diff options
Diffstat (limited to 'src/3rdparty/libjpeg/jmemmgr.c')
-rw-r--r-- | src/3rdparty/libjpeg/jmemmgr.c | 1118 |
1 files changed, 0 insertions, 1118 deletions
diff --git a/src/3rdparty/libjpeg/jmemmgr.c b/src/3rdparty/libjpeg/jmemmgr.c deleted file mode 100644 index d801b322d..000000000 --- a/src/3rdparty/libjpeg/jmemmgr.c +++ /dev/null @@ -1,1118 +0,0 @@ -/* - * jmemmgr.c - * - * Copyright (C) 1991-1997, Thomas G. Lane. - * This file is part of the Independent JPEG Group's software. - * For conditions of distribution and use, see the accompanying README file. - * - * This file contains the JPEG system-independent memory management - * routines. This code is usable across a wide variety of machines; most - * of the system dependencies have been isolated in a separate file. - * The major functions provided here are: - * * pool-based allocation and freeing of memory; - * * policy decisions about how to divide available memory among the - * virtual arrays; - * * control logic for swapping virtual arrays between main memory and - * backing storage. - * The separate system-dependent file provides the actual backing-storage - * access code, and it contains the policy decision about how much total - * main memory to use. - * This file is system-dependent in the sense that some of its functions - * are unnecessary in some systems. For example, if there is enough virtual - * memory so that backing storage will never be used, much of the virtual - * array control logic could be removed. (Of course, if you have that much - * memory then you shouldn't care about a little bit of unused code...) - */ - -#define JPEG_INTERNALS -#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ -#include "jinclude.h" -#include "jpeglib.h" -#include "jmemsys.h" /* import the system-dependent declarations */ - -#ifndef NO_GETENV -#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ -extern char * getenv JPP((const char * name)); -#endif -#endif - - -/* - * Some important notes: - * The allocation routines provided here must never return NULL. - * They should exit to error_exit if unsuccessful. - * - * It's not a good idea to try to merge the sarray and barray routines, - * even though they are textually almost the same, because samples are - * usually stored as bytes while coefficients are shorts or ints. Thus, - * in machines where byte pointers have a different representation from - * word pointers, the resulting machine code could not be the same. - */ - - -/* - * Many machines require storage alignment: longs must start on 4-byte - * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() - * always returns pointers that are multiples of the worst-case alignment - * requirement, and we had better do so too. - * There isn't any really portable way to determine the worst-case alignment - * requirement. This module assumes that the alignment requirement is - * multiples of sizeof(ALIGN_TYPE). - * By default, we define ALIGN_TYPE as double. This is necessary on some - * workstations (where doubles really do need 8-byte alignment) and will work - * fine on nearly everything. If your machine has lesser alignment needs, - * you can save a few bytes by making ALIGN_TYPE smaller. - * The only place I know of where this will NOT work is certain Macintosh - * 680x0 compilers that define double as a 10-byte IEEE extended float. - * Doing 10-byte alignment is counterproductive because longwords won't be - * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have - * such a compiler. - */ - -#ifndef ALIGN_TYPE /* so can override from jconfig.h */ -#define ALIGN_TYPE double -#endif - - -/* - * We allocate objects from "pools", where each pool is gotten with a single - * request to jpeg_get_small() or jpeg_get_large(). There is no per-object - * overhead within a pool, except for alignment padding. Each pool has a - * header with a link to the next pool of the same class. - * Small and large pool headers are identical except that the latter's - * link pointer must be FAR on 80x86 machines. - * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE - * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple - * of the alignment requirement of ALIGN_TYPE. - */ - -typedef union small_pool_struct * small_pool_ptr; - -typedef union small_pool_struct { - struct { - small_pool_ptr next; /* next in list of pools */ - size_t bytes_used; /* how many bytes already used within pool */ - size_t bytes_left; /* bytes still available in this pool */ - } hdr; - ALIGN_TYPE dummy; /* included in union to ensure alignment */ -} small_pool_hdr; - -typedef union large_pool_struct FAR * large_pool_ptr; - -typedef union large_pool_struct { - struct { - large_pool_ptr next; /* next in list of pools */ - size_t bytes_used; /* how many bytes already used within pool */ - size_t bytes_left; /* bytes still available in