From 0b8ca6637be94f7814cafa7d01ad4699672ff336 Mon Sep 17 00:00:00 2001 From: Darrell Anderson Date: Tue, 21 Jan 2014 22:06:48 -0600 Subject: Beautify docbook files --- .../docs/tdemultimedia/artsbuilder/apis.docbook | 346 +++++---------------- 1 file changed, 75 insertions(+), 271 deletions(-) (limited to 'tde-i18n-de/docs/tdemultimedia/artsbuilder/apis.docbook') diff --git a/tde-i18n-de/docs/tdemultimedia/artsbuilder/apis.docbook b/tde-i18n-de/docs/tdemultimedia/artsbuilder/apis.docbook index 331fa1482d6..5c7bb000493 100644 --- a/tde-i18n-de/docs/tdemultimedia/artsbuilder/apis.docbook +++ b/tde-i18n-de/docs/tdemultimedia/artsbuilder/apis.docbook @@ -4,184 +4,105 @@ To validate or process this file as a standalone document, uncomment this prolog. Be sure to comment it out again when you are done --> -&arts; Application Programming Interfaces +&arts; Application Programming Interfaces -Überblick -aRts is not only a piece of software, it also provides a variety of APIs for a variety of purposes. In this section, I will try to describe the "big picture", a brief glance what those APIs are supposed to do, and how they interact. +Überblick +aRts is not only a piece of software, it also provides a variety of APIs for a variety of purposes. In this section, I will try to describe the "big picture", a brief glance what those APIs are supposed to do, and how they interact. -There is one important distinction to make: most of the APIs are language and location independent because they are specified as mcopidl. That is, you can basically use the services they offer from any language, implement them in any language, and you will not have to care whether you are talking to local or remote objects. Here is a list of these first: +There is one important distinction to make: most of the APIs are language and location independent because they are specified as mcopidl. That is, you can basically use the services they offer from any language, implement them in any language, and you will not have to care whether you are talking to local or remote objects. Here is a list of these first: -core.idl - Basic definitions that form the core of the MCOP functionality, such as the protocol itself, definitions of the object, the trader, the flow system and so on. +core.idl + Basic definitions that form the core of the MCOP functionality, such as the protocol itself, definitions of the object, the trader, the flow system and so on. -artsflow.idl +artsflow.idl - These contain the flow system you will use for connecting audio streams, the definition of Arts::SynthModule which is the base for any interface that has streams, and finally a few useful audio objects + These contain the flow system you will use for connecting audio streams, the definition of Arts::SynthModule which is the base for any interface that has streams, and finally a few useful audio objects -kmedia2.idl +kmedia2.idl - Here, an object that can play a media, Arts::PlayObject gets defined. Media players such as the KDE media player noatun will be able to play any media for which a PlayObject can be found. So it makes sense to implement PlayObjects for various formats (such as mp3, mpg video, midi, wav, ...) on that base, and there are a lot already. + Here, an object that can play a media, Arts::PlayObject gets defined. Media players such as the KDE media player noatun will be able to play any media for which a PlayObject can be found. So it makes sense to implement PlayObjects for various formats (such as mp3, mpg video, midi, wav, ...) on that base, and there are a lot already. -soundserver.idl +soundserver.idl - Here, an interface for the system wide sound server artsd is defined. The interface is called Arts::SoundServer, which implements functionality like accepting streams from the network, playing samples, creating custom other aRts objects and so on. Network transparency is implied due to the use of MCOP (as for everything else here). + Here, an interface for the system wide sound server artsd is defined. The interface is called Arts::SoundServer, which implements functionality like accepting streams from the network, playing samples, creating custom other aRts objects and so on. Network transparency is implied due to the use of MCOP (as for everything else here). -artsbuilder.idl - This module defines basic flow graph functionality, that is, combining simpler objects to more complex ones, by defining a graph of them. It defines the basic interface Arts::StructureDesc, Arts::ModuleDesc and Arts::PortDesc which contain a description of a structure, module, and port. There is also a way to get a "living network of objects" out of these connection and value descriptions, using a factory. +artsbuilder.idl + This module defines basic flow graph functionality, that is, combining simpler objects to more complex ones, by defining a graph of them. It defines the basic interface Arts::StructureDesc, Arts::ModuleDesc and Arts::PortDesc which contain a description of a structure, module, and port. There is also a way to get a "living network of objects" out of these connection and value descriptions, using a factory. -artsmidi.idl +artsmidi.idl - This module defines basic midi functionality, like objects that produce midi events, what is a midi event, an Arts::MidiManager to connect the producers and consumers of midi events, and so on. As always network transparency implied. + This module defines basic midi functionality, like objects that produce midi events, what is a midi event, an Arts::MidiManager to connect the producers and consumers of midi events, and so on. As always network transparency implied. -artsmodules.idl - Here are various additional filters, oscillators, effects, delays and so on, everything required for real useful signal processing, and to build complex instruments and effects out of these basic building blocks. +artsmodules.idl + Here are various additional filters, oscillators, effects, delays and so on, everything required for real useful signal processing, and to build complex instruments and effects out of these basic building blocks. -artsgui.idl +artsgui.idl - This cares about visual objects. It defines the basic type Arts::Widget from which all GUI modules derive. This will produce toolkit independency, and ... visual GUI editing, and serializable GUIs. Also, as the GUI elements have normal attributes, their values can be straight forward connected to some signal processing modules. (I.e. the value of a slider to