/* This file is part of the KDE project Copyright (C) 2003 Ignacio Casta�o <castano@ludicon.com> This program is free software; you can redistribute it and/or modify it under the terms of the Lesser GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Almost all this code is based on nVidia's DDS-loading example and the DevIl's source code by Denton Woods. */ /* this code supports: * reading: * rgb and dxt dds files * cubemap dds files * volume dds files -- TODO * writing: * rgb dds files only -- TODO */ #include "dds.h" #include <tqimage.h> #include <tqdatastream.h> #include <kglobal.h> #include <kdebug.h> #include <math.h> // sqrtf #ifndef __USE_ISOC99 #define sqrtf(x) ((float)sqrt(x)) #endif typedef TQ_UINT32 uint; typedef TQ_UINT16 ushort; typedef TQ_UINT8 uchar; namespace { // Private. #if !defined(MAKEFOURCC) # define MAKEFOURCC(ch0, ch1, ch2, ch3) \ (uint(uchar(ch0)) | (uint(uchar(ch1)) << 8) | \ (uint(uchar(ch2)) << 16) | (uint(uchar(ch3)) << 24 )) #endif #define HORIZONTAL 1 #define VERTICAL 2 #define CUBE_LAYOUT HORIZONTAL struct Color8888 { uchar r, g, b, a; }; union Color565 { struct { ushort b : 5; ushort g : 6; ushort r : 5; } c; ushort u; }; union Color1555 { struct { ushort b : 5; ushort g : 5; ushort r : 5; ushort a : 1; } c; ushort u; }; union Color4444 { struct { ushort b : 4; ushort g : 4; ushort r : 4; ushort a : 4; } c; ushort u; }; static const uint FOURCC_DDS = MAKEFOURCC('D', 'D', 'S', ' '); static const uint FOURCC_DXT1 = MAKEFOURCC('D', 'X', 'T', '1'); static const uint FOURCC_DXT2 = MAKEFOURCC('D', 'X', 'T', '2'); static const uint FOURCC_DXT3 = MAKEFOURCC('D', 'X', 'T', '3'); static const uint FOURCC_DXT4 = MAKEFOURCC('D', 'X', 'T', '4'); static const uint FOURCC_DXT5 = MAKEFOURCC('D', 'X', 'T', '5'); static const uint FOURCC_RXGB = MAKEFOURCC('R', 'X', 'G', 'B'); static const uint FOURCC_ATI2 = MAKEFOURCC('A', 'T', 'I', '2'); static const uint DDSD_CAPS = 0x00000001l; static const uint DDSD_PIXELFORMAT = 0x00001000l; static const uint DDSD_WIDTH = 0x00000004l; static const uint DDSD_HEIGHT = 0x00000002l; static const uint DDSD_PITCH = 0x00000008l; static const uint DDSCAPS_TEXTURE = 0x00001000l; static const uint DDSCAPS2_VOLUME = 0x00200000l; static const uint DDSCAPS2_CUBEMAP = 0x00000200l; static const uint DDSCAPS2_CUBEMAP_POSITIVEX = 0x00000400l; static const uint DDSCAPS2_CUBEMAP_NEGATIVEX = 0x00000800l; static const uint DDSCAPS2_CUBEMAP_POSITIVEY = 0x00001000l; static const uint DDSCAPS2_CUBEMAP_NEGATIVEY = 0x00002000l; static const uint DDSCAPS2_CUBEMAP_POSITIVEZ = 0x00004000l; static const uint DDSCAPS2_CUBEMAP_NEGATIVEZ = 0x00008000l; static const uint DDPF_RGB = 0x00000040l; static const uint DDPF_FOURCC = 0x00000004l; static const uint DDPF_ALPHAPIXELS = 0x00000001l; enum DDSType { DDS_A8R8G8B8 = 0, DDS_A1R5G5B5 = 1, DDS_A4R4G4B4 = 2, DDS_R8G8B8 = 3, DDS_R5G6B5 = 4, DDS_DXT1 = 5, DDS_DXT2 = 6, DDS_DXT3 = 7, DDS_DXT4 = 8, DDS_DXT5 = 9, DDS_RXGB = 10, DDS_ATI2 = 11, DDS_UNKNOWN }; struct DDSPixelFormat { uint size; uint flags; uint fourcc; uint bitcount; uint rmask; uint gmask; uint bmask; uint