ligature.first(); while ( ligature.current() ) { if ((len = ligature.match(*this, index)) != 0) { head = ligature.head(); unsigned short code = head.unicode(); // we exclude Arabic presentation forms A and a few // other ligatures, which are undefined in most fonts if(!(code > 0xfb50 && code < 0xfe80) && !(code > 0xfb00 && code < 0xfb2a)) { // joining info is only needed for Arabic if (format(ligature.tag(), *this, index, len)) { //printf("using ligature 0x%x, len=%d\n",code,len); // replace letter composed.replace(cindex, len, QChar(head)); index += len-1; // we continue searching in case we have a final // form because medial ones are preferred. if ( len != 1 || ligature.tag() !=QChar::Final ) break; } } } ligature.next(); } cindex++; index++; } *this = composed; #endif } // These macros are used for efficient allocation of QChar strings. // IMPORTANT! If you change these, make sure you also change the // "delete unicode" statement in ~QStringData() in qstring.h correspondingly! #define QT_ALLOC_QCHAR_VEC( N ) (QChar*) new char[ sizeof(QChar)*( N ) ] #define QT_DELETE_QCHAR_VEC( P ) delete[] ((char*)( P )) /*! This utility function converts the 8-bit string \a ba to Unicode, returning the result. The caller is responsible for deleting the return value with delete[]. */ QChar* QString::latin1ToUnicode( const QByteArray& ba, uint* len ) { if ( ba.isNull() ) { *len = 0; return 0; } int l = 0; while ( l < (int)ba.size() && ba[l] ) l++; char* str = ba.data(); QChar *uc = new QChar[ l ]; // Can't use macro, since function is public QChar *result = uc; if ( len ) *len = l; while (l--) *uc++ = *str++; return result; } static QChar* internalLatin1ToUnicode( const QByteArray& ba, uint* len ) { if ( ba.isNull() ) { *len = 0; return 0; } int l = 0; while ( l < (int)ba.size() && ba[l] ) l++; char* str = ba.data(); QChar *uc = QT_ALLOC_QCHAR_VEC( l ); QChar *result = uc; if ( len ) *len = l; while (l--) *uc++ = *str++; return result; } /*! \overload This utility function converts the '\0'-terminated 8-bit string \a str to Unicode, returning the result and setting \a *len to the length of the Unicode string. The caller is responsible for deleting the return value with delete[]. */ QChar* QString::latin1ToUnicode( const char *str, uint* len, uint maxlen ) { QChar* result = 0; uint l = 0; if ( str ) { if ( maxlen != (uint)-1 ) { while ( l < maxlen && str[l] ) l++; } else { // Faster? l = int(strlen( str )); } QChar *uc = new QChar[ l ]; // Can't use macro since function is public result = uc; uint i = l; while ( i-- ) *uc++ = *str++; } if ( len ) *len = l; return result; } static QChar* internalLatin1ToUnicode( const char *str, uint* len, uint maxlen = (uint)-1 ) { QChar* result = 0; uint l = 0; if ( str ) { if ( maxlen != (uint)-1 ) { while ( l < maxlen && str[l] ) { l++; } } else { // Faster? l = int(strlen( str )); } QChar *uc = QT_ALLOC_QCHAR_VEC( l ); result = uc; uint i = l; while ( i-- ) { *uc++ = *str++; } } if ( len ) { *len = l; } return result; } /*! ABI compatibility */ char* QString::unicodeToLatin1(const QChar *uc, uint l) { return unicodeToLatin1(uc, l, false); } /*! This utility function converts \a l 16-bit characters from \a uc to ASCII, returning a '\0'-terminated string. The caller is responsible for deleting the resultant string with delete[]. */ char* QString::unicodeToLatin1(const QChar *uc, uint l, bool unpaged) { if (!uc) { return 0; } char *a = new char[l+1]; char *result = a; if (unpaged) { #if defined(Q_OS_LINUX) mlock(result, LINUX_MEMLOCK_LIMIT_BYTES); #endif } while (l--) { *a++ = (uc->unicode() > 0xff) ? '?' : (char)uc->unicode(); uc++; } *a = '\0'; return result; } /***************************************************************************** QString member functions *****************************************************************************/ /*! \class QString qstring.h \reentrant \brief The QString class provides an abstraction of Unicode text and the classic C '\0'-terminated char array. \ingroup tools \ingroup shared \ingroup text \mainclass QString uses \link shclass.html implicit sharing\endlink, which makes it very efficient and easy to use. In all of the QString methods that take \c {const char *} parameters, the \c {const char *} is interpreted as a classic C-style '\0'-terminated ASCII string. It is legal for the \c {const char *} parameter to be 0. If the \c {const char *} is not '\0'-terminated, the results are undefined. Functions that copy classic C strings into a QString will not copy the terminating '\0' character. The QChar array of the QString (as returned by unicode()) is generally not terminated by a '\0'. If you need to pass a QString to a function that requires a C '\0'-terminated string use latin1(). \keyword QString::null A QString that has not been assigned to anything is \e null, i.e. both the length and data pointer is 0. A QString that references the empty string ("", a single '\0' char) is \e empty. Both null and empty QStrings are legal parameters to the methods. Assigning \c{(const char *) 0} to QString gives a null QString. For convenience, \c QString::null is a null QString. When sorting, empty strings come first, followed by non-empty strings, followed by null strings. We recommend using \c{if ( !str.isNull() )} to check for a non-null string rather than \c{if ( !str )}; see \l operator!() for an explanation. Note that if you find that you are mixing usage of \l QCString, QString, and \l QByteArray, this causes lots of unnecessary copying and might indicate that the true nature of the data you are dealing with is uncertain. If the data is '\0'-terminated 8-bit data, use \l QCString; if it is unterminated (i.e. contains '\0's) 8-bit data, use \l QByteArray; if it is text, use QString. Lists of strings are handled by the QStringList class. You can split a string into a list of strings using QStringList::split(), and join a list of strings into a single string with an optional separator using QStringList::join(). You can obtain a list of strings from a string list that contain a particular substring or that match a particular \link qregexp.html regex\endlink using QStringList::grep(). Note for C programmers Due to C++'s type system and the fact that QString is implicitly shared, QStrings can be treated like ints or other simple base types. For example: \code QString boolToString( bool b ) { QString result; if ( b ) result = "True"; else result = "False"; return result; } \endcode The variable, result, is an auto variable allocated on the stack. When return is called, because we're returning by value, The copy constructor is called and a copy of the string is returned. (No actual copying takes place thanks to the implicit sharing, see below.) Throughout Qt's source code you will encounter QString usages like this: \code QString func( const QString& input ) { QString output = input; // process output return output; } \endcode The 'copying' of input to output is almost as fast as copying a pointer because behind the scenes copying is achieved by incrementing a reference count. QString (like all Qt's implicitly shared classes) operates on a copy-on-write basis, only copying if an instance is actually changed. If you wish to create a deep copy of a QString without losing any Unicode information then you should use QDeepCopy. \sa QChar QCString QByteArray QConstString */ /*! \enum Qt::ComparisonFlags \internal */ /*! \enum Qt::StringComparisonMode This enum type is used to set the string comparison mode when searching for an item. It is used by QListBox, QListView and QIconView, for example. We'll refer to the string being searched as the 'target' string. \value CaseSensitive The strings must match case sensitively. \value ExactMatch The target and search strings must match exactly. \value BeginsWith The target string begins with the search string. \value EndsWith The target string ends with the search string. \value Contains The target string contains the search string. If you OR these flags together (excluding \c CaseSensitive), the search criteria be applied in the following order: \c ExactMatch, \c BeginsWith, \c EndsWith, \c Contains. Matching is case-insensitive unless \c CaseSensitive is set. \c CaseSensitive can be OR-ed with any combination of the other flags. */ Q_EXPORT QStringData *QString::shared_null = 0; QT_STATIC_CONST_IMPL QString QString::null; QT_STATIC_CONST_IMPL QChar QChar::null; QT_STATIC_CONST_IMPL QChar QChar::replacement((ushort)0xfffd); QT_STATIC_CONST_IMPL QChar QChar::byteOrderMark((ushort)0xfeff); QT_STATIC_CONST_IMPL QChar QChar::byteOrderSwapped((ushort)0xfffe); QT_STATIC_CONST_IMPL QChar QChar::nbsp((ushort)0x00a0); QStringData* QString::makeSharedNull() { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) if (qt_sharedStringMutex) qt_sharedStringMutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE if (QString::shared_null) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) if (qt_sharedStringMutex) qt_sharedStringMutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE return QString::shared_null; } QString::shared_null = new QStringData; #if defined( Q_OS_MAC ) || defined(Q_OS_SOLARIS) || defined(Q_OS_HPUX) || defined(Q_OS_AIX) QString *that = const_cast(&QString::null); that->d = QString::shared_null; #endif #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) if (qt_sharedStringMutex) qt_sharedStringMutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE return QString::shared_null; } /*! \fn QString::QString() Constructs a null string, i.e. both the length and data pointer are 0. \sa isNull() */ // FIXME // Original Qt3 code stated that there is // "No safe way to pre-init shared_null on ALL compilers/linkers" // Is this still true? QString::QString() : d(0) { d = shared_null ? shared_null : makeSharedNull(); } /*! Constructs a string of length one, containing the character \a ch. */ QString::QString( QChar ch ) { d = new QStringData( QT_ALLOC_QCHAR_VEC( 1 ), 1, 1 ); d->unicode[0] = ch; } /*! Constructs an implicitly shared copy of \a s. This is very fast since it only involves incrementing a reference count. */ QString::QString( const QString &s ) : d(s.d) { if ( d && (d != shared_null) ) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE d->ref(); #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE } } /*! \internal Private function. Constructs a string with preallocated space for \a size characters. The string is empty. \sa isNull() */ QString::QString( int size, bool /*dummy*/ ) { if ( size ) { int l = size; QChar* uc = QT_ALLOC_QCHAR_VEC( l ); d = new QStringData( uc, 0, l ); } else { d = shared_null ? shared_null : (shared_null=new QStringData); } } /*! Constructs a string that is a deep copy of \a ba interpreted as a classic C string. */ QString::QString( const QByteArray& ba ) { #ifndef QT_NO_TEXTCODEC if ( QTextCodec::codecForCStrings() ) { d = 0; *this = fromAscii( ba.data(), ba.size() ); return; } #endif uint l; QChar *uc = internalLatin1ToUnicode(ba,&l); d = new QStringData(uc,l,l); } /*! Constructs a string that is a deep copy of the first \a length characters in the QChar array. If \a unicode and \a length are 0, then a null string is created. If only \a unicode is 0, the string is empty but has \a length characters of space preallocated: QString expands automatically anyway, but this may speed up some cases a little. We recommend using the plain constructor and setLength() for this purpose since it will result in more readable code. \sa isNull() setLength() */ QString::QString( const QChar* unicode, uint length ) { if ( !unicode && !length ) { d = shared_null ? shared_null : makeSharedNull(); } else { QChar* uc = QT_ALLOC_QCHAR_VEC( length ); if ( unicode ) { memcpy(uc, unicode, length*sizeof(QChar)); } d = new QStringData(uc,unicode ? length : 0,length); } } /*! Constructs a string that is a deep copy of \a str, interpreted as a classic C string. The encoding is assumed to be Latin-1, unless you change it using QTextCodec::setCodecForCStrings(). If \a str is 0, then a null string is created. This is a cast constructor, but it is perfectly safe: converting a Latin-1 \c{const char *} to QString preserves all the information. You can disable this constructor by defining \c QT_NO_CAST_ASCII when you compile your applications. You can also make QString objects by using setLatin1(), fromLatin1(), fromLocal8Bit(), and fromUtf8(). Or whatever encoding is appropriate for the 8-bit data you have. \sa isNull(), fromAscii() */ QString::QString( const char *str ) { #ifndef QT_NO_TEXTCODEC if ( QTextCodec::codecForCStrings() ) { d = 0; *this = fromAscii( str ); return; } #endif uint l; QChar *uc = internalLatin1ToUnicode(str,&l); d = new QStringData(uc,l,l); } #ifndef QT_NO_STL /*! Constructs a string that is a deep copy of \a str. This is the same as fromAscii(\a str). */ QString::QString( const std::string &str ) { #ifndef QT_NO_TEXTCODEC if ( QTextCodec::codecForCStrings() ) { d = 0; *this = fromAscii( str.c_str() ); return; } #endif uint l; QChar *uc = internalLatin1ToUnicode(str.c_str(),&l); d = new QStringData(uc,l,l); } #endif QString::QString( QStringData* dd, bool /* dummy */ ) { d = dd; } /*! \fn QString::~QString() Destroys the string and frees the string's data if this is the last reference to the string. */ QString::~QString() { #if defined(QT_CHECK_RANGE) if (!d) { qWarning( "QString::~QString: Double free or delete detected!" ); return; } #endif if (d == shared_null) { return; } #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE if ( d->deref() ) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE d->deleteSelf(); d = NULL; } else { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE } } /*! Deallocates any space reserved solely by this QString. If the string does not share its data with another QString instance, nothing happens; otherwise the function creates a new, unique copy of this string. This function is called whenever the string is modified. */ void QString::real_detach() { setLength( length() ); } void QString::deref() { if ( d && (d != shared_null) ) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE if ( d->deref() ) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE if ( d != shared_null ) { delete d; } d = 0; } else { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE } } } void QStringData::deleteSelf() { delete this; } /*! \fn QString& QString::operator=( QChar c ) Sets the string to contain just the single character \a c. */ /*! \fn QString& QString::operator=( const std::string& s ) \overload Makes a deep copy of \a s and returns a reference to the deep copy. */ /*! \fn QString& QString::operator=( char c ) \overload Sets the string to contain just the single character \a c. */ /*! \overload Assigns a shallow copy of \a s to this string and returns a reference to this string. This is very fast because the string isn't actually copied. */ QString &QString::operator=( const QString &s ) { if ( s.d && (s.d != shared_null) ) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) s.d->mutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE s.d->ref(); #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) s.d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE } deref(); d = s.d; return *this; } /*! \overload Assigns a deep copy of \a cstr, interpreted as a classic C string, to this string. Returns a reference to this string. */ QString &QString::operator=( const QCString& cstr ) { return setAscii( cstr ); } /*! \overload Assigns a deep copy of \a str, interpreted as a classic C string to this string and returns a reference to this string. If \a str is 0, then a null string is created. \sa isNull() */ QString &QString::operator=( const char *str ) { return setAscii(str); } /*! \fn bool QString::isNull() const Returns TRUE if the string is null; otherwise returns FALSE. A null string is always empty. \code QString a; // a.unicode() == 0, a.length() == 0 a.isNull(); // TRUE, because a.unicode() == 0 a.isEmpty(); // TRUE, because a.length() == 0 \endcode \sa isEmpty(), length() */ /*! \fn bool QString::isEmpty() const Returns TRUE if the string is empty, i.e. if length() == 0; otherwise returns FALSE. Null strings are also empty. \code QString a( "" ); a.isEmpty(); // TRUE a.isNull(); // FALSE QString b; b.isEmpty(); // TRUE b.isNull(); // TRUE \endcode \sa isNull(), length() */ /*! \fn uint QString::length() const Returns the length of the string. Null strings and empty strings have zero length. \sa isNull(), isEmpty() */ /*! If \a newLen is less than the length of the string, then the string is truncated at position \a newLen. Otherwise nothing happens. \code QString s = "truncate me"; s.truncate( 5 ); // s == "trunc" \endcode \sa setLength() */ void QString::truncate( uint newLen ) { if ( newLen < d->len ) setLength( newLen ); } /*! Ensures that at least \a newLen characters are allocated to the string, and sets the length of the string to \a newLen. Any new space allocated contains arbitrary data. \sa reserve(), truncate() */ void QString::setLength( uint newLen ) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE if ( d->count != 1 || newLen > d->maxl || ( newLen * 4 < d->maxl && d->maxl > 4 ) ) { // detach, grow or shrink uint newMax = computeNewMax( newLen ); QChar* nd = QT_ALLOC_QCHAR_VEC( newMax ); if ( nd ) { uint len = QMIN( d->len, newLen ); memcpy( nd, d->unicode, sizeof(QChar) * len ); bool unpaged = d->security_unpaged; #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE deref(); d = new QStringData( nd, newLen, newMax ); setSecurityUnPaged(unpaged); } else { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE } } else { d->len = newLen; #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE d->setDirty(); } } /*! \fn uint QString::capacity() const Returns the number of characters this string can hold in the allocated