summaryrefslogtreecommitdiffstats
path: root/kig/misc/conic-common.cpp
diff options
context:
space:
mode:
authortoma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2009-11-25 17:56:58 +0000
committertoma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2009-11-25 17:56:58 +0000
commitce599e4f9f94b4eb00c1b5edb85bce5431ab3df2 (patch)
treed3bb9f5d25a2dc09ca81adecf39621d871534297 /kig/misc/conic-common.cpp
downloadtdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.tar.gz
tdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.zip
Copy the KDE 3.5 branch to branches/trinity for new KDE 3.5 features.
BUG:215923 git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/kdeedu@1054174 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'kig/misc/conic-common.cpp')
-rw-r--r--kig/misc/conic-common.cpp888
1 files changed, 888 insertions, 0 deletions
diff --git a/kig/misc/conic-common.cpp b/kig/misc/conic-common.cpp
new file mode 100644
index 00000000..3dde7449
--- /dev/null
+++ b/kig/misc/conic-common.cpp
@@ -0,0 +1,888 @@
+/**
+ This file is part of Kig, a KDE program for Interactive Geometry...
+ Copyright (C) 2002 Maurizio Paolini <paolini@dmf.unicatt.it>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
+ USA
+**/
+
+#include <config.h>
+
+#include "conic-common.h"
+
+#include "common.h"
+#include "kigtransform.h"
+
+#include <cmath>
+#include <algorithm>
+
+#ifdef HAVE_IEEEFP_H
+#include <ieeefp.h>
+#endif
+
+ConicCartesianData::ConicCartesianData(
+ const ConicPolarData& polardata
+ )
+{
+ double ec = polardata.ecostheta0;
+ double es = polardata.esintheta0;
+ double p = polardata.pdimen;
+ double fx = polardata.focus1.x;
+ double fy = polardata.focus1.y;
+
+ double a = 1 - ec*ec;
+ double b = 1 - es*es;
+ double c = - 2*ec*es;
+ double d = - 2*p*ec;
+ double e = - 2*p*es;
+ double f = - p*p;
+
+ f += a*fx*fx + b*fy*fy + c*fx*fy - d*fx - e*fy;
+ d -= 2*a*fx + c*fy;
+ e -= 2*b*fy + c*fx;
+
+ coeffs[0] = a;
+ coeffs[1] = b;
+ coeffs[2] = c;
+ coeffs[3] = d;
+ coeffs[4] = e;
+ coeffs[5] = f;
+}
+
+ConicPolarData::ConicPolarData( const ConicCartesianData& cartdata )
+{
+ double a = cartdata.coeffs[0];
+ double b = cartdata.coeffs[1];
+ double c = cartdata.coeffs[2];
+ double d = cartdata.coeffs[3];
+ double e = cartdata.coeffs[4];
+ double f = cartdata.coeffs[5];
+
+ // 1. Compute theta (tilt of conic)
+ double theta = std::atan2(c, b - a)/2;
+
+ // now I should possibly add pi/2...
