1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
// Copyright (C) 2003 Dominique Devriese <devriese@kde.org>
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
// 02110-1301, USA.
#include "conic_imp.h"
#include "bogus_imp.h"
#include "point_imp.h"
#include "../misc/kigpainter.h"
#include "../misc/common.h"
#include "../misc/coordinate_system.h"
#include "../kig/kig_document.h"
#include "../kig/kig_view.h"
#include <klocale.h>
ObjectImp* ConicImp::transform( const Transformation& t ) const
{
bool valid = true;
ConicCartesianData d = calcConicTransformation( cartesianData(), t, valid );
if ( ! valid ) return new InvalidImp;
else return new ConicImpCart( d );
}
void ConicImp::draw( KigPainter& p ) const
{
p.drawCurve( this );
}
bool ConicImp::valid() const
{
return true;
}
bool ConicImp::tqcontains( const Coordinate& o, int width, const KigWidget& w ) const
{
return internalContainsPoint( o, w.screenInfo().normalMiss( width ) );
}
bool ConicImp::inRect( const Rect&, int, const KigWidget& ) const
{
// TODO
return false;
}
const uint ConicImp::numberOfProperties() const
{
return Parent::numberOfProperties() + 5;
}
const QCStringList ConicImp::propertiesInternalNames() const
{
QCStringList l = Parent::propertiesInternalNames();
l << "type";
l << "first-focus";
l << "second-focus";
l << "cartesian-equation";
l << "polar-equation";
assert( l.size() == ConicImp::numberOfProperties() );
return l;
}
const QCStringList ConicImp::properties() const
{
QCStringList l = Parent::properties();
l << I18N_NOOP( "Conic Type" );
l << I18N_NOOP( "First Focus" );
l << I18N_NOOP( "Second Focus" );
l << I18N_NOOP( "Cartesian Equation" );
l << I18N_NOOP( "Polar Equation" );
assert( l.size() == ConicImp::numberOfProperties() );
return l;
}
const ObjectImpType* ConicImp::impRequirementForProperty( uint which ) const
{
if ( which < Parent::numberOfProperties() )
return Parent::impRequirementForProperty( which );
else return ConicImp::stype();
}
const char* ConicImp::iconForProperty( uint which ) const
{
int pnum = 0;
if ( which < Parent::numberOfProperties() )
return Parent::iconForProperty( which );
if ( which == Parent::numberOfProperties() + pnum++ )
return "kig_text"; // conic type string
else if ( which == Parent::numberOfProperties() + pnum++ )
return ""; // focus1
else if ( which == Parent::numberOfProperties() + pnum++ )
return ""; // focus2
else if ( which == Parent::numberOfProperties() + pnum++ )
return "kig_text"; // cartesian equation string
else if ( which == Parent::numberOfProperties() + pnum++ )
return "kig_text"; // polar equation string
else assert( false );
return "";
}
ObjectImp* ConicImp::property( uint which, const KigDocument& w ) const
{
int pnum = 0;
if ( which < Parent::numberOfProperties() )
return Parent::property( which, w );
if ( which == Parent::numberOfProperties() + pnum++ )
return new StringImp( conicTypeString() );
else if ( which == Parent::numberOfProperties() + pnum++ )
return new PointImp( focus1() );
else if ( which == Parent::numberOfProperties() + pnum++ )
return new PointImp( focus2() );
else if ( which == Parent::numberOfProperties() + pnum++ )
return new StringImp( cartesianEquationString( w ) );
