summaryrefslogtreecommitdiffstats
path: root/kig/misc/kigtransform.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'kig/misc/kigtransform.cpp')
-rw-r--r--kig/misc/kigtransform.cpp810
1 files changed, 810 insertions, 0 deletions
diff --git a/kig/misc/kigtransform.cpp b/kig/misc/kigtransform.cpp
new file mode 100644
index 00000000..a297ed6e
--- /dev/null
+++ b/kig/misc/kigtransform.cpp
@@ -0,0 +1,810 @@
+/**
+ This file is part of Kig, a KDE program for Interactive Geometry...
+ Copyright (C) 2002 Maurizio Paolini <paolini@dmf.unicatt.it>
+ Copyright (C) 2003 Dominique Devriese <devriese@kde.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
+ USA
+**/
+
+#include "kigtransform.h"
+
+#include "kignumerics.h"
+#include "common.h"
+
+#include <cmath>
+
+#include <klocale.h>
+#include <kdebug.h>
+
+// Transformation getProjectiveTransformation ( int argsnum,
+// Object *transforms[], bool& valid )
+// {
+// valid = true;
+
+// assert ( argsnum > 0 );
+// int argn = 0;
+// Object* transform = transforms[argn++];
+// if (transform->toVector())
+// {
+// // translation
+// assert (argn == argsnum);
+// Vector* v = transform->toVector();
+// Coordinate dir = v->getDir();
+// return Transformation::translation( dir );
+// }
+
+// if (transform->toPoint())
+// {
+// // point reflection ( or is point symmetry the correct term ? )
+// assert (argn == argsnum);
+// Point* p = transform->toPoint();
+// return Transformation::pointReflection( p->getCoord() );
+// }
+
+// if (transform->toLine())
+// {
+// // line reflection ( or is it line symmetry ? )
+// Line* line = transform->toLine();
+// assert (argn == argsnum);
+// return Transformation::lineReflection( line->lineData() );
+// }
+
+// if (transform->toRay())
+// {
+// // domi: sorry, but what kind of transformation does this do ?
+// // i'm guessing it's some sort of rotation, but i'm not
+// // really sure..
+// Ray* line = transform->toRay();
+// Coordinate d = line->direction().normalize();
+// Coordinate t = line->p1();
+// double alpha = 0.1*M_PI/2; // a small angle for the DrawPrelim
+// if (argn < argsnum)
+// {
+// Angle* angle = transforms[argn++]->toAngle();
+// alpha = angle->size();
+// }
+// assert (argn == argsnum);
+// return Transformation::projectiveRotation( alpha, d, t );
+// }
+
+// if (transform->toAngle())
+// {
+// // rotation..
+// Coordinate center = Coordinate( 0., 0. );
+// if (argn < argsnum)
+// {
+// Object* arg = transforms[argn++];
+// assert (arg->toPoint());
+// center = arg->toPoint()->getCoord();
+// }
+// Angle* angle = transform->toAngle();
+// double alpha = angle->size();
+
+// assert (argn == argsnum);
+
+// return Transformation::rotation( alpha, center );
+// }
+
+// if (transform->toSegment()) // this is a scaling
+// {
+// Segment* segment = transform->toSegment();
+// Coordinate p = segment->p2() - segment->p1();
+// double s = p.length();
+// if (argn < argsnum)
+// {
+// Object* arg = transforms[argn++];
+// if (arg->toSegment()) // s is the length of the first segment
+// // divided by the length of the second..