+ double costheta = std::cos(theta);
+ double sintheta = std::sin(theta);
+ // compute new coefficients (c should now be zero)
+ double aa = a*costheta*costheta + b*sintheta*sintheta - c*sintheta*costheta;
+ double bb = a*sintheta*sintheta + b*costheta*costheta + c*sintheta*costheta;
+ if (aa*bb < 0)
+ { // we have a hyperbola we need to check the correct orientation
+ double dd = d*costheta - e*sintheta;
+ double ee = d*sintheta + e*costheta;
+ double xc = - dd / ( 2*aa );
+ double yc = - ee / ( 2*bb );
+ double ff = f + aa*xc*xc + bb*yc*yc + dd*xc + ee*yc;
+ if (ff*aa > 0) // wrong orientation
+ {
+ if (theta > 0) theta -= M_PI/2;
+ else theta += M_PI/2;
+ costheta = cos(theta);
+ sintheta = sin(theta);
+ aa = a*costheta*costheta + b*sintheta*sintheta - c*sintheta*costheta;
+ bb = a*sintheta*sintheta + b*costheta*costheta + c*sintheta*costheta;
+ }
+ }
+ else
+ {
+ if ( std::fabs (bb) < std::fabs (aa) )
+ {
+ if (theta > 0) theta -= M_PI/2;
+ else theta += M_PI/2;
+ costheta = cos(theta);
+ sintheta = sin(theta);
+ aa = a*costheta*costheta + b*sintheta*sintheta - c*sintheta*costheta;
+ bb = a*sintheta*sintheta + b*costheta*costheta + c*sintheta*costheta;
+ }
+ }
+
+ double cc = 2*(a - b)*sintheta*costheta +
+ c*(costheta*costheta - sintheta*sintheta);
+ // cc should be zero!!! cout << "cc = " << cc << "\n";
+ double dd = d*costheta - e*sintheta;
+ double ee = d*sintheta + e*costheta;
+
+ a = aa;
+ b = bb;
+ c = cc;
+ d = dd;
+ e = ee;
+
+ // now b cannot be zero (otherwise conic is degenerate)
+ a /= b;
+ c /= b;
+ d /= b;
+ e /= b;
+ f /= b;
+ b = 1.0;
+
+ // 2. compute y coordinate of focuses
+
+ double yf = - e/2;
+
+ // new values:
+ f += yf*yf + e*yf;
+ e += 2*yf; // this should be zero!
+
+ // now: a > 0 -> ellipse
+ // a = 0 -> parabula
+ // a < 0 -> hyperbola
+
+ double eccentricity = sqrt(1.0 - a);
+
+ double sqrtdiscrim = sqrt(d*d - 4*a*f);
+ if (d < 0.0) sqrtdiscrim = -sqrtdiscrim;
+ double xf = (4*a*f - 4*f - d*d)/(d + eccentricity*sqrtdiscrim) / 2;
+
+ // 3. the focus needs to be rotated back into position
+ focus1.x = xf*costheta + yf*sintheta;
+ focus1.y = -xf*sintheta + yf*costheta;
+
+ // 4. final touch: the pdimen
+ pdimen = -sqrtdiscrim/2;
+
+ ecostheta0 = eccentricity*costheta;
+ esintheta0 = -eccentricity*sintheta;
+ if ( pdimen < 0)
+ {
+ pdimen = -pdimen;
+ ecostheta0 = -ecostheta0;
+ esintheta0 = -esintheta0;
+ }
+}
+
+const ConicCartesianData calcConicThroughPoints (
+ const std::vector<Coordinate>& points,
+ const LinearConstraints c1,
+ const LinearConstraints c2,
+ const LinearConstraints c3,
+ const LinearConstraints c4,
+ const LinearConstraints c5 )
+{
+ assert( 0 < points.size() && points.size() <= 5 );
+ // points is a vector of up to 5 points through which the conic is
+ // constrained.
+ // this routine should compute the coefficients in the cartesian equation
+ // a x^2 + b y^2 + c xy + d x + e y + f = 0
+ // they are defined up to a multiplicative factor.
+ // since we don't know (in advance) which one of them is nonzero, we
+ // simply keep all 6 parameters, obtaining a 5x6 linear system which
+ // we solve using gaussian elimination with complete pivoting
+ // If there are too few, then we choose some cool way to fill in the
+ // empty parts in the matrix according to the LinearConstraints
+ // given..
+
+ // 5 rows, 6 columns..