this pool */ - } hdr; - ALIGN_TYPE dummy; /* included in union to ensure alignment */ -} large_pool_hdr; - - -/* - * Here is the full definition of a memory manager object. - */ - -typedef struct { - struct jpeg_memory_mgr pub; /* public fields */ - - /* Each pool identifier (lifetime class) names a linked list of pools. */ - small_pool_ptr small_list[JPOOL_NUMPOOLS]; - large_pool_ptr large_list[JPOOL_NUMPOOLS]; - - /* Since we only have one lifetime class of virtual arrays, only one - * linked list is necessary (for each datatype). Note that the virtual - * array control blocks being linked together are actually stored somewhere - * in the small-pool list. - */ - jvirt_sarray_ptr virt_sarray_list; - jvirt_barray_ptr virt_barray_list; - - /* This counts total space obtained from jpeg_get_small/large */ - long total_space_allocated; - - /* alloc_sarray and alloc_barray set this value for use by virtual - * array routines. - */ - JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ -} my_memory_mgr; - -typedef my_memory_mgr * my_mem_ptr; - - -/* - * The control blocks for virtual arrays. - * Note that these blocks are allocated in the "small" pool area. - * System-dependent info for the associated backing store (if any) is hidden - * inside the backing_store_info struct. - */ - -struct jvirt_sarray_control { - JSAMPARRAY mem_buffer; /* => the in-memory buffer */ - JDIMENSION rows_in_array; /* total virtual array height */ - JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ - JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ - JDIMENSION rows_in_mem; /* height of memory buffer */ - JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ - JDIMENSION cur_start_row; /* first logical row # in the buffer */ - JDIMENSION first_undef_row; /* row # of first uninitialized row */ - boolean pre_zero; /* pre-zero mode requested? */ - boolean dirty; /* do current buffer contents need written? */ - boolean b_s_open; /* is backing-store data valid? */ - jvirt_sarray_ptr next; /* link to next virtual sarray control block */ - backing_store_info b_s_info; /* System-dependent control info */ -}; - -struct jvirt_barray_control { - JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ - JDIMENSION rows_in_array; /* total virtual array height */ - JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ - JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ - JDIMENSION rows_in_mem; /* height of memory buffer */ - JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ - JDIMENSION cur_start_row; /* first logical row # in the buffer */ - JDIMENSION first_undef_row; /* row # of first uninitialized row */ - boolean pre_zero; /* pre-zero mode requested? */ - boolean dirty; /* do current buffer contents need written? */ - boolean b_s_open; /* is backing-store data valid? */ - jvirt_barray_ptr next; /* link to next virtual barray control block */ - backing_store_info b_s_info; /* System-dependent control info */ -}; - - -#ifdef MEM_STATS /* optional extra stuff for statistics */ - -LOCAL(void) -print_mem_stats (j_common_ptr cinfo, int pool_id) -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - small_pool_ptr shdr_ptr; - large_pool_ptr lhdr_ptr; - - /* Since this is only a debugging stub, we can cheat a little by using - * fprintf directly rather than going through the trace message code. - * This is helpful because message parm array can't handle longs. - */ - fprintf(stderr, "Freeing pool %d, total space = %ld\n", - pool_id, mem->total_space_allocated); - - for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; - lhdr_ptr = lhdr_ptr->hdr.next) { - fprintf(stderr, " Large chunk used %ld\n", - (long) lhdr_ptr->hdr.bytes_used); - } - - for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; - shdr_ptr = shdr_ptr->hdr.next) { - fprintf(stderr, " Small chunk used %ld free %ld\n", - (long) shdr_ptr->hdr.bytes_used, - (long) shdr_ptr->hdr.bytes_left); - } -} - -#endif /* MEM_STATS */ - - -LOCAL(void) -out_of_memory (j_common_ptr cinfo, int which) -/* Report an out-of-memory error and stop execution */ -/* If we compiled MEM_STATS support, report alloc requests before dying */ -{ -#ifdef MEM_STATS - cinfo->err->trace_level = 2; /* force self_destruct to report stats */ -#endif - ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); -} - - -/* - * Allocation of "small" objects. - * - * For these, we use pooled storage. When a new pool must be created, - * we try to get enough space for the current request plus a "slop" factor, - * where the slop will be the amount of leftover space in the new pool. - * The speed vs. space tradeoff is largely determined by the slop values. - * A different slop value is provided for each pool class (lifetime), - * and we also distinguish the first pool of a class from later ones. - * NOTE: the values given work fairly well on both 16- and 