amask; }; static TQDataStream & operator>> ( TQDataStream & s, DDSPixelFormat & pf ) { s >> pf.size; s >> pf.flags; s >> pf.fourcc; s >> pf.bitcount; s >> pf.rmask; s >> pf.gmask; s >> pf.bmask; s >> pf.amask; return s; } struct DDSCaps { uint caps1; uint caps2; uint caps3; uint caps4; }; static TQDataStream & operator>> ( TQDataStream & s, DDSCaps & caps ) { s >> caps.caps1; s >> caps.caps2; s >> caps.caps3; s >> caps.caps4; return s; } struct DDSHeader { uint size; uint flags; uint height; uint width; uint pitch; uint depth; uint mipmapcount; uint reserved[11]; DDSPixelFormat pf; DDSCaps caps; uint notused; }; static TQDataStream & operator>> ( TQDataStream & s, DDSHeader & header ) { s >> header.size; s >> header.flags; s >> header.height; s >> header.width; s >> header.pitch; s >> header.depth; s >> header.mipmapcount; for( int i = 0; i < 11; i++ ) { s >> header.reserved[i]; } s >> header.pf; s >> header.caps; s >> header.notused; return s; } static bool IsValid( const DDSHeader & header ) { if( header.size != 124 ) { return false; } const uint required = (DDSD_WIDTH|DDSD_HEIGHT|DDSD_CAPS|DDSD_PIXELFORMAT); if( (header.flags & required) != required ) { return false; } if( header.pf.size != 32 ) { return false; } if( !(header.caps.caps1 & DDSCAPS_TEXTURE) ) { return false; } return true; } // Get supported type. We currently support 10 different types. static DDSType GetType( const DDSHeader & header ) { if( header.pf.flags & DDPF_RGB ) { if( header.pf.flags & DDPF_ALPHAPIXELS ) { switch( header.pf.bitcount ) { case 16: return (header.pf.amask == 0x8000) ? DDS_A1R5G5B5 : DDS_A4R4G4B4; case 32: return DDS_A8R8G8B8; } } else { switch( header.pf.bitcount ) { case 16: return DDS_R5G6B5; case 24: return DDS_R8G8B8; } } } else if( header.pf.flags & DDPF_FOURCC ) { switch( header.pf.fourcc ) { case FOURCC_DXT1: return DDS_DXT1; case FOURCC_DXT2: return DDS_DXT2; case FOURCC_DXT3: return DDS_DXT3; case FOURCC_DXT4: return DDS_DXT4; case FOURCC_DXT5: return DDS_DXT5; case FOURCC_RXGB: return DDS_RXGB; case FOURCC_ATI2: return DDS_ATI2; } } return DDS_UNKNOWN; } static bool HasAlpha( const DDSHeader & header ) { return header.pf.flags & DDPF_ALPHAPIXELS; } static bool IsCubeMap( const DDSHeader & header ) { return header.caps.caps2 & DDSCAPS2_CUBEMAP; } static bool IsSupported( const DDSHeader & header ) { if( header.caps.caps2 & DDSCAPS2_VOLUME ) { return false; } if( GetType(header) == DDS_UNKNOWN ) { return false; } return true; } static bool LoadA8R8G8B8( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; for( uint y = 0; y < h; y++ ) { QRgb * scanline = (QRgb *) img.scanLine( y ); for( uint x = 0; x < w; x++ ) { uchar r, g, b, a; s >> b >> g >> r >> a; scanline[x] = tqRgba(r, g, b, a); } } return true; } static bool LoadR8G8B8( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; for( uint y = 0; y < h; y++ ) { QRgb * scanline = (QRgb *) img.scanLine( y ); for( uint x = 0; x < w; x++ ) { uchar r, g, b; s >> b >> g >> r; scanline[x] = tqRgb(r, g, b); } } return true; } static bool LoadA1R5G5B5( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; for( uint y = 0; y < h; y++ ) { QRgb * scanline = (QRgb *) img.scanLine( y ); for( uint x = 0; x < w; x++ ) { Color1555 color; s >> color.u; uchar a = (color.c.a != 0) ? 