+ double row0[6];
+ double row1[6];
+ double row2[6];
+ double row3[6];
+ double row4[6];
+ double *matrix[5] = {row0, row1, row2, row3, row4};
+ double solution[6];
+ int scambio[6];
+ LinearConstraints constraints[] = {c1, c2, c3, c4, c5};
+
+ int numpoints = points.size();
+ int numconstraints = 5;
+
+ // fill in the matrix elements
+ for ( int i = 0; i < numpoints; ++i )
+ {
+ double xi = points[i].x;
+ double yi = points[i].y;
+ matrix[i][0] = xi*xi;
+ matrix[i][1] = yi*yi;
+ matrix[i][2] = xi*yi;
+ matrix[i][3] = xi;
+ matrix[i][4] = yi;
+ matrix[i][5] = 1.0;
+ }
+
+ for ( int i = 0; i < numconstraints; i++ )
+ {
+ if (numpoints >= 5) break; // don't add constraints if we have enough
+ for (int j = 0; j < 6; ++j) matrix[numpoints][j] = 0.0;
+ // force the symmetry axes to be
+ // parallel to the coordinate system (zero tilt): c = 0
+ if (constraints[i] == zerotilt) matrix[numpoints][2] = 1.0;
+ // force a parabula (if zerotilt): b = 0
+ if (constraints[i] == parabolaifzt) matrix[numpoints][1] = 1.0;
+ // force a circle (if zerotilt): a = b
+ if (constraints[i] == circleifzt) {
+ matrix[numpoints][0] = 1.0;
+ matrix[numpoints][1] = -1.0; }
+ // force an equilateral hyperbola: a + b = 0
+ if (constraints[i] == equilateral) {
+ matrix[numpoints][0] = 1.0;
+ matrix[numpoints][1] = 1.0; }
+ // force symmetry about y-axis: d = 0
+ if (constraints[i] == ysymmetry) matrix[numpoints][3] = 1.0;
+ // force symmetry about x-axis: e = 0
+ if (constraints[i] == xsymmetry) matrix[numpoints][4] = 1.0;
+
+ if (constraints[i] != noconstraint) ++numpoints;
+ }
+
+ if ( ! GaussianElimination( matrix, numpoints, 6, scambio ) )
+ return ConicCartesianData::invalidData();
+ // fine della fase di eliminazione
+ BackwardSubstitution( matrix, numpoints, 6, scambio, solution );
+
+ // now solution should contain the correct coefficients..
+ return ConicCartesianData( solution );
+}
+
+const ConicPolarData calcConicBFFP(
+ const std::vector<Coordinate>& args,
+ int type )
+{
+ assert( args.size() >= 2 && args.size() <= 3 );
+ assert( type == 1 || type == -1 );
+
+ ConicPolarData ret;
+
+ Coordinate f1 = args[0];
+ Coordinate f2 = args[1];
+ Coordinate d;
+ double eccentricity, d1, d2, dl;
+
+ Coordinate f2f1 = f2 - f1;
+ double f2f1l = f2f1.length();
+ ret.ecostheta0 = f2f1.x / f2f1l;
+ ret.esintheta0 = f2f1.y / f2f1l;
+
+ if ( args.size() == 3 )
+ {
+ d = args[2];
+ d1 = ( d - f1 ).length();
+ d2 = ( d - f2 ).length();
+ dl = fabs( d1 + type * d2 );
+ eccentricity = f2f1l/dl;
+ }
+ else
+ {
+ if ( type > 0 ) eccentricity = 0.7; else eccentricity = 2.0;
+ dl = f2f1l/eccentricity;
+ }
+
+ double rhomax = (dl + f2f1l) /2.0;
+
+ ret.ecostheta0 *= eccentricity;
+ ret.esintheta0 *= eccentricity;
+ ret.pdimen = type*(1 - eccentricity)*rhomax;
+ ret.focus1 = type == 1 ? f1 : f2;
+ return ret;
+}
+
+const LineData calcConicPolarLine (
+ const ConicCartesianData& data,
+ const Coordinate& cpole,
+ bool& valid )
+{
+ double x = cpole.x;
+ double y = cpole.y;
+ double a = data.coeffs[0];
+ double b = data.coeffs[1];
+ double c = data.coeffs[2];
+ double d = data.coeffs[3];
