diff options
author | toma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da> | 2009-11-25 17:56:58 +0000 |
---|---|---|
committer | toma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da> | 2009-11-25 17:56:58 +0000 |
commit | 47d455dd55be855e4cc691c32f687f723d9247ee (patch) | |
tree | 52e236aaa2576bdb3840ebede26619692fed6d7d /kpovmodeler/pmmatrix.cpp | |
download | tdegraphics-47d455dd55be855e4cc691c32f687f723d9247ee.tar.gz tdegraphics-47d455dd55be855e4cc691c32f687f723d9247ee.zip |
Copy the KDE 3.5 branch to branches/trinity for new KDE 3.5 features.
BUG:215923
git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/kdegraphics@1054174 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'kpovmodeler/pmmatrix.cpp')
-rw-r--r-- | kpovmodeler/pmmatrix.cpp | 442 |
1 files changed, 442 insertions, 0 deletions
diff --git a/kpovmodeler/pmmatrix.cpp b/kpovmodeler/pmmatrix.cpp new file mode 100644 index 00000000..217672e5 --- /dev/null +++ b/kpovmodeler/pmmatrix.cpp @@ -0,0 +1,442 @@ +/* +************************************************************************** + description + -------------------- + copyright : (C) 2000-2001 by Andreas Zehender + email : zehender@kde.org +************************************************************************** + +************************************************************************** +* * +* This program is free software; you can redistribute it and/or modify * +* it under the terms of the GNU General Public License as published by * +* the Free Software Foundation; either version 2 of the License, or * +* (at your option) any later version. * +* * +**************************************************************************/ + + +#include <math.h> + +#include "pmmatrix.h" +#include "pmvector.h" +#include "pmdebug.h" + +#include <qtextstream.h> + +PMMatrix::PMMatrix( ) +{ + int i; + + for( i = 0; i < 16; i++ ) + m_elements[i] = 0; +} + +PMMatrix::~PMMatrix( ) +{ +} + +PMMatrix& PMMatrix::operator= ( const PMMatrix& m ) +{ + int i; + for( i=0; i<16; i++ ) + m_elements[i] = m.m_elements[i]; + + return *this; +} + +PMMatrix PMMatrix::identity( ) +{ + PMMatrix newMatrix; + int i; + + for( i=0; i<4; i++ ) + newMatrix[i][i] = 1.0; + + return newMatrix; +} + +PMMatrix PMMatrix::translation( double x, double y, double z ) +{ + PMMatrix newMatrix; + newMatrix[3][0] = x; + newMatrix[3][1] = y; + newMatrix[3][2] = z; + newMatrix[0][0] = 1; + newMatrix[1][1] = 1; + newMatrix[2][2] = 1; + newMatrix[3][3] = 1; + + return newMatrix; +} + +PMMatrix PMMatrix::scale( double x, double y, double z ) +{ + PMMatrix newMatrix; + newMatrix[0][0] = x; + newMatrix[1][1] = y; + newMatrix[2][2] = z; + newMatrix[3][3] = 1; + + return newMatrix; +} + +PMMatrix PMMatrix::rotation( double x, double y, double z ) +{ + PMMatrix newMatrix; + double sinx, siny, sinz, cosx, cosy, cosz; + sinx = sin( x ); + siny = sin( y ); + sinz = sin( z ); + cosx = cos( x ); + cosy = cos( y ); + cosz = cos( z ); + + newMatrix[0][0] = cosz*cosy; + newMatrix[1][0] = -sinz*cosx + cosz*siny*sinx; + newMatrix[2][0] = sinz*sinx + cosz*siny*cosx; + newMatrix[0][1] = sinz*cosy; + newMatrix[1][1] = cosz*cosx + sinz*siny*sinx; + newMatrix[2][1] = -cosz*sinx + sinz*siny*cosx; + newMatrix[0][2] = -siny; + newMatrix[1][2] = cosy*sinx; + newMatrix[2][2] = cosy*cosx; + newMatrix[3][3] = 1; + + return newMatrix; +} + +PMMatrix PMMatrix::rotation( const PMVector& n, double a ) +{ + PMMatrix result( PMMatrix::identity( ) ); + double rx, ry; + + if( n.size( ) == 3 ) + { + rx = pmatan( n.y( ), n.z( ) ); + ry = - pmatan( n.x( ), sqrt( n.y( ) * n.y( ) + n.z( ) * n.z( ) ) ); + + result = rotation( -rx, 0.0, 0.0 ) * rotation( 0.0, -ry, 0.0 ) + * rotation( rx, ry, a ); + + } + else + kdError( PMArea ) << "Wrong size in PMMatrix::rotation( )\n"; + + return result; +} + +PMMatrix PMMatrix::viewTransformation( const PMVector& eye, + const PMVector& lookAt, + const PMVector& up ) +{ + PMMatrix result; + PMVector x, y, z; + GLdouble len; + int i; + + // create rotation matrix + z = eye - lookAt; + len = z.abs( ); + if( !approxZero( len ) ) + z /= len; + + y = up; + x = PMVector::cross( y, z ); + y = PMVector::cross( z, x ); + + // normalize vectors + len = x.abs( ); + if( !approxZero( len ) ) + x /= len; + + len = y.abs( ); + if( !approxZero( len ) ) + y /= len; + + for( i = 0; i < 3; i++ ) + { + result[i][0] = x[i]; + result[i][1] = y[i]; + result[i][2] = z[i]; + result[3][i] = 0.0; + result[i][3] = 0.0; + } + result[3][3] = 1.0; + + // Translate eye to origin + return result * translation( -eye[0], -eye[1], -eye[2] ); +} + +void PMMatrix::toRotation( double* x, double* y, double* z ) +{ + PMMatrix& m = *this; + + if( !approx( fabs( m[0][2] ), 1.0 ) ) + { + double cosy; + // | m[0][2] | != 1 + // sin(y) != 1.0, cos(y) != 0.0 + *y = asin( - m[0][2] ); + cosy = cos( *y ); + + // sign of cosy is important! + *x = pmatan( m[1][2] / cosy, m[2][2] / cosy ); + *z = pmatan( m[0][1] / cosy, m[0][0] / cosy ); + } + else if( m[0][2] < 0 ) + { + // m[0][2] == -1 + // sin(y) == 1, cos(y) == 0 + // z and x are dependent of each other, assume z = 0 + + double zminusx = pmatan( m[2][1], m[1][1] ); + + *y = M_PI_2; + *z = 0.0; + *x = - zminusx; + } + else + { + // m[0][2] == 1 + // sin(y) == -1, cos(y) == 0 + // z and x are dependent of each other, assume z = 0 + + double zplusx = pmatan( -m[2][1], m[1][1] ); + + *y = -M_PI_2; + *z = 0.0; + *x = zplusx; + } +} + +PMMatrix PMMatrix::modelviewMatrix( ) +{ + PMMatrix result; + glGetDoublev( GL_MODELVIEW_MATRIX, result.m_elements ); + return result; +} + +double PMMatrix::det( ) const +{ + PMMatrix tmp( *this ); + double result = 1.0, help; + int i, k, e, row; + + // make a upper triangular matrix + for( i=0; i<4; i++ ) + { + row = tmp.notNullElementRow( i ); + if( row == -1 ) + return 0; + if( row != i ) + { + tmp.exchangeRows( i, row ); + result = -result; + } + + result *= tmp[i][i]; + for( k=i+1; k<4; k++ ) + { + help = tmp[i][k]; + for( e=0; e<4; e++ ) + tmp[e][k] -= tmp[e][i] * help/tmp[i][i]; + } + } + return result; +} + +PMMatrix PMMatrix::inverse( ) const +{ + PMMatrix result( identity( ) ); + PMMatrix tmp( *this ); + int i, k, e, row; + double a; + + // uses