+// {
+// Segment* segment = arg->toSegment();
+// Coordinate p = segment->p2() - segment->p1();
+// s /= p.length();
+// if (argn < argsnum) arg = transforms[argn++];
+// }
+// if (arg->toPoint()) // scaling w.r. to a point
+// {
+// Point* p = arg->toPoint();
+// assert (argn == argsnum);
+// return Transformation::scaling( s, p->getCoord() );
+// }
+// if (arg->toLine()) // scaling w.r. to a line
+// {
+// Line* line = arg->toLine();
+// assert( argn == argsnum );
+// return Transformation::scaling( s, line->lineData() );
+// }
+// }
+
+// return Transformation::scaling( s, Coordinate( 0., 0. ) );
+// }
+
+// valid = false;
+// return Transformation::identity();
+// }
+
+// tWantArgsResult WantTransformation ( Objects::const_iterator& i,
+// const Objects& os )
+// {
+// Object* o = *i++;
+// if (o->toVector()) return tComplete;
+// if (o->toPoint()) return tComplete;
+// if (o->toLine()) return tComplete;
+// if (o->toAngle())
+// {
+// if ( i == os.end() ) return tNotComplete;
+// o = *i++;
+// if (o->toPoint()) return tComplete;
+// if (o->toLine()) return tComplete;
+// return tNotGood;
+// }
+// if (o->toRay())
+// {
+// if ( i == os.end() ) return tNotComplete;
+// o = *i++;
+// if (o->toAngle()) return tComplete;
+// return tNotGood;
+// }
+// if (o->toSegment())
+// {
+// if ( i == os.end() ) return tNotComplete;
+// o = *i++;
+// if ( o->toSegment() )
+// {
+// if ( i == os.end() ) return tNotComplete;
+// o = *i++;
+// }
+// if (o->toPoint()) return tComplete;
+// if (o->toLine()) return tComplete;
+// return tNotGood;
+// }
+// return tNotGood;
+// }
+
+// QString getTransformMessage ( const Objects& os, const Object *o )
+// {
+// int size = os.size();
+// switch (size)
+// {
+// case 1:
+// if (o->toVector()) return i18n("translate by this vector");
+// if (o->toPoint()) return i18n("central symmetry by this point. You"
+// " can obtain different transformations by clicking on lines (mirror),"
+// " vectors (translation), angles (rotation), segments (scaling) and rays"
+// " (projective transformation)");
+// if (o->toLine()) return i18n("reflect in this line");
+// if (o->toAngle()) return i18n("rotate by this angle");
+// if (o->toSegment()) return i18n("scale using the length of this vector");
+// if (o->toRay()) return i18n("a projective transformation in the direction"
+// " indicated by this ray, it is a rotation in the projective plane"
+// " about a point at infinity");
+// return i18n("Use this transformation");
+
+// case 2: // we ask for the first parameter of the transformation
+// case 3:
+// if (os[1]->toAngle())
+// {
+// if (o->toPoint()) return i18n("about this point");
+// assert (false);
+// }
+// if (os[1]->toSegment())
+// {
+// if (o->toSegment())
+// return i18n("relative to the length of this other vector");
+// if (o->toPoint())
+// return i18n("about this point");
+// if (o->toLine())
+// return i18n("about this line");
+// }
+// if (os[1]->toRay())
+// {
+// if (o->toAngle()) return i18n("rotate by this angle in the projective"
+// " plane");
+// }
+// return i18n("Using this object");
+
+// default: assert(false);
+// }
+
+// return i18n("Use this transformation");
+// }
+
+
+/* domi: not necessary anymore, homotheticness is kept as a bool in
+ * the Transformation class..
+ * keeping it here, in case a need for it arises some time in the
+ * future...
+ * decide if the given transformation is homotetic
+ */
+// bool isHomoteticTransformation ( double transformation[3][3] )
+// {
+// if (transformation[0][1] != 0 || transformation[0][2] != 0) return (false);
+// // test the orthogonality of the matrix 2x2 of second and third rows
+// // and columns
+// if (fabs(fabs(transformation[1][1]) -
+// fabs(transformation[2][2])) > 1e-8) return (false);
+// if (fabs(fabs(transformation[1][2]) -
+// fabs(transformation[2][1])) > 1e-8) return (false);
+
+// return transformation[1][2] * transformation[2][1] *
+// transformation[1][1] * transformation[2][2] <= 0.;
+// }
+
+const Transformation Transformation::identity()
+{
+ Transformation ret;
+ for ( int i = 0; i < 3; ++i )
+ for ( int j = 0; j < 3; ++j )
+ ret.mdata[i][j] = ( i == j ? 1 : 0 );
+ ret.mIsHomothety = ret.mIsAffine = true;
+ return ret;
+}
+
+const Transformation Transformation::scalingOverPoint( double factor, const Coordinate& center )
+{
+ Transformation ret;
+ for ( int i = 0; i < 3; ++i )
+ for ( int j = 0; j < 3; ++j )
+ ret.mdata[i][j] = ( i == j ? factor : 0 );
+ ret.mdata[0][0] = 1;
+ ret.mdata[1][0] = center.x - factor * center.x;
+ ret.mdata[2][0] = center.y - factor * center.y;
+ ret.mIsHomothety = ret.mIsAffine = true;
+ return ret;
+}
+
+const Transformation Transformation::translation( const Coordinate& c )
+{
+ Transformation ret = identity();
+ ret.mdata[1][0] = c.x;
+ ret.mdata[2][0] = c.y;
+
+ // this is already set in the identity() constructor, but just for
+ // clarity..