+ double e = data.coeffs[4];
+ double f = data.coeffs[5];
+
+ double alpha = 2*a*x + c*y + d;
+ double beta = c*x + 2*b*y + e;
+ double gamma = d*x + e*y + 2*f;
+
+ double normsq = alpha*alpha + beta*beta;
+
+ if (normsq < 1e-10) // line at infinity
+ {
+ valid = false;
+ return LineData();
+ }
+ valid = true;
+
+ Coordinate reta = -gamma/normsq * Coordinate (alpha, beta);
+ Coordinate retb = reta + Coordinate (-beta, alpha);
+ return LineData( reta, retb );
+}
+
+const Coordinate calcConicPolarPoint (
+ const ConicCartesianData& data,
+ const LineData& polar )
+{
+ Coordinate p1 = polar.a;
+ Coordinate p2 = polar.b;
+
+ double alpha = p2.y - p1.y;
+ double beta = p1.x - p2.x;
+ double gamma = p1.y*p2.x - p1.x*p2.y;
+
+ double a11 = data.coeffs[0];
+ double a22 = data.coeffs[1];
+ double a12 = data.coeffs[2]/2.0;
+ double a13 = data.coeffs[3]/2.0;
+ double a23 = data.coeffs[4]/2.0;
+ double a33 = data.coeffs[5];
+
+// double detA = a11*a22*a33 - a11*a23*a23 - a22*a13*a13 - a33*a12*a12 +
+// 2*a12*a23*a13;
+
+ double a11inv = a22*a33 - a23*a23;
+ double a22inv = a11*a33 - a13*a13;
+ double a33inv = a11*a22 - a12*a12;
+ double a12inv = a23*a13 - a12*a33;
+ double a23inv = a12*a13 - a23*a11;
+ double a13inv = a12*a23 - a13*a22;
+
+ double x = a11inv*alpha + a12inv*beta + a13inv*gamma;
+ double y = a12inv*alpha + a22inv*beta + a23inv*gamma;
+ double z = a13inv*alpha + a23inv*beta + a33inv*gamma;
+
+ if (fabs(z) < 1e-10) // point at infinity
+ {
+ return Coordinate::invalidCoord();
+ }
+
+ x /= z;
+ y /= z;
+ return Coordinate (x, y);
+}
+
+const Coordinate calcConicLineIntersect( const ConicCartesianData& c,
+ const LineData& l,
+ double knownparam,
+ int which )
+{
+ assert( which == 1 || which == -1 || which == 0 );
+
+ double aa = c.coeffs[0];
+ double bb = c.coeffs[1];
+ double cc = c.coeffs[2];
+ double dd = c.coeffs[3];
+ double ee = c.coeffs[4];
+ double ff = c.coeffs[5];
+
+ double x = l.a.x;
+ double y = l.a.y;
+ double dx = l.b.x - l.a.x;
+ double dy = l.b.y - l.a.y;
+
+ double aaa = aa*dx*dx + bb*dy*dy + cc*dx*dy;
+ double bbb = 2*aa*x*dx + 2*bb*y*dy + cc*x*dy + cc*y*dx + dd*dx + ee*dy;
+ double ccc = aa*x*x + bb*y*y + cc*x*y + dd*x + ee*y + ff;
+
+ double t;
+ if ( which == 0 ) /* i.e. we have a known intersection */
+ {
+ t = - bbb/aaa - knownparam;
+ return l.a + t*(l.b - l.a);
+ }
+
+ double discrim = bbb*bbb - 4*aaa*ccc;
+ if (discrim < 0.0)
+ {
+ return Coordinate::invalidCoord();
+ }
+ else
+ {
+ if ( which*bbb > 0 )
+ {
+ t = bbb + which*sqrt(discrim);
+ t = - 2*ccc/t;
+ } else {
+ t = -bbb + which*sqrt(discrim);
+ t /= 2*aaa;
+ }
+
+ return l.a + t*(l.b - l.a);
+ }
+}
+
+ConicPolarData::ConicPolarData(
+ const Coordinate& f, double d,
+ double ec, double es )
+ : focus1( f ), pdimen( d ), ecostheta0( ec ), esintheta0( es )
+{
+}
+
+ConicPolarData::ConicPolarData()
+ : focus1(), pdimen( 0 ), ecostheta0( 0 ), esintheta0( 0 )
+{
+}
+
+const ConicPolarData calcConicBDFP(
+ const LineData& directrix,
+ const Coordinate& cfocus,
+ const Coordinate& cpoint )
+{
+ ConicPolarData ret;
+
+ Coordinate ba = directrix.dir();
+ double bal = ba.length();
