summaryrefslogtreecommitdiffstats
path: root/doc/kmplot/using.docbook
diff options
context:
space:
mode:
Diffstat (limited to 'doc/kmplot/using.docbook')
-rw-r--r--doc/kmplot/using.docbook321
1 files changed, 321 insertions, 0 deletions
diff --git a/doc/kmplot/using.docbook b/doc/kmplot/using.docbook
new file mode 100644
index 00000000..88092ad8
--- /dev/null
+++ b/doc/kmplot/using.docbook
@@ -0,0 +1,321 @@
+<chapter id="using-kmplot">
+<title>Using &kmplot;</title>
+
+<para>&kmplot; deals with named functions, which can be specified in
+terms of Cartesian coordinates (called <quote>explicit
+functions</quote>), polar coordinates or as parametric functions. To
+enter a function, choose
+<menuchoice><guimenu>Plot</guimenu><guimenuitem>Edit
+Plots...</guimenuitem> </menuchoice>. You can also enter new functions
+in the <guilabel>Function equation</guilabel> text box in the main
+&kmplot; window. The text box can handle explicit and polar
+functions. Each function you enter must have a unique name (&ie;, a
+name that is not taken by any of the existing functions displayed in
+the list box). A function name will be automatically generated if you
+do not specify one.</para>
+
+<para>For more information on &kmplot; functions, see <xref
+linkend="reference"/>.
+</para>
+
+<screenshot>
+<screeninfo>Here is a screenshot of the &kmplot; welcome window</screeninfo>
+ <mediaobject>
+ <imageobject>
+ <imagedata fileref="main.png" format="PNG"/>
+ </imageobject>
+ <textobject>
+ <phrase>Screenshot</phrase>
+ </textobject>
+ </mediaobject>
+</screenshot>
+
+<sect1 id="function-types">
+<title>Function Types</title>
+
+<sect2 id="explicit-functions">
+<title>Explicit Functions</title>
+<para>To enter an explicit function (&ie;, a function in the form y=f(x)) into &kmplot;, just enter it in the
+following form:
+<screen>
+<userinput><replaceable>f</replaceable>(<replaceable>x</replaceable>)=<replaceable>expression</replaceable></userinput>
+</screen>
+Where:
+<itemizedlist>
+<listitem><para>
+ <replaceable>f</replaceable> is the name of the function, and can be any
+string of letters and numbers you like, provided it does not start with any of
+the letters x, y or r (since these are used for parametric and polar
+functions).</para>
+</listitem>
+
+<listitem><para>
+<replaceable>x</replaceable> is the x-coordinate, to be used in the expression
+following the equals sign. It is in fact a dummy variable, so you can use any
+variable name you like, but the effect will be the same.</para>
+</listitem>
+
+<listitem>
+<para><replaceable>expression</replaceable> is the expression to be plotted,
+given in appropriate syntax for &kmplot;. See <xref linkend="math-syntax"/>.
