1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
|
//============================================================================
//
// KRotation screen saver for KDE
//
// The screen saver displays a physically realistic simulation of a force free
// rotating asymmetric body. The equations of motion for such a rotation, the
// Euler equations, are integrated numerically by the Runge-Kutta method.
//
// Developed by Georg Drenkhahn, georg-d@users.sourceforge.net
//
// $Id$
//
/*
* Copyright (C) 2004 Georg Drenkhahn
*
* KRotation is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 as published by the
* Free Software Foundation.
*
* KRotation is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place, Suite 330, Boston, MA 02110-1301 USA
*/
//============================================================================
// std. C++ headers
#include <cstdlib>
// STL
#include <deque>
// Qt headers
#include <tqcheckbox.h>
#include <tqlineedit.h>
#include <tqvalidator.h>
#include <tqtooltip.h>
// KDE headers
#include <klocale.h>
#include <kconfig.h>
#include <kdebug.h>
#include <kmessagebox.h>
#include "sspreviewarea.h"
// rotation.moc includes rotation.h
#include "rotation.moc"
/** Version number of this screen saver */
#define KROTATION_VERSION "1.1"
// libkscreensaver interface
extern "C"
{
/** application name for the libkscreensaver interface */
KDE_EXPORT const char *kss_applicationName = "krotation.kss";
/** application description for the libkscreensaver interface */
KDE_EXPORT const char *kss_description =
I18N_NOOP("Simulation of a force free rotating asymmetric body");
/** application version for the libkscreensaver interface */
KDE_EXPORT const char *kss_version = KROTATION_VERSION;
/** function to create screen saver object */
KDE_EXPORT KScreenSaver* kss_create(WId id)
{
return new KRotationSaver(id);
}
/** function to create setup dialog for screen saver */
KDE_EXPORT TQDialog* kss_setup()
{
return new KRotationSetup();
}
}
//-----------------------------------------------------------------------------
// EulerOdeSolver implementation
//-----------------------------------------------------------------------------
EulerOdeSolver::EulerOdeSolver(
const double &t_,
const double &dt_,
const double &A_,
const double &B_,
const double &C_,
std::valarray<double> &y_,
const double &eps_)
: RkOdeSolver<double>(t_,y_,dt_,eps_),
A(A_), B(B_), C(C_)
{
}
std::valarray<double> EulerOdeSolver::f(
const double &x,
const std::valarray<double> &y) const
{
// unused
(void)x;
// vec omega in body coor. sys.: omega_body = (p, q, r)
const vec3<double> omega_body(y[std::slice(0,3,1)]);
// body unit vectors in fixed frame coordinates
const vec3<double> e1(y[std::slice(3,3,1)]);
const vec3<double> e2(y[std::slice(6,3,1)]);
const vec3<double> e3(y[std::slice(9,3,1)]);
// don't use "const vec3<double>&" here because slice_array must be
// value-copied to vec3<double>.
// vec omega in global fixed coor. sys.
vec3<double> omega(
omega_body[0] * e1
+ omega_body[1] * e2
+ omega_body[2] * e3);
// return vector y'
std::valarray<double> ypr(y.size());
// omega_body'
ypr[0] = -(C-B)/A * omega_body[1] * omega_body[2]; // p'
ypr[1] = -(A-C)/B * omega_body[2] * omega_body[0]; // q'
ypr[2] = -(B-A)/C * omega_body[0] * omega_body[1]; // r'
// e1', e2', e3'
ypr[std::slice(3,3,1)] = vec3<double>::crossprod(omega, e1);
ypr[std::slice(6,3,1)] = vec3<double>::crossprod(omega, e2);
ypr[std::slice(9,3,1)] = vec3<double>::crossprod(omega, e3);
return ypr;
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Rotation: screen saver widget
//-----------------------------------------------------------------------------
RotationGLWidget::RotationGLWidget(
TQWidget* parent, const char* name,
const vec3<double>& _omega,
const std::deque<vec3<double> >& e1_,
const std::deque<vec3<double> >& e2_,
const std::deque<vec3<double> >& e3_,
const vec3<double>& J)
: TQGLWidget(parent, name),
eyeR(25), eyeTheta(1), eyePhi(M_PI*0.25),
boxSize(1,1,1),
fixedAxses(0),
bodyAxses(0),
lightR(10), lightTheta(M_PI/4), lightPhi(0),
bodyAxsesLength(6),
fixedAxsesLength(8),
omega(_omega),
e1(e1_),
e2(e2_),
e3(e3_)
{
// set up initial rotation matrix as unit matrix, only non-constant elements
// are set later on
for (int i=0; i<16; i++)
rotmat[i] = ((i%5)==0) ? 1:0;
// Set the box sizes from the momenta of inertia. J is the 3 vector with
// momenta of inertia with respect to the 3 figure axes.