memory. \sa reserve(), squeeze() */ /*! Ensures that at least \a minCapacity characters are allocated to the string. This function is useful for code that needs to build up a long string and wants to avoid repeated reallocation. In this example, we want to add to the string until some condition is true, and we're fairly sure that size is big enough: \code QString result; int len = 0; result.reserve(maxLen); while (...) { result[len++] = ... // fill part of the space } result.squeeze(); \endcode If \e maxLen is an underestimate, the worst that will happen is that the loop will slow down. If it is not possible to allocate enough memory, the string remains unchanged. \sa capacity(), squeeze(), setLength() */ void QString::reserve( uint minCapacity ) { if ( d->maxl < minCapacity ) { QChar *nd = QT_ALLOC_QCHAR_VEC( minCapacity ); if ( nd ) { uint len = d->len; if ( len ) memcpy( nd, d->unicode, sizeof(QChar) * len ); bool unpaged = d->security_unpaged; deref(); d = new QStringData( nd, len, minCapacity ); setSecurityUnPaged(unpaged); } } } /*! Squeezes the string's capacity to the current content. \sa capacity(), reserve() */ void QString::squeeze() { if ( d->maxl > d->len ) { QChar *nd = QT_ALLOC_QCHAR_VEC( d->len ); if ( nd ) { uint len = d->len; if ( len ) memcpy( nd, d->unicode, sizeof(QChar) * len ); bool unpaged = d->security_unpaged; deref(); d = new QStringData( nd, len, len ); setSecurityUnPaged(unpaged); } } } /*! \internal Like setLength, but doesn't shrink the allocated memory. */ void QString::grow( uint newLen ) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE if ( d->count != 1 || newLen > d->maxl ) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE setLength( newLen ); } else { d->len = newLen; #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE d->setDirty(); } } struct ArgEscapeData { uint min_escape; // lowest escape sequence number uint occurrences; // number of occurences of the lowest escape // sequence number uint locale_occurrences; // number of occurences of the lowest escape // sequence number which contain 'L' uint escape_len; // total length of escape sequences which will // be replaced }; static ArgEscapeData findArgEscapes(const QString &s) { const QChar *uc_begin = s.unicode(); const QChar *uc_end = uc_begin + s.length(); ArgEscapeData d; d.min_escape = 10; d.occurrences = 0; d.escape_len = 0; d.locale_occurrences = 0; const QChar *c = uc_begin; while (c != uc_end) { while (c != uc_end && c->unicode() != '%') ++c; if (c == uc_end || ++c == uc_end) break; bool locale_arg = FALSE; if (c->unicode() == 'L') { locale_arg = TRUE; if (++c == uc_end) break; } if (c->unicode() < '0' || c->unicode() > '9') continue; uint escape = c->unicode() - '0'; ++c; if (escape > d.min_escape) continue; if (escape < d.min_escape) { d.min_escape = escape; d.occurrences = 0; d.escape_len = 0; d.locale_occurrences = 0; } #if QT_VERSION < 0x040000 // ### remove preprocessor in Qt 4.0 /* Since in Qt < 4.0 only the first instance is replaced, escape_len should hold the length of only the first escape sequence */ if (d.occurrences == 0) #endif { ++d.occurrences; if (locale_arg) { ++d.locale_occurrences; d.escape_len += 3; } else d.escape_len += 2; } } return d; } static QString replaceArgEscapes(const QString &s, const ArgEscapeData &d, int field_width, const QString &arg, const QString &larg) { const QChar *uc_begin = s.unicode(); const QChar *uc_end = uc_begin + s.length(); uint abs_field_width = QABS(field_width); uint result_len = s.length() - d.escape_len + (d.occurrences - d.locale_occurrences) *QMAX(abs_field_width, arg.length()) + d.locale_occurrences *QMAX(abs_field_width, larg.length()); QString result; result.setLength(result_len); QChar *result_buff = (QChar*) result.unicode(); QChar *rc = result_buff; const QChar *c = uc_begin; uint repl_cnt = 0; while (c != uc_end) { /* We don't have to check if we run off the end of the string with c, because as long as d.occurrences > 0 we KNOW there are valid escape sequences. */ const QChar *text_start = c; while (c->unicode() != '%') ++c; const QChar *escape_start = c++; bool locale_arg = FALSE; if (c->unicode() == 'L') { locale_arg = TRUE; ++c; } if (c->unicode() != '0' + d.min_escape) { memcpy(rc, text_start, (c - text_start)*sizeof(QChar)); rc += c - text_start; } else { ++c; memcpy(rc, text_start, (escape_start - text_start)*sizeof(QChar)); rc += escape_start - text_start; uint pad_chars; if (locale_arg) pad_chars = QMAX(abs_field_width, larg.length()) - larg.length(); else pad_chars = QMAX(abs_field_width, arg.length()) - arg.length(); if (field_width > 0) { // left padded for (uint i = 0; i < pad_chars; ++i) (rc++)->unicode() = ' '; } if (locale_arg) { memcpy(rc, larg.unicode(), larg.length()*sizeof(QChar)); rc += larg.length(); } else { memcpy(rc, arg.unicode(), arg.length()*sizeof(QChar)); rc += arg.length(); } if (field_width < 0) { // right padded for (uint i = 0; i < pad_chars; ++i) (rc++)->unicode() = ' '; } if (++repl_cnt == d.occurrences) { memcpy(rc, c, (uc_end - c)*sizeof(QChar)); rc += uc_end - c; Q_ASSERT(rc - result_buff == (int)result_len); c = uc_end; } } } return result; } /*! This function will return a string that replaces the lowest numbered occurrence of \c %1, \c %2, ..., \c %9 with \a a. The \a fieldWidth value specifies the minimum amount of space that \a a is padded to. A positive value will produce right-aligned text, whereas a negative value will produce left-aligned text. The following example shows how we could create a 'status' string when processing a list of files: \code QString status = QString( "Processing file %1 of %2: %3" ) .arg( i ) // current file's number .arg( total ) // number of files to process .arg( fileName ); // current file's name \endcode It is generally fine to use filenames and numbers as we have done in the example above. But note that using arg() to construct natural language sentences does not usually translate well into other languages because sentence structure and word order often differ between languages. If there is no place marker (\c %1, \c %2, etc.), a warning message (qWarning()) is output and the result is undefined. \warning If any placeholder occurs more than once, the result is undefined. */ QString QString::arg( const QString& a, int fieldWidth ) const { ArgEscapeData d = findArgEscapes(*this); if (d.occurrences == 0) { qWarning( "QString::arg(): Argument missing: %s, %s", latin1(), a.latin1() ); return *this; } return replaceArgEscapes(*this, d, fieldWidth, a, a); } /*! \fn QString QString::arg( const QString& a1, const QString& a2 ) const \overload This is the same as str.arg(\a a1).arg(\a a2), except that the strings are replaced in one pass. This can make a difference if \a a1 contains e.g. \c{%1}: \code QString str( "%1 %2" ); str.arg( "Hello", "world" ); // returns "Hello world" str.arg( "Hello" ).arg( "world" ); // returns "Hello world" str.arg( "(%1)", "Hello" ); // returns "(%1) Hello" str.arg( "(%1)" ).arg( "Hello" ); // returns "(Hello) %2" \endcode */ /*! \fn QString QString::arg( const QString& a1, const QString& a2, const QString& a3 ) const \overload This is the same as calling str.arg(\a a1).arg(\a a2).arg(\a a3), except that the strings are replaced in one pass. */ /*! \fn QString QString::arg( const QString& a1, const QString& a2, const QString& a3, const QString& a4 ) const \overload This is the same as calling str.arg(\a a1).arg(\a a2).arg(\a a3).arg(\a a4), except that the strings are replaced in one pass. */ /*! \overload The \a fieldWidth value specifies the minimum amount of space that \a a is padded to. A positive value will produce a right-aligned number, whereas a negative value will produce a left-aligned number. \a a is expressed in base \a base, which is 10 by default and must be between 2 and 36. The '%' can be followed by an 'L', in which case the sequence is replaced with a localized representation of \a a. The conversion uses the default locale. The default locale is determined from the system's locale settings at application startup. It can be changed using QLocale::setDefault(). The 'L' flag is ignored if \a base is not 10. \code QString str; str = QString( "Decimal 63 is %1 in hexadecimal" ) .arg( 63, 0, 16 ); // str == "Decimal 63 is 3f in hexadecimal" QLocale::setDefault(QLocale::English, QLocale::UnitedStates); str = QString( "%1 %L2 %L3" ) .arg( 12345 ) .arg( 12345 ) .arg( 12345, 0, 16 ); // str == "12345 12,345 3039" \endcode */ QString QString::arg( long a, int fieldWidth, int base ) const { return arg((Q_LLONG)a, fieldWidth, base); } /*! \overload \a a is expressed in base \a base, which is 10 by default and must be between 2 and 36. If \a base is 10, the '%L' syntax can be used to produce localized strings. */ QString QString::arg( ulong a, int fieldWidth, int base ) const { return arg((Q_ULLONG)a, fieldWidth, base); } /*! \overload \a a is expressed in base \a base, which is 10 by default and must be between 2 and 36. If \a base is 10, the '%L' syntax can be used to produce localized strings. */ QString QString::arg( Q_LLONG a, int fieldWidth, int base ) const { ArgEscapeData d = findArgEscapes(*this); if (d.occurrences == 0) { qWarning( "QString::arg(): Argument missing: %s, %lld", latin1(), a ); return *this; } QString arg; if (d.occurrences > d.locale_occurrences) arg = number(a, base); QString locale_arg; if (d.locale_occurrences > 0) { QLocale locale; locale_arg = locale.d->longLongToString(a, -1, base, -1, QLocalePrivate::ThousandsGroup); } return replaceArgEscapes(*this, d, fieldWidth, arg, locale_arg); } /*! \overload \a a is expressed in base \a base, which is 10 by default and must be between 2 and 36. If \a base is 10, the '%L' syntax can be used to produce localized strings. */ QString QString::arg( Q_ULLONG a, int fieldWidth, int base ) const { ArgEscapeData d = findArgEscapes(*this); if (d.occurrences == 0) { qWarning( "QString::arg(): Argument missing: %s, %llu", latin1(), a ); return *this; } QString arg; if (d.occurrences > d.locale_occurrences) arg = number(a, base); QString locale_arg; if (d.locale_occurrences > 0) { QLocale locale; locale_arg = locale.d->unsLongLongToString(a, -1, base, -1, QLocalePrivate::ThousandsGroup); } return replaceArgEscapes(*this, d, fieldWidth, arg, locale_arg); } /*! \fn QString QString::arg( int a, int fieldWidth, int base ) const \overload \a a is expressed in base \a base, which is 10 by default and must be between 2 and 36. If \a base is 10, the '%L' syntax can be used to produce localized strings. */ /*! \fn QString QString::arg( uint a, int fieldWidth, int base ) const \overload \a a is expressed in base \a base, which is 10 by default and must be between 2 and 36. If \a base is 10, the '%L' syntax can be used to produce localized strings. */ /*! \fn QString QString::arg( short a, int fieldWidth, int base ) const \overload \a a is expressed in base \a base, which is 10 by default and must be between 2 and 36. If \a base is 10, the '%L' syntax can be used to produce localized strings. */ /*! \fn QString QString::arg( ushort a, int fieldWidth, int base ) const \overload \a a is expressed in base \a base, which is 10 by default and must be between 2 and 36. If \a base is 10, the '%L' syntax can be used to produce localized strings. */ /*! \overload \a a is assumed to be in the Latin-1 character set. */ QString QString::arg( char a, int fieldWidth ) const { QString c; c += a; return arg( c, fieldWidth ); } /*! \overload */ QString QString::arg( QChar a, int fieldWidth ) const { QString c; c += a; return arg( c, fieldWidth ); } /*! \overload \target arg-formats Argument \a a is formatted according to the \a fmt format specified, which is 'g' by default and can be any of the following: \table \header \i Format \i Meaning \row \i \c e \i format as [-]9.9e[+|-]999 \row \i \c E \i format as [-]9.9E[+|-]999 \row \i \c f \i format as [-]9.9 \row \i \c g \i use \c e or \c f format, whichever is the most concise \row \i \c G \i use \c E or \c f format, whichever is the most concise \endtable With 'e', 'E', and 'f', \a prec is the number of digits after the decimal point. With 'g' and 'G', \a prec is the maximum number of significant digits (trailing zeroes are omitted). \code double d = 12.34; QString ds = QString( "'E' format, precision 3, gives %1" ) .arg( d, 0, 'E', 3 ); // ds == "'E' format, precision 3, gives 1.234E+01" \endcode The '%L' syntax can be used to produce localized strings. */ QString QString::arg( double a, int fieldWidth, char fmt, int prec ) const { ArgEscapeData d = findArgEscapes(*this); if (d.occurrences == 0) { qWarning( "QString::arg(): Argument missing: %s, %g", latin1(), a ); return *this; } QString arg; if (d.occurrences > d.locale_occurrences) arg = number(a, fmt, prec); QString locale_arg; if (d.locale_occurrences > 0) { QLocale locale; QLocalePrivate::DoubleForm form = QLocalePrivate::DFDecimal; uint flags = 0; if (qIsUpper(fmt)) flags = QLocalePrivate::CapitalEorX; fmt = qToLower(fmt); switch (fmt) { case 'f': form = QLocalePrivate::DFDecimal; break; case 'e': form = QLocalePrivate::DFExponent; break; case 'g': form = QLocalePrivate::DFSignificantDigits; break; default: #if defined(QT_CHECK_RANGE) qWarning( "QString::setNum: Invalid format char '%c'", fmt ); #endif break; } flags |= QLocalePrivate::ThousandsGroup; locale_arg = locale.d->doubleToString(a, prec, form, -1, flags); } return replaceArgEscapes(*this, d, fieldWidth, arg, locale_arg); } QString QString::multiArg( int numArgs, const QString& a1, const QString& a2, const QString& a3, const QString& a4 ) const { QString result; union { int digitUsed[10]; int argForDigit[10]; }; const QChar *uc = d->unicode; const QString *args[4]; const int len = (int) length(); const int end = len - 1; int lastDigit = -1; int i; memset( digitUsed, 0, sizeof(digitUsed) ); args[0] = &a1; args[1] = &a2; args[2] = &a3; args[3] = &a4; for ( i = 0; i < end; i++ ) { if ( uc[i] == '%' ) { int digit = uc[i + 1].unicode() - '0'; if ( digit >= 0 && digit <= 9 ) digitUsed[digit]++; } } for ( i = 0; i < numArgs; i++ ) { do { ++lastDigit; } while ( lastDigit < 10 && digitUsed[lastDigit] == 0 ); if ( lastDigit == 10 ) { qWarning( "QString::arg(): Argument missing: %s, %s", latin1(), args[i]->latin1() ); numArgs = i; lastDigit = 9; break; } argForDigit[lastDigit] = i; } i = 0; while ( i < len ) { if ( uc[i] == '%' && i != end ) { int digit = uc[i + 1].unicode() - '0'; if ( digit >= 0 && digit <= lastDigit ) { result += *args[argForDigit[digit]]; i += 2; continue; } } result += uc[i++]; } return result; } /*! Safely builds a formatted string from the format string \a cformat and an arbitrary list of arguments. The format string supports all the escape sequences of printf() in the standard C library. The %s escape sequence expects a utf8() encoded string. The format string \e cformat is expected to be in latin1. If you need a Unicode format string, use arg() instead. For typesafe string building, with full Unicode support, you can use QTextOStream like this: \code QString str; QString s = ...; int x = ...; QTextOStream( &str ) << s << " : " << x; \endcode For \link QObject::tr() translations,\endlink especially if the strings contains more than one escape sequence, you should consider using the arg() function instead. This allows the order of the replacements to be controlled by the translator, and has Unicode support. The %lc escape sequence expects a unicode character of type ushort (as returned by QChar::unicode()). The %ls escape sequence expects a pointer to a zero-terminated array of unicode characters of type ushort (as returned by QString::ucs2()). \sa arg() */ #ifndef QT_NO_SPRINTF QString &QString::sprintf( const char* cformat, ... ) { QLocale locale(QLocale::C); va_list ap; va_start( ap, cformat ); if ( !cformat || !