+ ret.mIsHomothety = ret.mIsAffine = true;
+ return ret;
+}
+
+const Transformation Transformation::pointReflection( const Coordinate& c )
+{
+ Transformation ret = scalingOverPoint( -1, c );
+ ret.mIsHomothety = ret.mIsAffine = true;
+ return ret;
+}
+
+const Transformation operator*( const Transformation& a, const Transformation& b )
+{
+ // just multiply the two matrices..
+ Transformation ret;
+
+ for ( int i = 0; i < 3; ++i )
+ for ( int j = 0; j < 3; ++j )
+ {
+ ret.mdata[i][j] = 0;
+ for ( int k = 0; k < 3; ++k )
+ ret.mdata[i][j] += a.mdata[i][k] * b.mdata[k][j];
+ };
+
+ // combination of two homotheties is a homothety..
+
+ ret.mIsHomothety = a.mIsHomothety && b.mIsHomothety;
+
+ // combination of two affinities is affine..
+
+ ret.mIsAffine = a.mIsAffine && b.mIsAffine;
+
+ return ret;
+}
+
+const Transformation Transformation::lineReflection( const LineData& l )
+{
+ Transformation ret = scalingOverLine( -1, l );
+ // a reflection is a homothety...
+ ret.mIsHomothety = ret.mIsAffine = true;
+ return ret;
+}
+
+const Transformation Transformation::scalingOverLine( double factor, const LineData& l )
+{
+ Transformation ret = identity();
+
+ Coordinate a = l.a;
+ Coordinate d = l.dir();
+ double dirnormsq = d.squareLength();
+ ret.mdata[1][1] = (d.x*d.x + factor*d.y*d.y)/dirnormsq;
+ ret.mdata[2][2] = (d.y*d.y + factor*d.x*d.x)/dirnormsq;
+ ret.mdata[1][2] = ret.mdata[2][1] = (d.x*d.y - factor*d.x*d.y)/dirnormsq;
+
+ ret.mdata[1][0] = a.x - ret.mdata[1][1]*a.x - ret.mdata[1][2]*a.y;
+ ret.mdata[2][0] = a.y - ret.mdata[2][1]*a.x - ret.mdata[2][2]*a.y;
+
+ // domi: is 1e-8 a good value ?
+ ret.mIsHomothety = ( fabs( factor - 1 ) < 1e-8 || fabs ( factor + 1 ) < 1e-8 );
+ ret.mIsAffine = true;
+ return ret;
+}
+
+const Transformation Transformation::harmonicHomology(
+ const Coordinate& center, const LineData& axis )
+{
+ // this is a well known projective transformation. We find it by first
+ // computing the homogeneous equation of the axis ax + by + cz = 0
+ // then a straightforward computation shows that the 3x3 matrix describing
+ // the transformation is of the form:
+ //
+ // (r . C) Id - 2 (C tensor r)
+ //
+ // where r = [c, a, b], C = [1, Cx, Cy], Cx and Cy are the coordinates of
+ // the center, '.' denotes the scalar product, Id is the identity matrix,
+ // 'tensor' is the tensor product producing a 3x3 matrix.