+ ret.ecostheta0 = -ba.y / bal;
+ ret.esintheta0 = ba.x / bal;
+
+ Coordinate pa = cpoint - directrix.a;
+
+ double distpf = (cpoint - cfocus).length();
+ double distpd = ( pa.y*ba.x - pa.x*ba.y)/bal;
+
+ double eccentricity = distpf/distpd;
+ ret.ecostheta0 *= eccentricity;
+ ret.esintheta0 *= eccentricity;
+
+ Coordinate fa = cfocus - directrix.a;
+ ret.pdimen = ( fa.y*ba.x - fa.x*ba.y )/bal;
+ ret.pdimen *= eccentricity;
+ ret.focus1 = cfocus;
+
+ return ret;
+}
+
+ConicCartesianData::ConicCartesianData( const double incoeffs[6] )
+{
+ std::copy( incoeffs, incoeffs + 6, coeffs );
+}
+
+const LineData calcConicAsymptote(
+ const ConicCartesianData data,
+ int which, bool &valid )
+{
+ assert( which == -1 || which == 1 );
+
+ LineData ret;
+ double a=data.coeffs[0];
+ double b=data.coeffs[1];
+ double c=data.coeffs[2];
+ double d=data.coeffs[3];
+ double e=data.coeffs[4];
+
+ double normabc = a*a + b*b + c*c;
+ double delta = c*c - 4*a*b;
+ if (fabs(delta) < 1e-6*normabc) { valid = false; return ret; }
+
+ double yc = (2*a*e - c*d)/delta;
+ double xc = (2*b*d - c*e)/delta;
+ // let c be nonnegative; we no longer need d, e, f.
+ if (c < 0)
+ {
+ c *= -1;
+ a *= -1;
+ b *= -1;
+ }
+
+ if ( delta < 0 )
+ {
+ valid = false;
+ return ret;
+ }
+
+ double sqrtdelta = sqrt(delta);
+ Coordinate displacement;
+ if (which > 0)
+ displacement = Coordinate(-2*b, c + sqrtdelta);
+ else
+ displacement = Coordinate(c + sqrtdelta, -2*a);
+ ret.a = Coordinate(xc, yc);
+ ret.b = ret.a + displacement;
+ return ret;
+}
+
+const ConicCartesianData calcConicByAsymptotes(
+ const LineData& line1,
+ const LineData& line2,
+ const Coordinate& p )
+{
+ Coordinate p1 = line1.a;
+ Coordinate p2 = line1.b;
+ double x = p.x;
+ double y = p.y;
+
+ double c1 = p1.x*p2.y - p2.x*p1.y;
+ double b1 = p2.x - p1.x;
+ double a1 = p1.y - p2.y;
+
+ p1 = line2.a;
+ p2 = line2.b;
+
+ double c2 = p1.x*p2.y - p2.x*p1.y;
+ double b2 = p2.x - p1.x;
+ double a2 = p1.y - p2.y;
+
+ double a = a1*a2;
+ double b = b1*b2;
+ double c = a1*b2 + a2*b1;
+ double d = a1*c2 + a2*c1;
+ double e = b1*c2 + c1*b2;
+
+ double f = a*x*x + b*y*y + c*x*y + d*x + e*y;
+ f = -f;
+
+ return ConicCartesianData( a, b, c, d, e, f );
+}
+
+const LineData calcConicRadical( const ConicCartesianData& cequation1,
+ const ConicCartesianData& cequation2,
+ int which, int zeroindex, bool& valid )
+{
+ assert( which == 1 || which == -1 );
+ assert( 0 < zeroindex && zeroindex < 4 );
+ LineData ret;
+ valid = true;
+
+ double a = cequation1.coeffs[0];
+ double b = cequation1.coeffs[1];
+ double c = cequation1.coeffs[2];
+ double d = cequation1.coeffs[3];
+ double e = cequation1.coeffs[4];
+ double f = cequation1.coeffs[5];
+
+ double a2 = cequation2.coeffs[0];
+ double b2 = cequation2.coeffs[1];
+ double c2 = cequation2.coeffs[2];
+ double d2 = cequation2.coeffs[3];
+ double e2 = cequation2.coeffs[4];
+ double f2 = cequation2.coeffs[5];
+
+// background: the family of conics c + lambda*c2 has members that
+// degenerate into a union of two lines. The values of lambda giving
+// such degenerate conics is the solution of a third degree equation.
