diff options
Diffstat (limited to 'tde-i18n-pt/docs/kdeedu/kstars/luminosity.docbook')
-rw-r--r-- | tde-i18n-pt/docs/kdeedu/kstars/luminosity.docbook | 42 |
1 files changed, 0 insertions, 42 deletions
diff --git a/tde-i18n-pt/docs/kdeedu/kstars/luminosity.docbook b/tde-i18n-pt/docs/kdeedu/kstars/luminosity.docbook deleted file mode 100644 index 448687c2aff..00000000000 --- a/tde-i18n-pt/docs/kdeedu/kstars/luminosity.docbook +++ /dev/null @@ -1,42 +0,0 @@ -<sect1 id="ai-luminosity"> - -<sect1info> - -<author -><firstname ->Jasem</firstname -> <surname ->Mutlaq</surname -> <affiliation -><address> -</address -></affiliation> -</author> -</sect1info> - -<title ->Luminosidade</title> -<indexterm -><primary ->Luminosidade</primary> -<seealso ->Fluxo</seealso> -</indexterm> - -<para ->A <firstterm ->Luminosidade</firstterm -> é a quantidade de energia emitida por uma estrela a cada segundo. </para> - -<para ->Todas as estrelas irradiam luz numa gama larga de frequências do espectro electromagnético, desde as ondas de rádio de baixa energia até aos raios altamente energéticos que são os raios-gama. Uma estrela que emita predominantemente na região dos ultra-violetas do espectro produz uma quantidade total de energia com ordens de grandeza maiores que uma estrela que emita principalmente na zona dos infra-vermelhos. Como tal, a luminosidade é uma medida de energia emitida por uma estrela em todos os comprimentos de onda. A relação entre o comprimento de onda e a energia foi quantificada por Einstein como sendo E = h * v em que 'v' é a frequência, o 'h' é a constante de Planck e o 'E' é a energia dos fotões em Joules. Como tal, comprimentos de onda menores (e, deste modo, maiores frequências), correspondem a energias mais altas. </para> - -<para ->Por exemplo, um comprimento de onda lambda = 10 metros situa-se na região do rádio no espectro electromagnético e têm uma frequência f = c / lambda = 3 * 10^8 m/s / 10 = 30 MHz, em que o 'c' é a velocidade da luz. A energia deste fotão é E = h * v = 6,625 * 10^-34 J s * 30 Mhz = 1,988 * 10^-26 Joules. Por outro lado, a luz visível tem comprimentos de onda muito mais curtos e frequências mais altas. Um fotão que tenha um comprimento de onda lambda = 5 * 10^-9 metros (um fotão esverdeado) tem uma energia E = 3,975 * 10^-17, o que é cerca de mil milhões de vezes mais elevada que um fotão de rádio. Do mesmo modo, um fotão de luz vermelha (com comprimento de onda lambda = 700 nm) tem menos energia que um fotão de luz violeta (comprimento de onda lambda = 400 nm). </para> - -<para ->A luminosidade depende tanto da temperatura como da área da superfície. Isto faz sentido, porque um tronco irradia mais energia do que um fósforo, ainda que ambos tenham a mesma temperatura. Do mesmo modo, um ferro aquecido a 2000 graus emite mais energia do que se for aquecido a apenas 200 graus. </para> - -<para ->A luminosidade é uma quantidade muito fundamental na Astronomia e na Astrofísica. Muito do que é aprendido sobre os objectos celeste vem da análise da sua luz. Isto tem a ver com o facto de os processos físicos que ocorrem nas estrelas são registados e transmitidos pela luz. A luminosidade é medida em unidades de energia por segundo. Os astrónomos preferem medir em Ergs, em vez de Watts, ao quantificar a luminosidade. </para> -</sect1> |