*cformat ) { // Qt 1.x compat *this = fromLatin1( "" ); return *this; } // Parse cformat QString result; const char *c = cformat; for (;;) { // Copy non-escape chars to result while (*c != '\0' && *c != '%') result.append(*c++); if (*c == '\0') break; // Found '%' const char *escape_start = c; ++c; if (*c == '\0') { result.append('%'); // a % at the end of the string - treat as non-escape text break; } if (*c == '%') { result.append('%'); // %% ++c; continue; } // Parse flag characters unsigned flags = 0; bool no_more_flags = FALSE; do { switch (*c) { case '#': flags |= QLocalePrivate::Alternate; break; case '0': flags |= QLocalePrivate::ZeroPadded; break; case '-': flags |= QLocalePrivate::LeftAdjusted; break; case ' ': flags |= QLocalePrivate::BlankBeforePositive; break; case '+': flags |= QLocalePrivate::AlwaysShowSign; break; case '\'': flags |= QLocalePrivate::ThousandsGroup; break; default: no_more_flags = TRUE; break; } if (!no_more_flags) ++c; } while (!no_more_flags); if (*c == '\0') { result.append(escape_start); // incomplete escape, treat as non-escape text break; } // Parse field width int width = -1; // -1 means unspecified if (qIsDigit(*c)) { QString width_str; while (*c != '\0' && qIsDigit(*c)) width_str.append(*c++); // can't be negative - started with a digit // contains at least one digit width = width_str.toInt(); } else if (*c == '*') { width = va_arg(ap, int); if (width < 0) width = -1; // treat all negative numbers as unspecified ++c; } if (*c == '\0') { result.append(escape_start); // incomplete escape, treat as non-escape text break; } // Parse precision int precision = -1; // -1 means unspecified if (*c == '.') { ++c; if (qIsDigit(*c)) { QString precision_str; while (*c != '\0' && qIsDigit(*c)) precision_str.append(*c++); // can't be negative - started with a digit // contains at least one digit precision = precision_str.toInt(); } else if (*c == '*') { precision = va_arg(ap, int); if (precision < 0) precision = -1; // treat all negative numbers as unspecified ++c; } } if (*c == '\0') { result.append(escape_start); // incomplete escape, treat as non-escape text break; } // Parse the length modifier enum LengthMod { lm_none, lm_hh, lm_h, lm_l, lm_ll, lm_L, lm_j, lm_z, lm_t }; LengthMod length_mod = lm_none; switch (*c) { case 'h': ++c; if (*c == 'h') { length_mod = lm_hh; ++c; } else length_mod = lm_h; break; case 'l': ++c; if (*c == 'l') { length_mod = lm_ll; ++c; } else length_mod = lm_l; break; case 'L': ++c; length_mod = lm_L; break; case 'j': ++c; length_mod = lm_j; break; case 'z': case 'Z': ++c; length_mod = lm_z; break; case 't': ++c; length_mod = lm_t; break; default: break; } if (*c == '\0') { result.append(escape_start); // incomplete escape, treat as non-escape text break; } // Parse the conversion specifier and do the conversion QString subst; switch (*c) { case 'd': case 'i': { Q_LLONG i; switch (length_mod) { case lm_none: i = va_arg(ap, int); break; case lm_hh: i = va_arg(ap, int); break; case lm_h: i = va_arg(ap, int); break; case lm_l: i = va_arg(ap, long int); break; case lm_ll: i = va_arg(ap, Q_LLONG); break; case lm_j: i = va_arg(ap, long int); break; case lm_z: i = va_arg(ap, size_t); break; case lm_t: i = va_arg(ap, int); break; default: i = 0; break; } subst = locale.d->longLongToString(i, precision, 10, width, flags); ++c; break; } case 'o': case 'u': case 'x': case 'X': { Q_ULLONG u; switch (length_mod) { case lm_none: u = va_arg(ap, unsigned int); break; case lm_hh: u = va_arg(ap, unsigned int); break; case lm_h: u = va_arg(ap, unsigned int); break; case lm_l: u = va_arg(ap, unsigned long int); break; case lm_ll: u = va_arg(ap, Q_ULLONG); break; default: u = 0; break; } if (qIsUpper(*c)) flags |= QLocalePrivate::CapitalEorX; int base = 10; switch (qToLower(*c)) { case 'o': base = 8; break; case 'u': base = 10; break; case 'x': base = 16; break; default: break; } subst = locale.d->unsLongLongToString(u, precision, base, width, flags); ++c; break; } case 'E': case 'e': case 'F': case 'f': case 'G': case 'g': case 'A': case 'a': { double d; if (length_mod == lm_L) d = va_arg(ap, long double); // not supported - converted to a double else d = va_arg(ap, double); if (qIsUpper(*c)) flags |= QLocalePrivate::CapitalEorX; QLocalePrivate::DoubleForm form = QLocalePrivate::DFDecimal; switch (qToLower(*c)) { case 'e': form = QLocalePrivate::DFExponent; break; case 'a': // not supported - decimal form used instead case 'f': form = QLocalePrivate::DFDecimal; break; case 'g': form = QLocalePrivate::DFSignificantDigits; break; default: break; } subst = locale.d->doubleToString(d, precision, form, width, flags); ++c; break; } case 'c': { if (length_mod == lm_l) subst = QChar((ushort) va_arg(ap, int)); else subst = (uchar) va_arg(ap, int); ++c; break; } case 's': { if (length_mod == lm_l) { const ushort *buff = va_arg(ap, const ushort*); const ushort *ch = buff; while (*ch != 0) ++ch; subst.setUnicodeCodes(buff, ch - buff); } else subst = QString::fromUtf8(va_arg(ap, const char*)); if (precision != -1) subst.truncate(precision); ++c; break; } case 'p': { Q_ULLONG i; #ifdef Q_OS_WIN64 i = (Q_ULLONG) va_arg(ap, void*); #else i = (Q_ULONG) va_arg(ap, void*); #endif #ifdef Q_OS_WIN32 flags |= QLocalePrivate::CapitalEorX; // Windows does 1234ABCD #else flags |= QLocalePrivate::Alternate; // Unix and Mac do 0x1234abcd #endif subst = locale.d->unsLongLongToString(i, precision, 16, width, flags); ++c; break; } case 'n': switch (length_mod) { case lm_hh: { signed char *n = va_arg(ap, signed char*); *n = result.length(); break; } case lm_h: { short int *n = va_arg(ap, short int*); *n = result.length(); break; } case lm_l: { long int *n = va_arg(ap, long int*); *n = result.length(); break; } case lm_ll: { Q_LLONG *n = va_arg(ap, Q_LLONG*); volatile uint tmp = result.length(); // egcs-2.91.66 gets internal *n = tmp; // compiler error without volatile break; } default: { int *n = va_arg(ap, int*); *n = result.length(); break; } } ++c; break; default: // bad escape, treat as non-escape text for (const char *cc = escape_start; cc != c; ++cc) result.append(*cc); continue; } if (flags & QLocalePrivate::LeftAdjusted) result.append(subst.leftJustify(width)); else result.append(subst.rightJustify(width)); } va_end(ap); *this = result; return *this; } #endif /*! Fills the string with \a len characters of value \a c, and returns a reference to the string. If \a len is negative (the default), the current string length is used. \code QString str; str.fill( 'g', 5 ); // string == "ggggg" \endcode */ QString& QString::fill( QChar c, int len ) { if ( len < 0 ) len = length(); if ( len == 0 ) { *this = ""; } else { bool unpaged = d->security_unpaged; deref(); QChar * nd = QT_ALLOC_QCHAR_VEC( len ); d = new QStringData(nd,len,len); setSecurityUnPaged(unpaged); while (len--) *nd++ = c; } return *this; } /*! \fn QString QString::copy() const \obsolete In Qt 2.0 and later, all calls to this function are needless. Just remove them. */ /*! \overload Finds the first occurrence of the character \a c, starting at position \a index. If \a index is -1, the search starts at the last character; if -2, at the next to last character and so on. (See findRev() for searching backwards.) If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. Returns the position of \a c or -1 if \a c could not be found. */ int QString::find( QChar c, int index, bool cs ) const { const uint l = length(); if ( index < 0 ) index += l; if ( (uint)index >= l ) return -1; const QChar *uc = unicode()+index; const QChar *end = unicode() + l; if ( cs ) { while ( uc < end && *uc != c ) uc++; } else { c = ::lower( c ); while ( uc < end && ::lower( *uc ) != c ) uc++; } if ( uint(uc - unicode()) >= l ) return -1; return (int)(uc - unicode()); } /* an implementation of the Boyer-Moore search algorithm */ /* initializes the skiptable to know haw far ahead we can skip on a wrong match */ static void bm_init_skiptable( const QString &pattern, uint *skiptable, bool cs ) { int i = 0; uint *st = skiptable; int l = pattern.length(); while ( i++ < 0x100/8 ) { *(st++) = l; *(st++) = l; *(st++) = l; *(st++) = l; *(st++) = l; *(st++) = l; *(st++) = l; *(st++) = l; } const QChar *uc = pattern.unicode(); if ( cs ) { while ( l-- ) { skiptable[ uc->cell() ] = l; uc++; } } else { while ( l-- ) { skiptable[ ::lower( *uc ).cell() ] = l; uc++; } } } static int bm_find( const QString &str, int index, const QString &pattern, uint *skiptable, bool cs ) { const uint l = str.length(); if ( pattern.isEmpty() ) return index > (int)l ? -1 : index; const QChar *uc = str.unicode(); const QChar *puc = pattern.unicode(); const uint pl = pattern.length(); const uint pl_minus_one = pl - 1; const QChar *current = uc + index + pl_minus_one; const QChar *end = uc + l; if ( cs ) { while ( current < end ) { uint skip = skiptable[ current->cell() ]; if ( !skip ) { // possible match while ( skip < pl ) { if ( *(current - skip ) != puc[pl_minus_one-skip] ) break; skip++; } if ( skip > pl_minus_one ) { // we have a match return (current - uc) - skip + 1; } // in case we don't have a match we are a bit inefficient as we only skip by one // when we have the non matching char in the string. if ( skiptable[ (current-skip)->cell() ] == pl ) skip = pl - skip; else skip = 1; } current += skip; } } else { while ( current < end ) { uint skip = skiptable[ ::lower( *current ).cell() ]; if ( !skip ) { // possible match while ( skip < pl ) { if ( ::lower( *(current - skip) ) != ::lower( puc[pl_minus_one-skip] ) ) break; skip++; } if ( skip > pl_minus_one ) // we have a match return (current - uc) - skip + 1; // in case we don't have a match we are a bit inefficient as we only skip by one // when we have the non matching char in the string. if ( skiptable[ ::lower(*(current - skip)).cell() ] == pl ) skip = pl - skip; else skip = 1; } current += skip; } } // not found return -1; } #define REHASH( a ) \ if ( sl_minus_1 < sizeof(uint) * CHAR_BIT ) \ hashHaystack -= (a) << sl_minus_1; \ hashHaystack <<= 1 /*! \overload Finds the first occurrence of the string \a str, starting at position \a index. If \a index is -1, the search starts at the last character, if it is -2, at the next to last character and so on. (See findRev() for searching backwards.) If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. Returns the position of \a str or -1 if \a str could not be found. */ int QString::find( const QString& str, int index, bool cs ) const { const uint l = length(); const uint sl = str.length(); if ( index < 0 ) index += l; if ( sl + index > l ) return -1; if ( !sl ) return index; if (!l) return -1; #if defined(Q_OS_MACX) && defined(QT_MACOSX_VERSION) && QT_MACOSX_VERSION >= 0x1020 if ( sl == 1 ) return find( *str.unicode(), index, cs ); #endif // we use the Boyer-Moore algorithm in cases where the overhead // for the hash table should pay off, otherwise we use a simple // hash function if ( l > 500 && sl > 5 ) { uint skiptable[0x100]; bm_init_skiptable( str, skiptable, cs ); return bm_find( *this, index, str, skiptable, cs ); } /* We use some hashing for efficiency's sake. Instead of comparing strings, we compare the hash value of str with that of a part of this QString. Only if that matches, we call ucstrncmp or ucstrnicmp. */ const QChar* needle = str.unicode(); const QChar* haystack = unicode() + index; const QChar* end = unicode() + (l-sl); const uint sl_minus_1 = sl-1; uint hashNeedle = 0, hashHaystack = 0, i; if ( cs ) { for ( i = 0; i < sl; ++i ) { hashNeedle = ((hashNeedle<<1) + needle[i].unicode() ); hashHaystack = ((hashHaystack<<1) + haystack[i].unicode() ); } hashHaystack -= (haystack+sl_minus_1)->unicode(); while ( haystack <= end ) { hashHaystack += (haystack+sl_minus_1)->unicode(); if ( hashHaystack == hashNeedle && ucstrncmp( needle, haystack, sl ) == 0 ) return haystack-unicode(); REHASH( haystack->unicode() ); ++haystack; } } else { for ( i = 0; i < sl; ++i ) { hashNeedle = ((hashNeedle<<1) + ::lower( needle[i].unicode() ).unicode() ); hashHaystack = ((hashHaystack<<1) + ::lower( haystack[i].unicode() ).unicode() ); } hashHaystack -= ::lower(*(haystack+sl_minus_1)).unicode(); while ( haystack <= end ) { hashHaystack += ::lower(*(haystack+sl_minus_1)).unicode(); if ( hashHaystack == hashNeedle && ucstrnicmp( needle, haystack, sl ) == 0 ) return haystack-unicode(); REHASH( ::lower(*haystack).unicode() ); ++haystack; } } return -1; } /*! \fn int QString::findRev( const char* str, int index ) const Equivalent to findRev(QString(\a str), \a index). */ /*! \fn int QString::find( const char* str, int index ) const \overload Equivalent to find(QString(\a str), \a index). */ /*! \overload Finds the first occurrence of the character \a c, starting at position \a index and searching backwards. If the index is -1, the search starts at the last character, if it is -2, at the next to last character and so on. Returns the position of \a c or -1 if \a c could not be found. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. \code QString string( "bananas" ); int i = string.findRev( 'a' ); // i == 5 \endcode */ int QString::findRev( QChar c, int index, bool cs ) const { #if defined(Q_OS_MACX) && defined(QT_MACOSX_VERSION) && QT_MACOSX_VERSION < 0x1020 return findRev( QString( c ), index, cs ); #else const uint l = length(); if ( index < 0 ) index += l; if ( (uint)index >= l ) return -1; const QChar *end = unicode(); const QChar *uc = end + index; if ( cs ) { while ( uc >= end && *uc != c ) uc--; } else { c = ::lower( c ); while ( uc >= end && ::lower( *uc ) != c ) uc--; } return uc - end; #endif } /*! \overload Finds the first occurrence of the string \a str, starting at position \a index and searching backwards. If the index is -1, the search starts at the last character, if it is -2, at the next to last character and so on. Returns the position of \a str or -1 if \a str could not be found. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. \code QString string("bananas"); int i = string.findRev( "ana" ); // i == 3 \endcode */ int QString::findRev( const QString& str, int index, bool cs ) const { /* See QString::find() for explanations. */ const uint l = length(); if ( index < 0 ) index += l; const uint sl = str.length(); int delta = l-sl; if ( index < 0 || index > (int)l || delta < 0 ) return -1; if ( index > delta ) index = delta; #if defined(Q_OS_MACX) && defined(QT_MACOSX_VERSION) && QT_MACOSX_VERSION >= 0x1020 if ( sl == 1 ) return findRev( *str.unicode(), index, cs ); #endif const QChar* needle = str.unicode(); const QChar* haystack = unicode() + index; const QChar* end = unicode(); const uint sl_minus_1 = sl-1; const QChar* n = needle+sl_minus_1; const QChar* h = haystack+sl_minus_1; uint hashNeedle = 0, hashHaystack = 0, i; if ( cs ) { for ( i = 0; i < sl; ++i ) { hashNeedle = ((hashNeedle<<1) + (n-i)->unicode() ); hashHaystack = ((hashHaystack<<1) + (h-i)->unicode() ); } hashHaystack -= haystack->unicode(); while ( haystack >= end ) { hashHaystack += haystack->unicode(); if ( hashHaystack == hashNeedle && ucstrncmp( needle, haystack, sl ) == 0 ) return haystack-unicode(); --haystack; REHASH( (haystack+sl)->unicode() ); } } else { for ( i = 0; i < sl; ++i ) { hashNeedle = ((hashNeedle<<1) + ::lower( (n-i)->unicode() ).unicode() ); hashHaystack = ((hashHaystack<<1) + ::lower( (h-i)->unicode() ).unicode() ); } hashHaystack -= ::lower(*haystack).unicode(); while ( haystack >= end ) { hashHaystack += ::lower(*haystack).unicode(); if ( hashHaystack == hashNeedle && ucstrnicmp( needle, haystack, sl ) == 0 ) return haystack-unicode(); --haystack; REHASH( ::lower(*(haystack+sl)).unicode() ); } } return -1; } #undef REHASH /*! \enum QString::SectionFlags \value SectionDefault Empty fields are counted, leading and trailing separators are not included, and the separator is compared case sensitively. \value SectionSkipEmpty Treat empty fields as if they don't exist, i.e. they are not considered as far as \e start and \e end are concerned. \value SectionIncludeLeadingSep Include the leading separator (if any) in the result string. \value SectionIncludeTrailingSep Include the trailing separator (if any) in the result string. \value SectionCaseInsensitiveSeps Compare the separator case-insensitively. Any of the last four values can be OR-ed together to form a flag. \sa section() */ /*! \fn QString QString::section( QChar sep, int start, int end = 0xffffffff, int flags = SectionDefault ) const This function returns a section of the string. This string is treated as a sequence of fields separated by the character, \a sep. The returned string consists of the fields from position \a start to position \a end inclusive. If \a end is not specified, all fields from position \a start to the end of the string are included. Fields are numbered 0, 1, 2, etc., counting from the left, and -1, -2, etc., counting from right to left. The \a flags argument can be used to affect some aspects of the function's behaviour, e.g. whether to be case sensitive, whether to skip empty fields and how to deal with leading and trailing separators; see \l{SectionFlags}. \code QString csv( "forename,middlename,surname,phone" ); QString s = csv.section( ',', 2, 2 ); // s == "surname" QString path( "/usr/local/bin/myapp" ); // First field is empty QString s = path.section( '/', 3, 4 ); // s == "bin/myapp" QString s = path.section( '/', 3, 3, SectionSkipEmpty ); // s == "myapp" \endcode If \a start or \a end is negative, we count fields from the right of the string, the right-most field being -1, the one from right-most field being -2, and so on. \code QString csv( "forename,middlename,surname,phone" ); QString s = csv.section( ',', -3, -2 ); // s == "middlename,surname" QString path( "/usr/local/bin/myapp" ); // First field is empty QString s = path.section( '/', -1 ); // s == "myapp" \endcode \sa QStringList::split() */ /*! \overload This function returns a section of the string. This string is treated as a sequence of fields separated by the string, \a sep. The returned string consists of the fields from position \a start to position \a end inclusive. If \a end is not specified, all fields from position \a start to the end of the string are included. Fields are numbered 0, 1, 2, etc., counting from the left, and -1, -2, etc., counting from right to left. The \a flags argument can be used to affect some aspects of the function's behaviour, e.g. whether to be case sensitive, whether to skip empty fields and how to deal with leading and trailing separators; see \l{SectionFlags}. \code QString data( "forename**middlename**surname**phone" ); QString s = data.section( "**", 2, 2 ); // s == "surname" \endcode If \a start or \a end is negative, we count fields from the right of the string, the right-most field being -1, the one from right-most field being -2, and so on. \code QString data( "forename**middlename**surname**phone" ); QString s = data.section( "**", -3, -2 ); // s == "middlename**surname" \endcode \sa QStringList::split() */ QString QString::section( const QString &sep, int start, int end, int flags ) const { QStringList sections = QStringList::split(sep, *this, TRUE); if(sections.isEmpty()) return QString(); if(!(flags & SectionSkipEmpty)) { if(start < 0) start += int(sections.count()); if(end < 0) end += int(sections.count()); } else { int skip = 0; for(QStringList::Iterator it = sections.begin(); it != sections.end(); ++it) { if((*it).isEmpty()) skip++; } if(start < 0) start += int(sections.count()) - skip; if(end < 0) end += int(sections.count()) - skip; } int x = 0, run = 0; QString ret; for(QStringList::Iterator it = sections.begin(); x <= end && it != sections.end(); ++it) { if(x >= start) { if((*it).isEmpty()) { run++; } else { if(!ret.isEmpty() || !(flags & SectionSkipEmpty)) { int i_end = run; if(!ret.isEmpty() && !