// the default values must be valid so that w,h,d are real!
GLfloat
x2 = 6.0*(-J[0] + J[1] + J[2]),
y2 = 6.0*( J[0] - J[1] + J[2]),
z2 = 6.0*( J[0] + J[1] - J[2]);
if (x2>=0 && y2>=0 && z2>=0)
{
boxSize = vec3<double>(sqrt(x2), sqrt(y2), sqrt(z2));
}
else
{
kdDebug() << "parameter error" << endl;
boxSize = vec3<double>(1, 1, 1);
}
}
/* --------- protected methods ----------- */
void RotationGLWidget::initializeGL(void)
{
qglClearColor(TQColor(black)); // set color to clear the background
glClearDepth(1); // depth buffer setup
glEnable(GL_DEPTH_TEST); // depth testing
glDepthFunc(GL_LEQUAL); // type of depth test
glShadeModel(GL_SMOOTH); // smooth color shading in poygons
// nice perspective calculation
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
// set up the light
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
// set positon of light0
GLfloat lightPos[4]=
{lightR * sin(lightTheta) * sin(lightPhi),
lightR * sin(lightTheta) * cos(lightPhi),
lightR * cos(lightTheta), 1.};
glLightfv(GL_LIGHT0, GL_POSITION, lightPos);
// enable setting the material colour by glColor()
glEnable(GL_COLOR_MATERIAL);
// set up display lists
if (fixedAxses == 0)
fixedAxses = glGenLists(1); // list to be returned
glNewList(fixedAxses, GL_COMPILE);
// fixed coordinate system axes
glPushMatrix();
glLoadIdentity();
// z-axis, blue
qglColor(TQColor(blue));
myGlArrow(fixedAxsesLength, 0.5f, 0.03f, 0.1f);
// x-axis, red
qglColor(TQColor(red));
glRotatef(90, 0, 1, 0);
myGlArrow(fixedAxsesLength, 0.5f, 0.03f, 0.1f);
// y-axis, green
qglColor(TQColor(green));
glLoadIdentity();
glRotatef(-90, 1, 0, 0);
myGlArrow(fixedAxsesLength, 0.5f, 0.03f, 0.1f);
glPopMatrix();
glEndList();
// end of axes object list
// box and box-axses
if (bodyAxses == 0)
bodyAxses = glGenLists(1); // list to be returned
glNewList(bodyAxses, GL_COMPILE);
// z-axis, blue
qglColor(TQColor(blue));
myGlArrow(bodyAxsesLength, 0.5f, 0.03f, 0.1f);
// x-axis, red
qglColor(TQColor(red));
glPushMatrix();
glRotatef(90, 0, 1, 0);
myGlArrow(bodyAxsesLength, 0.5f, 0.03f, 0.1f);
glPopMatrix();
// y-axis, green
qglColor(TQColor(green));
glPushMatrix();
glRotatef(-90, 1, 0, 0);
myGlArrow(bodyAxsesLength, 0.5f, 0.03f, 0.1f);
glPopMatrix();
glEndList();
}
void RotationGLWidget::draw_traces(void)
{
if (e1.size()==0 && e2.size()==0 && e3.size()==0)
return;
glPushMatrix();
glScalef(bodyAxsesLength, bodyAxsesLength, bodyAxsesLength);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
for (int j=0; j<3; ++j)
{
const std::deque<vec3<double> >& e =
j==0 ? e1 : j==1 ? e2 : e3;
// trace must contain at least 2 elements
if (e.size() > 1)
{
// emission colour
GLfloat em[4] = {0,0,0,1};
em[j] = 1; // set either red, green, blue emission colour
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, em);
glColor4fv(em);
// set iterator of the tail part
std::deque<vec3<double> >::const_iterator eit = e.begin();
std::deque<vec3<double> >::const_iterator tail =
e.begin() +
static_cast<std::deque<vec3<double> >::difference_type>
(0.9*e.size());
glBegin(GL_LINES);
for (; eit < e.end()-1; ++eit)
{
glVertex3f((*eit)[0], (*eit)[1], (*eit)[2]);
// decrease transparency for tail section
if (eit > tail)
em[3] =
static_cast<GLfloat>
(1.0 - double(eit-tail)/(0.1*e.size()));
glColor4fv(em);
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, em);
glVertex3f((*(eit+1))[0], (*(eit+1))[1], (*(eit+1))[2]);