32-bit-int - * machines, but may be too small if longs are 64 bits or more. - */ - -static const size_t first_pool_slop[JPOOL_NUMPOOLS] = -{ - 1600, /* first PERMANENT pool */ - 16000 /* first IMAGE pool */ -}; - -static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = -{ - 0, /* additional PERMANENT pools */ - 5000 /* additional IMAGE pools */ -}; - -#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ - - -METHODDEF(void *) -alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) -/* Allocate a "small" object */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - small_pool_ptr hdr_ptr, prev_hdr_ptr; - char * data_ptr; - size_t odd_bytes, min_request, slop; - - /* Check for unsatisfiable request (do now to ensure no overflow below) */ - if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) - out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ - - /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ - odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); - if (odd_bytes > 0) - sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; - - /* See if space is available in any existing pool */ - if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - prev_hdr_ptr = NULL; - hdr_ptr = mem->small_list[pool_id]; - while (hdr_ptr != NULL) { - if (hdr_ptr->hdr.bytes_left >= sizeofobject) - break; /* found pool with enough space */ - prev_hdr_ptr = hdr_ptr; - hdr_ptr = hdr_ptr->hdr.next; - } - - /* Time to make a new pool? */ - if (hdr_ptr == NULL) { - /* min_request is what we need now, slop is what will be leftover */ - min_request = sizeofobject + SIZEOF(small_pool_hdr); - if (prev_hdr_ptr == NULL) /* first pool in class? */ - slop = first_pool_slop[pool_id]; - else - slop = extra_pool_slop[pool_id]; - /* Don't ask for more than MAX_ALLOC_CHUNK */ - if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) - slop = (size_t) (MAX_ALLOC_CHUNK-min_request); - /* Try to get space, if fail reduce slop and try again */ - for (;;) { - hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); - if (hdr_ptr != NULL) - break; - slop /= 2; - if (slop < MIN_SLOP) /* give up when it gets real small */ - out_of_memory(cinfo, 2); /* jpeg_get_small failed */ - } - mem->total_space_allocated += min_request + slop; - /* Success, initialize the new pool header and add to end of list */ - hdr_ptr->hdr.next = NULL; - hdr_ptr->hdr.bytes_used = 0; - hdr_ptr->hdr.bytes_left = sizeofobject + slop; - if (prev_hdr_ptr == NULL) /* first pool in class? */ - mem->small_list[pool_id] = hdr_ptr; - else - prev_hdr_ptr->hdr.next = hdr_ptr; - } - - /* OK, allocate the object from the current pool */ - data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ - data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ - hdr_ptr->hdr.bytes_used += sizeofobject; - hdr_ptr->hdr.bytes_left -= sizeofobject; - - return (void *) data_ptr; -} - - -/* - * Allocation of "large" objects. - * - * The external semantics of these are the same as "small" objects, - * except that FAR pointers are used on 80x86. However the pool - * management heuristics are quite different. We assume that each - * request is large enough that it may as well be passed directly to - * jpeg_get_large; the pool management just links everything together - * so that we can free it all on demand. - * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY - * structures. The routines that create these structures (see below) - * deliberately bunch rows together to ensure a large request size. - */ - -METHODDEF(void FAR *) -alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) -/* Allocate a "large" object */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - large_pool_ptr hdr_ptr; - size_t odd_bytes; - - /* Check for unsatisfiable request (do now to ensure no overflow below) */ - if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) - out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ - - /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ - odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); - if (odd_bytes > 0) - sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; - - /* Always make a new pool */ - if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - - hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + - SIZEOF(large_pool_hdr)); - if (hdr_ptr == NULL) - out_of_memory(cinfo, 4); /* jpeg_get_large failed */ - mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); - - /* Success, initialize the new pool header and add to list */ - hdr_ptr->hdr.next = mem->large_list[pool_id]; - /* We maintain space counts in each pool header for statistical purposes, - * even though they are not needed for allocation. - */ - hdr_ptr->hdr.bytes_used = sizeofobject; - hdr_ptr->hdr.bytes_left = 0; - mem->large_list[pool_id] = hdr_ptr; - - return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ -} - - -/* - * Creation of 2-D sample arrays. - * The pointers are in near heap, the samples themselves in FAR heap. - * - * To minimize allocation overhead and to allow I/O of large contiguous - * blocks, we allocate the sample rows in groups of as many rows as possible - * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. - * NB: the virtual array control routines, later in this file, know about - * this chunking of rows. The rowsperchunk value is left in the mem manager - * object so that it can be saved away if this sarray is the workspace for - * a virtual array. - */ - -METHODDEF(JSAMPARRAY) -alloc_sarray (j_common_ptr cinfo, int pool_id, - JDIMENSION samplesperrow, JDIMENSION numrows) -/* Allocate a 2-D sample array */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - JSAMPARRAY result; - JSAMPROW workspace; - JDIMENSION rowsperchunk, currow, i; - long ltemp; - - /* Calculate max # of rows allowed in one allocation chunk */ - ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / - ((long) samplesperrow * SIZEOF(JSAMPLE)); - if (ltemp <= 0) - ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); - if (ltemp < (long) numrows) - rowsperchunk = (JDIMENSION) ltemp; - else - rowsperchunk = numrows; - mem->last_rowsperchunk = rowsperchunk; - - /* Get space for row pointers (small object) */ - result = (JSAMPARRAY) alloc_small(cinfo, pool_id, - (size_t) (numrows * SIZEOF(JSAMPROW))); - - /* Get the rows themselves (large objects) */ - currow = 0; - while (currow < numrows) { - rowsperchunk = MIN(rowsperchunk, numrows - currow); - workspace = (JSAMPROW) alloc_large(cinfo, pool_id, - (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow - * SIZEOF(JSAMPLE))); - for (i = rowsperchunk; i > 0; i--) { - result[currow++] = workspace; - workspace += samplesperrow; - } - } - - return result; -} - - -/* - * Creation of 2-D coefficient-block arrays. - * This is essentially the same as the code for sample arrays, above. - */ - -METHODDEF(JBLOCKARRAY) -alloc_barray (j_common_ptr cinfo, int pool_id, - JDIMENSION blocksperrow, JDIMENSION numrows) -/* Allocate a 2-D coefficient-block array */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - JBLOCKARRAY result; - JBLOCKROW workspace; - JDIMENSION rowsperchunk, currow, i; - long ltemp; - - /* Calculate max # of rows allowed in one allocation chunk */ - ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / - ((long) blocksperrow * SIZEOF(JBLOCK)); - if (ltemp <= 0) - ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); - if (ltemp < (long) numrows) - rowsperchunk = (JDIMENSION) ltemp; - else - rowsperchunk = numrows; - mem->last_rowsperchunk = rowsperchunk; - - /* Get space for row pointers (small object) */ - result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, - (size_t) (numrows * SIZEOF(JBLOCKROW))); - - /* Get the rows themselves (large objects) */ - currow = 0; - while (currow < numrows) { - rowsperchunk = MIN(rowsperchunk, numrows - currow); - workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, - (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow - * SIZEOF(JBLOCK))); - for (i = rowsperchunk; i > 0; i--) { - result[currow++] = workspace; - workspace += blocksperrow; - } - } - - return result; -} - - -/* - * About virtual array management: - * - * The above "normal" array routines are only used to allocate strip buffers - * (as wide as the image, but just a few rows high). Full-image-sized buffers - * are handled as "virtual" arrays. The array is still accessed a strip at a - * time, but the memory manager must save the whole array for repeated - * accesses. The intended implementation is that there is a strip buffer in - * memory (as high as is possible given the desired memory limit), plus a - * backing file that holds the rest of the array. - * - * The request_virt_array routines are told the total size of the image and - * the maximum number of rows that will be accessed at once. The in-memory - * buffer must be at least as large as the maxaccess value. - * - * The request routines create control blocks but not the in-memory buffers. - * That is postponed until realize_virt_arrays is called. At that time the - * total amount of space needed is known (approximately, anyway), so free - * memory can be divided up fairly. - * - * The access_virt_array routines are responsible for making a specific strip - * area accessible (after reading or writing the backing file, if necessary). - * Note that the access routines are told whether the caller intends to modify - * the accessed strip; during a read-only pass this saves having to rewrite - * data to disk. The access routines are also responsible for pre-zeroing - * any newly accessed rows, if pre-zeroing was requested. - * - * In current usage, the access requests are usually for nonoverlapping - * strips; that is, successive access