+ //
+ // note: here we decide to use coordinate '0' in place of the third coordinate
+ // in homogeneous notation; e.g. C = [1, cx, cy]
+
+ Coordinate pointa = axis.a;
+ Coordinate pointb = axis.b;
+
+ double a = pointa.y - pointb.y;
+ double b = pointb.x - pointa.x;
+ double c = pointa.x*pointb.y - pointa.y*pointb.x;
+
+ double cx = center.x;
+ double cy = center.y;
+
+ double scalprod = a*cx + b*cy + c;
+ scalprod *= 0.5;
+ Transformation ret;
+
+ ret.mdata[0][0] = c - scalprod;
+ ret.mdata[0][1] = a;
+ ret.mdata[0][2] = b;
+
+ ret.mdata[1][0] = c*cx;
+ ret.mdata[1][1] = a*cx - scalprod;
+ ret.mdata[1][2] = b*cx;
+
+ ret.mdata[2][0] = c*cy;
+ ret.mdata[2][1] = a*cy;
+ ret.mdata[2][2] = b*cy - scalprod;
+
+ ret.mIsHomothety = ret.mIsAffine = false;
+ return ret;
+}
+
+const Transformation Transformation::affinityGI3P(
+ const std::vector<Coordinate>& FromPoints,
+ const std::vector<Coordinate>& ToPoints,
+ bool& valid )
+{
+ // construct the (generically) unique affinity that transforms 3 given
+ // point into 3 other given points; i.e. it depends on the coordinates of
+ // a total of 6 points. This actually amounts in solving a 6x6 linear
+ // system to find the entries of a 2x2 linear transformation matrix T
+ // and of a translation vector t.
+ // If Pi denotes one of the starting points and Qi the corresponding
+ // final position we actually have to solve: Qi = t + T Pi, for i=1,2,3
+ // (each one is a vector equation, so that it really gives 2 equations).
+ // In our context T and t are used to build a 3x3 projective transformation
+ // as follows:
+ //
+ // [ 1 0 0 ]
+ // [ t1 T11 T12 ]
+ // [ t2 T21 T22 ]
+ //
+ // In order to take advantage of the two functions "GaussianElimination"
+ // and "BackwardSubstitution", which are specifically aimed at solving
+ // homogeneous underdetermined linear systems, we just add a further
+ // unknown m and solve for t + T Pi - m Qi = 0. Since our functions
+ // returns a nonzero solution we shall have a nonzero 'm' in the end and
+ // can build the 3x3 matrix as follows:
+ //
+ // [ m 0 0 ]
+ // [ t1 T11 T12 ]
+ // [ t2 T21 T22 ]
+ //
+ // we order the unknowns as follows: m, t1, t2, T11, T12, T21, T22
+
+ double row0[7], row1[7], row2[7], row3[7], row4[7], row5[7];
+
+ double *matrix[6] = {row0, row1, row2, row3, row4, row5};
+
+ double solution[7];
+ int scambio[7];
+
+ assert (FromPoints.size() == 3);
+ assert (ToPoints.size() == 3);
+
+ // fill in the matrix elements
+ for ( int i = 0; i < 6; i++ )
+ {
+ for ( int j = 0; j < 7; j++ )
+ {
+ matrix[i][j] = 0.0;
+ }
+ }
+
+ for ( int i = 0; i < 3; i++ )
+ {
+ Coordinate p = FromPoints[i];
+ Coordinate q = ToPoints[i];
+ matrix[i][0] = -q.x;
+ matrix[i][1] = 1.0;
+ matrix[i][3] = p.x;
+ matrix[i][4] = p.y;
+ matrix[i+3][0] = -q.y;
+ matrix[i+3][2] = 1.0;
+ matrix[i+3][5] = p.x;
+ matrix[i+3][6] = p.y;
+ }
+
+ Transformation ret;
+ valid = true;
+ if ( ! GaussianElimination( matrix, 6, 7, scambio ) )
+ { valid = false; return ret; }
+
+ // fine della fase di eliminazione
+ BackwardSubstitution( matrix, 6, 7, scambio, solution );
+
+ // now we can build the 3x3 transformation matrix; remember that
+ // unknown 0 is the multiplicator 'm'
+
+ ret.mdata[0][0] = solution[0];
+ ret.mdata[0][1] = ret.mdata[0][2] = 0.0;
+ ret.mdata[1][0] = solution[1];
+ ret.mdata[2][0] = solution[2];
+ ret.mdata[1][1] = solution[3];
+ ret.mdata[1][2] = solution[4];
+ ret.mdata[2][1] = solution[5];
+ ret.mdata[2][2] = solution[6];
+
+ ret.mIsHomothety = false;
+ ret.mIsAffine = true;
+ return ret;
+}
+
+const Transformation Transformation::projectivityGI4P(
+ const std::vector<Coordinate>& FromPoints,
+ const std::vector<Coordinate>& ToPoints,
+ bool& valid )
+{
+ // construct the (generically) unique projectivity that transforms 4 given
+ // point into 4 other given points; i.e. it depends on the coordinates of
+ // a total of 8 points. This actually amounts in solving an underdetermined
+ // homogeneous linear system.