}
glEnd();
}
}
glDisable(GL_BLEND);
glPopMatrix();
}
void RotationGLWidget::paintGL(void)
{
// clear color and depth buffer
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW); // select modelview matrix
glLoadIdentity();
GLfloat const em[] = {0,0,0,1};
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, em);
// omega vector
vec3<double> rotvec =
vec3<double>::crossprod(vec3<double>(0,0,1), omega).normalize();
GLfloat rotdeg =
180./M_PI * vec3<double>::angle(vec3<double>(0,0,1), omega);
glPushMatrix();
glRotatef(rotdeg, rotvec[0], rotvec[1], rotvec[2]);
qglColor(TQColor(white));
myGlArrow(7, .5f, .1f, 0.2f);
glPopMatrix();
// fixed axes
glCallList(fixedAxses);
glPushMatrix();
// set up variable part of rotation matrix for body
// set gl body rotation matrix from e1,e2,e3
const vec3<double>& e1b = e1.front();
const vec3<double>& e2b = e2.front();
const vec3<double>& e3b = e3.front();
rotmat[0] = e1b[0];
rotmat[1] = e1b[1];
rotmat[2] = e1b[2];
rotmat[4] = e2b[0];
rotmat[5] = e2b[1];
rotmat[6] = e2b[2];
rotmat[8] = e3b[0];
rotmat[9] = e3b[1];
rotmat[10] = e3b[2];
glMultMatrixf(rotmat);
glCallList(bodyAxses);
glScalef(boxSize[0]/2, boxSize[1]/2, boxSize[2]/2);
// paint box
glBegin(GL_QUADS);
// front (z)
qglColor(TQColor(blue));
glNormal3f( 0,0,1);
glVertex3f( 1, 1, 1);
glVertex3f(-1, 1, 1);
glVertex3f(-1, -1, 1);
glVertex3f( 1, -1, 1);
// back (-z)
glNormal3f( 0,0,-1);
glVertex3f( 1, 1, -1);
glVertex3f(-1, 1, -1);
glVertex3f(-1, -1, -1);
glVertex3f( 1, -1, -1);
// top (y)
qglColor(TQColor(green));
glNormal3f( 0,1,0);
glVertex3f( 1, 1, 1);
glVertex3f( 1, 1, -1);
glVertex3f(-1, 1, -1);
glVertex3f(-1, 1, 1);
// bottom (-y)
glNormal3f( 0,-1,0);
glVertex3f( 1, -1, 1);
glVertex3f( 1, -1, -1);
glVertex3f(-1, -1, -1);
glVertex3f(-1, -1, 1);
// left (-x)
qglColor(TQColor(red));
glNormal3f( -1,0,0);
glVertex3f(-1, 1, 1);
glVertex3f(-1, 1, -1);
glVertex3f(-1, -1, -1);
glVertex3f(-1, -1, 1);
// right (x)
glNormal3f( 1,0,0);
glVertex3f( 1, 1, 1);
glVertex3f( 1, 1, -1);
glVertex3f( 1, -1, -1);
glVertex3f( 1, -1, 1);
glEnd();
// traces
glPopMatrix();
draw_traces ();
glFlush();
}
void RotationGLWidget::resizeGL(int w, int h)
{
// Prevent a divide by zero
if (h == 0) h = 1;
// set the new view port
glViewport(0, 0, (GLint)w, (GLint)h);
// set up projection matrix
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
// Perspective view
gluPerspective(40.0f, (GLdouble)w/(GLdouble)h, 1.0, 100.0f);
// Viewing transformation, position for better view
// Theta is polar angle 0<Theta<Pi
gluLookAt(
eyeR * sin(eyeTheta) * sin(eyePhi),
eyeR * sin(eyeTheta) * cos(eyePhi),
eyeR * cos(eyeTheta),
0,0,0,
0,0,1);
}
/* --------- privat methods ----------- */
void RotationGLWidget::myGlArrow(
GLfloat total_length, GLfloat head_length,
GLfloat base_width, GLfloat head_width)
{
GLUquadricObj* quadAx = gluNewQuadric();
glPushMatrix();
gluCylinder(quadAx, base_width, base_width,
total_length-head_length, 10, 1);
glTranslatef(0, 0, total_length-head_length);
gluCylinder(quadAx, head_width, 0, head_length, 10, 1);
glPopMatrix();
gluDeleteQuadric(quadAx);
}
//-----------------------------------------------------------------------------
// KRotationSaver: screen saver class
//-----------------------------------------------------------------------------
KRotationSaver::KRotationSaver(WId id)
: KScreenSaver(id),
J(4,2,3), // fixed box sizes!