+</para>
+</listitem>
+
+</itemizedlist>
+</para>
+<para>As an example, to draw the graph of y=x<superscript>2</superscript>+2x,
+enter the following into the functions dialog of &kmplot;:
+<screen>
+f(x)=x^2+2x
+</screen>
+</para>
+</sect2>
+
+<sect2 id="parametric-functions">
+<title>Parametric Functions</title>
+<para>Parametric functions are those in which the x and y coordinates are
+defined by separate functions of another variable, often called t. To enter a
+parametric function in &kmplot;, follow the procedure as for an explicit
+function, but prefix the name of the function describing the x-coordinate with
+the letter x, and the function describing the y-coordinate with the letter
+y. As with explicit functions, you may use any variable name you wish for the
+parameter. To draw a parametric function, you must go to <guimenu>Plot</guimenu><guimenuitem>New Parametric Plot...</guimenuitem>. A function name will be created automatic if you do not specify one.</para>
+<para>As an example, suppose you want to draw a circle, which has parametric
+equations x=sin(t), y=cos(t). In the &kmplot; functions dialog, do the
+following:
+<orderedlist>
+<listitem><para>Open the parametric plot dialog with
+<menuchoice><guimenu>Plot</guimenu><guimenuitem>New Parametric Plot...</guimenuitem>
+</menuchoice>.</para>
+</listitem>
+<listitem><para>Enter a name for the function, say,
+<userinput>circle</userinput>, in the <guilabel>Name</guilabel>
+box. The names of the x and y functions change to match this name: the
+x function becomes <guilabel>xcircle(t)</guilabel> and the y function
+becomes <guilabel>ycircle(t)</guilabel>.</para>
+</listitem>
+<listitem>
+<para>In the x and y boxes, enter the appropriate equations, &ie;,
+<guilabel>xcircle(t)=</guilabel><userinput>sin(t)</userinput> and
+<guilabel>ycircle(t)=</guilabel><userinput>cos(t)</userinput>.</para>
+</listitem>
+</orderedlist>
+Click on <guibutton>OK</guibutton> and the function will be drawn.
+</para>
+<para>You can set some further options for the plot in this dialog:
+<variablelist>
+
+<varlistentry>
+<term><guilabel>Hide</guilabel></term>
+<listitem>
+<para>If this option is selected, the plot is not drawn, but &kmplot;
+remembers the function definition, so you can use it to define other
+functions.</para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><guilabel>Custom plot minimum-range</guilabel></term>
+<term><guilabel>Custom plot maximum-range</guilabel></term>
+<listitem>
+<para>If this options are selected, you can change the maximum and
+minimum values of the parameter t for which the function is plotted
+using the <guilabel>Min:</guilabel> and <guilabel>Max:</guilabel>
+boxes.</para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><guilabel>Line width:</guilabel></term>
+<listitem>
+<para>With this option you can set the width of the line drawn on the
+plot area, in units of 0.1mm.</para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><guilabel>Color:</guilabel></term>
+<listitem>
+<para>Click on the color box and pick a color in the dialog that
+appears. The line on the plot will be drawn in this color.</para>
+</listitem>
+</varlistentry>
+</variablelist>
+</para>
+</sect2>
+
+<sect2 id="polar-functions">
+<title>Entering Functions in Polar Coordinates</title>
+
+<para>Polar coordinates represent a point by its distance from the origin
+(usually called r), and the angle a line from the origin to the point makes
+with the x-axis (usually represented by the Greek letter theta). To enter
+functions in polar coordinates, use the menu entry
+<menuchoice><guimenu>Plot</guimenu><guimenuitem>New Polar Plot...</guimenuitem>
+</menuchoice>. In the box labeled <guilabel>r</guilabel>, complete the
+function definition, including the name of the theta variable you want
+to use, &eg;, to draw the Archimedes' spiral r=theta, enter:
+<screen>
+<userinput>
+(theta)=theta
+</userinput>
+</screen>
+so that the whole line reads <quote>r(theta)=theta</quote>. Note that
+you can use any name for the theta variable, so
+<quote>r(foo)=foo</quote> would have produced exactly the same output.
+</para>
+
+</sect2>
+
+</sect1>
+
+<sect1 id="combining-functions">
+<title>Combining Functions</title>
+<para>Functions can be combined to produce new ones. Simply enter the functions
+after the equals sign in an expression as if the functions were variables. For
+example, if you have defined functions f(x) and g(x), you can plot the sum of f
+and g with:
+<screen>
+<userinput>
+sum(x)=f(x)+g(x)
+</userinput>
+</screen>
+</para>
+<para>Note that you can only combine functions of the same type, &eg; an
+explicit function cannot be combined with a polar function.</para>
+</sect1>
+
+<sect1 id="function-appearance">
+<title>Changing the appearance of functions</title>
+
+<para>To change the appearance of a function's graph on the main plot
+window, select the function in the <guilabel>Edit Plots</guilabel>
+dialog, and click on the <guibutton>Edit</guibutton> button. In the
+dialog which appears, you can change the line width in the text box,
+and the color of the function's graph by clicking on the color button
+at the bottom. If you are editing an explicit function, you will see a
+dialog with three tabs. In the first one you specify the equation of
+the function. The <guilabel>Derivatives</guilabel> tab lets you draw
+the first and second derivative to the function. With the
+<guilabel>Integral</guilabel> tab you can draw the integral of the
+function which is calculated using Euler's method. </para>
+<para>Another way to edit a function is to right click on the
+graph. In the popup menu that appears, choose
+<guibutton>Edit</guibutton></para>
+
+<para>For more information on the popup menu, see <xref
+linkend="popupmenu"/>.