(flags & SectionIncludeTrailingSep)) i_end++; if((flags & SectionIncludeLeadingSep) && it != sections.begin() && x == start) i_end++; for(int i = 0; i < i_end; i++) ret += sep; } else if((flags & SectionIncludeLeadingSep) && it != sections.begin()) { ret += sep; } run = 0; ret += (*it); if((flags & SectionIncludeTrailingSep) && it != sections.end()) ret += sep; } } if(!(*it).isEmpty() || !(flags & SectionSkipEmpty)) x++; } return ret; } #ifndef QT_NO_REGEXP class section_chunk { public: section_chunk(int l, QString s) { length = l; string = s; } int length; QString string; }; /*! \overload This function returns a section of the string. This string is treated as a sequence of fields separated by the regular expression, \a reg. The returned string consists of the fields from position \a start to position \a end inclusive. If \a end is not specified, all fields from position \a start to the end of the string are included. Fields are numbered 0, 1, 2, etc., counting from the left, and -1, -2, etc., counting from right to left. The \a flags argument can be used to affect some aspects of the function's behaviour, e.g. whether to be case sensitive, whether to skip empty fields and how to deal with leading and trailing separators; see \l{SectionFlags}. \code QString line( "forename\tmiddlename surname \t \t phone" ); QRegExp sep( "\s+" ); QString s = line.section( sep, 2, 2 ); // s == "surname" \endcode If \a start or \a end is negative, we count fields from the right of the string, the right-most field being -1, the one from right-most field being -2, and so on. \code QString line( "forename\tmiddlename surname \t \t phone" ); QRegExp sep( "\\s+" ); QString s = line.section( sep, -3, -2 ); // s == "middlename surname" \endcode \warning Using this QRegExp version is much more expensive than the overloaded string and character versions. \sa QStringList::split() simplifyWhiteSpace() */ QString QString::section( const QRegExp ®, int start, int end, int flags ) const { const QChar *uc = unicode(); if(!uc) return QString(); QRegExp sep(reg); sep.setCaseSensitive(!(flags & SectionCaseInsensitiveSeps)); QPtrList l; l.setAutoDelete(TRUE); int n = length(), m = 0, last_m = 0, last = 0, last_len = 0; while ( ( m = sep.search( *this, m ) ) != -1 ) { l.append(new section_chunk(last_len, QString(uc + last_m, m - last_m))); last_m = m; last_len = sep.matchedLength(); if((m += QMAX(sep.matchedLength(), 1)) >= n) { last = 1; break; } } if(!last) l.append(new section_chunk(last_len, QString(uc + last_m, n - last_m))); if(start < 0) start = l.count() + start; if(end == -1) end = l.count(); else if(end < 0) end = l.count() + end; int i = 0; QString ret; for ( section_chunk *chk=l.first(); chk; chk=l.next(), i++ ) { if((flags & SectionSkipEmpty) && chk->length == (int)chk->string.length()) { if(i <= start) start++; end++; } if(i == start) { ret = (flags & SectionIncludeLeadingSep) ? chk->string : chk->string.mid(chk->length); } else if(i > start) { ret += chk->string; } if(i == end) { if((chk=l.next()) && flags & SectionIncludeTrailingSep) ret += chk->string.left(chk->length); break; } } return ret; } #endif /*! \fn QString QString::section( char sep, int start, int end = 0xffffffff, int flags = SectionDefault ) const \overload */ /*! \fn QString QString::section( const char *sep, int start, int end = 0xffffffff, int flags = SectionDefault ) const \overload */ /*! Returns the number of times the character \a c occurs in the string. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. \code QString string( "Trolltech and Qt" ); int n = string.contains( 't', FALSE ); // n == 3 \endcode */ int QString::contains( QChar c, bool cs ) const { int count = 0; const QChar *uc = unicode(); if ( !uc ) return 0; int n = length(); if ( cs ) { while ( n-- ) { if ( *uc == c ) count++; uc++; } } else { c = ::lower( c ); while ( n-- ) { if ( ::lower( *uc ) == c ) count++; uc++; } } return count; } /*! \overload Returns the number of times the string \a str occurs in the string. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. */ int QString::contains( const char* str, bool cs ) const { return contains( QString(str), cs ); } /*! \fn int QString::contains( char c, bool cs ) const \overload */ /*! \fn int QString::find( char c, int index, bool cs ) const \overload Find character \a c starting from position \a index. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. */ /*! \fn int QString::findRev( char c, int index, bool cs ) const \overload Find character \a c starting from position \a index and working backwards. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. */ /*! \overload Returns the number of times \a str occurs in the string. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. This function counts overlapping strings, so in the example below, there are two instances of "ana" in "bananas". \code QString str( "bananas" ); int i = str.contains( "ana" ); // i == 2 \endcode \sa findRev() */ int QString::contains( const QString &str, bool cs ) const { if ( isNull() ) return 0; int count = 0; uint skiptable[0x100]; bm_init_skiptable( str, skiptable, cs ); int i = -1; // use boyer-moore for the ultimate speed experience while ( ( i = bm_find( *this, i + 1, str, skiptable, cs ) ) != -1 ) count++; return count; } /*! Returns a substring that contains the \a len leftmost characters of the string. The whole string is returned if \a len exceeds the length of the string. \code QString s = "Pineapple"; QString t = s.left( 4 ); // t == "Pine" \endcode \sa right(), mid(), isEmpty() */ QString QString::left( uint len ) const { if ( isEmpty() ) { return QString(); } else if ( len == 0 ) { // ## just for 1.x compat: return fromLatin1( "" ); } else if ( len >= length() ) { return *this; } else { QString s( len, TRUE ); memcpy( s.d->unicode, d->unicode, len * sizeof(QChar) ); s.d->len = len; return s; } } /*! Returns a string that contains the \a len rightmost characters of the string. If \a len is greater than the length of the string then the whole string is returned. \code QString string( "Pineapple" ); QString t = string.right( 5 ); // t == "apple" \endcode \sa left(), mid(), isEmpty() */ QString QString::right( uint len ) const { if ( isEmpty() ) { return QString(); } else if ( len == 0 ) { // ## just for 1.x compat: return fromLatin1( "" ); } else { uint l = length(); if ( len >= l ) return *this; QString s( len, TRUE ); memcpy( s.d->unicode, d->unicode+(l-len), len*sizeof(QChar) ); s.d->len = len; return s; } } /*! Returns a string that contains the \a len characters of this string, starting at position \a index. Returns a null string if the string is empty or \a index is out of range. Returns the whole string from \a index if \a index + \a len exceeds the length of the string. \code QString s( "Five pineapples" ); QString t = s.mid( 5, 4 ); // t == "pine" \endcode \sa left(), right() */ QString QString::mid( uint index, uint len ) const { uint slen = length(); if ( isEmpty() || index >= slen ) { return QString(); } else if ( len == 0 ) { // ## just for 1.x compat: return fromLatin1( "" ); } else { if ( len > slen-index ) len = slen - index; if ( index == 0 && len == slen ) return *this; const QChar *p = unicode()+index; QString s( len, TRUE ); memcpy( s.d->unicode, p, len * sizeof(QChar) ); s.d->len = len; return s; } } /*! Returns a string of length \a width that contains this string padded by the \a fill character. If \a truncate is FALSE and the length of the string is more than \a width, then the returned string is a copy of the string. If \a truncate is TRUE and the length of the string is more than \a width, then any characters in a copy of the string after length \a width are removed, and the copy is returned. \code QString s( "apple" ); QString t = s.leftJustify( 8, '.' ); // t == "apple..." \endcode \sa rightJustify() */ QString QString::leftJustify( uint width, QChar fill, bool truncate ) const { QString result; int len = length(); int padlen = width - len; if ( padlen > 0 ) { result.setLength(len+padlen); if ( len ) memcpy( result.d->unicode, unicode(), sizeof(QChar)*len ); QChar* uc = result.d->unicode + len; while (padlen--) *uc++ = fill; } else { if ( truncate ) result = left( width ); else result = *this; } return result; } /*! Returns a string of length \a width that contains the \a fill character followed by the string. If \a truncate is FALSE and the length of the string is more than \a width, then the returned string is a copy of the string. If \a truncate is TRUE and the length of the string is more than \a width, then the resulting string is truncated at position \a width. \code QString string( "apple" ); QString t = string.rightJustify( 8, '.' ); // t == "...apple" \endcode \sa leftJustify() */ QString QString::rightJustify( uint width, QChar fill, bool truncate ) const { QString result; int len = length(); int padlen = width - len; if ( padlen > 0 ) { result.setLength( len+padlen ); QChar* uc = result.d->unicode; while (padlen--) *uc++ = fill; if ( len ) memcpy( uc, unicode(), sizeof(QChar)*len ); } else { if ( truncate ) result = left( width ); else result = *this; } return result; } /*! Returns a lowercase copy of the string. \code QString string( "TROlltECH" ); str = string.lower(); // str == "trolltech" \endcode \sa upper() */ QString QString::lower() const { int l = length(); QChar *p = d->unicode; while ( l ) { if ( *p != ::lower(*p) ) { QString s( *this ); s.real_detach(); p = s.d->unicode + ( p - d->unicode ); while ( l ) { *p = ::lower( *p ); l--; p++; } return s; } l--; p++; } return *this; } /*! Returns an uppercase copy of the string. \code QString string( "TeXt" ); str = string.upper(); // t == "TEXT" \endcode \sa lower() */ QString QString::upper() const { int l = length(); QChar *p = d->unicode; while ( l ) { if ( *p != ::upper(*p) ) { QString s( *this ); s.real_detach(); p = s.d->unicode + ( p - d->unicode ); while ( l ) { *p = ::upper( *p ); l--; p++; } return s; } l--; p++; } return *this; } /*! Returns a string that has whitespace removed from the start and the end. Whitespace means any character for which QChar::isSpace() returns TRUE. This includes Unicode characters with decimal values 9 (TAB), 10 (LF), 11 (VT), 12 (FF), 13 (CR) and 32 (Space), and may also include other Unicode characters. \code QString string = " white space "; QString s = string.stripWhiteSpace(); // s == "white space" \endcode \sa simplifyWhiteSpace() */ QString QString::stripWhiteSpace() const { if ( isEmpty() ) // nothing to do return *this; const QChar *s = unicode(); if ( !s->isSpace() && !s[length()-1].isSpace() ) return *this; int start = 0; int end = length() - 1; while ( start<=end && s[start].isSpace() ) // skip white space from start start++; if ( start <= end ) { // only white space while ( end && s[end].isSpace() ) // skip white space from end end--; } int l = end - start + 1; if ( l <= 0 ) return QString::fromLatin1(""); QString result( l, TRUE ); memcpy( result.d->unicode, &s[start], sizeof(QChar)*l ); result.d->len = l; return result; } /*! Returns a string that has whitespace removed from the start and the end, and which has each sequence of internal whitespace replaced with a single space. Whitespace means any character for which QChar::isSpace() returns TRUE. This includes Unicode characters with decimal values 9 (TAB), 10 (LF), 11 (VT), 12 (FF), 13 (CR), and 32 (Space). \code QString string = " lots\t of\nwhite space "; QString t = string.simplifyWhiteSpace(); // t == "lots of white space" \endcode \sa stripWhiteSpace() */ QString QString::simplifyWhiteSpace() const { if ( isEmpty() ) return *this; QString result; result.setLength( length() ); const QChar *from = unicode(); const QChar *fromend = from+length(); int outc=0; QChar *to = result.d->unicode; for (;;) { while ( from!=fromend && from->isSpace() ) from++; while ( from!=fromend && !from->isSpace() ) to[outc++] = *from++; if ( from!=fromend ) to[outc++] = ' '; else break; } if ( outc > 0 && to[outc-1] == ' ' ) outc--; result.truncate( outc ); return result; } /*! Inserts \a s into the string at position \a index. If \a index is beyond the end of the string, the string is extended with spaces to length \a index and \a s is then appended and returns a reference to the string. \code QString string( "I like fish" ); str = string.insert( 2, "don't " ); // str == "I don't like fish" \endcode \sa remove(), replace() */ QString &QString::insert( uint index, const QString &s ) { // the sub function takes care of &s == this case. return insert( index, s.unicode(), s.length() ); } /*! \fn QString &QString::insert( uint index, const QByteArray &s ) \overload Inserts \a s into the string at position \a index and returns a reference to the string. */ /*! \fn QString &QString::insert( uint index, const char *s ) \overload Inserts \a s into the string at position \a index and returns a reference to the string. */ #ifndef QT_NO_CAST_ASCII QString &QString::insertHelper( uint index, const char *s, uint len ) { if ( s ) { #ifndef QT_NO_TEXTCODEC if ( QTextCodec::codecForCStrings() ) return insert( index, fromAscii( s, len ) ); #endif if ( len == UINT_MAX ) len = int(strlen( s )); if ( len == 0 ) return *this; uint olen = length(); int nlen = olen + len; if ( index >= olen ) { // insert after end of string grow( len + index ); int n = index - olen; QChar* uc = d->unicode + olen; while ( n-- ) *uc++ = ' '; uc = d->unicode + index; while ( len-- ) *uc++ = *s++; } else { // normal insert grow( nlen ); memmove( d->unicode + index + len, unicode() + index, sizeof(QChar) * (olen - index) ); QChar* uc = d->unicode + index; while ( len-- ) *uc++ = *s++; } } return *this; } #endif /*! \overload Inserts the first \a len characters in \a s into the string at position \a index and returns a reference to the string. */ QString &QString::insert( uint index, const QChar* s, uint len ) { if ( len == 0 ) return *this; uint olen = length(); int nlen = olen + len; if ( s >= d->unicode && (uint)(s - d->unicode) < d->maxl ) { // Part of me - take a copy. QChar *tmp = QT_ALLOC_QCHAR_VEC( len ); memcpy(tmp,s,len*sizeof(QChar)); insert(index,tmp,len); QT_DELETE_QCHAR_VEC( tmp ); return *this; } if ( index >= olen ) { // insert after end of string grow( len + index ); int n = index - olen; QChar* uc = d->unicode+olen; while (n--) *uc++ = ' '; memcpy( d->unicode+index, s, sizeof(QChar)*len ); } else { // normal insert grow( nlen ); memmove( d->unicode + index + len, unicode() + index, sizeof(QChar) * (olen - index) ); memcpy( d->unicode + index, s, sizeof(QChar) * len ); } return *this; } /*! \overload Insert \a c into the string at position \a index and returns a reference to the string. If \a index is beyond the end of the string, the string is extended with spaces (ASCII 32) to length \a index and \a c is then appended. */ QString &QString::insert( uint index, QChar c ) // insert char { QString s( c ); return insert( index, s ); } /*! \fn QString& QString::insert( uint index, char c ) \overload Insert character \a c at position \a index. */ /*! \fn QString &QString::prepend( const QString &s ) Inserts \a s at the beginning of the string and returns a reference to the string. Equivalent to insert(0, \a s). \code QString string = "42"; string.prepend( "The answer is " ); // string == "The answer is 42" \endcode \sa insert() */ /*! \fn QString& QString::prepend( char ch ) \overload Inserts \a ch at the beginning of the string and returns a reference to the string. Equivalent to insert(0, \a ch). \sa insert() */ /*! \fn QString& QString::prepend( QChar ch ) \overload Inserts \a ch at the beginning of the string and returns a reference to the string. Equivalent to insert(0, \a ch). \sa insert() */ /*! \fn QString& QString::prepend( const QByteArray &s ) \overload Inserts \a s at the beginning of the string and returns a reference to the string. Equivalent to insert(0, \a s). \sa insert() */ /*! \fn QString& QString::prepend( const std::string &s ) \overload Inserts \a s at the beginning of the string and returns a reference to the string. Equivalent to insert(0, \a s). \sa insert() */ /*! \overload Inserts \a s at the beginning of the string and returns a reference to the string. Equivalent to insert(0, \a s). \sa insert() */ QString &QString::prepend( const char *s ) { return insert( 0, QString(s) ); } /*! Removes \a len characters from the string starting at position \a index, and returns a reference to the string. If \a index is beyond the length of the string, nothing happens. If \a index is within the string, but \a index + \a len is beyond the end of the string, the string is truncated at position \a index. \code QString string( "Montreal" ); string.remove( 1, 4 ); // string == "Meal" \endcode \sa insert(), replace() */ QString &QString::remove( uint index, uint len ) { uint olen = length(); if ( index >= olen ) { // range problems } else if ( index + len >= olen ) { // index ok setLength( index ); } else if ( len != 0 ) { real_detach(); memmove( d->unicode+index, d->unicode+index+len, sizeof(QChar)*(olen-index-len) ); setLength( olen-len ); } return *this; } /*! \overload Removes every occurrence of the character \a c in the string. Returns a reference to the string. This is the same as replace(\a c, ""). */ QString &QString::remove( QChar c ) { int i = 0; while ( i < (int) length() ) { if ( constref(i) == c ) { remove( i, 1 ); } else { i++; } } return *this; } /*! \overload \fn QString &QString::remove( char c ) Removes every occurrence of the character \a c in the string. Returns a reference to the string. This is the same as replace(\a c, ""). */ /*! \overload Removes every occurrence of \a str in the string. Returns a reference to the string. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. This is the same as replace(\a str, "", \a cs). */ QString &QString::remove( const QString & str, bool cs ) { if ( str.isEmpty() ) { if ( isNull() ) real_detach(); } else { int index = 0; while ( (index = find(str, index, cs)) != -1 ) remove( index, str.length() ); } return *this; } QString &QString::remove( const QString & str ) { return remove( str, TRUE ); } /*! \overload Replaces every occurrence of \a c1 with the char \a c2. Returns a reference to the string. */ QString &QString::replace( QChar c1, QChar c2 ) { if ( isEmpty() ) return *this; real_detach(); uint i = 0; while ( i < d->len ) { if ( d->unicode[i] == c1 ) d->unicode[i] = c2; i++; } return *this; } #ifndef QT_NO_REGEXP_CAPTURE /*! \overload Removes every occurrence of the regular expression \a rx in the string. Returns a reference to the string. This is the same as replace(\a rx, ""). */ QString &QString::remove( const QRegExp & rx ) { return replace( rx, QString::null ); } #endif /*! \overload Removes every occurrence of \a str in the string. Returns a reference to the string. */ QString &QString::remove( const char *str ) { return remove( QString::fromAscii(str), TRUE ); } /*! Replaces \a len characters from the string with \a s, starting at position \a index, and returns a reference to the string. If \a index is beyond the length of the string, nothing is deleted and \a s is appended at the end of the string. If \a index is valid, but \a index + \a len is beyond the end of the string, the string is truncated at position \a index, then \a s is appended at the end. \code QString string( "Say yes!" ); string = string.replace( 4, 3, "NO" ); // string == "Say NO!" \endcode \warning Qt 3.3.3 and earlier had different semantics for the case \a index >= length(), which contradicted the documentation. To avoid portability problems between Qt 3 versions and with Qt 4, we recommend that you never call the function with \a index >= length(). \sa insert(), remove() */ QString &QString::replace( uint index, uint len, const QString &s ) { return replace( index, len, s.unicode(), s.length() ); } /*! \overload This is the same as replace(\a index, \a len, QString(\a c)). */ QString &QString::replace( uint index, uint len, QChar c ) { return replace( index, len, &c, 1 ); } /*! \overload \fn QString &QString::replace( uint index, uint len, char c ) This is the same as replace(\a index, \a len, QChar(\a c)). */ /*! \overload Replaces \a len characters with \a slen characters of QChar data from \a s, starting at position \a index, and returns a reference to the string. \sa insert(), remove() */ QString &QString::replace( uint index, uint len, const QChar* s, uint slen ) { if (index > length()) index = length(); real_detach(); if ( len == slen && index + len <= length() ) { // Optimized common case: replace without size change memcpy( d->unicode+index, s, len * sizeof(QChar) ); } else if ( s >= d->unicode && (uint)(s - d->unicode) < d->maxl ) { // Part of me - take a copy. QChar *tmp = QT_ALLOC_QCHAR_VEC( slen ); memcpy( tmp, s, slen * sizeof(QChar) ); replace( index, len, tmp, slen ); QT_DELETE_QCHAR_VEC( tmp ); } else { remove( index, len ); insert( index, s, slen ); } return *this; } /*! \overload Replaces every occurrence of the character \a c in the string with \a after. Returns a reference to the string. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. Example: \code QString s = "a,b,c"; s.replace( QChar(','), " or " ); // s == "a or b or c" \endcode */ QString &QString::replace( QChar c, const QString & after, bool cs ) { return replace( QString( c ), after, cs ); } QString &QString::replace( QChar c, const QString & after ) { return replace( QString( c ), after, TRUE ); } /*! \overload \fn QString &QString::replace( char c, const QString & after, bool cs ) Replaces every occurrence of the character \a c in the string with \a after. Returns a reference to the string. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. */ /*! \overload Replaces every occurrence of the string \a before in the string with the string \a after. Returns a reference to the string. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. Example: \code QString s = "Greek is Greek"; s.replace( "Greek", "English" ); // s == "English is English" \endcode */ QString &QString::replace( const QString & before, const QString & after, bool cs ) { if ( isEmpty() ) { if ( !before.isEmpty() ) return *this; } else { if ( cs && before == after ) return *this; } real_detach(); int index = 0; uint skiptable[256]; bm_init_skiptable( before, skiptable, cs ); const int bl = before.length(); const int al = after.length(); if ( bl == al ) { if ( bl ) { const QChar *auc = after.unicode(); while ( (index = bm_find(*this, index, before, skiptable, cs) ) != -1 ) { memcpy( d->unicode + index, auc, al * sizeof(QChar) ); index += bl; } } } else if ( al < bl ) { const QChar *auc = after.unicode(); uint to = 0; uint movestart = 0; uint num = 0; while ( (index = bm_find(*this, index, before, skiptable, cs)) != -1 ) { if ( num ) { int msize = index - movestart; if ( msize > 0 ) { memmove( d->unicode + to, d->unicode + movestart, msize*sizeof(QChar) ); to += msize; } } else { to = index; } if ( al ) { memcpy( d->unicode+to, auc, al*sizeof(QChar) ); to += al; } index += bl; movestart = index; num++; } if ( num ) { int msize = d->len - movestart; if ( msize > 0 ) memmove( d->unicode + to, d->unicode + movestart, msize*sizeof(QChar) ); setLength( d->len - num*(bl-al) ); } } else { // the most complex case. We don't want to loose performance by doing repeated // copies and reallocs of the string. while ( index != -1 ) { uint indices[4096]; uint pos = 0; while ( pos < 4095 ) { index = bm_find( *this, index, before, skiptable, cs ); if ( index == -1 ) break; indices[pos++] = index; index += bl; // avoid infinite loop if ( !bl ) index++; } if ( !pos ) break; // we have a table of replacement positions, use them for fast replacing int adjust = pos*(al-bl); // index has to be adjusted in case we get back into the loop above. if ( index != -1 ) index += adjust; uint newlen = d->len + adjust; int moveend = d->len; if ( newlen > d->len ) setLength( newlen ); while ( pos ) { pos--; int movestart = indices[pos] + bl; int insertstart = indices[pos] + pos*(al-bl); int moveto = insertstart + al; memmove( d->unicode + moveto, d->unicode + movestart, (moveend - movestart)*sizeof(QChar) ); memcpy( d->unicode + insertstart, after.unicode(), al*sizeof(QChar) ); moveend = movestart-bl; } } } return *this; } QString &QString::replace( const QString & before, const QString & after ) { return replace( before, after, TRUE ); } #ifndef QT_NO_REGEXP_CAPTURE /*! \overload Replaces every occurrence of the regexp \a rx in the string with \a after. Returns a reference to the string. For example: \code QString s = "banana"; s.replace( QRegExp("an"), "" ); // s == "ba" \endcode For regexps containing \link qregexp.html#capturing-text capturing parentheses \endlink, occurrences of \\1, \\2, ..., in \a after are replaced with \a{rx}.cap(1), cap(2), ... \code QString t = "A bon mot."; t.replace( QRegExp("([^<]*)"), "\\emph{\\1}" ); // t == "A \\emph{bon mot}." \endcode \sa find(), findRev(), QRegExp::cap() */ QString &QString::replace( const QRegExp &rx, const QString &after ) { QRegExp rx2 = rx; if ( isEmpty() && rx2.search(*this) == -1 ) return *this; real_detach(); int index = 0; int numCaptures = rx2.numCaptures(); int al = after.length(); QRegExp::CaretMode caretMode = QRegExp::CaretAtZero; if ( numCaptures > 0 ) { if ( numCaptures > 9 ) numCaptures = 9; const QChar *uc = after.unicode(); int numBackRefs = 0; for ( int i = 0; i < al - 1; i++ ) { if ( uc[i] == '\\' ) { int no = uc[i + 1].digitValue(); if ( no > 0 && no <= numCaptures ) numBackRefs++; } } /* This is the harder case where we have back-references. We don't try to optimize it. */ if ( numBackRefs > 0 ) { int *capturePositions = new int[numBackRefs]; int *captureNumbers = new int[numBackRefs]; int j = 0; for ( int i = 0; i < al - 1; i++ ) { if ( uc[i] == '\\' ) { int no = uc[i + 1].digitValue(); if ( no > 0 && no <= numCaptures ) { capturePositions[j] = i; captureNumbers[j] = no; j++; } } } while ( index <= (int)length() ) { index = rx2.search( *this, index, caretMode ); if ( index == -1 ) break; QString after2 = after; for ( j = numBackRefs - 1; j >= 0; j-- ) after2.replace( capturePositions[j], 2, rx2.cap(captureNumbers[j]) ); replace( index, rx2.matchedLength(), after2 ); index += after2.length(); if ( rx2.matchedLength() == 0 ) { // avoid infinite loop on 0-length matches (e.g., [a-z]*) index++; } caretMode = QRegExp::CaretWontMatch; } delete[] capturePositions; delete[] captureNumbers; return *this; } } /* This is the simple and optimized case where we don't have back-references. */ while ( index != -1 ) { struct { int pos; int length; } replacements[2048]; uint pos = 0; int adjust = 0; while ( pos < 2047 ) { index = rx2.search( *this, index, caretMode ); if ( index == -1 ) break; int ml = rx2.matchedLength(); replacements[pos].pos = index; replacements[pos++].length = ml; index += ml; adjust += al - ml; // avoid infinite loop if ( !ml ) index++; } if ( !pos ) break; replacements[pos].pos = d->len; uint newlen = d->len + adjust; // to continue searching at the right position after we did // the first round of replacements if ( index != -1 ) index += adjust; QChar *newuc = QT_ALLOC_QCHAR_VEC( newlen + 1 ); QChar *uc = newuc; int copystart = 0; uint i = 0; while ( i < pos ) { int copyend = replacements[i].pos; int size = copyend - copystart; memcpy( uc, d->unicode + copystart, size * sizeof(QChar) ); uc += size; memcpy( uc, after.unicode(), al * sizeof(QChar) ); uc += al; copystart = copyend + replacements[i].length; i++; } memcpy( uc, d->unicode + copystart, (d->len - copystart) * sizeof(QChar) ); QT_DELETE_QCHAR_VEC( d->unicode ); d->unicode = newuc; d->len = newlen; d->maxl = newlen + 1; d->setDirty(); caretMode = QRegExp::CaretWontMatch; } return *this; } #endif #ifndef QT_NO_REGEXP /*! Finds the first match of the regular expression \a rx, starting from position \a index. If \a index is -1, the search starts at the last character; if -2, at the next to last character and so on. (See findRev() for searching backwards.) Returns the position of the first match of \a rx or -1 if no match was found. \code QString string( "bananas" ); int i = string.find( QRegExp("an"), 0 ); // i == 1 \endcode \sa findRev() replace() contains() */ int QString::find( const QRegExp &rx, int index ) const { return rx.search( *this, index ); } /*! \overload Finds the first match of the regexp \a rx, starting at position \a index and searching backwards. If the index is -1, the search starts at the last character, if it is -2, at the next to last character and so on. (See findRev() for searching backwards.) Returns the position of the match or -1 if no match was found. \code QString string( "bananas" ); int i = string.findRev( QRegExp("an") ); // i == 3 \endcode \sa find() */ int QString::findRev( const QRegExp &rx, int index ) const { return rx.searchRev( *this, index ); } /*! \overload Returns the number of times the regexp, \a rx, matches in the string. This function counts overlapping matches, so in the example below, there are four instances of "ana" or "ama". \code QString str = "banana and panama"; QRegExp rxp = QRegExp( "a[nm]a", TRUE, FALSE ); int i = str.contains( rxp ); // i == 4 \endcode \sa find() findRev() */ int QString::contains( const QRegExp &rx ) const { int count = 0; int index = -1; int len = length(); while ( index < len - 1 ) { // count overlapping matches index = rx.search( *this, index + 1 ); if ( index == -1 ) break; count++; } return count; } #endif //QT_NO_REGEXP /*! Returns the string converted to a \c long using base \a base, which is 10 by default and must be between 2 and 36 or 0. If \a base is 0, the base is determined automatically using the following rules:
  • If the string begins with "0x", it is assumed to be hexadecimal;
  • If it begins with "0", it is assumed to be octal;
  • Otherwise it is assumed to be decimal.
Returns 0 if the conversion fails. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. Leading and trailing whitespace is ignored by this function. For information on how string-to-number functions in QString handle localized input, see toDouble(). \sa number() */ long QString::toLong( bool *ok, int base ) const { Q_LLONG v = toLongLong( ok, base ); if ( v < LONG_MIN || v > LONG_MAX ) { if ( ok ) *ok = FALSE; v = 0; } return long(v); } /*! Returns the string converted to a \c {long long} using base \a base, which is 10 by default and must be between 2 and 36 or 0. If \a base is 0, the base is determined automatically using the following rules:
  • If the string begins with "0x", it is assumed to be hexadecimal;
  • If it begins with "0", it is assumed to be octal;
  • Otherwise it is assumed to be decimal.
Returns 0 if the conversion fails. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. Leading and trailing whitespace is ignored by this function. For information on how string-to-number functions in QString handle localized input, see toDouble(). \sa number() */ Q_LLONG QString::toLongLong( bool *ok, int base ) const { #if defined(QT_CHECK_RANGE) if ( base != 0 && (base < 2 || base > 36) ) { qWarning( "QString::toLongLong: Invalid base (%d)", base ); base = 10; } #endif bool my_ok; QLocale def_locale; Q_LLONG result = def_locale.d->stringToLongLong(*this, base, &my_ok, QLocalePrivate::FailOnGroupSeparators); if (my_ok) { if (ok != 0) *ok = TRUE; return result; } // If the default was not "C", try the "C" locale if (def_locale.language() == QLocale::C) { if (ok != 0) *ok = FALSE; return 0; } QLocale c_locale(QLocale::C); return c_locale.d->stringToLongLong(*this, base, ok, QLocalePrivate::FailOnGroupSeparators); } /*! Returns the string converted to an \c {unsigned long} using base \a base, which is 10 by default and must be between 2 and 36 or 0. If \a base is 0, the base is determined automatically using the following rules:
  • If the string begins with "0x", it is assumed to be hexadecimal;
  • If it begins with "0", it is assumed to be octal;
  • Otherwise it is assumed to be decimal.
Returns 0 if the conversion fails. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. Leading and trailing whitespace is ignored by this function. For information on how string-to-number functions in QString handle localized input, see toDouble(). \sa number() */ ulong QString::toULong( bool *ok, int base ) const { Q_ULLONG v = toULongLong( ok, base ); if ( v > ULONG_MAX ) { if ( ok ) *ok = FALSE; v = 0; } return ulong(v); } /*! Returns the string converted to an \c {unsigned long long} using base \a base, which is 10 by default and must be between 2 and 36 or 0. If \a base is 0, the base is determined automatically using the following rules:
  • If the string begins with "0x", it is assumed to be hexadecimal;
  • If it begins with "0", it is assumed to be octal;
  • Otherwise it is assumed to be decimal.
Returns 0 if the conversion fails. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. Leading and trailing whitespace is ignored by this function. For information on how string-to-number functions in QString handle localized input, see toDouble(). \sa number() */ Q_ULLONG QString::toULongLong( bool *ok, int base ) const { #if defined(QT_CHECK_RANGE) if ( base != 0 && (base < 2 || base > 36) ) { qWarning( "QString::toULongLong: Invalid base %d", base ); base = 10; } #endif bool my_ok; QLocale def_locale; Q_ULLONG result = def_locale.d->stringToUnsLongLong(*this, base, &my_ok, QLocalePrivate::FailOnGroupSeparators); if (my_ok) { if (ok != 0) *ok = TRUE; return result; } // If the default was not "C", try the "C" locale if (def_locale.language() == QLocale::C) { if (ok != 0) *ok = FALSE; return 0; } QLocale c_locale(QLocale::C); return c_locale.d->stringToUnsLongLong(*this, base, ok, QLocalePrivate::FailOnGroupSeparators); } /*! Returns the string converted to a \c short using base \a base, which is 10 by default and must be between 2 and 36 or 0. If \a base is 0, the base is determined automatically using the following rules:
  • If the string begins with "0x", it is assumed to be hexadecimal;
  • If it begins with "0", it is assumed to be octal;
  • Otherwise it is assumed to be decimal.
Returns 0 if the conversion fails. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. Leading and trailing whitespace is ignored by this function. For information on how string-to-number functions in QString handle localized input, see toDouble(). \sa number() */ short QString::toShort( bool *ok, int base ) const { Q_LLONG v = toLongLong( ok, base ); if ( v < SHRT_MIN || v > SHRT_MAX ) { if ( ok ) *ok = FALSE; v = 0; } return (short)v; } /*! Returns the string converted to an \c {unsigned short} using base \a base, which is 10 by default and must be between 2 and 36 or 0. If \a base is 0, the base is determined automatically using the following rules:
  • If the string begins with "0x", it is assumed to be hexadecimal;
  • If it begins with "0", it is assumed to be octal;
  • Otherwise it is assumed to be decimal.
Returns 0 if the conversion fails. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. Leading and trailing whitespace is ignored by this function. For information on how string-to-number functions in QString handle localized input, see toDouble(). \sa number() */ ushort QString::toUShort( bool *ok, int base ) const { Q_ULLONG v = toULongLong( ok, base ); if ( v > USHRT_MAX ) { if ( ok ) *ok = FALSE; v = 0; } return (ushort)v; } /*! Returns the string converted to an \c int using base \a base, which is 10 by default and must be between 2 and 36 or 0. If \a base is 0, the base is determined automatically using the following rules:
  • If the string begins with "0x", it is assumed to be hexadecimal;
  • If it begins with "0", it is assumed to be octal;
  • Otherwise it is assumed to be decimal.