else if ( which == Parent::numberOfProperties() + pnum++ )
return new StringImp( polarEquationString( w ) );
else assert( false );
return new InvalidImp;
}
double ConicImp::getParam( const Coordinate& p, const KigDocument& ) const
{
const ConicPolarData d = polarData();
Coordinate tmp = p - d.focus1;
double l = tmp.length();
double theta = atan2(tmp.y, tmp.x);
double costheta = cos(theta);
double sintheta = sin(theta);
double ecosthetamtheta0 = costheta*d.ecostheta0 + sintheta*d.esintheta0;
double esinthetamtheta0 = sintheta*d.ecostheta0 - costheta*d.esintheta0;
double oneplus = 1.0 + d.ecostheta0*d.ecostheta0 + d.esintheta0*d.esintheta0;
double fact = esinthetamtheta0*(1.0 - ecosthetamtheta0)/(oneplus - 2*ecosthetamtheta0);
// fact is sin(a)*cos(a) where a is the angle between the ray from the first
// focus and the normal to the conic. We need it in order to adjust the
// angle according to the projection onto the conic of our point
double rho1 = d.pdimen / (1 - ecosthetamtheta0);
double rho2 = - d.pdimen / (1 + ecosthetamtheta0);
if (fabs(rho1 - l) < fabs(rho2 - l))
{
theta += (rho1 - l)*fact/rho1;
return fmod(theta / ( 2 * M_PI ) + 1, 1);
} else {
theta += (rho2 - l)*fact/rho2;
return fmod(theta / ( 2 * M_PI ) + 0.5, 1);
}
}
const Coordinate ConicImp::getPoint( double p, const KigDocument& ) const
{
const ConicPolarData d = polarData();
double costheta = cos(p * 2 * M_PI);
double sintheta = sin(p * 2 * M_PI);
double rho = d.pdimen / (1 - costheta* d.ecostheta0 - sintheta* d.esintheta0);
return d.focus1 + Coordinate (costheta, sintheta) * rho;
}
int ConicImp::conicType() const
{
const ConicPolarData d = polarData();
double ec = d.ecostheta0;
double es = d.esintheta0;
double esquare = ec*ec + es*es;
const double parabolamiss = 1e-3; // don't know what a good value could be
if (esquare < 1.0 - parabolamiss) return 1;
if (esquare > 1.0 + parabolamiss) return -1;
return 0;
}
TQString ConicImp::conicTypeString() const
{
switch (conicType())
{
case 1:
return i18n("Ellipse");
case -1:
return i18n("Hyperbola");
case 0:
return i18n("Parabola");
default:
assert( false );
return "";
}
}
TQString ConicImp::cartesianEquationString( const KigDocument& ) const
{
TQString ret = i18n( "%1 x² + %2 y² + %3 xy + %4 x + %5 y + %6 = 0" );
ConicCartesianData data = cartesianData();
ret = ret.arg( data.coeffs[0], 0, 'g', 3 );
ret = ret.arg( data.coeffs[1], 0, 'g', 3 );
ret = ret.arg( data.coeffs[2], 0, 'g', 3 );
ret = ret.arg( data.coeffs[3], 0, 'g', 3 );
ret = ret.arg( data.coeffs[4], 0, 'g', 3 );
ret = ret.arg( data.coeffs[5], 0, 'g', 3 );
return ret;
}
TQString ConicImp::polarEquationString( const KigDocument& w ) const
{
TQString ret = i18n( "rho = %1/(1 + %2 cos theta + %3 sin theta)\n [centered at %4]" );
const ConicPolarData data = polarData();
ret = ret.arg( data.pdimen, 0, 'g', 3 );
ret = ret.arg( -data.ecostheta0, 0, 'g', 3 );
ret = ret.arg( -data.esintheta0, 0, 'g', 3 );
ret = ret.arg( w.coordinateSystem().fromScreen( data.focus1, w ) );
return ret;
}
const ConicCartesianData ConicImp::cartesianData() const
{
return ConicCartesianData( polarData() );
}
Coordinate ConicImp::focus1() const
{
return polarData().focus1;
}
Coordinate ConicImp::focus2() const
{
const ConicPolarData d = polarData();