0xFF : 0; uchar r = (color.c.r << 3) | (color.c.r >> 2); uchar g = (color.c.g << 3) | (color.c.g >> 2); uchar b = (color.c.b << 3) | (color.c.b >> 2); scanline[x] = tqRgba(r, g, b, a); } } return true; } static bool LoadA4R4G4B4( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; for( uint y = 0; y < h; y++ ) { QRgb * scanline = (QRgb *) img.scanLine( y ); for( uint x = 0; x < w; x++ ) { Color4444 color; s >> color.u; uchar a = (color.c.a << 4) | color.c.a; uchar r = (color.c.r << 4) | color.c.r; uchar g = (color.c.g << 4) | color.c.g; uchar b = (color.c.b << 4) | color.c.b; scanline[x] = tqRgba(r, g, b, a); } } return true; } static bool LoadR5G6B5( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; for( uint y = 0; y < h; y++ ) { QRgb * scanline = (QRgb *) img.scanLine( y ); for( uint x = 0; x < w; x++ ) { Color565 color; s >> color.u; uchar r = (color.c.r << 3) | (color.c.r >> 2); uchar g = (color.c.g << 2) | (color.c.g >> 4); uchar b = (color.c.b << 3) | (color.c.b >> 2); scanline[x] = tqRgb(r, g, b); } } return true; } static TQDataStream & operator>> ( TQDataStream & s, Color565 & c ) { return s >> c.u; } struct BlockDXT { Color565 col0; Color565 col1; uchar row[4]; void GetColors( Color8888 color_array[4] ) { color_array[0].r = (col0.c.r << 3) | (col0.c.r >> 2); color_array[0].g = (col0.c.g << 2) | (col0.c.g >> 4); color_array[0].b = (col0.c.b << 3) | (col0.c.b >> 2); color_array[0].a = 0xFF; color_array[1].r = (col1.c.r << 3) | (col1.c.r >> 2); color_array[1].g = (col1.c.g << 2) | (col1.c.g >> 4); color_array[1].b = (col1.c.b << 3) | (col1.c.b >> 2); color_array[1].a = 0xFF; if( col0.u > col1.u ) { // Four-color block: derive the other two colors. color_array[2].r = (2 * color_array[0].r + color_array[1].r) / 3; color_array[2].g = (2 * color_array[0].g + color_array[1].g) / 3; color_array[2].b = (2 * color_array[0].b + color_array[1].b) / 3; color_array[2].a = 0xFF; color_array[3].r = (2 * color_array[1].r + color_array[0].r) / 3; color_array[3].g = (2 * color_array[1].g + color_array[0].g) / 3; color_array[3].b = (2 * color_array[1].b + color_array[0].b) / 3; color_array[3].a = 0xFF; } else { // Three-color block: derive the other color. color_array[2].r = (color_array[0].r + color_array[1].r) / 2; color_array[2].g = (color_array[0].g + color_array[1].g) / 2; color_array[2].b = (color_array[0].b + color_array[1].b) / 2; color_array[2].a = 0xFF; // Set all components to 0 to match DXT specs. color_array[3].r = 0x00; // color_array[2].r; color_array[3].g = 0x00; // color_array[2].g; color_array[3].b = 0x00; // color_array[2].b; color_array[3].a = 0x00; } } }; static TQDataStream & operator>> ( TQDataStream & s, BlockDXT & c ) { return s >> c.col0 >> c.col1 >> c.row[0] >> c.row[1] >> c.row[2] >> c.row[3]; } struct BlockDXTAlphaExplicit { ushort row[4]; }; static TQDataStream & operator>> ( TQDataStream & s, BlockDXTAlphaExplicit & c ) { return s >> c.row[0] >> c.row[1] >> c.row[2] >> c.row[3]; } struct BlockDXTAlphaLinear { uchar alpha0; uchar alpha1; uchar bits[6]; void GetAlphas( uchar alpha_array[8] ) { alpha_array[0] = alpha0; alpha_array[1] = alpha1; // 8-alpha or 6-alpha block? if( alpha_array[0] > alpha_array[1] ) { // 8-alpha block: derive the other 6 alphas. // 000 = alpha_0, 001 = alpha_1, others are interpolated alpha_array[2] = ( 6 * alpha0 + alpha1) / 7; // bit code 010 alpha_array[3] = ( 5 * alpha0 + 2 * alpha1) / 7; // Bit code 011 alpha_array[4] = ( 4 * alpha0 + 3 * alpha1) / 7; // Bit code 100 alpha_array[5] = ( 3 * alpha0 + 4 * alpha1) / 7; // Bit code 101 alpha_array[6] = ( 2 * alpha0 + 5 * alpha1) / 7; // Bit code 110 alpha_array[7] = ( alpha0 + 6 * alpha1) / 7; // Bit code 111 } else { // 6-alpha block: derive the other alphas. // 000 = alpha_0, 001 = alpha_1, others are interpolated alpha_array[2] = (4 * alpha0 + alpha1) / 5; // Bit code 010 alpha_array[3] = (3 * alpha0 + 2 * alpha1) / 5; // Bit code 011 alpha_array[4] = (2 * alpha0 + 3 * alpha1) / 5; // Bit code 100 alpha_array[5] = ( alpha0 + 4 * alpha1) / 5; // Bit code 101 alpha_array[6] = 0x00; // Bit code 110 alpha_array[7] = 0xFF; // Bit code 111 } } void GetBits( uchar bit_array[16] ) { uint b = static_cast<uint>(bits[0]); bit_array[0] = uchar(b & 0x07); b >>= 3; bit_array[1] = uchar(b & 0x07); b >>= 3; bit_array[2] = uchar(b & 0x07); b >>= 3; bit_array[3] = uchar(b & 0x07); b >>= 3; bit_array[4] = uchar(b & 0x07); b >>= 3; bit_array[5] = uchar(b & 0x07); b >>= 3; bit_array[6] = uchar(b & 0x07); b >>= 3; bit_array[7] = uchar(b & 0x07); b >>= 3; b = static_cast<uint>(bits[3]); bit_array[8] = uchar(b & 0x07); b >>= 3; bit_array[9] = uchar(b & 0x07); b >>= 3; bit_array[10] = uchar(b & 0x07); b >>= 3; bit_array[11] = uchar(b & 0x07); b >>= 3; bit_array[12] = uchar(b & 0x07); b >>= 3; bit_array[13] = uchar(b & 0x07); b >>= 3; bit_array[14] = uchar(b & 0x07); b >>= 3; bit_array[15] = uchar(b & 0x07); b >>= 3; } }; static TQDataStream & operator>> ( TQDataStream & s, BlockDXTAlphaLinear & c ) { s >> c.alpha0 >> c.alpha1; return s >> c.bits[0] >> c.bits[1] >> c.bits[2] >> c.bits[3] >> c.bits[4] >> c.bits[5]; } static bool LoadDXT1( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; BlockDXT block; QRgb * scanline[4]; for( uint y = 0; y < h; y += 4 ) { for( uint j = 0; j < 4; j++ ) { scanline[j] = (QRgb *) img.scanLine( y + j ); } for( uint x = 0; x < w; x += 4 ) { // Read 64bit color block. s >> block; // Decode color block. Color8888 color_array[4]; block.GetColors(color_array); // bit masks = 00000011, 00001100, 00110000, 11000000 const uint masks[4] = { 3, 3<<2, 3<<4, 3<<6 }; const int shift[4] = { 0, 2, 4, 6 }; // Write color block. for( uint j = 0; j < 4; j++ ) { for( uint i = 0; i < 4; i++ ) { if( img.valid( x+i, y+j ) ) { uint idx = (block.row[j] & masks[i]) >> shift[i]; scanline[j][x+i] = tqRgba(color_array[idx].r, color_array[idx].g, color_array[idx].b, color_array[idx].a); } } } } } return true; } static bool LoadDXT3( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; BlockDXT