initEulerPhi(0),
initEulerPsi(0),
solver(0),
glArea(0),
timer(0),
m_traceLengthSeconds(traceLengthSecondsDefault),
m_Lz(LzDefault),
m_initEulerTheta(initEulerThetaDefault)
{
readSettings(); // read global settings
initData(); // init e1,e2,e3,omega,solver
setEraseColor(black);
erase(); // erase area
glArea = new RotationGLWidget(
this, 0, omega, e1, e2, e3, J); // create gl widget
embed(glArea); // embed gl widget and resize it
glArea->show(); // show gl widget
timer = new TQTimer(this);
timer->start(deltaT, TRUE);
connect(timer, TQT_SIGNAL(timeout()), this, TQT_SLOT(doTimeStep()));
}
KRotationSaver::~KRotationSaver()
{
// time, rotation are automatically deleted with parent KRotationSaver
delete solver;
}
void KRotationSaver::initData()
{
// reset coordiante system
vec3<double> e1t(1,0,0), e2t(0,1,0), e3t(0,0,1);
// rotation by phi around z = zhat axis
e1t.rotate(initEulerPhi*e3t);
e2t.rotate(initEulerPhi*e3t);
// rotation by theta around new x axis
e2t.rotate(m_initEulerTheta*e1t);
e3t.rotate(m_initEulerTheta*e1t);
// rotation by psi around new z axis
e1t.rotate(initEulerPsi*e3t);
e2t.rotate(initEulerPsi*e3t);
// set first vector in deque
e1.clear(); e1.push_front(e1t);
e2.clear(); e2.push_front(e2t);
e3.clear(); e3.push_front(e3t);
// calc L in body frame: 1. determine z-axis of fixed frame in body
// coordinates, undo the transformations for unit z vector of the body frame
// calc omega_body from ...
vec3<double> e1_body(1,0,0), e3_body(0,0,1);
// rotation by -psi along z axis
e1_body.rotate(-initEulerPsi*e3_body);
// rotation by -theta along new x axis
e3_body.rotate(-m_initEulerTheta*e1_body);
// omega_body = L_body * J_body^(-1)
vec3<double> omega_body = e3_body * m_Lz;
omega_body /= J;
// assemble initial y for solver
std::valarray<double> y(12);
y[std::slice(0,3,1)] = omega_body;
// 3 basis vectors of body system in fixed coordinates
y[std::slice(3,3,1)] = e1t;
y[std::slice(6,3,1)] = e2t;
y[std::slice(9,3,1)] = e3t;
// initial rotation vector
omega
= omega_body[0]*e1t
+ omega_body[1]*e2t
+ omega_body[2]*e3t;
if (solver!=0) delete solver;
// init solver
solver = new EulerOdeSolver(
0.0, // t
0.01, // first dt step size estimation
J[0], J[1], J[2], // A,B,C
y, // omega_body,e1,e2,e3
1e-5); // eps
}
void KRotationSaver::readSettings()
{
// read configuration settings from config file
KConfig *config = KGlobal::config();
config->setGroup("Settings");
// internal saver parameters are set to stored values or left at their
// default values if stored values are out of range
setTraceFlag(0, config->readBoolEntry("x trace", traceFlagDefault[0]));
setTraceFlag(1, config->readBoolEntry("y trace", traceFlagDefault[1]));
setTraceFlag(2, config->readBoolEntry("z trace", traceFlagDefault[2]));
setRandomTraces(config->readBoolEntry("random traces", randomTracesDefault));
setTraceLengthSeconds(
config->readDoubleNumEntry("length", traceLengthSecondsDefault));
setLz(
config->readDoubleNumEntry("Lz", LzDefault));
setInitEulerTheta(
config->readDoubleNumEntry("theta", initEulerThetaDefault));
}
void KRotationSaver::setTraceLengthSeconds(const double& t)
{
if (t >= traceLengthSecondsLimitLower
&& t <= traceLengthSecondsLimitUpper)
{
m_traceLengthSeconds = t;
}
}
const double KRotationSaver::traceLengthSecondsLimitLower = 0.0;