double ec = d.ecostheta0;
double es = d.esintheta0;
double fact = 2*d.pdimen/(1 - ec*ec - es*es);
return d.focus1 + fact*Coordinate(ec, es);
}
const ConicPolarData ConicImpCart::polarData() const
{
return mpolardata;
}
const ConicCartesianData ConicImpCart::cartesianData() const
{
return mcartdata;
}
ConicImpCart::ConicImpCart( const ConicCartesianData& data )
: ConicImp(), mcartdata( data ), mpolardata( data )
{
assert( data.valid() );
}
ConicImpPolar::ConicImpPolar( const ConicPolarData& data )
: ConicImp(), mdata( data )
{
}
ConicImpPolar::~ConicImpPolar()
{
}
const ConicPolarData ConicImpPolar::polarData() const
{
return mdata;
}
ConicImpCart* ConicImpCart::copy() const
{
return new ConicImpCart( mcartdata );
}
ConicImpPolar* ConicImpPolar::copy() const
{
return new ConicImpPolar( mdata );
}
ConicImp::ConicImp()
{
}
ConicImp::~ConicImp()
{
}
ConicImpCart::~ConicImpCart()
{
}
void ConicImp::visit( ObjectImpVisitor* vtor ) const
{
vtor->visit( this );
}
bool ConicImp::equals( const ObjectImp& rhs ) const
{
return rhs.inherits( ConicImp::stype() ) &&
static_cast<const ConicImp&>( rhs ).polarData() == polarData();
}
const ObjectImpType* ConicImp::stype()
{
static const ObjectImpType t(
Parent::stype(), "conic",
I18N_NOOP( "conic" ),
I18N_NOOP( "Select this conic" ),
I18N_NOOP( "Select conic %1" ),
I18N_NOOP( "Remove a Conic" ),
I18N_NOOP( "Add a Conic" ),
I18N_NOOP( "Move a Conic" ),
I18N_NOOP( "Attach to this conic" ),
I18N_NOOP( "Show a Conic" ),
I18N_NOOP( "Hide a Conic" )
);
return &t;
}
const ObjectImpType* ConicImp::type() const
{
return ConicImp::stype();
}
bool ConicImp::tqcontainsPoint( const Coordinate& p, const KigDocument& ) const
{
const ConicPolarData d = polarData();
// the threshold is relative to the size of the conic (mp)
return internalContainsPoint( p, test_threshold*d.pdimen );
}
bool ConicImp::internalContainsPoint( const Coordinate& p, double threshold ) const
{
const ConicPolarData d = polarData();
Coordinate focus1 = d.focus1;
double ecostheta0 = d.ecostheta0;
double esintheta0 = d.esintheta0;
double pdimen = d.pdimen;
Coordinate pos = p - focus1;
double len = pos.length();
double costheta = pos.x / len;
double sintheta = pos.y / len;
double ecosthetamtheta0 = costheta*ecostheta0 + sintheta*esintheta0;
double rho = pdimen / (1.0 - ecosthetamtheta0);
double oneplus = 1.0 + ecostheta0*ecostheta0 + esintheta0*esintheta0;
// fact is the cosine of the angle between the ray from the first focus
// and the normal to the conic, so that we compute the real distance
double fact = (1.0 - ecosthetamtheta0)/sqrt(oneplus - 2*ecosthetamtheta0);
if ( fabs((len - rho)*fact) <= threshold ) return true;
rho = - pdimen / ( 1.0 + ecosthetamtheta0 );
fact = (1.0 + ecosthetamtheta0)/sqrt(oneplus + 2*ecosthetamtheta0);
return fabs(( len - rho )*fact) <= threshold;
}
bool ConicImp::isPropertyDefinedOnOrThroughThisImp( uint which ) const
{
if ( which < Parent::numberOfProperties() )
return Parent::isPropertyDefinedOnOrThroughThisImp( which );
return false;
}
Rect ConicImp::surroundingRect() const
{
// it's prolly possible to calculate this ( in the case that the
// conic is limited in size ), but for now we don't.
return Rect::invalidRect();
}
|