the cutoff of a filter). As always: network transparent. + This cares about visual objects. It defines the basic type Arts::Widget from which all GUI modules derive. This will produce toolkit independency, and ... visual GUI editing, and serializable GUIs. Also, as the GUI elements have normal attributes, their values can be straight forward connected to some signal processing modules. (I.e. the value of a slider to the cutoff of a filter). As always: network transparent. -Where possible, aRts itself is implemented using IDL. On the other hand, there are some language specific APIs, using either plain C++ or plain C. It is usually wise to use IDL interfaces where possible, and the other APIs where necessary. Here is a list of language specific APIs: +Where possible, aRts itself is implemented using IDL. On the other hand, there are some language specific APIs, using either plain C++ or plain C. It is usually wise to use IDL interfaces where possible, and the other APIs where necessary. Here is a list of language specific APIs: -KNotify, KAudioPlayer (included in libtdecore) +KNotify, KAudioPlayer (included in libtdecore) - These are convenience KDE APIs for the simple and common common case, where you just want to play a sample. The APIs are plain C++, Qt/KDE optimized, and as easy as it can get. + These are convenience KDE APIs for the simple and common common case, where you just want to play a sample. The APIs are plain C++, Qt/KDE optimized, and as easy as it can get. -libartsc - Plain C interface for the sound server. Very useful for porting legacy applications. +libartsc + Plain C interface for the sound server. Very useful for porting legacy applications. -libmcop +libmcop - Here all magic for MCOP happens. The library contains the basic things you need to know for writing a simple MCOP application, the dispatcher, timers, iomanagement, but also the internals to make the MCOP protocol itself work. + Here all magic for MCOP happens. The library contains the basic things you need to know for writing a simple MCOP application, the dispatcher, timers, iomanagement, but also the internals to make the MCOP protocol itself work. -libartsflow - Besides the implementation of artsflow.idl, some useful utilities like sampling rate conversion. +libartsflow + Besides the implementation of artsflow.idl, some useful utilities like sampling rate conversion. -libqiomanager +libqiomanager - Integration of MCOP into the Qt event loop, when you write Qt applications using MCOP. + Integration of MCOP into the Qt event loop, when you write Qt applications using MCOP. @@ -191,137 +112,64 @@ this prolog. Be sure to comment it out again when you are done --> -knotify -Noch nicht geschrieben. +knotify +Noch nicht geschrieben. -kaudioplayer -Noch nicht geschrieben. +kaudioplayer +Noch nicht geschrieben. -libkmid -Noch nicht geschrieben. +libkmid +Noch nicht geschrieben. -kmedia2 -Noch nicht geschrieben. +kmedia2 +Noch nicht geschrieben. -sound server -Noch nicht geschrieben. +sound server +Noch nicht geschrieben. -artsflow -Noch nicht geschrieben. +artsflow +Noch nicht geschrieben. -C <acronym ->API</acronym -> +C <acronym>API</acronym> -Einleitung - -The &arts; C API was designed to make it easy to writing and port plain C applications to the &arts; sound server. It provides streaming functionality (sending sample streams to artsd), either blocking or non-blocking. For most applications you simply remove the few system calls that deal with your audio device and replace them with the appropriate &arts; calls. - -I did two ports as a proof of concept: mpg123 and quake. You can get the patches from here. Feel free to submit your own patches to the maintainer of &arts; or of multimedia software packages so that they can integrate &arts; support into their code. +Einleitung + +The &arts; C API was designed to make it easy to writing and port plain C applications to the &arts; sound server. It provides streaming functionality (sending sample streams to artsd), either blocking or non-blocking. For most applications you simply remove the few system calls that deal with your audio device and replace them with the appropriate &arts; calls. + +I did two ports as a proof of concept: mpg123 and quake. You can get the patches from here. Feel free to submit your own patches to the maintainer of &arts; or of multimedia software packages so that they can integrate &arts; support into their code. -Quick Walkthrough +Quick Walkthrough -Sending audio to the sound server with the API is very simple: +Sending audio to the sound server with the API is very simple: -include the header file using #include <artsc.h> -initialize the API with arts_init() -create a stream with arts_play_stream() -configure specific parameters with arts_stream_set() -write sampling data to the stream with arts_write() -close the stream with arts_close_stream() -free the API with arts_free() +include the header file using #include <artsc.h> +initialize the API with arts_init() +create a stream with arts_play_stream() +configure specific parameters with arts_stream_set() +write sampling data to the stream with arts_write() +close the stream with arts_close_stream() +free the API with arts_free() -Here is a small example program that illustrates this: +Here is a small example program that illustrates this: -#include <stdio.h> +#include <stdio.h> #include <artsc.h> int main() { @@ -358,75 +206,31 @@ int main() -Compiling and Linking: <application ->artsc-config</application -> - -To easily compile and link programs using the &arts; C API, the artsc-config utility is provided which knows which libraries you need to link and where the includes are. It is called using - -artsc-config +Compiling and Linking: <application>artsc-config</application> + +To easily compile and link programs using the &arts; C API, the artsc-config utility is provided which knows which libraries you need to link and where the includes are. It is called using + +artsc-config -to find out the libraries and - -artsc-config +to find out the libraries and + +artsc-config -to find out additional C compiler flags. The example above could have been compiled using the command line: - -cc - -cc +to find out additional C compiler flags. The example above could have been compiled using the command line: + +cc + +cc -Library Reference +Library Reference -[TODO: generate the documentation for artsc.h using kdoc] +[TODO: generate the documentation for artsc.h using kdoc] -- cgit v1.2.1