const double KRotationSaver::traceLengthSecondsLimitUpper = 99.0;
const double KRotationSaver::traceLengthSecondsDefault = 3.0;
const bool KRotationSaver::traceFlagDefault[3] = {false, false, true};
void KRotationSaver::setLz(const double& Lz)
{
if (Lz >= LzLimitLower && Lz <= LzLimitUpper)
{
m_Lz = Lz;
}
}
const double KRotationSaver::LzLimitLower = 0.0;
const double KRotationSaver::LzLimitUpper = 500.0;
const double KRotationSaver::LzDefault = 10.0;
void KRotationSaver::setInitEulerTheta(const double& theta)
{
if (theta >= initEulerThetaLimitLower
&& theta <= initEulerThetaLimitUpper)
{
m_initEulerTheta = theta;
}
}
const double KRotationSaver::initEulerThetaLimitLower = 0.0;
const double KRotationSaver::initEulerThetaLimitUpper = 180.0;
const double KRotationSaver::initEulerThetaDefault = 0.03;
// public slots
void KRotationSaver::doTimeStep()
{
// integrate a step ahead
solver->integrate(0.001*deltaT);
// read new y
std::valarray<double> y = solver->Y();
std::deque<vec3<double> >::size_type
max_vec_length =
static_cast<std::deque<vec3<double> >::size_type>
( m_traceLengthSeconds/(0.001*deltaT) );
for (int j=0; j<3; ++j)
{
std::deque<vec3<double> >& e =
j==0 ? e1 :
j==1 ? e2 : e3;
// read out new body coordinate system
if (m_traceFlag[j] == true
&& max_vec_length > 0)
{
e.push_front(y[std::slice(3*j+3, 3, 1)]);
while (e.size() > max_vec_length)
{
e.pop_back();
}
}
else
{
// only set the 1. element
e.front() = y[std::slice(3*j+3, 3, 1)];
// and delete all other emements
if (e.size() > 1)
e.resize(1);
}
}
// current rotation vector omega
omega = y[0]*e1.front() + y[1]*e2.front() + y[2]*e3.front();
// set new random traces every 10 seconds
if (m_randomTraces==true)
{
static unsigned int counter=0;
++counter;
if (counter > unsigned(10.0/(0.001*deltaT)))
{
counter=0;
for (int i=0; i<3; ++i)
m_traceFlag[i] = rand()%2==1 ? true : false;
}
}
glArea->updateGL();
timer->start(deltaT, TRUE); // restart timer
}
// public slot of KRotationSaver, forward resize event to public slot of glArea
// to allow the resizing of the gl area withing the setup dialog
void KRotationSaver::resizeGlArea(TQResizeEvent* e)
{
glArea->resize(e->size());
}
//-----------------------------------------------------------------------------
// KRotationSetup: dialog to setup screen saver parameters
//-----------------------------------------------------------------------------
KRotationSetup::KRotationSetup(TQWidget* parent, const char* name)
: KRotationSetupUi(parent, name),
// create ssaver and give it the WinID of the preview area
saver(new KRotationSaver(preview->winId()))
{
// the dialog should block, no other control center input should be possible
// until the dialog is closed
setModal(TRUE);
lengthEdit->setValidator(
new TQDoubleValidator(
KRotationSaver::traceLengthSecondsLimitLower,
KRotationSaver::traceLengthSecondsLimitUpper,
3, lengthEdit));
LzEdit->setValidator(
new TQDoubleValidator(
KRotationSaver::LzLimitLower,
KRotationSaver::LzLimitUpper,
3, LzEdit));
thetaEdit->setValidator(
new TQDoubleValidator(
KRotationSaver::initEulerThetaLimitLower,
KRotationSaver::initEulerThetaLimitUpper,
3, thetaEdit));
// set tool tips of editable fields
TQToolTip::add(
lengthEdit,
i18n("Length of traces in seconds of visibility.\nValid values from %1 to %2.")
