diff options
Diffstat (limited to 'tde-i18n-en_GB/docs/kdeedu/kstars/meridian.docbook')
-rw-r--r-- | tde-i18n-en_GB/docs/kdeedu/kstars/meridian.docbook | 41 |
1 files changed, 0 insertions, 41 deletions
diff --git a/tde-i18n-en_GB/docs/kdeedu/kstars/meridian.docbook b/tde-i18n-en_GB/docs/kdeedu/kstars/meridian.docbook deleted file mode 100644 index 067464da584..00000000000 --- a/tde-i18n-en_GB/docs/kdeedu/kstars/meridian.docbook +++ /dev/null @@ -1,41 +0,0 @@ -<sect1 id="ai-meridian"> -<sect1info> -<author -><firstname ->Jason</firstname -> <surname ->Harris</surname -> </author> -</sect1info> -<title ->The Local Meridian</title> -<indexterm -><primary ->Local Meridian</primary> -<seealso ->Hour Angle</seealso -> <seealso ->Celestial Sphere</seealso -> </indexterm> -<para ->The Local Meridian is an imaginary <link linkend="ai-greatcircle" ->Great Circle</link -> on the <link linkend="ai-csphere" ->Celestial Sphere</link -> that is perpendicular to the local <link linkend="ai-horizon" ->Horizon</link ->. It passes through the North point on the Horizon, through the <link linkend="ai-cpoles" ->Celestial Pole</link ->, up to the <link linkend="ai-zenith" ->Zenith</link ->, and through the South point on the Horizon. </para -><para ->Because it is fixed to the local Horizon, stars will appear to drift past the Local Meridian as the Earth spins. You can use an object's <link linkend="equatorial" ->Right Ascension</link -> and the <link linkend="ai-sidereal" ->Local Sidereal Time</link -> to determine when it will cross your Local Meridian (see <link linkend="ai-hourangle" ->Hour Angle</link ->). </para> -</sect1> - |