diff options
Diffstat (limited to 'tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook')
-rw-r--r-- | tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook | 32 |
1 files changed, 32 insertions, 0 deletions
diff --git a/tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook b/tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook new file mode 100644 index 00000000000..5d6783ddc24 --- /dev/null +++ b/tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook @@ -0,0 +1,32 @@ +<sect1 id="ai-greatcircle"> +<sect1info> +<author +><firstname +>Jason</firstname +> <surname +>Harris</surname +> </author> +</sect1info> +<title +>Great Circles</title> +<indexterm +><primary +>Great Circles</primary> +<seealso +>Celestial Sphere</seealso> +</indexterm> +<para +>Consider a sphere, such as the Earth, or the <link linkend="ai-csphere" +>Celestial Sphere</link +>. The intersection of any plane with the sphere will result in a circle on the surface of the sphere. If the plane happens to contain the centre of the sphere, the intersection circle is a <firstterm +>Great Circle</firstterm +>. Great circles are the largest circles that can be drawn on a sphere. Also, the shortest path between any two points on a sphere is always along a great circle. </para +><para +>Some examples of great circles on the celestial sphere include: the <link linkend="ai-horizon" +>Horizon</link +>, the <link linkend="ai-cequator" +>Celestial Equator</link +>, and the <link linkend="ai-ecliptic" +>Ecliptic</link +>. </para> +</sect1> |