.arg(KRotationSaver::traceLengthSecondsLimitLower, 0, 'f', 2)
.arg(KRotationSaver::traceLengthSecondsLimitUpper, 0, 'f', 2));
TQToolTip::add(
LzEdit,
i18n("Angular momentum in z direction in arbitrary units.\nValid values from %1 to %2.")
.arg(KRotationSaver::LzLimitLower, 0, 'f', 2)
.arg(KRotationSaver::LzLimitUpper, 0, 'f', 2));
TQToolTip::add(
thetaEdit,
i18n("Gravitational constant in arbitrary units.\nValid values from %1 to %2.")
.arg(KRotationSaver::initEulerThetaLimitLower, 0, 'f', 2)
.arg(KRotationSaver::initEulerThetaLimitUpper, 0, 'f', 2));
// init preview area
preview->setBackgroundColor(black);
preview->show(); // otherwise saver does not get correct size
// read settings from saver and update GUI elements with these values, saver
// has read settings in its constructor
// set editable fields with stored values as defaults
xTrace->setChecked(saver->traceFlag(0));
yTrace->setChecked(saver->traceFlag(1));
zTrace->setChecked(saver->traceFlag(2));
randTraces->setChecked(saver->randomTraces());
TQString text;
text.setNum(saver->traceLengthSeconds());
lengthEdit->validateAndSet(text,0,0,0);
text.setNum(saver->Lz());
LzEdit->validateAndSet(text,0,0,0);
text.setNum(saver->initEulerTheta());
thetaEdit->validateAndSet(text,0,0,0);
// if the preview area is resized it emmits the resized() event which is
// caught by the saver. The embedded GlArea is resized to fit into the
// preview area.
connect(preview, TQT_SIGNAL(resized(TQResizeEvent*)),
saver, TQT_SLOT(resizeGlArea(TQResizeEvent*)));
}
KRotationSetup::~KRotationSetup()
{
delete saver;
}
// Ok pressed - save settings and exit
void KRotationSetup::okButtonClickedSlot(void)
{
KConfig* config = KGlobal::config();
config->setGroup("Settings");
config->writeEntry("x trace", saver->traceFlag(0));
config->writeEntry("y trace", saver->traceFlag(1));
config->writeEntry("z trace", saver->traceFlag(2));
config->writeEntry("random traces", saver->randomTraces());
config->writeEntry("length", saver->traceLengthSeconds());
config->writeEntry("Lz", saver->Lz());
config->writeEntry("theta", saver->initEulerTheta());
config->sync();
accept();
}
void KRotationSetup::aboutButtonClickedSlot(void)
{
KMessageBox::about(this, i18n("\
<h3>KRotation Screen Saver for KDE</h3>\
<p>Simulation of a force free rotating asymmetric body</p>\
<p>Copyright (c) Georg Drenkhahn 2004</p>\
<p><tt>georg-d@users.sourceforge.net</tt></p>"));
}
void KRotationSetup::xTraceToggled(bool state)
{
saver->setTraceFlag(0, state);
}
void KRotationSetup::yTraceToggled(bool state)
{
saver->setTraceFlag(1, state);
}
void KRotationSetup::zTraceToggled(bool state)
{
saver->setTraceFlag(2, state);
}
void KRotationSetup::randomTracesToggled(bool state)
{
saver->setRandomTraces(state);
if (state==false)
{
// restore settings from gui if random traces are turned off
saver->setTraceFlag(0, xTrace->isChecked());
saver->setTraceFlag(1, yTrace->isChecked());
saver->setTraceFlag(2, zTrace->isChecked());
}
}
void KRotationSetup::lengthEnteredSlot(const TQString& s)
{
saver->setTraceLengthSeconds(s.toDouble());
}
void KRotationSetup::LzEnteredSlot(const TQString& s)
{
saver->setLz(s.toDouble());
if (saver!=0) saver->initData();
}
void KRotationSetup::thetaEnteredSlot(const TQString& s)
{
saver->setInitEulerTheta(s.toDouble());
if (saver!=0) saver->initData();
}
|