blob: 330280ea9c815db9d0075c50d346613f37ffdfdc (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
/*
a FFT class
Copyright (C) 1998 Martin Vogt;Philip VanBaren
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation.
For more information look at the file COPYRIGHT in this package
*/
#include "realFFT.h"
/*
* Initialize the Sine table and Twiddle pointers (bit-reversed pointers)
* for the FFT routine.
*/
RealFFT::RealFFT(int fftlen) {
int i;
int temp;
int mask;
/*
* FFT size is only half the number of data points
* The full FFT output can be reconstructed from this FFT's output.
* (This optimization can be made since the data is real.)
*/
Points = fftlen;
if((SinTable=(short *)malloc(Points*sizeof(short)))==NULL)
{
puts("Error allocating memory for Sine table.");
exit(1);
}
if((BitReversed=(int *)malloc(Points/2*sizeof(int)))==NULL)
{
puts("Error allocating memory for BitReversed.");
exit(1);
}
for(i=0;i<Points/2;i++)
{
temp=0;
for(mask=Points/4;mask>0;mask >>= 1)
temp=(temp >> 1) + (i&mask ? Points/2 : 0);
BitReversed[i]=temp;
}
for(i=0;i<Points/2;i++)
{
register double s,c;
s=floor(-32768.0*sin(2*M_PI*i/(Points))+0.5);
c=floor(-32768.0*cos(2*M_PI*i/(Points))+0.5);
if(s>32767.5) s=32767;
if(c>32767.5) c=32767;
SinTable[BitReversed[i] ]=(short)s;
SinTable[BitReversed[i]+1]=(short)c;
}
}
/*
* Free up the memory allotted for Sin table and Twiddle Pointers
*/
RealFFT::~RealFFT() {
free(BitReversed);
free(SinTable);
Points=0;
}
/*
* Actual FFT routine. Must call InitializeFFT(fftlen) first!
* This routine has another parameter list than the other fft's
* But because we want a fast fft on pcm data this routine
* is better than the other two.
* The other two can be useful for inverse FFT.
* The format is an array of floats. (only real parts the img
* part does not exists)
*/
void RealFFT::fft(short* buffer) {
int ButterfliesPerGroup=Points/4;
endptr1=buffer+Points;
/*
* Butterfly:
* Ain-----Aout
* \ /
* / \
* Bin-----Bout
*/
while(ButterfliesPerGroup>0)
{
A=buffer;
B=buffer+ButterfliesPerGroup*2;
sptr=SinTable;
while(A<endptr1)
{
register short sin=*sptr;
register short cos=*(sptr+1);
endptr2=B;
while(A<endptr2)
{
long v1=((long)*B*cos + (long)*(B+1)*sin) >> 15;
long v2=((long)*B*sin - (long)*(B+1)*cos) >> 15;
*B=(*A+v1)>>1;
*(A++)=*(B++)-v1;
*B=(*A-v2)>>1;
*(A++)=*(B++)+v2;
}
A=B;
B+=ButterfliesPerGroup*2;
sptr+=2;
}
ButterfliesPerGroup >>= 1;
}
/*
* Massage output to get the output for a real input sequence.
*/
br1=BitReversed+1;
br2=BitReversed+Points/2-1;
while(br1<=br2)
{
register long temp1,temp2;
short sin=SinTable[*br1];
short cos=SinTable[*br1+1];
A=buffer+*br1;
B=buffer+*br2;
HRplus = (HRminus = *A - *B ) + (*B << 1);
HIplus = (HIminus = *(A+1) - *(B+1)) + (*(B+1) << 1);
temp1 = ((long)sin*HRminus - (long)cos*HIplus) >> 15;
temp2 = ((long)cos*HRminus + (long)sin*HIplus) >> 15;
*B = (*A = (HRplus + temp1) >> 1) - temp1;
*(B+1) = (*(A+1) = (HIminus + temp2) >> 1) - HIminus;
br1++;
br2--;
}
/*
* Handle DC bin separately
*/
buffer[0]+=buffer[1];
buffer[1]=0;
}
int* RealFFT::getBitReversed() {
return BitReversed;
}
|