Returns 0 if the conversion fails. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. \code QString str( "FF" ); bool ok; int hex = str.toInt( &ok, 16 ); // hex == 255, ok == TRUE int dec = str.toInt( &ok, 10 ); // dec == 0, ok == FALSE \endcode Leading and trailing whitespace is ignored by this function. For information on how string-to-number functions in QString handle localized input, see toDouble(). \sa number() */ int QString::toInt( bool *ok, int base ) const { Q_LLONG v = toLongLong( ok, base ); if ( v < INT_MIN || v > INT_MAX ) { if ( ok ) *ok = FALSE; v = 0; } return (int)v; } /*! Returns the string converted to an \c {unsigned int} using base \a base, which is 10 by default and must be between 2 and 36 or 0. If \a base is 0, the base is determined automatically using the following rules:
  • If the string begins with "0x", it is assumed to be hexadecimal;
  • If it begins with "0", it is assumed to be octal;
  • Otherwise it is assumed to be decimal.
Returns 0 if the conversion fails. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. Leading and trailing whitespace is ignored by this function. For information on how string-to-number functions in QString handle localized input, see toDouble(). \sa number() */ uint QString::toUInt( bool *ok, int base ) const { Q_ULLONG v = toULongLong( ok, base ); if ( v > UINT_MAX ) { if ( ok ) *ok = FALSE; v = 0; } return (uint)v; } /*! Returns the string converted to a \c double value. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. \code QString string( "1234.56" ); double a = string.toDouble(); // a == 1234.56 \endcode The string-to-number functions: \list \i toShort() \i toUShort() \i toInt() \i toUInt() \i toLong() \i toULong() \i toLongLong() \i toULongLong() \i toFloat() \i toDouble() \endlist can handle numbers represented in various locales. These representations may use different characters for the decimal point, thousands group sepearator and even individual digits. QString's functions try to interpret the string according to the current locale. The current locale is determined from the system at application startup and can be changed by calling QLocale::setDefault(). If the string cannot be interpreted according to the current locale, this function falls back on the "C" locale. \code bool ok; double d; QLocale::setDefault(QLocale::C); d = QString( "1234,56" ).toDouble(&ok); // ok == false d = QString( "1234.56" ).toDouble(&ok); // ok == true, d == 1234.56 QLocale::setDefault(QLocale::German); d = QString( "1234,56" ).toDouble(&ok); // ok == true, d == 1234.56 d = QString( "1234.56" ).toDouble(&ok); // ok == true, d == 1234.56 \endcode Due to the ambiguity between the decimal point and thousands group separator in various locales, these functions do not handle thousands group separators. If you need to convert such numbers, use the corresponding function in QLocale. \code bool ok; QLocale::setDefault(QLocale::C); double d = QString( "1,234,567.89" ).toDouble(&ok); // ok == false \endcode \warning If the string contains trailing whitespace this function will fail, and set \a *ok to false if \a ok is not 0. Leading whitespace is ignored. \sa number() QLocale::setDefault() QLocale::toDouble() stripWhiteSpace() */ double QString::toDouble( bool *ok ) const { // If there is trailing whitespace, set ok to false but return the correct // result anyway to preserve behavour of pervious versions of Qt if (length() > 0 && unicode()[length() - 1].isSpace()) { QString tmp = stripWhiteSpace(); if (ok != 0) *ok = FALSE; return tmp.toDouble(); } // Try the default locale bool my_ok; QLocale def_locale; double result = def_locale.d->stringToDouble(*this, &my_ok, QLocalePrivate::FailOnGroupSeparators); if (my_ok) { if (ok != 0) *ok = TRUE; return result; } // If the default was not "C", try the "C" locale if (def_locale.language() == QLocale::C) { if (ok != 0) *ok = FALSE; return 0.0; } QLocale c_locale(QLocale::C); return c_locale.d->stringToDouble(*this, ok, QLocalePrivate::FailOnGroupSeparators); } /*! Returns the string converted to a \c float value. Returns 0.0 if the conversion fails. If \a ok is not 0: if a conversion error occurs, \a *ok is set to FALSE; otherwise \a *ok is set to TRUE. For information on how string-to-number functions in QString handle localized input, see toDouble(). \warning If the string contains trailing whitespace this function will fail, settings \a *ok to false if \a ok is not 0. Leading whitespace is ignored. \sa number() */ #define QT_MAX_FLOAT 3.4028234663852886e+38 float QString::toFloat( bool *ok ) const { bool myOk; double d = toDouble(&myOk); if (!myOk || d > QT_MAX_FLOAT || d < -QT_MAX_FLOAT) { if (ok != 0) *ok = FALSE; return 0.0; } if (ok != 0) *ok = TRUE; return (float) d; } /*! Sets the string to the printed value of \a n in base \a base and returns a reference to the string. The returned string is in "C" locale. The base is 10 by default and must be between 2 and 36. \code QString string; string = string.setNum( 1234 ); // string == "1234" \endcode */ QString &QString::setNum( Q_LLONG n, int base ) { #if defined(QT_CHECK_RANGE) if ( base < 2 || base > 36 ) { qWarning( "QString::setNum: Invalid base %d", base ); base = 10; } #endif QLocale locale(QLocale::C); *this = locale.d->longLongToString(n, -1, base); return *this; } /*! \overload Sets the string to the printed value of \a n in base \a base and returns a reference to the string. The base is 10 by default and must be between 2 and 36. */ QString &QString::setNum( Q_ULLONG n, int base ) { #if defined(QT_CHECK_RANGE) if ( base < 2 || base > 36 ) { qWarning( "QString::setNum: Invalid base %d", base ); base = 10; } #endif QLocale locale(QLocale::C); *this = locale.d->unsLongLongToString(n, -1, base); return *this; } /*! \fn QString &QString::setNum( long n, int base ) \overload */ // ### 4.0: inline QString &QString::setNum( long n, int base ) { return setNum( (Q_LLONG)n, base ); } /*! \fn QString &QString::setNum( ulong n, int base ) \overload */ // ### 4.0: inline QString &QString::setNum( ulong n, int base ) { return setNum( (Q_ULLONG)n, base ); } /*! \fn QString &QString::setNum( int n, int base ) \overload Sets the string to the printed value of \a n in base \a base and returns a reference to the string. The base is 10 by default and must be between 2 and 36. */ /*! \fn QString &QString::setNum( uint n, int base ) \overload Sets the string to the printed value of \a n in base \a base and returns a reference to the string. The base is 10 by default and must be between 2 and 36. */ /*! \fn QString &QString::setNum( short n, int base ) \overload Sets the string to the printed value of \a n in base \a base and returns a reference to the string. The base is 10 by default and must be between 2 and 36. */ /*! \fn QString &QString::setNum( ushort n, int base ) \overload Sets the string to the printed value of \a n in base \a base and returns a reference to the string. The base is 10 by default and must be between 2 and 36. */ /*! \overload Sets the string to the printed value of \a n, formatted in format \a f with precision \a prec, and returns a reference to the string. The format \a f can be 'f', 'F', 'e', 'E', 'g' or 'G'. See \link #arg-formats arg \endlink() for an explanation of the formats. */ QString &QString::setNum( double n, char f, int prec ) { QLocalePrivate::DoubleForm form = QLocalePrivate::DFDecimal; uint flags = 0; if (qIsUpper(f)) flags = QLocalePrivate::CapitalEorX; f = qToLower(f); switch (f) { case 'f': form = QLocalePrivate::DFDecimal; break; case 'e': form = QLocalePrivate::DFExponent; break; case 'g': form = QLocalePrivate::DFSignificantDigits; break; default: #if defined(QT_CHECK_RANGE) qWarning( "QString::setNum: Invalid format char '%c'", f ); #endif break; } QLocale locale(QLocale::C); *this = locale.d->doubleToString(n, prec, form, -1, flags); return *this; } /*! \fn QString &QString::setNum( float n, char f, int prec ) \overload Sets the string to the printed value of \a n, formatted in format \a f with precision \a prec, and returns a reference to the string. The format \a f can be 'f', 'F', 'e', 'E', 'g' or 'G'. See \link #arg-formats arg \endlink() for an explanation of the formats. */ /*! A convenience function that returns a string equivalent of the number \a n to base \a base, which is 10 by default and must be between 2 and 36. The returned string is in "C" locale. \code long a = 63; QString str = QString::number( a, 16 ); // str == "3f" QString str = QString::number( a, 16 ).upper(); // str == "3F" \endcode \sa setNum() */ QString QString::number( long n, int base ) { QString s; s.setNum( n, base ); return s; } /*! \overload \sa setNum() */ QString QString::number( ulong n, int base ) { QString s; s.setNum( n, base ); return s; } /*! \overload \sa setNum() */ QString QString::number( Q_LLONG n, int base ) { QString s; s.setNum( n, base ); return s; } /*! \overload \sa setNum() */ QString QString::number( Q_ULLONG n, int base ) { QString s; s.setNum( n, base ); return s; } /*! \overload \sa setNum() */ QString QString::number( int n, int base ) { QString s; s.setNum( n, base ); return s; } /*! \overload A convenience factory function that returns a string representation of the number \a n to the base \a base, which is 10 by default and must be between 2 and 36. \sa setNum() */ QString QString::number( uint n, int base ) { QString s; s.setNum( n, base ); return s; } /*! \overload Argument \a n is formatted according to the \a f format specified, which is \c g by default, and can be any of the following: \table \header \i Format \i Meaning \row \i \c e \i format as [-]9.9e[+|-]999 \row \i \c E \i format as [-]9.9E[+|-]999 \row \i \c f \i format as [-]9.9 \row \i \c g \i use \c e or \c f format, whichever is the most concise \row \i \c G \i use \c E or \c f format, whichever is the most concise \endtable With 'e', 'E', and 'f', \a prec is the number of digits after the decimal point. With 'g' and 'G', \a prec is the maximum number of significant digits (trailing zeroes are omitted). \code double d = 12.34; QString ds = QString( "'E' format, precision 3, gives %1" ) .arg( d, 0, 'E', 3 ); // ds == "1.234E+001" \endcode \sa setNum() */ QString QString::number( double n, char f, int prec ) { QString s; s.setNum( n, f, prec ); return s; } /*! \obsolete Sets the character at position \a index to \a c and expands the string if necessary, filling with spaces. This method is redundant in Qt 3.x, because operator[] will expand the string as necessary. */ void QString::setExpand( uint index, QChar c ) { int spaces = index - d->len; at(index) = c; while (spaces-->0) d->unicode[--index]=' '; } /*! \fn const char* QString::data() const \obsolete Returns a pointer to a '\0'-terminated classic C string. In Qt 1.x, this returned a char* allowing direct manipulation of the string as a sequence of bytes. In Qt 2.x where QString is a Unicode string, char* conversion constructs a temporary string, and hence direct character operations are meaningless. */ /*! \fn bool QString::operator!() const Returns TRUE if this is a null string; otherwise returns FALSE. \code QString name = getName(); if ( !name ) name = "Rodney"; \endcode Note that if you say \code QString name = getName(); if ( name ) doSomethingWith(name); \endcode It will call "operator const char*()", which is inefficent; you may wish to define the macro \c QT_NO_ASCII_CAST when writing code which you wish to remain Unicode-clean. When you want the above semantics, use: \code QString name = getName(); if ( !name.isNull() ) doSomethingWith(name); \endcode \sa isEmpty() */ /*! \fn QString& QString::append( const QString& str ) Appends \a str to the string and returns a reference to the result. \code string = "Test"; string.append( "ing" ); // string == "Testing" \endcode Equivalent to operator+=(). */ /*! \fn QString& QString::append( char ch ) \overload Appends character \a ch to the string and returns a reference to the result. Equivalent to operator+=(). */ /*! \fn QString& QString::append( QChar ch ) \overload Appends character \a ch to the string and returns a reference to the result. Equivalent to operator+=(). */ /*! \fn QString& QString::append( const QByteArray &str ) \overload Appends \a str to the string and returns a reference to the result. Equivalent to operator+=(). */ /*! \fn QString& QString::append( const std::string &str ) \overload Appends \a str to the string and returns a reference to the result. Equivalent to operator+=(). */ /*! \fn QString& QString::append( const char *str ) \overload Appends \a str to the string and returns a reference to the result. Equivalent to operator+=(). */ /*! Appends \a str to the string and returns a reference to the string. */ QString& QString::operator+=( const QString &str ) { uint len1 = length(); uint len2 = str.length(); if ( len2 ) { if ( isEmpty() ) { operator=( str ); } else { grow( len1+len2 ); memcpy( d->unicode+len1, str.unicode(), sizeof(QChar)*len2 ); } } else if ( isNull() && !str.isNull() ) { // ## just for 1.x compat: *this = fromLatin1( "" ); } return *this; } #ifndef QT_NO_CAST_ASCII QString &QString::operatorPlusEqHelper( const char *s, uint len2 ) { if ( s ) { #ifndef QT_NO_TEXTCODEC if ( QTextCodec::codecForCStrings() ) return operator+=( fromAscii( s, len2 ) ); #endif uint len1 = length(); if ( len2 == UINT_MAX ) len2 = int(strlen( s )); if ( len2 ) { grow( len1 + len2 ); QChar* uc = d->unicode + len1; while ( len2-- ) *uc++ = *s++; } else if ( isNull() ) { // ## just for 1.x compat: *this = fromLatin1( "" ); } } return *this; } #endif /*! \overload Appends \a str to the string and returns a reference to the string. */ #ifndef QT_NO_CAST_ASCII QString& QString::operator+=( const char *str ) { // ### Qt 4: make this function inline return operatorPlusEqHelper( str ); } #endif /*! \overload Appends \a c to the string and returns a reference to the string. */ QString &QString::operator+=( QChar c ) { grow( length()+1 ); d->unicode[length()-1] = c; return *this; } /*! \overload Appends \a c to the string and returns a reference to the string. */ QString &QString::operator+=( char c ) { #ifndef QT_NO_TEXTCODEC if ( QTextCodec::codecForCStrings() ) return operator+=( fromAscii( &c, 1 ) ); #endif grow( length()+1 ); d->unicode[length()-1] = c; return *this; } /*! \fn QString &QString::operator+=( const QByteArray &str ) \overload Appends \a str to the string and returns a reference to the string. */ /*! \fn QString &QString::operator+=( const std::string &str ) \overload Appends \a str to the string and returns a reference to the string. */ /*! \fn char QChar::latin1() const Returns the Latin-1 value of this character, or 0 if it cannot be represented in Latin-1. */ /*! Returns a Latin-1 representation of the string. The returned value is undefined if the string contains non-Latin-1 characters. If you want to convert strings into formats other than Unicode, see the QTextCodec classes. This function is mainly useful for boot-strapping legacy code to use Unicode. The result remains valid so long as one unmodified copy of the source string exists. \sa fromLatin1(), ascii(), utf8(), local8Bit() */ const char* QString::latin1() const { if ( !d->ascii || !d->islatin1 ) { if (d->security_unpaged) { #if defined(Q_OS_LINUX) if (d->ascii) { munlock(d->ascii, LINUX_MEMLOCK_LIMIT_BYTES); } #endif } delete [] d->ascii; d->ascii = unicodeToLatin1( d->unicode, d->len, d->security_unpaged ); d->islatin1 = TRUE; } return d->ascii; } /*! Returns an 8-bit ASCII representation of the string. If a codec has been set using QTextCodec::codecForCStrings(), it is used to convert Unicode to 8-bit char. Otherwise, this function does the same as latin1(). \sa fromAscii(), latin1(), utf8(), local8Bit() */ const char* QString::ascii() const { #ifndef QT_NO_TEXTCODEC if ( QTextCodec::codecForCStrings() ) { if ( !d->ascii || d->islatin1 ) { if (d->security_unpaged) { #if defined(Q_OS_LINUX) if (d->ascii) { munlock(d->ascii, LINUX_MEMLOCK_LIMIT_BYTES); } #endif } delete [] d->ascii; if (d->unicode) { QCString s = QTextCodec::codecForCStrings()->fromUnicode( *this ); d->ascii = new char[s.length() + 1]; if (d->security_unpaged) { #if defined(Q_OS_LINUX) mlock(d->ascii, LINUX_MEMLOCK_LIMIT_BYTES); #endif } memcpy(d->ascii, s.data(), s.length() + 1); } else { d->ascii = 0; } d->islatin1 = FALSE; } return d->ascii; } #endif // QT_NO_TEXTCODEC return latin1(); } void QString::setSecurityUnPaged(bool lock) { if (lock != d->security_unpaged) { if (d->security_unpaged) { #if defined(Q_OS_LINUX) if (d->ascii) { munlock(d->ascii, LINUX_MEMLOCK_LIMIT_BYTES); } #endif d->security_unpaged = false; } else { #if defined(Q_OS_LINUX) if (d->ascii) { mlock(d->ascii, LINUX_MEMLOCK_LIMIT_BYTES); } #endif d->security_unpaged = true; } } } /*! Returns the string encoded in UTF-8 format. See QTextCodec for more diverse coding/decoding of Unicode strings. \sa fromUtf8(), ascii(), latin1(), local8Bit() */ QCString