+
+ double
+ row0[13], row1[13], row2[13], row3[13], row4[13], row5[13], row6[13], row7[13],
+ row8[13], row9[13], row10[13], row11[13];
+
+ double *matrix[12] = {row0, row1, row2, row3, row4, row5, row6, row7,
+ row8, row9, row10, row11};
+
+ double solution[13];
+ int scambio[13];
+
+ assert (FromPoints.size() == 4);
+ assert (ToPoints.size() == 4);
+
+ // fill in the matrix elements
+ for ( int i = 0; i < 12; i++ )
+ {
+ for ( int j = 0; j < 13; j++ )
+ {
+ matrix[i][j] = 0.0;
+ }
+ }
+
+ for ( int i = 0; i < 4; i++ )
+ {
+ Coordinate p = FromPoints[i];
+ Coordinate q = ToPoints[i];
+ matrix[i][0] = matrix[4+i][3] = matrix[8+i][6] = 1.0;
+ matrix[i][1] = matrix[4+i][4] = matrix[8+i][7] = p.x;
+ matrix[i][2] = matrix[4+i][5] = matrix[8+i][8] = p.y;
+ matrix[i][9+i] = -1.0;
+ matrix[4+i][9+i] = -q.x;
+ matrix[8+i][9+i] = -q.y;
+ }
+
+ Transformation ret;
+ valid = true;
+ if ( ! GaussianElimination( matrix, 12, 13, scambio ) )
+ { valid = false; return ret; }
+
+ // fine della fase di eliminazione
+ BackwardSubstitution( matrix, 12, 13, scambio, solution );
+
+ // now we can build the 3x3 transformation matrix; remember that
+ // unknowns from 9 to 13 are just multiplicators that we don't need here
+
+ int k = 0;
+ for ( int i = 0; i < 3; i++ )
+ {
+ for ( int j = 0; j < 3; j++ )
+ {
+ ret.mdata[i][j] = solution[k++];
+ }
+ }
+
+ ret.mIsHomothety = ret.mIsAffine = false;
+ return ret;
+}
+
+const Transformation Transformation::castShadow(
+ const Coordinate& lightsrc, const LineData& l )
+{
+ // first deal with the line l, I need to find an appropriate reflection
+ // that transforms l onto the x-axis
+
+ Coordinate d = l.dir();
+ Coordinate a = l.a;
+ double k = d.length();
+ if ( d.x < 0 ) k *= -1; // for numerical stability
+ Coordinate w = d + Coordinate( k, 0 );
+ // w /= w.length();
+ // w defines a Householder transformation, but we don't need to normalize
+ // it here.
+ // warning: this w is the orthogonal of the w of the textbooks!
+ // this is fine for us since in this way it indicates the line direction
+ Coordinate ra = Coordinate ( a.x + w.y*a.y/(2*w.x), a.y/2 );
+ Transformation sym = lineReflection ( LineData( ra, ra + w ) );
+
+ // in the new coordinates the line is the x-axis
+ // I must transform the point
+
+ Coordinate modlightsrc = sym.apply ( lightsrc );
+ Transformation ret = identity();
+ // parameter t indicates the distance of the light source from
+ // the plane of the drawing. A negative value means that the light
+ // source is behind the plane.
+ double t = -1.0;
+ // double t = -modlightsrc.y; <-- this gives the old transformation!