block; BlockDXTAlphaExplicit alpha; QRgb * scanline[4]; for( uint y = 0; y < h; y += 4 ) { for( uint j = 0; j < 4; j++ ) { scanline[j] = (QRgb *) img.scanLine( y + j ); } for( uint x = 0; x < w; x += 4 ) { // Read 128bit color block. s >> alpha; s >> block; // Decode color block. Color8888 color_array[4]; block.GetColors(color_array); // bit masks = 00000011, 00001100, 00110000, 11000000 const uint masks[4] = { 3, 3<<2, 3<<4, 3<<6 }; const int shift[4] = { 0, 2, 4, 6 }; // Write color block. for( uint j = 0; j < 4; j++ ) { ushort a = alpha.row[j]; for( uint i = 0; i < 4; i++ ) { if( img.valid( x+i, y+j ) ) { uint idx = (block.row[j] & masks[i]) >> shift[i]; color_array[idx].a = a & 0x0f; color_array[idx].a = color_array[idx].a | (color_array[idx].a << 4); scanline[j][x+i] = tqRgba(color_array[idx].r, color_array[idx].g, color_array[idx].b, color_array[idx].a); } a >>= 4; } } } } return true; } static bool LoadDXT2( TQDataStream & s, const DDSHeader & header, TQImage & img ) { if( !LoadDXT3(s, header, img) ) return false; //UndoPremultiplyAlpha(img); return true; } static bool LoadDXT5( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; BlockDXT block; BlockDXTAlphaLinear alpha; QRgb * scanline[4]; for( uint y = 0; y < h; y += 4 ) { for( uint j = 0; j < 4; j++ ) { scanline[j] = (QRgb *) img.scanLine( y + j ); } for( uint x = 0; x < w; x += 4 ) { // Read 128bit color block. s >> alpha; s >> block; // Decode color block. Color8888 color_array[4]; block.GetColors(color_array); uchar alpha_array[8]; alpha.GetAlphas(alpha_array); uchar bit_array[16]; alpha.GetBits(bit_array); // bit masks = 00000011, 00001100, 00110000, 11000000 const uint masks[4] = { 3, 3<<2, 3<<4, 3<<6 }; const int shift[4] = { 0, 2, 4, 6 }; // Write color block. for( uint j = 0; j < 4; j++ ) { for( uint i = 0; i < 4; i++ ) { if( img.valid( x+i, y+j ) ) { uint idx = (block.row[j] & masks[i]) >> shift[i]; color_array[idx].a = alpha_array[bit_array[j*4+i]]; scanline[j][x+i] = tqRgba(color_array[idx].r, color_array[idx].g, color_array[idx].b, color_array[idx].a); } } } } } return true; } static bool LoadDXT4( TQDataStream & s, const DDSHeader & header, TQImage & img ) { if( !LoadDXT5(s, header, img) ) return false; //UndoPremultiplyAlpha(img); return true; } static bool LoadRXGB( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; BlockDXT block; BlockDXTAlphaLinear alpha; QRgb * scanline[4]; for( uint y = 0; y < h; y += 4 ) { for( uint j = 0; j < 4; j++ ) { scanline[j] = (QRgb *) img.scanLine( y + j ); } for( uint x = 0; x < w; x += 4 ) { // Read 128bit color block. s >> alpha; s >> block; // Decode color block. Color8888 color_array[4]; block.GetColors(color_array); uchar alpha_array[8]; alpha.GetAlphas(alpha_array); uchar bit_array[16]; alpha.GetBits(bit_array); // bit masks = 00000011, 00001100, 00110000, 11000000 const uint masks[4] = { 3, 3<<2, 3<<4, 3<<6 }; const int shift[4] = { 0, 2, 4, 6 }; // Write color block. for( uint j = 0; j < 4; j++ ) { for( uint i = 0; i < 4; i++ ) { if( img.valid( x+i, y+j ) ) { uint idx = (block.row[j] & masks[i]) >> shift[i]; color_array[idx].a = alpha_array[bit_array[j*4+i]]; scanline[j][x+i] = tqRgb(color_array[idx].a, color_array[idx].g, color_array[idx].b); } } } } } return true; } static bool LoadATI2( TQDataStream & s, const DDSHeader & header, TQImage & img ) { const uint w = header.width; const uint h = header.height; BlockDXTAlphaLinear xblock; BlockDXTAlphaLinear yblock; QRgb * scanline[4]; for( uint y = 0; y < h; y += 4 ) { for( uint j = 0; j < 4; j++ ) { scanline[j] = (QRgb *) img.scanLine( y + j ); } for( uint x = 0; x < w; x += 4 ) { // Read 128bit color block. s >> xblock; s >> yblock; // Decode color block. uchar xblock_array[8]; xblock.GetAlphas(xblock_array); uchar xbit_array[16]; xblock.GetBits(xbit_array); uchar yblock_array[8]; yblock.GetAlphas(yblock_array); uchar ybit_array[16]; yblock.GetBits(ybit_array); // Write color block. for( uint j = 0; j < 4; j++ ) { for( uint i = 0; i < 4; i++ ) { if( img.valid( x+i, y+j ) ) { const uchar nx = xblock_array[xbit_array[j*4+i]]; const uchar ny = yblock_array[ybit_array[j*4+i]]; const float fx = float(nx) / 127.5f - 1.0f; const float fy = float(ny) / 127.5f - 1.0f; const float fz = sqrtf(1.0f - fx*fx - fy*fy); const uchar nz = uchar((fz + 1.0f) * 127.5f); scanline[j][x+i] = tqRgb(nx, ny, nz); } } } } } return true; } typedef bool (* TextureLoader)( TQDataStream & s, const DDSHeader & header, TQImage & img ); // Get an appropiate texture loader for the given type. static TextureLoader GetTextureLoader( DDSType type ) { switch( type ) { case DDS_A8R8G8B8: return LoadA8R8G8B8; case DDS_A1R5G5B5: return LoadA1R5G5B5; case DDS_A4R4G4B4: return LoadA4R4G4B4; case DDS_R8G8B8: return LoadR8G8B8; case DDS_R5G6B5: return LoadR5G6B5; case DDS_DXT1: return LoadDXT1; case DDS_DXT2: return LoadDXT2; case DDS_DXT3: return LoadDXT3; case DDS_DXT4: return LoadDXT4; case DDS_DXT5: return LoadDXT5; case DDS_RXGB: return LoadRXGB; case DDS_ATI2: return LoadATI2; default: return NULL; }; } // Load a 2d texture. static bool LoadTexture( TQDataStream & s, const DDSHeader & header, TQImage & img ) { // Create dst image. if( !img.create( header.width, header.height, 32 )) { return false; } // Read image. DDSType type = GetType( header ); // Enable alpha buffer for transparent or DDS images. if( HasAlpha( header ) || type >= DDS_DXT1 ) { img.setAlphaBuffer( true ); } TextureLoader loader = GetTextureLoader( type ); if( loader == NULL ) { return false; } return loader( s, header, img ); } static int FaceOffset( const DDSHeader & header ) { DDSType type = GetType( header ); int mipmap = kMax(int(header.mipmapcount), 1); int size = 0; int w = header.width; int h = header.height; if( type >= DDS_DXT1 ) { int multiplier = (type == DDS_DXT1) ? 