the Gauss algorithm + // row operations to make tmp a identity matrix + // result matrix is then the inverse + for( i=0; i<4; i++ ) + { + row = tmp.notNullElementRow( i ); + if( row == -1 ) + return identity( ); + if( row != i ) + { + tmp.exchangeRows( i, row ); + result.exchangeRows( i, row ); + } + // tmp[i][i] != 0 + + a = tmp[i][i]; + for( e=0; e<4; e++ ) + { + result[e][i] /= a; + tmp[e][i] /= a; + } + // tmp[i][i] == 1 + + for( k=0; k<4; k++ ) + { + if( k != i ) + { + a = tmp[i][k]; + for( e=0; e<4; e++ ) + { + result[e][k] -= result[e][i] * a; + tmp[e][k] -= tmp[e][i] * a; + } + } + } + // tmp[!=i][i] == 0.0 + } + return result; +} + +void PMMatrix::exchangeRows( int r1, int r2 ) +{ + GLdouble help; + int i; + + for( i=0; i<4; i++ ) + { + help = (*this)[i][r1]; + (*this)[i][r1] = (*this)[i][r2]; + (*this)[i][r2] = help; + } +} + +int PMMatrix::notNullElementRow( const int index ) const +{ + int i, result = -1; + GLdouble max = 0.0, v; + + // choose the row with abs( ) = max + for( i=index; i<4; i++ ) + { + v = fabs((*this)[index][i]); + if( v > max ) + { + result = i; + max = v; + } + } + return result; +} + +PMMatrix& PMMatrix::operator*= ( const double d ) +{ + int i; + for( i=0; i<16; i++ ) + m_elements[i] *= d; + return *this; +} + +PMMatrix& PMMatrix::operator/= ( const double d ) +{ + int i; + if( approxZero( 0 ) ) + kdError( PMArea ) << "Division by zero in PMMatrix::operator/=" << "\n"; + else + for( i=0; i<16; i++ ) + m_elements[i] /= d; + return *this; +} + +PMMatrix& PMMatrix::operator*= ( const PMMatrix& m ) +{ + *this = *this * m; + return *this; +} + +PMMatrix operator- ( const PMMatrix& m ) +{ + PMMatrix result; + int r,c; + + for( r=0; r<4; r++ ) + for( c=0; c<4; c++ ) + result[c][r] = -m[c][r]; + return result; +} + +PMMatrix operator* ( const PMMatrix& m1, const PMMatrix& m2 ) +{ + PMMatrix result; + int r, c, i; + + for( r=0; r<4; r++ ) + for( c=0; c<4; c++ ) + for( i=0; i<4; i++ ) + result[c][r] += m1[i][r] * m2[c][i]; + return result; +} + +PMMatrix operator* ( const PMMatrix& m1, const double d ) +{ + PMMatrix result( m1 ); + result *= d; + return result; +} + +PMMatrix operator/ ( const PMMatrix& m1, const double d ) +{ + PMMatrix result( m1 ); + result /= d ; + return result; +} + +PMMatrix operator* ( const double d, const PMMatrix& m1 ) +{ + PMMatrix result( m1 ); + result *= d; + return result; +} + +#include <stdio.h> +void PMMatrix::testOutput( ) +{ + int r, c; + + printf( "\n" ); + for( r=0; r<4; r++ ) + { + for( c=0; c<4; c++ ) + printf( "% 20.18f ", (*this)[c][r] ); + printf( "\n" ); + } +} + +QString PMMatrix::serializeXML( ) const +{ + QString result; + QTextStream str( &result, IO_WriteOnly ); + int i; + + for( i = 0; i < 16; i++ ) + { + if( i > 0 ) + str << ' '; + str << m_elements[i]; + } + + return result; +} + +bool PMMatrix::loadXML( const QString& str ) +{ + int i; + QString tmp( str ); + QTextStream s( &tmp, IO_ReadOnly ); + QString val; + bool ok; + + for( i = 0; i < 16; i++ ) + { + s >> val; + m_elements[i] = val.toDouble( &ok ); + if( !ok ) + return false; + } + return true; +} |