+// The coefficients of such equation are given by:
+// (Thanks to Dominique Devriese for the suggestion of this approach)
+// domi: (And thanks to Maurizio for implementing it :)
+
+ double df = 4*a*b*f - a*e*e - b*d*d - c*c*f + c*d*e;
+ double cf = 4*a2*b*f + 4*a*b2*f + 4*a*b*f2
+ - 2*a*e*e2 - 2*b*d*d2 - 2*f*c*c2
+ - a2*e*e - b2*d*d - f2*c*c
+ + c2*d*e + c*d2*e + c*d*e2;
+ double bf = 4*a*b2*f2 + 4*a2*b*f2 + 4*a2*b2*f
+ - 2*a2*e2*e - 2*b2*d2*d - 2*f2*c2*c
+ - a*e2*e2 - b*d2*d2 - f*c2*c2
+ + c*d2*e2 + c2*d*e2 + c2*d2*e;
+ double af = 4*a2*b2*f2 - a2*e2*e2 - b2*d2*d2 - c2*c2*f2 + c2*d2*e2;
+
+// assume both conics are nondegenerate, renormalize so that af = 1
+
+ df /= af;
+ cf /= af;
+ bf /= af;
+ af = 1.0; // not needed, just for consistency
+
+// computing the coefficients of the Sturm sequence
+
+ double p1a = 2*bf*bf - 6*cf;
+ double p1b = bf*cf - 9*df;
+ double p0a = cf*p1a*p1a + p1b*(3*p1b - 2*bf*p1a);
+ double fval, fpval, lambda;
+
+ if (p0a < 0 && p1a < 0)
+ {
+ // -+-- ---+
+ valid = false;
+ return ret;
+ }
+
+ lambda = -bf/3.0; //inflection point
+ double displace = 1.0;
+ if (p1a > 0) // with two stationary points
+ {
+ displace += sqrt(p1a); // should be enough. The important
+ // thing is that it is larger than the
+ // semidistance between the stationary points
+ }
+ // compute the value at the inflection point using Horner scheme
+ fval = bf + lambda; // b + x
+ fval = cf + lambda*fval; // c + xb + xx
+ fval = df + lambda*fval; // d + xc + xxb + xxx
+
+ if (fabs(p0a) < 1e-7)
+ { // this is the case if we intersect two vertical parabulas!
+ p0a = 1e-7; // fall back to the one zero case
+ }
+ if (p0a < 0)
+ {
+ // we have three roots..
+ // we select the one we want ( defined by mzeroindex.. )
+ lambda += ( 2 - zeroindex )* displace;
+ }
+ else
+ {
+ // we have just one root
+ if( zeroindex > 1 ) // cannot find second and third root
+ {
+ valid = false;
+ return ret;
+ }
+
+ if (fval > 0) // zero on the left
+ {
+ lambda -= displace;
+ } else { // zero on the right
+ lambda += displace;
+ }
+
+ // p0a = 0 means we have a root with multiplicity two
+ }
+
+//
+// find a root of af*lambda^3 + bf*lambda^2 + cf*lambda + df = 0
+// (use a Newton method starting from lambda = 0. Hope...)
+//
+
+ double delta;
+
+ int iterations = 0;
+ const int maxiterations = 30;
+ while (iterations++ < maxiterations) // using Newton, iterations should be very few
+ {
+ // compute value of function and polinomial
+ fval = fpval = af;
+ fval = bf + lambda*fval; // b + xa
+ fpval = fval + lambda*fpval; // b + 2xa
+ fval = cf + lambda*fval; // c + xb + xxa
+ fpval = fval + lambda*fpval; // c + 2xb + 3xxa
+ fval = df + lambda*fval; // d + xc + xxb + xxxa
+
+ delta = fval/fpval;
+ lambda -= delta;
+ if (fabs(delta) < 1e-6) break;
+ }
+ if (iterations >= maxiterations) { valid = false; return ret; }
+
+ // now we have the degenerate conic: a, b, c, d, e, f
+
+ a += lambda*a2;
+ b += lambda*b2;
+ c += lambda*c2;
+ d += lambda*d2;
+ e += lambda*e2;
+ f += lambda*f2;
+
+ // domi:
+ // this is the determinant of the matrix of the new conic. It
+ // should be zero, for the new conic to be degenerate.