8 : 16; do { int face_size = kMax(w/4,1) * kMax(h/4,1) * multiplier; size += face_size; w >>= 1; h >>= 1; } while( --mipmap ); } else { int multiplier = header.pf.bitcount / 8; do { int face_size = w * h * multiplier; size += face_size; w = kMax( w>>1, 1 ); h = kMax( h>>1, 1 ); } while( --mipmap ); } return size; } #if CUBE_LAYOUT == HORIZONTAL static int face_offset[6][2] = { {2, 1}, {0, 1}, {1, 0}, {1, 2}, {1, 1}, {3, 1} }; #elif CUBE_LAYOUT == VERTICAL static int face_offset[6][2] = { {2, 1}, {0, 1}, {1, 0}, {1, 2}, {1, 1}, {1, 3} }; #endif static int face_flags[6] = { DDSCAPS2_CUBEMAP_POSITIVEX, DDSCAPS2_CUBEMAP_NEGATIVEX, DDSCAPS2_CUBEMAP_POSITIVEY, DDSCAPS2_CUBEMAP_NEGATIVEY, DDSCAPS2_CUBEMAP_POSITIVEZ, DDSCAPS2_CUBEMAP_NEGATIVEZ }; // Load unwrapped cube map. static bool LoadCubeMap( TQDataStream & s, const DDSHeader & header, TQImage & img ) { // Create dst image. #if CUBE_LAYOUT == HORIZONTAL if( !img.create( 4 * header.width, 3 * header.height, 32 )) { return false; // duplicate code for correct syntax coloring. } #elif CUBE_LAYOUT == VERTICAL if( !img.create( 3 * header.width, 4 * header.height, 32 )) { return false; } #endif DDSType type = GetType( header ); // Enable alpha buffer for transparent or DDS images. if( HasAlpha( header ) || type >= DDS_DXT1 ) { img.setAlphaBuffer( true ); } // Select texture loader. TextureLoader loader = GetTextureLoader( type ); if( loader == NULL ) { return false; } // Clear background. img.fill( 0 ); // Create face image. TQImage face; if( !face.create( header.width, header.height, 32 )) { return false; } int offset = s.device()->at(); int size = FaceOffset( header ); for( int i = 0; i < 6; i++ ) { if( !(header.caps.caps2 & face_flags[i]) ) { // Skip face. continue; } // Seek device. s.device()->at( offset ); offset += size; // Load face from stream. if( !loader( s, header, face ) ) { return false; } #if CUBE_LAYOUT == VERTICAL if( i == 5 ) { face = face.mirror(true, true); } #endif // Compute face offsets. int offset_x = face_offset[i][0] * header.width; int offset_y = face_offset[i][1] * header.height; // Copy face on the image. for( uint y = 0; y < header.height; y++ ) { QRgb * src = (QRgb *) face.scanLine( y ); QRgb * dst = (QRgb *) img.scanLine( y + offset_y ) + offset_x; memcpy( dst, src, sizeof(QRgb) * header.width ); } } return true; } } KDE_EXPORT void kimgio_dds_read( TQImageIO *io ) { TQDataStream s( io->ioDevice() ); s.setByteOrder( TQDataStream::LittleEndian ); // Validate header. uint fourcc; s >> fourcc; if( fourcc != FOURCC_DDS ) { kdDebug(399) << "This is not a DDS file." << endl; io->setImage( TQImage() ); io->setStatus( -1 ); return; } // Read image header. DDSHeader header; s >> header; // Check image file format. if( s.atEnd() || !IsValid( header ) ) { kdDebug(399) << "This DDS file is not valid." << endl; io->setImage( TQImage() ); io->setStatus( -1 ); return; } // Determine image type, by now, we only support 2d textures. if( !IsSupported( header ) ) { kdDebug(399) << "This DDS file is not supported." << endl; io->setImage( TQImage() ); io->setStatus( -1 ); return; } TQImage img; bool result; if( IsCubeMap( header ) ) { result = LoadCubeMap( s, header, img ); } else { result = LoadTexture( s, header, img ); } if( result == false ) { kdDebug(399) << "Error loading DDS file." << endl; io->setImage( TQImage() ); io->setStatus( -1 ); return; } io->setImage( img ); io->setStatus( 0 ); } KDE_EXPORT void kimgio_dds_write( TQImageIO * ) { // TODO Stub! }