QString::utf8() const { if (!d->cString) { d->cString = new QCString(""); } if(d == shared_null) { return *d->cString; } int l = length(); int rlen = l*3+1; QCString rstr(rlen); uchar* cursor = (uchar*)rstr.data(); const QChar *ch = d->unicode; for (int i=0; i < l; i++) { uint u = ch->unicode(); if ( u < 0x80 ) { *cursor++ = (uchar)u; } else { if ( u < 0x0800 ) { *cursor++ = 0xc0 | ((uchar) (u >> 6)); } else { if (u >= 0xd800 && u < 0xdc00 && i < l-1) { unsigned short low = ch[1].unicode(); if (low >= 0xdc00 && low < 0xe000) { ++ch; ++i; u = (u - 0xd800)*0x400 + (low - 0xdc00) + 0x10000; } } if (u > 0xffff) { // if people are working in utf8, but strings are encoded in eg. latin1, the resulting // name might be invalid utf8. This and the corresponding code in fromUtf8 takes care // we can handle this without loosing information. This can happen with latin filenames // and a utf8 locale under Unix. if (u > 0x10fe00 && u < 0x10ff00) { *cursor++ = (u - 0x10fe00); ++ch; continue; } else { *cursor++ = 0xf0 | ((uchar) (u >> 18)); *cursor++ = 0x80 | ( ((uchar) (u >> 12)) & 0x3f); } } else { *cursor++ = 0xe0 | ((uchar) (u >> 12)); } *cursor++ = 0x80 | ( ((uchar) (u >> 6)) & 0x3f); } *cursor++ = 0x80 | ((uchar) (u&0x3f)); } ++ch; } rstr.truncate( cursor - (uchar*)rstr.data() ); *d->cString = rstr; return *d->cString; } static QChar *addOne(QChar *qch, QString &str) { long sidx = qch - str.unicode(); str.setLength(str.length()+1); return (QChar *)str.unicode() + sidx; } /*! Returns the Unicode string decoded from the first \a len bytes of \a utf8, ignoring the rest of \a utf8. If \a len is -1 then the length of \a utf8 is used. If \a len is bigger than the length of \a utf8 then it will use the length of \a utf8. \code QString str = QString::fromUtf8( "123456789", 5 ); // str == "12345" \endcode See QTextCodec for more diverse coding/decoding of Unicode strings. */ QString QString::fromUtf8( const char* utf8, int len ) { if ( !utf8 ) { return QString::null; } int slen = 0; if (len >= 0) { while (slen < len && utf8[slen]) { slen++; } } else { slen = int(strlen(utf8)); } len = len < 0 ? slen : QMIN(slen, len); QString result; result.setLength( len ); // worst case QChar *qch = (QChar *)result.unicode(); uint uc = 0; uint min_uc = 0; int need = 0; int error = -1; uchar ch; for (int i=0; i 0xffff) { // surrogate pair uc -= 0x10000; unsigned short high = uc/0x400 + 0xd800; unsigned short low = uc%0x400 + 0xdc00; *qch++ = QChar(high); *qch++ = QChar(low); } else if (uc < min_uc || (uc >= 0xd800 && uc <= 0xdfff) || (uc >= 0xfffe)) { // overlong seqence, UTF16 surrogate or BOM i = error; qch = addOne(qch, result); *qch++ = QChar(0xdbff); *qch++ = QChar(0xde00+((uchar)utf8[i])); } else { *qch++ = uc; } } } else { // See QString::utf8() for explanation. // // The surrogate below corresponds to a Unicode value of (0x10fe00+ch) which // is in one of the private use areas of Unicode. i = error; qch = addOne(qch, result); *qch++ = QChar(0xdbff); *qch++ = QChar(0xde00+((uchar)utf8[i])); need = 0; } } else { if ( ch < 128 ) { *qch++ = ch; } else if ((ch & 0xe0) == 0xc0) { uc = ch & 0x1f; need = 1; error = i; min_uc = 0x80; } else if ((ch & 0xf0) == 0xe0) { uc = ch & 0x0f; need = 2; error = i; min_uc = 0x800; } else if ((ch&0xf8) == 0xf0) { uc = ch & 0x07; need = 3; error = i; min_uc = 0x10000; } else { // Error qch = addOne(qch, result); *qch++ = QChar(0xdbff); *qch++ = QChar(0xde00+((uchar)utf8[i])); } } } if (need) { // we have some invalid characters remaining we need to add to the string for (int i = error; i < len; ++i) { qch = addOne(qch, result); *qch++ = QChar(0xdbff); *qch++ = QChar(0xde00+((uchar)utf8[i])); } } result.truncate( qch - result.unicode() ); return result; } /*! Returns the Unicode string decoded from the first \a len bytes of \a ascii, ignoring the rest of \a ascii. If \a len is -1 then the length of \a ascii is used. If \a len is bigger than the length of \a ascii then it will use the length of \a ascii. If a codec has been set using QTextCodec::codecForCStrings(), it is used to convert the string from 8-bit characters to Unicode. Otherwise, this function does the same as fromLatin1(). This is the same as the QString(const char*) constructor, but you can make that constructor invisible if you compile with the define \c QT_NO_CAST_ASCII, in which case you can explicitly create a QString from 8-bit ASCII text using this function. \code QString str = QString::fromAscii( "123456789", 5 ); // str == "12345" \endcode */ QString QString::fromAscii( const char* ascii, int len ) { #ifndef QT_NO_TEXTCODEC if ( QTextCodec::codecForCStrings() ) { if ( !ascii ) return QString::null; if ( len < 0 ) len = (int)strlen( ascii ); if ( len == 0 || *ascii == '\0' ) return QString::fromLatin1( "" ); return QTextCodec::codecForCStrings()->toUnicode( ascii, len ); } #endif return fromLatin1( ascii, len ); } /*! Returns the Unicode string decoded from the first \a len bytes of \a chars, ignoring the rest of \a chars. If \a len is -1 then the length of \a chars is used. If \a len is bigger than the length of \a chars then it will use the length of \a chars. \sa fromAscii() */ QString QString::fromLatin1( const char* chars, int len ) { uint l; QChar *uc; if ( len < 0 ) { len = -1; } uc = internalLatin1ToUnicode( chars, &l, len ); QString ret( new QStringData(uc, l, l), TRUE ); return ret; } /*! \fn const QChar* QString::unicode() const Returns the Unicode representation of the string. The result remains valid until the string is modified. */ /*! Returns the string encoded in a locale-specific format. On X11, this is the QTextCodec::codecForLocale(). On Windows, it is a system-defined encoding. On Mac OS X, this always uses UTF-8 as the encoding. See QTextCodec for more diverse coding/decoding of Unicode strings. \sa fromLocal8Bit(), ascii(), latin1(), utf8() */ QCString QString::local8Bit() const { if (!d->cString) { d->cString = new QCString(""); } if(d == shared_null) { return *d->cString; } #ifdef QT_NO_TEXTCODEC *d->cString = QCString(latin1()); return *d->cString; #else #ifdef Q_WS_X11 QTextCodec* codec = QTextCodec::codecForLocale(); *d->cString = codec ? codec->fromUnicode(*this) : QCString(latin1()); return *d->cString; #endif #if defined( Q_WS_MACX ) return utf8(); #endif #if defined( Q_WS_MAC9 ) *d->cString = QCString(latin1()); //I'm evil.. return *d->cString; #endif #ifdef Q_WS_WIN *d->cString = isNull() ? QCString("") : qt_winQString2MB( *this ); return *d->cString; #endif #ifdef Q_WS_QWS return utf8(); // ### if there is any 8 bit format supported? #endif #endif } /*! Returns the Unicode string decoded from the first \a len bytes of \a local8Bit, ignoring the rest of \a local8Bit. If \a len is -1 then the length of \a local8Bit is used. If \a len is bigger than the length of \a local8Bit then it will use the length of \a local8Bit. \code QString str = QString::fromLocal8Bit( "123456789", 5 ); // str == "12345" \endcode \a local8Bit is assumed to be encoded in a locale-specific format. See QTextCodec for more diverse coding/decoding of Unicode strings. */ QString QString::fromLocal8Bit( const char* local8Bit, int len ) { #ifdef QT_NO_TEXTCODEC return fromLatin1( local8Bit, len ); #else if ( !local8Bit ) return QString::null; #ifdef Q_WS_X11 QTextCodec* codec = QTextCodec::codecForLocale(); if ( len < 0 ) len = strlen( local8Bit ); return codec ? codec->toUnicode( local8Bit, len ) : fromLatin1( local8Bit, len ); #endif #if defined( Q_WS_MAC ) return fromUtf8(local8Bit,len); #endif // Should this be OS_WIN32? #ifdef Q_WS_WIN if ( len >= 0 ) { QCString s(local8Bit,len+1); return qt_winMB2QString(s); } return qt_winMB2QString( local8Bit ); #endif #ifdef Q_WS_QWS return fromUtf8(local8Bit,len); #endif #endif // QT_NO_TEXTCODEC } /*! \fn QString::operator const char *() const Returns ascii(). Be sure to see the warnings documented in the ascii() function. Note that for new code which you wish to be strictly Unicode-clean, you can define the macro \c QT_NO_ASCII_CAST when compiling your code to hide this function so that automatic casts are not done. This has the added advantage that you catch the programming error described in operator!(). */ /*! \fn QString::operator std::string() const Returns ascii() as a std::string. \warning The function may cause an application to crash if a static C run-time is in use. This can happen in Microsoft Visual C++ if Qt is configured as single-threaded. A safe alternative is to call ascii() directly and construct a std::string manually. */ /*! Returns the QString as a zero terminated array of unsigned shorts if the string is not null; otherwise returns zero. The result remains valid so long as one unmodified copy of the source string exists. */ const unsigned short *QString::ucs2() const { if ( ! d->unicode ) return 0; unsigned int len = d->len; if ( d->maxl < len + 1 ) { // detach, grow or shrink uint newMax = computeNewMax( len + 1 ); QChar* nd = QT_ALLOC_QCHAR_VEC( newMax ); if ( nd ) { if ( d->unicode ) memcpy( nd, d->unicode, sizeof(QChar)*len ); ((QString *)this)->deref(); ((QString *)this)->d = new QStringData( nd, len, newMax ); } } d->unicode[len] = 0; return (unsigned short *) d->unicode; } /*! Constructs a string that is a deep copy of \a str, interpreted as a UCS2 encoded, zero terminated, Unicode string. If \a str is 0, then a null string is created. \sa isNull() */ QString QString::fromUcs2( const unsigned short *str ) { if ( !str ) { return QString::null; } else { int length = 0; while ( str[length] != 0 ) length++; QChar* uc = QT_ALLOC_QCHAR_VEC( length ); memcpy( uc, str, length*sizeof(QChar) ); QString ret( new QStringData( uc, length, length ), TRUE ); return ret; } } /*! \fn QChar QString::at( uint ) const Returns the character at index \a i, or 0 if \a i is beyond the length of the string. \code const QString string( "abcdefgh" ); QChar ch = string.at( 4 ); // ch == 'e' \endcode If the QString is not const (i.e. const QString) or const& (i.e. const QString &), then the non-const overload of at() will be used instead. */ /*! \fn QChar QString::constref(uint i) const Returns the QChar at index \a i by value. Equivalent to at(\a i). \sa ref() */ /*! \fn QChar& QString::ref(uint i) Returns the QChar at index \a i by reference, expanding the string with QChar::null if necessary. The resulting reference can be assigned to, or otherwise used immediately, but becomes invalid once furher modifications are made to the string. \code QString string("ABCDEF"); QChar ch = string.ref( 3 ); // ch == 'D' \endcode \sa constref() */ QChar& QString::ref(uint i) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE if ( (d->count != 1) || (i >= d->len) ) { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE subat( i ); } else { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE } d->setDirty(); return d->unicode[i]; } /*! \fn QChar QString::operator[]( int ) const Returns the character at index \a i, or QChar::null if \a i is beyond the length of the string. If the QString is not const (i.e., const QString) or const\& (i.e., const QString\&), then the non-const overload of operator[] will be used instead. */ /*! \fn QCharRef QString::operator[]( int ) \overload The function returns a reference to the character at index \a i. The resulting reference can then be assigned to, or used immediately, but it will become invalid once further modifications are made to the original string. If \a i is beyond the length of the string then the string is expanded with QChar::nulls, so that the QCharRef references a valid (null) character in the string. The QCharRef internal class can be used much like a constant QChar, but if you assign to it, you change the original string (which will detach itself because of QString's copy-on-write semantics). You will get compilation errors if you try to use the result as anything but a QChar. */ /*! \fn QCharRef QString::at( uint i ) \overload The function returns a reference to the character at index \a i. The resulting reference can then be assigned to, or used immediately, but it will become invalid once further modifications are made to the original string. If \a i is beyond the length of the string then the string is expanded with QChar::null. */ /* Internal chunk of code to handle the uncommon cases of at() above. */ void QString::subat( uint i ) { uint olen = d->len; if ( i >= olen ) { setLength( i+1 ); // i is index; i+1 is needed length for ( uint j=olen; j<=i; j++ ) d->unicode[j] = QChar::null; } else { // Just be sure to detach real_detach(); } } /*! Resizes the string to \a len characters and copies \a unicode into the string. If \a unicode is 0, nothing is copied, but the string is still resized to \a len. If \a len is zero, then the string becomes a \link isNull() null\endlink string. \sa setLatin1(), isNull() */ QString& QString::setUnicode( const QChar *unicode, uint len ) { if ( len == 0 ) { // set to null string if ( d != shared_null ) { // beware of nullstring being set to nullstring deref(); d = shared_null ? shared_null : makeSharedNull(); } } else { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE if ( d->count != 1 || len > d->maxl || ( len * 4 < d->maxl && d->maxl > 4 ) ) { // detach, grown or shrink uint newMax = computeNewMax( len ); QChar* nd = QT_ALLOC_QCHAR_VEC( newMax ); if ( unicode ) { memcpy( nd, unicode, sizeof(QChar)*len ); } #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE deref(); d = new QStringData( nd, len, newMax ); } else { d->len = len; #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE d->setDirty(); if ( unicode ) { memcpy( d->unicode, unicode, sizeof(QChar)*len ); } } } return *this; } /*! Resizes the string to \a len characters and copies \a unicode_as_ushorts into the string (on some X11 client platforms this will involve a byte-swapping pass). If \a unicode_as_ushorts is 0, nothing is copied, but the string is still resized to \a len. If \a len is zero, the string becomes a \link isNull() null\endlink string. \sa setLatin1(), isNull() */ QString& QString::setUnicodeCodes( const ushort* unicode_as_ushorts, uint len ) { return setUnicode((const QChar*)unicode_as_ushorts, len); } /*! Sets this string to \a str, interpreted as a classic 8-bit ASCII C string. If \a len is -1 (the default), then it is set to strlen(str). If \a str is 0 a null string is created. If \a str is "", an empty string is created. \sa isNull(), isEmpty() */ QString &QString::setAscii( const char *str, int len ) { #ifndef QT_NO_TEXTCODEC if ( QTextCodec::codecForCStrings() ) { *this = QString::fromAscii( str, len ); return *this; } #endif // QT_NO_TEXTCODEC return setLatin1( str, len ); } /*! Sets this string to \a str, interpreted as a classic Latin-1 C string. If \a len is -1 (the default), then it is set to strlen(str). If \a str is 0 a null string is created. If \a str is "", an empty string is created. \sa isNull(), isEmpty() */ QString &QString::setLatin1( const char *str, int len ) { if ( str == 0 ) return setUnicode(0,0); if ( len < 0 ) len = int(strlen( str )); if ( len == 0 ) { // won't make a null string *this = QString::fromLatin1( "" ); } else { setUnicode( 0, len ); // resize but not copy QChar *p = d->unicode; while ( len-- ) *p++ = *str++; } return *this; } /*! \internal */ void QString::checkSimpleText() const { QChar *p = d->unicode; QChar *end = p + d->len; while ( p < end ) { ushort uc = p->unicode(); // sort out regions of complex text formatting if ( uc > 0x058f && ( uc < 0x1100 || uc > 0xfb0f ) ) { d->issimpletext = FALSE; return; } p++; } d->issimpletext = TRUE; } /*! \fn bool QString::simpleText() const \internal */ /*! \internal */ bool QString::isRightToLeft() const { int len = length(); QChar *p = d->unicode; while ( len-- ) { switch( ::direction( *p ) ) { case QChar::DirL: case QChar::DirLRO: case QChar::DirLRE: return FALSE; case QChar::DirR: case QChar::DirAL: case QChar::DirRLO: case QChar::DirRLE: return TRUE; default: break; } ++p; } return FALSE; } /*! \fn int QString::compare( const QString & s1, const QString & s2 ) Lexically compares \a s1 with \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. The comparison is based exclusively on the numeric Unicode values of the characters and is very fast, but is not what a human would expect. Consider sorting user-interface strings with QString::localeAwareCompare(). \code int a = QString::compare( "def", "abc" ); // a > 0 int b = QString::compare( "abc", "def" ); // b < 0 int c = QString::compare( "abc", "abc" ); // c == 0 \endcode */ /*! \overload Lexically compares this string with \a s and returns an integer less than, equal to, or greater than zero if it is less than, equal to, or greater than \a s. */ int QString::compare( const QString& s ) const { return ucstrcmp( *this, s ); } /*! \fn int QString::localeAwareCompare( const QString & s1, const QString & s2 ) Compares \a s1 with \a s2 and returns an integer less than, equal to, or greater than zero if \a s1 is less than, equal to, or greater than \a s2. The comparison is performed in a locale- and also platform-dependent manner. Use this function to present sorted lists of strings to the user. \sa QString::compare() QTextCodec::locale() */ /*! \overload Compares this string with \a s. */ #if !defined(CSTR_LESS_THAN) #define CSTR_LESS_THAN 1 #define CSTR_EQUAL 2 #define CSTR_GREATER_THAN 3 #endif int QString::localeAwareCompare( const QString& s ) const { // do the right thing for null and empty if ( isEmpty() || s.isEmpty() ) return compare( s ); #if defined(Q_WS_WIN) int res; QT_WA( { const TCHAR* s1 = (TCHAR*)ucs2(); const TCHAR* s2 = (TCHAR*)s.ucs2(); res = CompareStringW( LOCALE_USER_DEFAULT, 0, s1, length(), s2, s.length() ); } , { QCString s1 = local8Bit(); QCString s2 = s.local8Bit(); res = CompareStringA( LOCALE_USER_DEFAULT, 0, s1.data(), s1.length(), s2.data(), s2.length() ); } ); switch ( res ) { case CSTR_LESS_THAN: return -1; case CSTR_GREATER_THAN: return 1; default: return 0; } #elif defined(Q_WS_MACX) int delta = 0; #if !defined(QT_NO_TEXTCODEC) QTextCodec *codec = QTextCodec::codecForLocale(); if (codec) delta = strcoll(codec->fromUnicode(*this), codec->fromUnicode(s)); if (delta == 0) #endif delta = ucstrcmp(*this, s); return delta; #elif defined(Q_WS_X11) // declared in int delta = strcoll( local8Bit(), s.local8Bit() ); if ( delta == 0 ) delta = ucstrcmp( *this, s ); return delta; #else return ucstrcmp( *this, s ); #endif } bool operator==( const QString &s1, const QString &s2 ) { if ( s1.unicode() == s2.unicode() ) return TRUE; return (s1.length() == s2.length()) && s1.isNull() == s2.isNull() && (memcmp((char*)s1.unicode(),(char*)s2.unicode(), s1.length()*sizeof(QChar)) == 0 ); } bool operator!