+ df = 4*a*b*f - a*e*e - b*d*d - c*c*f + c*d*e;
+
+ //lets work in homogeneous coordinates...
+
+ double dis1 = e*e - 4*b*f;
+ double maxval = fabs(dis1);
+ int maxind = 1;
+ double dis2 = d*d - 4*a*f;
+ if (fabs(dis2) > maxval)
+ {
+ maxval = fabs(dis2);
+ maxind = 2;
+ }
+ double dis3 = c*c - 4*a*b;
+ if (fabs(dis3) > maxval)
+ {
+ maxval = fabs(dis3);
+ maxind = 3;
+ }
+ // one of these must be nonzero (otherwise the matrix is ...)
+ // exchange elements so that the largest is the determinant of the
+ // first 2x2 minor
+ double temp;
+ switch (maxind)
+ {
+ case 1: // exchange 1 <-> 3
+ temp = a; a = f; f = temp;
+ temp = c; c = e; e = temp;
+ temp = dis1; dis1 = dis3; dis3 = temp;
+ break;
+
+ case 2: // exchange 2 <-> 3
+ temp = b; b = f; f = temp;
+ temp = c; c = d; d = temp;
+ temp = dis2; dis2 = dis3; dis3 = temp;
+ break;
+ }
+
+ // domi:
+ // this is the negative of the determinant of the top left of the
+ // matrix. If it is 0, then the conic is a parabola, if it is < 0,
+ // then the conic is an ellipse, if positive, the conic is a
+ // hyperbola. In this case, it should be positive, since we have a
+ // degenerate conic, which is a degenerate case of a hyperbola..
+ // note that it is negative if there is no valid conic to be
+ // found ( e.g. not enough intersections.. )
+ // double discrim = c*c - 4*a*b;
+
+ if (dis3 < 0)
+ {
+ // domi:
+ // i would put an assertion here, but well, i guess it doesn't
+ // really matter, and this prevents crashes if the math i still
+ // recall from high school happens to be wrong :)
+ valid = false;
+ return ret;
+ };
+
+ double r[3]; // direction of the null space
+ r[0] = 2*b*d - c*e;
+ r[1] = 2*a*e - c*d;
+ r[2] = dis3;
+
+ // now remember the switch:
+ switch (maxind)
+ {
+ case 1: // exchange 1 <-> 3
+ temp = a; a = f; f = temp;
+ temp = c; c = e; e = temp;
+ temp = dis1; dis1 = dis3; dis3 = temp;
+ temp = r[0]; r[0] = r[2]; r[2] = temp;
+ break;
+
+ case 2: // exchange 2 <-> 3
+ temp = b; b = f; f = temp;
+ temp = c; c = d; d = temp;
+ temp = dis2; dis2 = dis3; dis3 = temp;
+ temp = r[1]; r[1] = r[2]; r[2] = temp;
+ break;
+ }
+
+ // Computing a Householder reflection transformation that
+ // maps r onto [0, 0, k]
+
+ double w[3];
+ double rnormsq = r[0]*r[0] + r[1]*r[1] + r[2]*r[2];
+ double k = sqrt( rnormsq );
+ if ( k*r[2] < 0) k = -k;
+ double wnorm = sqrt( 2*rnormsq + 2*k*r[2] );
+ w[0] = r[0]/wnorm;
+ w[1] = r[1]/wnorm;
+ w[2] = (r[2] + k)/wnorm;
+
+ // matrix transformation using Householder matrix, the resulting
+ // matrix is zero on third row and column
+ // [q0,q1,q2]^t = A w
+ // alpha = w^t A w
+ double q0 = a*w[0] + c*w[1]/2 + d*w[2]/2;
+ double q1 = b*w[1] + c*w[0]/2 + e*w[2]/2;
+ double alpha = a*w[0]*w[0] + b*w[1]*w[1] + c*w[0]*w[1] +
+ d*w[0]*w[2] + e*w[1]*w[2] + f*w[2]*w[2];