start_row numbers differ by exactly - * num_rows = maxaccess. This means we can get good performance with simple - * buffer dump/reload logic, by making the in-memory buffer be a multiple - * of the access height; then there will never be accesses across bufferload - * boundaries. The code will still work with overlapping access requests, - * but it doesn't handle bufferload overlaps very efficiently. - */ - - -METHODDEF(jvirt_sarray_ptr) -request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, - JDIMENSION samplesperrow, JDIMENSION numrows, - JDIMENSION maxaccess) -/* Request a virtual 2-D sample array */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - jvirt_sarray_ptr result; - - /* Only IMAGE-lifetime virtual arrays are currently supported */ - if (pool_id != JPOOL_IMAGE) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - - /* get control block */ - result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, - SIZEOF(struct jvirt_sarray_control)); - - result->mem_buffer = NULL; /* marks array not yet realized */ - result->rows_in_array = numrows; - result->samplesperrow = samplesperrow; - result->maxaccess = maxaccess; - result->pre_zero = pre_zero; - result->b_s_open = FALSE; /* no associated backing-store object */ - result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ - mem->virt_sarray_list = result; - - return result; -} - - -METHODDEF(jvirt_barray_ptr) -request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, - JDIMENSION blocksperrow, JDIMENSION numrows, - JDIMENSION maxaccess) -/* Request a virtual 2-D coefficient-block array */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - jvirt_barray_ptr result; - - /* Only IMAGE-lifetime virtual arrays are currently supported */ - if (pool_id != JPOOL_IMAGE) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - - /* get control block */ - result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, - SIZEOF(struct jvirt_barray_control)); - - result->mem_buffer = NULL; /* marks array not yet realized */ - result->rows_in_array = numrows; - result->blocksperrow = blocksperrow; - result->maxaccess = maxaccess; - result->pre_zero = pre_zero; - result->b_s_open = FALSE; /* no associated backing-store object */ - result->next = mem->virt_barray_list; /* add to list of virtual arrays */ - mem->virt_barray_list = result; - - return result; -} - - -METHODDEF(void) -realize_virt_arrays (j_common_ptr cinfo) -/* Allocate the in-memory buffers for any unrealized virtual arrays */ -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - long space_per_minheight, maximum_space, avail_mem; - long minheights, max_minheights; - jvirt_sarray_ptr sptr; - jvirt_barray_ptr bptr; - - /* Compute the minimum space needed (maxaccess rows in each buffer) - * and the maximum space needed (full image height in each buffer). - * These may be of use to the system-dependent jpeg_mem_available routine. - */ - space_per_minheight = 0; - maximum_space = 0; - for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { - if (sptr->mem_buffer == NULL) { /* if not realized yet */ - space_per_minheight += (long) sptr->maxaccess * - (long) sptr->samplesperrow * SIZEOF(JSAMPLE); - maximum_space += (long) sptr->rows_in_array * - (long) sptr->samplesperrow * SIZEOF(JSAMPLE); - } - } - for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { - if (bptr->mem_buffer == NULL) { /* if not realized yet */ - space_per_minheight += (long) bptr->maxaccess * - (long) bptr->blocksperrow * SIZEOF(JBLOCK); - maximum_space += (long) bptr->rows_in_array * - (long) bptr->blocksperrow * SIZEOF(JBLOCK); - } - } - - if (space_per_minheight <= 0) - return; /* no unrealized arrays, no work */ - - /* Determine amount of memory to actually use; this is system-dependent. */ - avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, - mem->total_space_allocated); - - /* If the maximum space needed is available, make all the buffers full - * height; otherwise parcel it out with the same number of minheights - * in each buffer. - */ - if (avail_mem >= maximum_space) - max_minheights = 1000000000L; - else { - max_minheights = avail_mem / space_per_minheight; - /* If there doesn't seem to be enough space, try to get the minimum - * anyway. This allows a "stub" implementation of jpeg_mem_available(). - */ - if (max_minheights <= 0) - max_minheights = 1; - } - - /* Allocate the in-memory buffers and initialize backing store as needed. */ - - for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { - if (sptr->mem_buffer == NULL) { /* if not realized yet */ - minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; - if (minheights <= max_minheights) { - /* This buffer fits in memory */ - sptr->rows_in_mem = sptr->rows_in_array; - } else { - /* It doesn't fit in memory, create backing store. */ - sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); - jpeg_open_backing_store(cinfo, & sptr->b_s_info, - (long) sptr->rows_in_array * - (long) sptr->samplesperrow * - (long) SIZEOF(JSAMPLE)); - sptr->b_s_open = TRUE; - } - sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, - sptr->samplesperrow, sptr->rows_in_mem); - sptr->rowsperchunk = mem->last_rowsperchunk; - sptr->cur_start_row = 0; - sptr->first_undef_row = 0; - sptr->dirty = FALSE; - } - } - - for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { - if (bptr->mem_buffer == NULL) { /* if not realized yet */ - minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; - if (minheights <= max_minheights) { - /* This buffer fits in memory */ - bptr->rows_in_mem = bptr->rows_in_array; - } else { - /* It doesn't fit in memory, create backing store. */ - bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); - jpeg_open_backing_store(cinfo, & bptr->b_s_info, - (long) bptr->rows_in_array * - (long) bptr->blocksperrow * - (long) SIZEOF(JBLOCK)); - bptr->b_s_open = TRUE; - } - bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, - bptr->blocksperrow, bptr->rows_in_mem); - bptr->rowsperchunk = mem->last_rowsperchunk; - bptr->cur_start_row = 0; - bptr->first_undef_row = 0; - bptr->dirty = FALSE; - } - } -} - - -LOCAL(void) -do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) -/* Do backing store read or write of a virtual sample array */ -{ - long bytesperrow, file_offset, byte_count, rows, thisrow, i; - - bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); - file_offset = ptr->cur_start_row * bytesperrow; - /* Loop to read or write each allocation chunk in mem_buffer */ - for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { - /* One chunk, but check for short chunk at end of buffer */ - rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); - /* Transfer no more than is currently defined */ - thisrow = (long) ptr->cur_start_row + i; - rows = MIN(rows, (long) ptr->first_undef_row - thisrow); - /* Transfer no more than fits in file */ - rows = MIN(rows, (long) ptr->rows_in_array - thisrow); - if (rows <= 0) /* this chunk might be past end of file! */ - break; - byte_count = rows * bytesperrow; - if (writing) - (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, - (void FAR *) ptr->mem_buffer[i], - file_offset, byte_count); - else - (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, - (void FAR *) ptr->mem_buffer[i], - file_offset, byte_count); - file_offset += byte_count; - } -} - - -LOCAL(void) -do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) -/* Do backing store read or write of a virtual coefficient-block array */ -{ - long bytesperrow, file_offset, byte_count, rows, thisrow, i; - - bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); - file_offset = ptr->cur_start_row * bytesperrow; - /* Loop to read or write each allocation chunk in mem_buffer */ - for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { - /* One chunk, but check for short chunk at end of buffer */ - rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); - /* Transfer no more than is currently defined */ - thisrow = (long) ptr->cur_start_row + i; - rows = MIN(rows, (long) ptr->first_undef_row - thisrow); - /* Transfer no more than fits in file */ - rows = MIN(rows, (long) ptr->rows_in_array - thisrow); - if (rows <= 0) /* this chunk might be past end of file! */ - break; - byte_count = rows * bytesperrow; - if (writing) - (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, - (void FAR *) ptr->mem_buffer[i], - file_offset, byte_count); - else - (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, - (void FAR *) ptr->mem_buffer[i], - file_offset, byte_count); - file_offset += byte_count; - } -} - - -METHODDEF(JSAMPARRAY) -access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, - JDIMENSION start_row, JDIMENSION num_rows, - boolean writable) -/* Access the part of a virtual sample array starting at start_row */ -/* and extending for num_rows rows. writable is true if */ -/* caller intends to modify the accessed area. */ -{ - JDIMENSION end_row = start_row + num_rows; - JDIMENSION undef_row; - - /* debugging check */ - if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || - ptr->mem_buffer == NULL) - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - - /* Make the desired part of the virtual array accessible */ - if (start_row < ptr->cur_start_row || - end_row > ptr->cur_start_row+ptr->rows_in_mem) { - if (! ptr->b_s_open) - ERREXIT(cinfo, JERR_VIRTUAL_BUG); - /* Flush old buffer contents if necessary */ - if (ptr->dirty) { - do_sarray_io(cinfo, ptr, TRUE); - ptr->dirty = FALSE; - } - /* Decide what part of virtual array to access. - * Algorithm: if target address > current window, assume forward scan, - * load starting at target address. If target address < current window, - * assume backward scan, load so that target area