+</para>
+</sect1>
+
+<sect1 id="popupmenu">
+<title>Popup menu</title>
+
+<para>When right-clicking on a plot function or a single-point parametric plot function a popup menu will appear.
+In the menu there are five items available:</para>
+
+<variablelist>
+<varlistentry>
+<term><menuchoice><guimenuitem>Hide</guimenuitem>
+</menuchoice></term>
+<listitem>
+<para>Hides the selected graph. Other plots of the graph's function will still be shown.</para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><menuchoice><guimenuitem>Remove</guimenuitem>
+</menuchoice></term>
+<listitem>
+<para>Removes the function. All its graphs will disappear.</para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><menuchoice><guimenuitem>Edit</guimenuitem>
+</menuchoice></term>
+<listitem>
+<para>Shows the editor dialog for the selected function.</para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><menuchoice><guimenuitem>Copy</guimenuitem>
+</menuchoice></term>
+<listitem>
+<para>Copies the graph to another running &kmplot; instance.</para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><menuchoice><guimenuitem>Move</guimenuitem>
+</menuchoice></term>
+<listitem>
+<para>Moves the graph to another running &kmplot; instance.</para>
+</listitem>
+</varlistentry>
+</variablelist>
+
+<para>For plot functions the following four items are also available:</para>
+
+<variablelist>
+<varlistentry>
+<term><menuchoice><guimenuitem>Get y-Value</guimenuitem>
+</menuchoice></term>
+<listitem>
+<para>Opens a dialog in which you can find the y-value corresponding to
+a specific x-value. The selected graph will be highlighted in the
+dialog. Enter an x value in the <guilabel>X:</guilabel> box, and click
+on <guibutton>Calculate</guibutton> (or press &Enter;). The corresponding y
+value will be shown under <guilabel>Y:</guilabel>.
+</para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><menuchoice><guimenuitem>Search for Minimum Value</guimenuitem>
+</menuchoice></term>
+<listitem>
+<para>Find the minimum value of the graph in a specified range. The
+selected graph will be highlighted in the dialog that appears. Enter
+the lower and upper boundaries of the region in which you want to
+search for a minimum, and click <guibutton>Find</guibutton>. The x and
+y values at the minimum will be shown.</para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><menuchoice><guimenuitem>Search for Maximum Value</guimenuitem>
+</menuchoice></term>
+<listitem>
+<para>This is the same as <guimenuitem>Search for Minimum
+Value</guimenuitem> above, but finds maximum values instead of minima. </para>
+</listitem>
+</varlistentry>
+
+<varlistentry>
+<term><menuchoice><guimenuitem>Calculate Integral</guimenuitem>
+</menuchoice></term>
+<listitem>
+<para>Select the x-values for the graph in the new dialog that appears.
+Calulates the integral and draws the area between the graph and the x-axis in the
+selected range in the color of the graph.</para>
+</listitem>
+</varlistentry>
+</variablelist>
+
+
+</sect1>
+
+
+</chapter>
+<!--
+Local Variables:
+mode: sgml
+sgml-minimize-attributes:nil
+sgml-general-insert-case:lower
+sgml-indent-step:0
+sgml-indent-data:nil
+sgml-parent-document:("index.docbook" "BOOK" "CHAPTER")
+End:
+-->