+ double e = modlightsrc.y - t;
+ ret.mdata[0][0] = e;
+ ret.mdata[0][2] = -1;
+ ret.mdata[1][1] = e;
+ ret.mdata[1][2] = -modlightsrc.x;
+ ret.mdata[2][2] = -t;
+
+ ret.mIsHomothety = ret.mIsAffine = false;
+ return sym*ret*sym;
+// return translation( t )*ret*translation( -t );
+}
+
+const Transformation Transformation::projectiveRotation(
+ double alpha, const Coordinate& d, const Coordinate& t )
+{
+ Transformation ret;
+ double cosalpha = cos( alpha );
+ double sinalpha = sin( alpha );
+ ret.mdata[0][0] = cosalpha;
+ ret.mdata[1][1] = cosalpha*d.x*d.x + d.y*d.y;
+ ret.mdata[0][1] = -sinalpha*d.x;
+ ret.mdata[1][0] = sinalpha*d.x;
+ ret.mdata[0][2] = -sinalpha*d.y;
+ ret.mdata[2][0] = sinalpha*d.y;
+ ret.mdata[1][2] = cosalpha*d.x*d.y - d.x*d.y;
+ ret.mdata[2][1] = cosalpha*d.x*d.y - d.x*d.y;
+ ret.mdata[2][2] = cosalpha*d.y*d.y + d.x*d.x;
+
+ ret.mIsHomothety = ret.mIsAffine = false;
+ return translation( t )*ret*translation( -t );
+}
+
+const Coordinate Transformation::apply( const double x0,
+ const double x1,
+ const double x2) const
+{
+ double phom[3] = {x0, x1, x2};
+ double rhom[3] = {0., 0., 0.};
+
+
+ for (int i = 0; i < 3; i++)
+ {
+ for (int j = 0; j < 3; j++)
+ {
+ rhom[i] += mdata[i][j]*phom[j];
+ }
+ }
+
+ if (rhom[0] == 0.)
+ return Coordinate::invalidCoord();
+
+ return Coordinate (rhom[1]/rhom[0], rhom[2]/rhom[0]);
+}
+
+const Coordinate Transformation::apply( const Coordinate& p ) const
+{
+ return apply( 1., p.x, p.y );
+// double phom[3] = {1., p.x, p.y};
+// double rhom[3] = {0., 0., 0.};
+//
+// for (int i = 0; i < 3; i++)
+// {
+// for (int j = 0; j < 3; j++)
+// {
+// rhom[i] += mdata[i][j]*phom[j];
+// }
+// }
+//
+// if (rhom[0] == 0.)
+// return Coordinate::invalidCoord();
+//
+// return Coordinate (rhom[1]/rhom[0], rhom[2]/rhom[0]);
+}
+
+const Coordinate Transformation::apply0( const Coordinate& p ) const
+{
+ return apply( 0., p.x, p.y );
+}
+
+const Transformation Transformation::rotation( double alpha, const Coordinate& center )
+{
+ Transformation ret = identity();
+
+ double x = center.x;
+ double y = center.y;
+
+ double cosalpha = cos( alpha );
+ double sinalpha = sin( alpha );
+
+ ret.mdata[1][1] = ret.mdata[2][2] = cosalpha;
+ ret.mdata[1][2] = -sinalpha;
+ ret.mdata[2][1] = sinalpha;
+ ret.mdata[1][0] = x - ret.mdata[1][1]*x - ret.mdata[1][2]*y;
+ ret.mdata[2][0] = y - ret.mdata[2][1]*x - ret.mdata[2][2]*y;
+
+ // this is already set in the identity() constructor, but just for
+ // clarity..
+ ret.mIsHomothety = ret.mIsAffine = true;
+
+ return ret;
+}
+
+bool Transformation::isHomothetic() const
+{
+ return mIsHomothety;
+}
+
+bool Transformation::isAffine() const
+{
+ return mIsAffine;
+}
+
+/*
+ *mp:
+ * this function has the property that it changes sign if computed
+ * on two points that lie on either sides with respect to the critical
+ * line (this is the line that goes to the line at infinity).
+ * For affine transformations the result has always the same sign.
+ * NOTE: the result is *not* invariant under rescaling of all elements
+ * of the transformation matrix.
+ * The typical use is to determine whether a segment is transformed
+ * into a segment or a couple of half-lines.