is top of window. - * Note that when switching from forward write to forward read, will have - * start_row = 0, so the limiting case applies and we load from 0 anyway. - */ - if (start_row > ptr->cur_start_row) { - ptr->cur_start_row = start_row; - } else { - /* use long arithmetic here to avoid overflow & unsigned problems */ - long ltemp; - - ltemp = (long) end_row - (long) ptr->rows_in_mem; - if (ltemp < 0) - ltemp = 0; /* don't fall off front end of file */ - ptr->cur_start_row = (JDIMENSION) ltemp; - } - /* Read in the selected part of the array. - * During the initial write pass, we will do no actual read - * because the selected part is all undefined. - */ - do_sarray_io(cinfo, ptr, FALSE); - } - /* Ensure the accessed part of the array is defined; prezero if needed. - * To improve locality of access, we only prezero the part of the array - * that the caller is about to access, not the entire in-memory array. - */ - if (ptr->first_undef_row < end_row) { - if (ptr->first_undef_row < start_row) { - if (writable) /* writer skipped over a section of array */ - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - undef_row = start_row; /* but reader is allowed to read ahead */ - } else { - undef_row = ptr->first_undef_row; - } - if (writable) - ptr->first_undef_row = end_row; - if (ptr->pre_zero) { - size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); - undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ - end_row -= ptr->cur_start_row; - while (undef_row < end_row) { - jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); - undef_row++; - } - } else { - if (! writable) /* reader looking at undefined data */ - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - } - } - /* Flag the buffer dirty if caller will write in it */ - if (writable) - ptr->dirty = TRUE; - /* Return address of proper part of the buffer */ - return ptr->mem_buffer + (start_row - ptr->cur_start_row); -} - - -METHODDEF(JBLOCKARRAY) -access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, - JDIMENSION start_row, JDIMENSION num_rows, - boolean writable) -/* Access the part of a virtual block array starting at start_row */ -/* and extending for num_rows rows. writable is true if */ -/* caller intends to modify the accessed area. */ -{ - JDIMENSION end_row = start_row + num_rows; - JDIMENSION undef_row; - - /* debugging check */ - if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || - ptr->mem_buffer == NULL) - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - - /* Make the desired part of the virtual array accessible */ - if (start_row < ptr->cur_start_row || - end_row > ptr->cur_start_row+ptr->rows_in_mem) { - if (! ptr->b_s_open) - ERREXIT(cinfo, JERR_VIRTUAL_BUG); - /* Flush old buffer contents if necessary */ - if (ptr->dirty) { - do_barray_io(cinfo, ptr, TRUE); - ptr->dirty = FALSE; - } - /* Decide what part of virtual array to access. - * Algorithm: if target address > current window, assume forward scan, - * load starting at target address. If target address < current window, - * assume backward scan, load so that target area is top of window. - * Note that when switching from forward write to forward read, will have - * start_row = 0, so the limiting case applies and we load from 0 anyway. - */ - if (start_row > ptr->cur_start_row) { - ptr->cur_start_row = start_row; - } else { - /* use long arithmetic here to avoid overflow & unsigned problems */ - long ltemp; - - ltemp = (long) end_row - (long) ptr->rows_in_mem; - if (ltemp < 0) - ltemp = 0; /* don't fall off front end of file */ - ptr->cur_start_row = (JDIMENSION) ltemp; - } - /* Read in the selected part of the array. - * During the initial write pass, we will do no actual read - * because the selected part is all undefined. - */ - do_barray_io(cinfo, ptr, FALSE); - } - /* Ensure the accessed part of the array is defined; prezero if needed. - * To improve locality of access, we only prezero the part of the array - * that the caller is about to access, not the entire in-memory array. - */ - if (ptr->first_undef_row < end_row) { - if (ptr->first_undef_row < start_row) { - if (writable) /* writer skipped over a section of array */ - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - undef_row = start_row; /* but reader is allowed to read ahead */ - } else { - undef_row = ptr->first_undef_row; - } - if (writable) - ptr->first_undef_row = end_row; - if (ptr->pre_zero) { - size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); - undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ - end_row -= ptr->cur_start_row; - while (undef_row < end_row) { - jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); - undef_row++; - } - } else { - if (! writable) /* reader looking at undefined data */ - ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); - } - } - /* Flag the buffer dirty if caller will