=( const QString &s1, const QString &s2 ) { return !(s1==s2); } bool operator<( const QString &s1, const QString &s2 ) { return ucstrcmp(s1,s2) < 0; } bool operator<=( const QString &s1, const QString &s2 ) { return ucstrcmp(s1,s2) <= 0; } bool operator>( const QString &s1, const QString &s2 ) { return ucstrcmp(s1,s2) > 0; } bool operator>=( const QString &s1, const QString &s2 ) { return ucstrcmp(s1,s2) >= 0; } bool operator==( const QString &s1, const char *s2 ) { if ( !s2 ) return s1.isNull(); int len = s1.length(); const QChar *uc = s1.unicode(); while ( len ) { if ( !(*s2) || uc->unicode() != (uchar) *s2 ) return FALSE; ++uc; ++s2; --len; } return !*s2; } bool operator==( const char *s1, const QString &s2 ) { return (s2 == s1); } bool operator!=( const QString &s1, const char *s2 ) { return !(s1==s2); } bool operator!=( const char *s1, const QString &s2 ) { return !(s1==s2); } bool operator<( const QString &s1, const char *s2 ) { return ucstrcmp(s1,s2) < 0; } bool operator<( const char *s1, const QString &s2 ) { return ucstrcmp(s1,s2) < 0; } bool operator<=( const QString &s1, const char *s2 ) { return ucstrcmp(s1,s2) <= 0; } bool operator<=( const char *s1, const QString &s2 ) { return ucstrcmp(s1,s2) <= 0; } bool operator>( const QString &s1, const char *s2 ) { return ucstrcmp(s1,s2) > 0; } bool operator>( const char *s1, const QString &s2 ) { return ucstrcmp(s1,s2) > 0; } bool operator>=( const QString &s1, const char *s2 ) { return ucstrcmp(s1,s2) >= 0; } bool operator>=( const char *s1, const QString &s2 ) { return ucstrcmp(s1,s2) >= 0; } /***************************************************************************** Documentation for QString related functions *****************************************************************************/ /*! \fn bool operator==( const QString &s1, const QString &s2 ) \relates QString Returns TRUE if \a s1 is equal to \a s2; otherwise returns FALSE. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1, \a s2) == 0. \sa isNull(), isEmpty() */ /*! \fn bool operator==( const QString &s1, const char *s2 ) \overload \relates QString Returns TRUE if \a s1 is equal to \a s2; otherwise returns FALSE. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1, \a s2) == 0. \sa isNull(), isEmpty() */ /*! \fn bool operator==( const char *s1, const QString &s2 ) \overload \relates QString Returns TRUE if \a s1 is equal to \a s2; otherwise returns FALSE. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1, \a s2) == 0. \sa isNull(), isEmpty() */ /*! \fn bool operator!=( const QString &s1, const QString &s2 ) \relates QString Returns TRUE if \a s1 is not equal to \a s2; otherwise returns FALSE. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1, \a s2) != 0. \sa isNull(), isEmpty() */ /*! \fn bool operator!=( const QString &s1, const char *s2 ) \overload \relates QString Returns TRUE if \a s1 is not equal to \a s2; otherwise returns FALSE. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1, \a s2) != 0. \sa isNull(), isEmpty() */ /*! \fn bool operator!=( const char *s1, const QString &s2 ) \overload \relates QString Returns TRUE if \a s1 is not equal to \a s2; otherwise returns FALSE. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1, \a s2) != 0. \sa isNull(), isEmpty() */ /*! \fn bool operator<( const QString &s1, const char *s2 ) \relates QString Returns TRUE if \a s1 is lexically less than \a s2; otherwise returns FALSE. The comparison is case sensitive. Equivalent to compare(\a s1, \a s2) \< 0. */ /*! \fn bool operator<( const char *s1, const QString &s2 ) \overload \relates QString Returns TRUE if \a s1 is lexically less than \a s2; otherwise returns FALSE. The comparison is case sensitive. Equivalent to compare(\a s1, \a s2) \< 0. */ /*! \fn bool operator<=( const QString &s1, const char *s2 ) \relates QString Returns TRUE if \a s1 is lexically less than or equal to \a s2; otherwise returns FALSE. The comparison is case sensitive. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1,\a s2) \<= 0. \sa isNull(), isEmpty() */ /*! \fn bool operator<=( const char *s1, const QString &s2 ) \overload \relates QString Returns TRUE if \a s1 is lexically less than or equal to \a s2; otherwise returns FALSE. The comparison is case sensitive. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1, \a s2) \<= 0. \sa isNull(), isEmpty() */ /*! \fn bool operator>( const QString &s1, const char *s2 ) \relates QString Returns TRUE if \a s1 is lexically greater than \a s2; otherwise returns FALSE. The comparison is case sensitive. Equivalent to compare(\a s1, \a s2) \> 0. */ /*! \fn bool operator>( const char *s1, const QString &s2 ) \overload \relates QString Returns TRUE if \a s1 is lexically greater than \a s2; otherwise returns FALSE. The comparison is case sensitive. Equivalent to compare(\a s1, \a s2) \> 0. */ /*! \fn bool operator>=( const QString &s1, const char *s2 ) \relates QString Returns TRUE if \a s1 is lexically greater than or equal to \a s2; otherwise returns FALSE. The comparison is case sensitive. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1, \a s2) \>= 0. \sa isNull(), isEmpty() */ /*! \fn bool operator>=( const char *s1, const QString &s2 ) \overload \relates QString Returns TRUE if \a s1 is lexically greater than or equal to \a s2; otherwise returns FALSE. The comparison is case sensitive. Note that a null string is not equal to a not-null empty string. Equivalent to compare(\a s1, \a s2) \>= 0. \sa isNull(), isEmpty() */ /*! \fn const QString operator+( const QString &s1, const QString &s2 ) \relates QString Returns a string which is the result of concatenating the string \a s1 and the string \a s2. Equivalent to \a {s1}.append(\a s2). */ /*! \fn const QString operator+( const QString &s1, const char *s2 ) \overload \relates QString Returns a string which is the result of concatenating the string \a s1 and character \a s2. Equivalent to \a {s1}.append(\a s2). */ /*! \fn const QString operator+( const char *s1, const QString &s2 ) \overload \relates QString Returns a string which is the result of concatenating the character \a s1 and string \a s2. */ /*! \fn const QString operator+( const QString &s, char c ) \overload \relates QString Returns a string which is the result of concatenating the string \a s and character \a c. Equivalent to \a {s}.append(\a c). */ /*! \fn const QString operator+( char c, const QString &s ) \overload \relates QString Returns a string which is the result of concatenating the character \a c and string \a s. Equivalent to \a {s}.prepend(\a c). */ /***************************************************************************** QString stream functions *****************************************************************************/ #ifndef QT_NO_DATASTREAM /*! \relates QString Writes the string \a str to the stream \a s. See also \link datastreamformat.html Format of the QDataStream operators \endlink */ QDataStream &operator<<( QDataStream &s, const QString &str ) { if ( s.version() == 1 ) { QCString l( str.latin1() ); s << l; } else { int byteOrder = s.byteOrder(); const QChar* ub = str.unicode(); if ( ub || s.version() < 3 ) { static const uint auto_size = 1024; char t[auto_size]; char *b; if ( str.length()*sizeof(QChar) > auto_size ) { b = new char[str.length()*sizeof(QChar)]; } else { b = t; } int l = str.length(); char *c=b; while ( l-- ) { if ( byteOrder == QDataStream::BigEndian ) { *c++ = (char)ub->row(); *c++ = (char)ub->cell(); } else { *c++ = (char)ub->cell(); *c++ = (char)ub->row(); } ub++; } s.writeBytes( b, sizeof(QChar)*str.length() ); if ( str.length()*sizeof(QChar) > auto_size ) delete [] b; } else { // write null marker s << (Q_UINT32)0xffffffff; } } return s; } /*! \relates QString Reads a string from the stream \a s into string \a str. See also \link datastreamformat.html Format of the QDataStream operators \endlink */ QDataStream &operator>>( QDataStream &s, QString &str ) { #ifdef QT_QSTRING_UCS_4 #if defined(Q_CC_GNU) #warning "operator>> not working properly" #endif #endif if ( s.version() == 1 ) { QCString l; s >> l; str = QString( l ); } else { Q_UINT32 bytes = 0; s >> bytes; // read size of string if ( bytes == 0xffffffff ) { // null string str = QString::null; } else if ( bytes > 0 ) { // not empty int byteOrder = s.byteOrder(); str.setLength( bytes/2 ); QChar* ch = str.d->unicode; static const uint auto_size = 1024; char t[auto_size]; char *b; if ( bytes > auto_size ) { b = new char[bytes]; } else { b = t; } s.readRawBytes( b, bytes ); int bt = bytes/2; char *oldb = b; while ( bt-- ) { if ( byteOrder == QDataStream::BigEndian ) *ch++ = (ushort) (((ushort)b[0])<<8) | (uchar)b[1]; else *ch++ = (ushort) (((ushort)b[1])<<8) | (uchar)b[0]; b += 2; } if ( bytes > auto_size ) delete [] oldb; } else { str = ""; } } return s; } #endif // QT_NO_DATASTREAM /***************************************************************************** QConstString member functions *****************************************************************************/ /*! \class QConstString qstring.h \reentrant \ingroup text \brief The QConstString class provides string objects using constant Unicode data. In order to minimize copying, highly optimized applications can use QConstString to provide a QString-compatible object from existing Unicode data. It is then the programmer's responsibility to ensure that the Unicode data exists for the entire lifetime of the QConstString object. A QConstString is created with the QConstString constructor. The string held by the object can be obtained by calling string(). */ /*! Constructs a QConstString that uses the first \a length Unicode characters in the array \a unicode. Any attempt to modify copies of the string will cause it to create a copy of the data, thus it remains forever unmodified. The data in \a unicode is not copied. The caller must be able to guarantee that \a unicode will not be deleted or modified. */ QConstString::QConstString( const QChar* unicode, uint length ) : QString( new QStringData( (QChar*)unicode, length, length ), TRUE ) { } /*! Destroys the QConstString, creating a copy of the data if other strings are still using it. */ QConstString::~QConstString() { #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->lock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE if ( d->count > 1 ) { QChar* cp = QT_ALLOC_QCHAR_VEC( d->len ); memcpy( cp, d->unicode, d->len*sizeof(QChar) ); d->unicode = cp; } else { d->unicode = 0; } // The original d->unicode is now unlinked. #if defined(QT_THREAD_SUPPORT) && defined(MAKE_QSTRING_THREAD_SAFE) d->mutex->unlock(); #endif // QT_THREAD_SUPPORT && MAKE_QSTRING_THREAD_SAFE } /*! \fn const QString& QConstString::string() const Returns a constant string referencing the data passed during construction. */ /*! Returns TRUE if the string starts with \a s; otherwise returns FALSE. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. \code QString str( "Bananas" ); str.startsWith( "Ban" ); // returns TRUE str.startsWith( "Car" ); // returns FALSE \endcode \sa endsWith() */ bool QString::startsWith( const QString& s, bool cs ) const { if ( isNull() ) return s.isNull(); if ( s.length() > length() ) return FALSE; if ( cs ) { return memcmp((char*)d->unicode, (char*)s.d->unicode, s.length()*sizeof(QChar)) == 0; } else { for ( int i = 0; i < (int) s.length(); i++ ) { if ( ::lower(d->unicode[i]) != ::lower(s.d->unicode[i]) ) return FALSE; } } return TRUE; } bool QString::startsWith( const QString& s ) const { return startsWith( s, TRUE ); } /*! Returns TRUE if the string ends with \a s; otherwise returns FALSE. If \a cs is TRUE (the default), the search is case sensitive; otherwise the search is case insensitive. \code QString str( "Bananas" ); str.endsWith( "anas" ); // returns TRUE str.endsWith( "pple" ); // returns FALSE \endcode \sa startsWith() */ bool QString::endsWith( const QString& s, bool cs ) const { if ( isNull() ) return s.isNull(); int pos = length() - s.length(); if ( pos < 0 ) return FALSE; if ( cs ) { return memcmp((char*)&d->unicode[pos], (char*)s.d->unicode, s.length()*sizeof(QChar)) == 0; } else { for ( int i = 0; i < (int) s.length(); i++ ) { if ( ::lower(d->unicode[pos + i]) != ::lower(s.d->unicode[i]) ) return FALSE; } } return TRUE; } bool QString::endsWith( const QString& s ) const { return endsWith( s, TRUE ); } /*! \fn void QString::detach() If the string does not share its data with another QString instance, nothing happens; otherwise the function creates a new, unique copy of this string. This function is called whenever the string is modified. The implicit sharing mechanism is implemented this way. */ #if defined(Q_OS_WIN32) #include /*! \obsolete Returns a static Windows TCHAR* from a QString, adding NUL if \a addnul is TRUE. The lifetime of the return value is until the next call to this function, or until the last copy of str is deleted, whatever comes first. Use ucs2() instead. */ const void* qt_winTchar(const QString& str, bool) { // So that the return value lives long enough. static QString str_cache; str_cache = str; #ifdef UNICODE return str_cache.ucs2(); #else return str_cache.latin1(); #endif } /*! Makes a new '\0'-terminated Windows TCHAR* from a QString. */ void* qt_winTchar_new(const QString& str) { if ( str.isNull() ) return 0; int l = str.length()+1; TCHAR *tc = new TCHAR[ l ]; #ifdef UNICODE memcpy( tc, str.ucs2(), sizeof(TCHAR)*l ); #else memcpy( tc, str.latin1(), sizeof(TCHAR)*l ); #endif return tc; } /*! Makes a QString from a Windows TCHAR*. */ QString qt_winQString(void* tc) { #ifdef UNICODE return QString::fromUcs2( (ushort*)tc ); #else return QString::fromLatin1( (TCHAR *)tc ); #endif } QCString qt_winQString2MB( const QString& s, int uclen ) { if ( uclen < 0 ) uclen = s.length(); if ( s.isNull() ) return QCString(); if ( uclen == 0 ) return QCString(""); BOOL used_def; QCString mb(4096); int len; while ( !(len=WideCharToMultiByte(CP_ACP, 0, (const WCHAR*)s.unicode(), uclen, mb.data(), mb.size()-1, 0, &used_def)) ) { int r = GetLastError(); if ( r == ERROR_INSUFFICIENT_BUFFER ) { mb.resize(1+WideCharToMultiByte( CP_ACP, 0, (const WCHAR*)s.unicode(), uclen, 0, 0, 0, &used_def)); // and try again... } else { #ifndef QT_NO_DEBUG // Fail. qWarning("WideCharToMultiByte cannot convert multibyte text (error %d): %s (UTF8)", r, s.utf8().data()); #endif break; } } mb[len]='\0'; return mb; } // WATCH OUT: mblen must include the NUL (or just use -1) QString qt_winMB2QString( const char* mb, int mblen ) { if ( !mb || !mblen ) return QString::null; const int wclen_auto = 4096; WCHAR wc_auto[wclen_auto]; int wclen = wclen_auto; WCHAR *wc = wc_auto; int len; while ( !(len=MultiByteToWideChar( CP_ACP, MB_PRECOMPOSED, mb, mblen, wc, wclen )) ) { int r = GetLastError(); if ( r == ERROR_INSUFFICIENT_BUFFER ) { if ( wc != wc_auto ) { qWarning("Size changed in MultiByteToWideChar"); break; } else { wclen = MultiByteToWideChar( CP_ACP, MB_PRECOMPOSED, mb, mblen, 0, 0 ); wc = new WCHAR[wclen]; // and try again... } } else { // Fail. qWarning("MultiByteToWideChar cannot convert multibyte text"); break; } } if ( len <= 0 ) return QString::null; QString s( (QChar*)wc, len - 1 ); // len - 1: we don't want terminator if ( wc != wc_auto ) delete [] wc; return s; } #endif // Q_OS_WIN32