+ double a00 = a - 4*w[0]*q0 + 4*w[0]*w[0]*alpha;
+ double a11 = b - 4*w[1]*q1 + 4*w[1]*w[1]*alpha;
+ double a01 = c/2 - 2*w[1]*q0 - 2*w[0]*q1 + 4*w[0]*w[1]*alpha;
+
+ double dis = a01*a01 - a00*a11;
+ assert ( dis >= 0 );
+ double sqrtdis = sqrt( dis );
+ double px, py;
+ if ( which*a01 > 0 )
+ {
+ px = a01 + which*sqrtdis;
+ py = a11;
+ } else {
+ px = a00;
+ py = a01 - which*sqrtdis;
+ }
+ double p[3]; // vector orthogonal to one of the two planes
+ double pscalw = w[0]*px + w[1]*py;
+ p[0] = px - 2*pscalw*w[0];
+ p[1] = py - 2*pscalw*w[1];
+ p[2] = - 2*pscalw*w[2];
+
+ // "r" is the solution of the equation A*(x,y,z) = (0,0,0) where
+ // A is the matrix of the degenerate conic. This is what we
+ // called in the conic theory we saw in high school a "double
+ // point". It has the unique property that any line going through
+ // it is a "polar line" of the conic at hand. It only exists for
+ // degenerate conics. It has another unique property that if you
+ // take any other point on the conic, then the line between it and
+ // the double point is part of the conic.
+ // this is what we use here: we find the double point ( ret.a
+ // ), and then find another points on the conic.
+
+ ret.a = -p[2]/(p[0]*p[0] + p[1]*p[1]) * Coordinate (p[0],p[1]);
+ ret.b = ret.a + Coordinate (-p[1],p[0]);
+ valid = true;
+
+ return ret;
+}
+
+const ConicCartesianData calcConicTransformation (
+ const ConicCartesianData& data, const Transformation& t, bool& valid )
+{
+ double a[3][3];
+ double b[3][3];
+
+ a[1][1] = data.coeffs[0];
+ a[2][2] = data.coeffs[1];
+ a[1][2] = a[2][1] = data.coeffs[2]/2;
+ a[0][1] = a[1][0] = data.coeffs[3]/2;
+ a[0][2] = a[2][0] = data.coeffs[4]/2;
+ a[0][0] = data.coeffs[5];
+
+ Transformation ti = t.inverse( valid );
+ if ( ! valid ) return ConicCartesianData();
+
+ double supnorm = 0.0;
+ for (int i = 0; i < 3; i++)
+ {
+ for (int j = 0; j < 3; j++)
+ {
+ b[i][j] = 0.;
+ for (int ii = 0; ii < 3; ii++)
+ {
+ for (int jj = 0; jj < 3; jj++)
+ {
+ b[i][j] += a[ii][jj]*ti.data( ii, i )*ti.data( jj, j );
+ }
+ }
+ if ( std::fabs( b[i][j] ) > supnorm ) supnorm = std::fabs( b[i][j] );
+ }
+ }
+
+ for (int i = 0; i < 3; i++)
+ {
+ for (int j = 0; j < 3; j++)
+ {
+ b[i][j] /= supnorm;
+ }
+ }
+
+ return ConicCartesianData ( b[1][1], b[2][2], b[1][2] + b[2][1],
+ b[0][1] + b[1][0], b[0][2] + b[2][0], b[0][0] );
+}
+
+ConicCartesianData::ConicCartesianData()
+{
+}
+
+bool operator==( const ConicPolarData& lhs, const ConicPolarData& rhs )
+{
+ return lhs.focus1 == rhs.focus1 &&
+ lhs.pdimen == rhs.pdimen &&
+ lhs.ecostheta0 == rhs.ecostheta0 &&
+ lhs.esintheta0 == rhs.esintheta0;
+}
+
+ConicCartesianData ConicCartesianData::invalidData()
+{
+ ConicCartesianData ret;
+ ret.coeffs[0] = double_inf;
+ return ret;
+}
+
+bool ConicCartesianData::valid() const
+{
+ return finite( coeffs[0] );
+}
+