summaryrefslogtreecommitdiffstats
path: root/tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook
diff options
context:
space:
mode:
Diffstat (limited to 'tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook')
-rw-r--r--tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook32
1 files changed, 0 insertions, 32 deletions
diff --git a/tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook b/tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook
deleted file mode 100644
index 5d6783ddc24..00000000000
--- a/tde-i18n-en_GB/docs/kdeedu/kstars/greatcircle.docbook
+++ /dev/null
@@ -1,32 +0,0 @@
-<sect1 id="ai-greatcircle">
-<sect1info>
-<author
-><firstname
->Jason</firstname
-> <surname
->Harris</surname
-> </author>
-</sect1info>
-<title
->Great Circles</title>
-<indexterm
-><primary
->Great Circles</primary>
-<seealso
->Celestial Sphere</seealso>
-</indexterm>
-<para
->Consider a sphere, such as the Earth, or the <link linkend="ai-csphere"
->Celestial Sphere</link
->. The intersection of any plane with the sphere will result in a circle on the surface of the sphere. If the plane happens to contain the centre of the sphere, the intersection circle is a <firstterm
->Great Circle</firstterm
->. Great circles are the largest circles that can be drawn on a sphere. Also, the shortest path between any two points on a sphere is always along a great circle. </para
-><para
->Some examples of great circles on the celestial sphere include: the <link linkend="ai-horizon"
->Horizon</link
->, the <link linkend="ai-cequator"
->Celestial Equator</link
->, and the <link linkend="ai-ecliptic"
->Ecliptic</link
->. </para>
-</sect1>