diff options
author | toma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da> | 2009-11-25 17:56:58 +0000 |
---|---|---|
committer | toma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da> | 2009-11-25 17:56:58 +0000 |
commit | ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2 (patch) | |
tree | d3bb9f5d25a2dc09ca81adecf39621d871534297 /kig/misc/conic-common.cpp | |
download | tdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.tar.gz tdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.zip |
Copy the KDE 3.5 branch to branches/trinity for new KDE 3.5 features.
BUG:215923
git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/kdeedu@1054174 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'kig/misc/conic-common.cpp')
-rw-r--r-- | kig/misc/conic-common.cpp | 888 |
1 files changed, 888 insertions, 0 deletions
diff --git a/kig/misc/conic-common.cpp b/kig/misc/conic-common.cpp new file mode 100644 index 00000000..3dde7449 --- /dev/null +++ b/kig/misc/conic-common.cpp @@ -0,0 +1,888 @@ +/** + This file is part of Kig, a KDE program for Interactive Geometry... + Copyright (C) 2002 Maurizio Paolini <paolini@dmf.unicatt.it> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 + USA +**/ + +#include <config.h> + +#include "conic-common.h" + +#include "common.h" +#include "kigtransform.h" + +#include <cmath> +#include <algorithm> + +#ifdef HAVE_IEEEFP_H +#include <ieeefp.h> +#endif + +ConicCartesianData::ConicCartesianData( + const ConicPolarData& polardata + ) +{ + double ec = polardata.ecostheta0; + double es = polardata.esintheta0; + double p = polardata.pdimen; + double fx = polardata.focus1.x; + double fy = polardata.focus1.y; + + double a = 1 - ec*ec; + double b = 1 - es*es; + double c = - 2*ec*es; + double d = - 2*p*ec; + double e = - 2*p*es; + double f = - p*p; + + f += a*fx*fx + b*fy*fy + c*fx*fy - d*fx - e*fy; + d -= 2*a*fx + c*fy; + e -= 2*b*fy + c*fx; + + coeffs[0] = a; + coeffs[1] = b; + coeffs[2] = c; + coeffs[3] = d; + coeffs[4] = e; + coeffs[5] = f; +} + +ConicPolarData::ConicPolarData( const ConicCartesianData& cartdata ) +{ + double a = cartdata.coeffs[0]; + double b = cartdata.coeffs[1]; + double c = cartdata.coeffs[2]; + double d = cartdata.coeffs[3]; + double e = cartdata.coeffs[4]; + double f = cartdata.coeffs[5]; + + // 1. Compute theta (tilt of conic) + double theta = std::atan2(c, b - a)/2; + + // now I should possibly add pi/2... + double costheta = std::cos(theta); + double sintheta = std::sin(theta); + // compute new coefficients (c should now be zero) + double aa = a*costheta*costheta + b*sintheta*sintheta - c*sintheta*costheta; + double bb = a*sintheta*sintheta + b*costheta*costheta + c*sintheta*costheta; + if (aa*bb < 0) + { // we have a hyperbola we need to check the correct orientation + double dd = d*costheta - e*sintheta; + double ee = d*sintheta + e*costheta; + double xc = - dd / ( 2*aa ); + double yc = - ee / ( 2*bb ); + double ff = f + aa*xc*xc + bb*yc*yc + dd*xc + ee*yc; + if (ff*aa > 0) // wrong orientation + { + if (theta > 0) theta -= M_PI/2; + else theta += M_PI/2; + costheta = cos(theta); + sintheta = sin(theta); + aa = a*costheta*costheta + b*sintheta*sintheta - c*sintheta*costheta; + bb = a*sintheta*sintheta + b*costheta*costheta + c*sintheta*costheta; + } + } + else + { + if ( std::fabs (bb) < std::fabs (aa) ) + { + if (theta > 0) theta -= M_PI/2; + else theta += M_PI/2; + costheta = cos(theta); + sintheta = sin(theta); + aa = a*costheta*costheta + b*sintheta*sintheta - c*sintheta*costheta; + bb = a*sintheta*sintheta + b*costheta*costheta + c*sintheta*costheta; + } + } + + double cc = 2*(a - b)*sintheta*costheta + + c*(costheta*costheta - sintheta*sintheta); + // cc should be zero!!! cout << "cc = " << cc << "\n"; + double dd = d*costheta - e*sintheta; + double ee = d*sintheta + e*costheta; + + a = aa; + b = bb; + c = cc; + d = dd; + e = ee; + + // now b cannot be zero (otherwise conic is degenerate) + a /= b; + c /= b; + d /= b; + e /= b; + f /= b; + b = 1.0; + + // 2. compute y coordinate of focuses + + double yf = - e/2; + + // new values: + f += yf*yf + e*yf; + e += 2*yf; // this should be zero! + + // now: a > 0 -> ellipse + // a = 0 -> parabula + // a < 0 -> hyperbola + + double eccentricity = sqrt(1.0 - a); + + double sqrtdiscrim = sqrt(d*d - 4*a*f); + if (d < 0.0) sqrtdiscrim = -sqrtdiscrim; + double xf = (4*a*f - 4*f - d*d)/(d + eccentricity*sqrtdiscrim) / 2; + + // 3. the focus needs to be rotated back into position + focus1.x = xf*costheta + yf*sintheta; + focus1.y = -xf*sintheta + yf*costheta; + + // 4. final touch: the pdimen + pdimen = -sqrtdiscrim/2; + + ecostheta0 = eccentricity*costheta; + esintheta0 = -eccentricity*sintheta; + if ( pdimen < 0) + { + pdimen = -pdimen; + ecostheta0 = -ecostheta0; + esintheta0 = -esintheta0; + } +} + +const ConicCartesianData calcConicThroughPoints ( + const std::vector<Coordinate>& points, + const LinearConstraints c1, + const LinearConstraints c2, + const LinearConstraints c3, + const LinearConstraints c4, + const LinearConstraints c5 ) +{ + assert( 0 < points.size() && points.size() <= 5 ); + // points is a vector of up to 5 points through which the conic is + // constrained. + // this routine should compute the coefficients in the cartesian equation + // a x^2 + b y^2 + c xy + d x + e y + f = 0 + // they are defined up to a multiplicative factor. + // since we don't know (in advance) which one of them is nonzero, we + // simply keep all 6 parameters, obtaining a 5x6 linear system which + // we solve using gaussian elimination with complete pivoting + // If there are too few, then we choose some cool way to fill in the + // empty parts in the matrix according to the LinearConstraints + // given.. + + // 5 rows, 6 columns.. + double row0[6]; + double row1[6]; + double row2[6]; + double row3[6]; + double row4[6]; + double *matrix[5] = {row0, row1, row2, row3, row4}; + double solution[6]; + int scambio[6]; + LinearConstraints constraints[] = {c1, c2, c3, c4, c5}; + + int numpoints = points.size(); + int numconstraints = 5; + + // fill in the matrix elements + for ( int i = 0; i < numpoints; ++i ) + { + double xi = points[i].x; + double yi = points[i].y; + matrix[i][0] = xi*xi; + matrix[i][1] = yi*yi; + matrix[i][2] = xi*yi; + matrix[i][3] = xi; + matrix[i][4] = yi; + matrix[i][5] = 1.0; + } + + for ( int i = 0; i < numconstraints; i++ ) + { + if (numpoints >= 5) break; // don't add constraints if we have enough + for (int j = 0; j < 6; ++j) matrix[numpoints][j] = 0.0; + // force the symmetry axes to be + // parallel to the coordinate system (zero tilt): c = 0 + if (constraints[i] == zerotilt) matrix[numpoints][2] = 1.0; + // force a parabula (if zerotilt): b = 0 + if (constraints[i] == parabolaifzt) matrix[numpoints][1] = 1.0; + // force a circle (if zerotilt): a = b + if (constraints[i] == circleifzt) { + matrix[numpoints][0] = 1.0; + matrix[numpoints][1] = -1.0; } + // force an equilateral hyperbola: a + b = 0 + if (constraints[i] == equilateral) { + matrix[numpoints][0] = 1.0; + matrix[numpoints][1] = 1.0; } + // force symmetry about y-axis: d = 0 + if (constraints[i] == ysymmetry) matrix[numpoints][3] = 1.0; + // force symmetry about x-axis: e = 0 + if (constraints[i] == xsymmetry) matrix[numpoints][4] = 1.0; + + if (constraints[i] != noconstraint) ++numpoints; + } + + if ( ! GaussianElimination( matrix, numpoints, 6, scambio ) ) + return ConicCartesianData::invalidData(); + // fine della fase di eliminazione + BackwardSubstitution( matrix, numpoints, 6, scambio, solution ); + + // now solution should contain the correct coefficients.. + return ConicCartesianData( solution ); +} + +const ConicPolarData calcConicBFFP( + const std::vector<Coordinate>& args, + int type ) +{ + assert( args.size() >= 2 && args.size() <= 3 ); + assert( type == 1 || type == -1 ); + + ConicPolarData ret; + + Coordinate f1 = args[0]; + Coordinate f2 = args[1]; + Coordinate d; + double eccentricity, d1, d2, dl; + + Coordinate f2f1 = f2 - f1; + double f2f1l = f2f1.length(); + ret.ecostheta0 = f2f1.x / f2f1l; + ret.esintheta0 = f2f1.y / f2f1l; + + if ( args.size() == 3 ) + { + d = args[2]; + d1 = ( d - f1 ).length(); + d2 = ( d - f2 ).length(); + dl = fabs( d1 + type * d2 ); + eccentricity = f2f1l/dl; + } + else + { + if ( type > 0 ) eccentricity = 0.7; else eccentricity = 2.0; + dl = f2f1l/eccentricity; + } + + double rhomax = (dl + f2f1l) /2.0; + + ret.ecostheta0 *= eccentricity; + ret.esintheta0 *= eccentricity; + ret.pdimen = type*(1 - eccentricity)*rhomax; + ret.focus1 = type == 1 ? f1 : f2; + return ret; +} + +const LineData calcConicPolarLine ( + const ConicCartesianData& data, + const Coordinate& cpole, + bool& valid ) +{ + double x = cpole.x; + double y = cpole.y; + double a = data.coeffs[0]; + double b = data.coeffs[1]; + double c = data.coeffs[2]; + double d = data.coeffs[3]; + double e = data.coeffs[4]; + double f = data.coeffs[5]; + + double alpha = 2*a*x + c*y + d; + double beta = c*x + 2*b*y + e; + double gamma = d*x + e*y + 2*f; + + double normsq = alpha*alpha + beta*beta; + + if (normsq < 1e-10) // line at infinity + { + valid = false; + return LineData(); + } + valid = true; + + Coordinate reta = -gamma/normsq * Coordinate (alpha, beta); + Coordinate retb = reta + Coordinate (-beta, alpha); + return LineData( reta, retb ); +} + +const Coordinate calcConicPolarPoint ( + const ConicCartesianData& data, + const LineData& polar ) +{ + Coordinate p1 = polar.a; + Coordinate p2 = polar.b; + + double alpha = p2.y - p1.y; + double beta = p1.x - p2.x; + double gamma = p1.y*p2.x - p1.x*p2.y; + + double a11 = data.coeffs[0]; + double a22 = data.coeffs[1]; + double a12 = data.coeffs[2]/2.0; + double a13 = data.coeffs[3]/2.0; + double a23 = data.coeffs[4]/2.0; + double a33 = data.coeffs[5]; + +// double detA = a11*a22*a33 - a11*a23*a23 - a22*a13*a13 - a33*a12*a12 + +// 2*a12*a23*a13; + + double a11inv = a22*a33 - a23*a23; + double a22inv = a11*a33 - a13*a13; + double a33inv = a11*a22 - a12*a12; + double a12inv = a23*a13 - a12*a33; + double a23inv = a12*a13 - a23*a11; + double a13inv = a12*a23 - a13*a22; + + double x = a11inv*alpha + a12inv*beta + a13inv*gamma; + double y = a12inv*alpha + a22inv*beta + a23inv*gamma; + double z = a13inv*alpha + a23inv*beta + a33inv*gamma; + + if (fabs(z) < 1e-10) // point at infinity + { + return Coordinate::invalidCoord(); + } + + x /= z; + y /= z; + return Coordinate (x, y); +} + +const Coordinate calcConicLineIntersect( const ConicCartesianData& c, + const LineData& l, + double knownparam, + int which ) +{ + assert( which == 1 || which == -1 || which == 0 ); + + double aa = c.coeffs[0]; + double bb = c.coeffs[1]; + double cc = c.coeffs[2]; + double dd = c.coeffs[3]; + double ee = c.coeffs[4]; + double ff = c.coeffs[5]; + + double x = l.a.x; + double y = l.a.y; + double dx = l.b.x - l.a.x; + double dy = l.b.y - l.a.y; + + double aaa = aa*dx*dx + bb*dy*dy + cc*dx*dy; + double bbb = 2*aa*x*dx + 2*bb*y*dy + cc*x*dy + cc*y*dx + dd*dx + ee*dy; + double ccc = aa*x*x + bb*y*y + cc*x*y + dd*x + ee*y + ff; + + double t; + if ( which == 0 ) /* i.e. we have a known intersection */ + { + t = - bbb/aaa - knownparam; + return l.a + t*(l.b - l.a); + } + + double discrim = bbb*bbb - 4*aaa*ccc; + if (discrim < 0.0) + { + return Coordinate::invalidCoord(); + } + else + { + if ( which*bbb > 0 ) + { + t = bbb + which*sqrt(discrim); + t = - 2*ccc/t; + } else { + t = -bbb + which*sqrt(discrim); + t /= 2*aaa; + } + + return l.a + t*(l.b - l.a); + } +} + +ConicPolarData::ConicPolarData( + const Coordinate& f, double d, + double ec, double es ) + : focus1( f ), pdimen( d ), ecostheta0( ec ), esintheta0( es ) +{ +} + +ConicPolarData::ConicPolarData() + : focus1(), pdimen( 0 ), ecostheta0( 0 ), esintheta0( 0 ) +{ +} + +const ConicPolarData calcConicBDFP( + const LineData& directrix, + const Coordinate& cfocus, + const Coordinate& cpoint ) +{ + ConicPolarData ret; + + Coordinate ba = directrix.dir(); + double bal = ba.length(); + ret.ecostheta0 = -ba.y / bal; + ret.esintheta0 = ba.x / bal; + + Coordinate pa = cpoint - directrix.a; + + double distpf = (cpoint - cfocus).length(); + double distpd = ( pa.y*ba.x - pa.x*ba.y)/bal; + + double eccentricity = distpf/distpd; + ret.ecostheta0 *= eccentricity; + ret.esintheta0 *= eccentricity; + + Coordinate fa = cfocus - directrix.a; + ret.pdimen = ( fa.y*ba.x - fa.x*ba.y )/bal; + ret.pdimen *= eccentricity; + ret.focus1 = cfocus; + + return ret; +} + +ConicCartesianData::ConicCartesianData( const double incoeffs[6] ) +{ + std::copy( incoeffs, incoeffs + 6, coeffs ); +} + +const LineData calcConicAsymptote( + const ConicCartesianData data, + int which, bool &valid ) +{ + assert( which == -1 || which == 1 ); + + LineData ret; + double a=data.coeffs[0]; + double b=data.coeffs[1]; + double c=data.coeffs[2]; + double d=data.coeffs[3]; + double e=data.coeffs[4]; + + double normabc = a*a + b*b + c*c; + double delta = c*c - 4*a*b; + if (fabs(delta) < 1e-6*normabc) { valid = false; return ret; } + + double yc = (2*a*e - c*d)/delta; + double xc = (2*b*d - c*e)/delta; + // let c be nonnegative; we no longer need d, e, f. + if (c < 0) + { + c *= -1; + a *= -1; + b *= -1; + } + + if ( delta < 0 ) + { + valid = false; + return ret; + } + + double sqrtdelta = sqrt(delta); + Coordinate displacement; + if (which > 0) + displacement = Coordinate(-2*b, c + sqrtdelta); + else + displacement = Coordinate(c + sqrtdelta, -2*a); + ret.a = Coordinate(xc, yc); + ret.b = ret.a + displacement; + return ret; +} + +const ConicCartesianData calcConicByAsymptotes( + const LineData& line1, + const LineData& line2, + const Coordinate& p ) +{ + Coordinate p1 = line1.a; + Coordinate p2 = line1.b; + double x = p.x; + double y = p.y; + + double c1 = p1.x*p2.y - p2.x*p1.y; + double b1 = p2.x - p1.x; + double a1 = p1.y - p2.y; + + p1 = line2.a; + p2 = line2.b; + + double c2 = p1.x*p2.y - p2.x*p1.y; + double b2 = p2.x - p1.x; + double a2 = p1.y - p2.y; + + double a = a1*a2; + double b = b1*b2; + double c = a1*b2 + a2*b1; + double d = a1*c2 + a2*c1; + double e = b1*c2 + c1*b2; + + double f = a*x*x + b*y*y + c*x*y + d*x + e*y; + f = -f; + + return ConicCartesianData( a, b, c, d, e, f ); +} + +const LineData calcConicRadical( const ConicCartesianData& cequation1, + const ConicCartesianData& cequation2, + int which, int zeroindex, bool& valid ) +{ + assert( which == 1 || which == -1 ); + assert( 0 < zeroindex && zeroindex < 4 ); + LineData ret; + valid = true; + + double a = cequation1.coeffs[0]; + double b = cequation1.coeffs[1]; + double c = cequation1.coeffs[2]; + double d = cequation1.coeffs[3]; + double e = cequation1.coeffs[4]; + double f = cequation1.coeffs[5]; + + double a2 = cequation2.coeffs[0]; + double b2 = cequation2.coeffs[1]; + double c2 = cequation2.coeffs[2]; + double d2 = cequation2.coeffs[3]; + double e2 = cequation2.coeffs[4]; + double f2 = cequation2.coeffs[5]; + +// background: the family of conics c + lambda*c2 has members that +// degenerate into a union of two lines. The values of lambda giving +// such degenerate conics is the solution of a third degree equation. +// The coefficients of such equation are given by: +// (Thanks to Dominique Devriese for the suggestion of this approach) +// domi: (And thanks to Maurizio for implementing it :) + + double df = 4*a*b*f - a*e*e - b*d*d - c*c*f + c*d*e; + double cf = 4*a2*b*f + 4*a*b2*f + 4*a*b*f2 + - 2*a*e*e2 - 2*b*d*d2 - 2*f*c*c2 + - a2*e*e - b2*d*d - f2*c*c + + c2*d*e + c*d2*e + c*d*e2; + double bf = 4*a*b2*f2 + 4*a2*b*f2 + 4*a2*b2*f + - 2*a2*e2*e - 2*b2*d2*d - 2*f2*c2*c + - a*e2*e2 - b*d2*d2 - f*c2*c2 + + c*d2*e2 + c2*d*e2 + c2*d2*e; + double af = 4*a2*b2*f2 - a2*e2*e2 - b2*d2*d2 - c2*c2*f2 + c2*d2*e2; + +// assume both conics are nondegenerate, renormalize so that af = 1 + + df /= af; + cf /= af; + bf /= af; + af = 1.0; // not needed, just for consistency + +// computing the coefficients of the Sturm sequence + + double p1a = 2*bf*bf - 6*cf; + double p1b = bf*cf - 9*df; + double p0a = cf*p1a*p1a + p1b*(3*p1b - 2*bf*p1a); + double fval, fpval, lambda; + + if (p0a < 0 && p1a < 0) + { + // -+-- ---+ + valid = false; + return ret; + } + + lambda = -bf/3.0; //inflection point + double displace = 1.0; + if (p1a > 0) // with two stationary points + { + displace += sqrt(p1a); // should be enough. The important + // thing is that it is larger than the + // semidistance between the stationary points + } + // compute the value at the inflection point using Horner scheme + fval = bf + lambda; // b + x + fval = cf + lambda*fval; // c + xb + xx + fval = df + lambda*fval; // d + xc + xxb + xxx + + if (fabs(p0a) < 1e-7) + { // this is the case if we intersect two vertical parabulas! + p0a = 1e-7; // fall back to the one zero case + } + if (p0a < 0) + { + // we have three roots.. + // we select the one we want ( defined by mzeroindex.. ) + lambda += ( 2 - zeroindex )* displace; + } + else + { + // we have just one root + if( zeroindex > 1 ) // cannot find second and third root + { + valid = false; + return ret; + } + + if (fval > 0) // zero on the left + { + lambda -= displace; + } else { // zero on the right + lambda += displace; + } + + // p0a = 0 means we have a root with multiplicity two + } + +// +// find a root of af*lambda^3 + bf*lambda^2 + cf*lambda + df = 0 +// (use a Newton method starting from lambda = 0. Hope...) +// + + double delta; + + int iterations = 0; + const int maxiterations = 30; + while (iterations++ < maxiterations) // using Newton, iterations should be very few + { + // compute value of function and polinomial + fval = fpval = af; + fval = bf + lambda*fval; // b + xa + fpval = fval + lambda*fpval; // b + 2xa + fval = cf + lambda*fval; // c + xb + xxa + fpval = fval + lambda*fpval; // c + 2xb + 3xxa + fval = df + lambda*fval; // d + xc + xxb + xxxa + + delta = fval/fpval; + lambda -= delta; + if (fabs(delta) < 1e-6) break; + } + if (iterations >= maxiterations) { valid = false; return ret; } + + // now we have the degenerate conic: a, b, c, d, e, f + + a += lambda*a2; + b += lambda*b2; + c += lambda*c2; + d += lambda*d2; + e += lambda*e2; + f += lambda*f2; + + // domi: + // this is the determinant of the matrix of the new conic. It + // should be zero, for the new conic to be degenerate. + df = 4*a*b*f - a*e*e - b*d*d - c*c*f + c*d*e; + + //lets work in homogeneous coordinates... + + double dis1 = e*e - 4*b*f; + double maxval = fabs(dis1); + int maxind = 1; + double dis2 = d*d - 4*a*f; + if (fabs(dis2) > maxval) + { + maxval = fabs(dis2); + maxind = 2; + } + double dis3 = c*c - 4*a*b; + if (fabs(dis3) > maxval) + { + maxval = fabs(dis3); + maxind = 3; + } + // one of these must be nonzero (otherwise the matrix is ...) + // exchange elements so that the largest is the determinant of the + // first 2x2 minor + double temp; + switch (maxind) + { + case 1: // exchange 1 <-> 3 + temp = a; a = f; f = temp; + temp = c; c = e; e = temp; + temp = dis1; dis1 = dis3; dis3 = temp; + break; + + case 2: // exchange 2 <-> 3 + temp = b; b = f; f = temp; + temp = c; c = d; d = temp; + temp = dis2; dis2 = dis3; dis3 = temp; + break; + } + + // domi: + // this is the negative of the determinant of the top left of the + // matrix. If it is 0, then the conic is a parabola, if it is < 0, + // then the conic is an ellipse, if positive, the conic is a + // hyperbola. In this case, it should be positive, since we have a + // degenerate conic, which is a degenerate case of a hyperbola.. + // note that it is negative if there is no valid conic to be + // found ( e.g. not enough intersections.. ) + // double discrim = c*c - 4*a*b; + + if (dis3 < 0) + { + // domi: + // i would put an assertion here, but well, i guess it doesn't + // really matter, and this prevents crashes if the math i still + // recall from high school happens to be wrong :) + valid = false; + return ret; + }; + + double r[3]; // direction of the null space + r[0] = 2*b*d - c*e; + r[1] = 2*a*e - c*d; + r[2] = dis3; + + // now remember the switch: + switch (maxind) + { + case 1: // exchange 1 <-> 3 + temp = a; a = f; f = temp; + temp = c; c = e; e = temp; + temp = dis1; dis1 = dis3; dis3 = temp; + temp = r[0]; r[0] = r[2]; r[2] = temp; + break; + + case 2: // exchange 2 <-> 3 + temp = b; b = f; f = temp; + temp = c; c = d; d = temp; + temp = dis2; dis2 = dis3; dis3 = temp; + temp = r[1]; r[1] = r[2]; r[2] = temp; + break; + } + + // Computing a Householder reflection transformation that + // maps r onto [0, 0, k] + + double w[3]; + double rnormsq = r[0]*r[0] + r[1]*r[1] + r[2]*r[2]; + double k = sqrt( rnormsq ); + if ( k*r[2] < 0) k = -k; + double wnorm = sqrt( 2*rnormsq + 2*k*r[2] ); + w[0] = r[0]/wnorm; + w[1] = r[1]/wnorm; + w[2] = (r[2] + k)/wnorm; + + // matrix transformation using Householder matrix, the resulting + // matrix is zero on third row and column + // [q0,q1,q2]^t = A w + // alpha = w^t A w + double q0 = a*w[0] + c*w[1]/2 + d*w[2]/2; + double q1 = b*w[1] + c*w[0]/2 + e*w[2]/2; + double alpha = a*w[0]*w[0] + b*w[1]*w[1] + c*w[0]*w[1] + + d*w[0]*w[2] + e*w[1]*w[2] + f*w[2]*w[2]; + double a00 = a - 4*w[0]*q0 + 4*w[0]*w[0]*alpha; + double a11 = b - 4*w[1]*q1 + 4*w[1]*w[1]*alpha; + double a01 = c/2 - 2*w[1]*q0 - 2*w[0]*q1 + 4*w[0]*w[1]*alpha; + + double dis = a01*a01 - a00*a11; + assert ( dis >= 0 ); + double sqrtdis = sqrt( dis ); + double px, py; + if ( which*a01 > 0 ) + { + px = a01 + which*sqrtdis; + py = a11; + } else { + px = a00; + py = a01 - which*sqrtdis; + } + double p[3]; // vector orthogonal to one of the two planes + double pscalw = w[0]*px + w[1]*py; + p[0] = px - 2*pscalw*w[0]; + p[1] = py - 2*pscalw*w[1]; + p[2] = - 2*pscalw*w[2]; + + // "r" is the solution of the equation A*(x,y,z) = (0,0,0) where + // A is the matrix of the degenerate conic. This is what we + // called in the conic theory we saw in high school a "double + // point". It has the unique property that any line going through + // it is a "polar line" of the conic at hand. It only exists for + // degenerate conics. It has another unique property that if you + // take any other point on the conic, then the line between it and + // the double point is part of the conic. + // this is what we use here: we find the double point ( ret.a + // ), and then find another points on the conic. + + ret.a = -p[2]/(p[0]*p[0] + p[1]*p[1]) * Coordinate (p[0],p[1]); + ret.b = ret.a + Coordinate (-p[1],p[0]); + valid = true; + + return ret; +} + +const ConicCartesianData calcConicTransformation ( + const ConicCartesianData& data, const Transformation& t, bool& valid ) +{ + double a[3][3]; + double b[3][3]; + + a[1][1] = data.coeffs[0]; + a[2][2] = data.coeffs[1]; + a[1][2] = a[2][1] = data.coeffs[2]/2; + a[0][1] = a[1][0] = data.coeffs[3]/2; + a[0][2] = a[2][0] = data.coeffs[4]/2; + a[0][0] = data.coeffs[5]; + + Transformation ti = t.inverse( valid ); + if ( ! valid ) return ConicCartesianData(); + + double supnorm = 0.0; + for (int i = 0; i < 3; i++) + { + for (int j = 0; j < 3; j++) + { + b[i][j] = 0.; + for (int ii = 0; ii < 3; ii++) + { + for (int jj = 0; jj < 3; jj++) + { + b[i][j] += a[ii][jj]*ti.data( ii, i )*ti.data( jj, j ); + } + } + if ( std::fabs( b[i][j] ) > supnorm ) supnorm = std::fabs( b[i][j] ); + } + } + + for (int i = 0; i < 3; i++) + { + for (int j = 0; j < 3; j++) + { + b[i][j] /= supnorm; + } + } + + return ConicCartesianData ( b[1][1], b[2][2], b[1][2] + b[2][1], + b[0][1] + b[1][0], b[0][2] + b[2][0], b[0][0] ); +} + +ConicCartesianData::ConicCartesianData() +{ +} + +bool operator==( const ConicPolarData& lhs, const ConicPolarData& rhs ) +{ + return lhs.focus1 == rhs.focus1 && + lhs.pdimen == rhs.pdimen && + lhs.ecostheta0 == rhs.ecostheta0 && + lhs.esintheta0 == rhs.esintheta0; +} + +ConicCartesianData ConicCartesianData::invalidData() +{ + ConicCartesianData ret; + ret.coeffs[0] = double_inf; + return ret; +} + +bool ConicCartesianData::valid() const +{ + return finite( coeffs[0] ); +} + |