+ */
+
+double Transformation::getProjectiveIndicator( const Coordinate& c ) const
+{
+ return mdata[0][0] + mdata[0][1]*c.x + mdata[0][2]*c.y;
+}
+
+// assuming that this is an affine transformation, return its
+// determinant. What is really important here is just the sign
+// of the determinant.
+double Transformation::getAffineDeterminant() const
+{
+ return mdata[1][1]*mdata[2][2] - mdata[1][2]*mdata[2][1];
+}
+
+// this assumes that the 2x2 affine part of the matrix is of the
+// form [ cos a, sin a; -sin a, cos a] or a multiple
+double Transformation::getRotationAngle() const
+{
+ return atan2( mdata[1][2], mdata[1][1] );
+}
+
+const Coordinate Transformation::apply2by2only( const Coordinate& p ) const
+{
+ double x = p.x;
+ double y = p.y;
+ double nx = mdata[1][1]*x + mdata[1][2]*y;
+ double ny = mdata[2][1]*x + mdata[2][2]*y;
+ return Coordinate( nx, ny );
+}
+
+double Transformation::data( int r, int c ) const
+{
+ return mdata[r][c];
+}
+
+const Transformation Transformation::inverse( bool& valid ) const
+{
+ Transformation ret;
+
+ valid = Invert3by3matrix( mdata, ret.mdata );
+
+ // the inverse of a homothety is a homothety, same for affinities..
+ ret.mIsHomothety = mIsHomothety;
+ ret.mIsAffine = mIsAffine;
+
+ return ret;
+}
+
+Transformation::Transformation()
+{
+ // this is the constructor used by the static Transformation
+ // creation functions, so mIsHomothety is in general false
+ mIsHomothety = mIsAffine = false;
+ for ( int i = 0; i < 3; ++i )
+ for ( int j = 0; j < 3; ++j )
+ mdata[i][j] = ( i == j ) ? 1 : 0;
+}
+
+Transformation::~Transformation()
+{
+}
+
+double Transformation::apply( double length ) const
+{
+ assert( isHomothetic() );
+ double det = mdata[1][1]*mdata[2][2] -
+ mdata[1][2]*mdata[2][1];
+ return sqrt( fabs( det ) ) * length;
+}
+
+Transformation::Transformation( double data[3][3], bool ishomothety )
+ : mIsHomothety( ishomothety )
+{
+ for ( int i = 0; i < 3; ++i )
+ for ( int j = 0; j < 3; ++j )
+ mdata[i][j] = data[i][j];
+
+ //mp: a test for affinity is used to initialize mIsAffine...
+ mIsAffine = false;
+ if ( fabs(mdata[0][1]) + fabs(mdata[0][2]) < 1e-8 * fabs(mdata[0][0]) )
+ mIsAffine = true;
+}
+
+bool operator==( const Transformation& lhs, const Transformation& rhs )
+{
+ for ( int i = 0; i < 3; ++i )
+ for ( int j = 0; j < 3; ++j )
+ if ( lhs.data( i, j ) != rhs.data( i, j ) )
+ return false;
+ return true;
+}
+
+const Transformation Transformation::similitude(
+ const Coordinate& center, double theta, double factor )
+{
+ //kdDebug() << k_funcinfo << "theta: " << theta << " factor: " << factor << endl;
+ Transformation ret;
+ ret.mIsHomothety = true;
+ double costheta = cos( theta );
+ double sintheta = sin( theta );
+ ret.mdata[0][0] = 1;
+ ret.mdata[0][1] = 0;
+ ret.mdata[0][2] = 0;
+ ret.mdata[1][0] = ( 1 - factor*costheta )*center.x + factor*sintheta*center.y;
+ ret.mdata[1][1] = factor*costheta;
+ ret.mdata[1][2] = -factor*sintheta;
+ ret.mdata[2][0] = -factor*sintheta*center.x + ( 1 - factor*costheta )*center.y;
+ ret.mdata[2][1] = factor*sintheta;
+ ret.mdata[2][2] = factor*costheta;
+ // fails for factor == infinity
+ //assert( ( ret.apply( center ) - center ).length() < 1e-5 );
+ ret.mIsHomothety = ret.mIsAffine = true;
+ return ret;
+}