// Copyright (C) 2003 Dominique Devriese // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA // 02110-1301, USA. #ifndef KIG_OBJECTS_CONIC_IMP_H #define KIG_OBJECTS_CONIC_IMP_H #include "curve_imp.h" #include "../misc/conic-common.h" /** * An ObjectImp representing a conic. * * A conic is a general second degree curve, and some beautiful theory * has been developed about it.. See a math book for more * information. This class is in fact an abstract base class hiding * the fact that a ConicImp can be constructed in two ways. If only * its Cartesian equation is known, then you should use ConicImpCart, * otherwise, you should use ConicImpPolar. If the other * representation is needed, it will be calculated, but a cartesian * representation is rarely needed, and not calculating saves some CPU * cycles. */ class ConicImp : public CurveImp { protected: ConicImp(); ~ConicImp(); public: typedef CurveImp Parent; /** * Returns the ObjectImpType representing the ConicImp type. */ static const ObjectImpType* stype(); ObjectImp* transform( const Transformation& ) const; void draw( KigPainter& p ) const; bool tqcontains( const Coordinate& p, int width, const KigWidget& ) const; bool inRect( const Rect& r, int width, const KigWidget& ) const; bool valid() const; Rect surroundingRect() const; const uint numberOfProperties() const; const ObjectImpType* impRequirementForProperty( uint which ) const; bool isPropertyDefinedOnOrThroughThisImp( uint which ) const; const QCStringList properties() const; const QCStringList propertiesInternalNames() const; const char* iconForProperty( uint which ) const; ObjectImp* property( uint which, const KigDocument& w ) const; double getParam( const Coordinate& point, const KigDocument& ) const; const Coordinate getPoint( double param, const KigDocument& ) const; // information about ourselves.. These are all virtual, because a // trivial subclass like CircleImp can override these with trivial // versions.. /** * Type of conic. * Return what type of conic this is: * -1 for a hyperbola * 0 for a parabola * 1 for an ellipse */ virtual int conicType() const; /** * A string containing "Hyperbola", "Parabola" or "Ellipse". */ virtual TQString conicTypeString() const; /** * A string containing the cartesian equation of the conic. This * will be of the form "a x^2 + b y^2 + c xy + d x + e y + f = 0". */ virtual TQString cartesianEquationString( const KigDocument& w ) const; /** * A string containing the polar equation of the conic. This will * be of the form "rho = pdimen/(1 + ect cos( theta ) + est sin( * theta ) )\n [centered at p]" */ virtual TQString polarEquationString( const KigDocument& w ) const; /** * Return the cartesian representation of this conic. */ virtual const ConicCartesianData cartesianData() const; /** * Return the polar representation of this conic. */ virtual const ConicPolarData polarData() const = 0; /** * Return the first focus of this conic. */ virtual Coordinate focus1() const; /** * Return the second focus of this conic. */ virtual Coordinate focus2() const; const ObjectImpType* type() const; void visit( ObjectImpVisitor* vtor ) const; bool equals( const ObjectImp& rhs ) const; bool containsPoint( const Coordinate& p, const KigDocument& doc ) const; bool internalContainsPoint( const Coordinate& p, double threshold ) const; }; /** * An implementation of ConicImp to be used when only the cartesian * equation of the conic is known. */ class ConicImpCart : public ConicImp { ConicCartesianData mcartdata; ConicPolarData mpolardata; public: ConicImpCart( const ConicCartesianData& data ); ~ConicImpCart(); ConicImpCart* copy() const; const ConicCartesianData cartesianData() const; const ConicPolarData polarData() const; }; /** * An implementation of ConicImp to be used when only the cartesian * equation of the conic is known. */ class ConicImpPolar : public ConicImp { ConicPolarData mdata; public: ConicImpPolar( const ConicPolarData& data ); ~ConicImpPolar(); ConicImpPolar* copy() const; const ConicPolarData polarData() const; }; #endif