write in it */ - if (writable) - ptr->dirty = TRUE; - /* Return address of proper part of the buffer */ - return ptr->mem_buffer + (start_row - ptr->cur_start_row); -} - - -/* - * Release all objects belonging to a specified pool. - */ - -METHODDEF(void) -free_pool (j_common_ptr cinfo, int pool_id) -{ - my_mem_ptr mem = (my_mem_ptr) cinfo->mem; - small_pool_ptr shdr_ptr; - large_pool_ptr lhdr_ptr; - size_t space_freed; - - if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) - ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ - -#ifdef MEM_STATS - if (cinfo->err->trace_level > 1) - print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ -#endif - - /* If freeing IMAGE pool, close any virtual arrays first */ - if (pool_id == JPOOL_IMAGE) { - jvirt_sarray_ptr sptr; - jvirt_barray_ptr bptr; - - for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { - if (sptr->b_s_open) { /* there may be no backing store */ - sptr->b_s_open = FALSE; /* prevent recursive close if error */ - (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); - } - } - mem->virt_sarray_list = NULL; - for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { - if (bptr->b_s_open) { /* there may be no backing store */ - bptr->b_s_open = FALSE; /* prevent recursive close if error */ - (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); - } - } - mem->virt_barray_list = NULL; - } - - /* Release large objects */ - lhdr_ptr = mem->large_list[pool_id]; - mem->large_list[pool_id] = NULL; - - while (lhdr_ptr != NULL) { - large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; - space_freed = lhdr_ptr->hdr.bytes_used + - lhdr_ptr->hdr.bytes_left + - SIZEOF(large_pool_hdr); - jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); - mem->total_space_allocated -= space_freed; - lhdr_ptr = next_lhdr_ptr; - } - - /* Release small objects */ - shdr_ptr = mem->small_list[pool_id]; - mem->small_list[pool_id] = NULL; - - while (shdr_ptr != NULL) { - small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; - space_freed = shdr_ptr->hdr.bytes_used + - shdr_ptr->hdr.bytes_left + - SIZEOF(small_pool_hdr); - jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); - mem->total_space_allocated -= space_freed; - shdr_ptr = next_shdr_ptr; - } -} - - -/* - * Close up shop entirely. - * Note that this cannot be called unless cinfo->mem is non-NULL. - */ - -METHODDEF(void) -self_destruct (j_common_ptr cinfo) -{ - int pool; - - /* Close all backing store, release all memory. - * Releasing pools in reverse order might help avoid fragmentation - * with some (brain-damaged) malloc libraries. - */ - for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { - free_pool(cinfo, pool); - } - - /* Release the memory manager control block too. */ - jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); - cinfo->mem = NULL; /* ensures I will be called only once */ - - jpeg_mem_term(cinfo); /* system-dependent cleanup */ -} - - -/* - * Memory manager initialization. - * When this is called, only the error manager pointer is valid in cinfo! - */ - -GLOBAL(void) -jinit_memory_mgr (j_common_ptr cinfo) -{ - my_mem_ptr mem; - long max_to_use; - int pool; - size_t test_mac; - - cinfo->mem = NULL; /* for safety if init fails */ - - /* Check for configuration errors. - * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably - * doesn't reflect any real hardware alignment requirement. - * The test is a little tricky: for X>0, X and X-1 have no one-bits - * in common if and only if X is a power of 2, ie has only one one-bit. - * Some compilers may give an "unreachable code" warning here; ignore it. - */ - if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) - ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); - /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be - * a multiple of SIZEOF(ALIGN_TYPE). - * Again, an "unreachable code" warning may be ignored here. - * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. - */ - test_mac = (size_t) MAX_ALLOC_CHUNK; - if ((long) test_mac != MAX_ALLOC_CHUNK || - (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) - ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); - - max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ - - /* Attempt to allocate memory manager's control block */ - mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); - - if (mem == NULL) { - jpeg_mem_term(cinfo); /* system-dependent cleanup */ - ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); - } - - /* OK, fill in the method pointers */ - mem->pub.alloc_small = alloc_small; - mem->pub.alloc_large = alloc_large; - mem->pub.alloc_sarray = alloc_sarray; - mem->pub.alloc_barray = alloc_barray; - mem->pub.request_virt_sarray = request_virt_sarray; - mem->pub.request_virt_barray = request_virt_barray; - mem->pub.realize_virt_arrays = realize_virt_arrays; - mem->pub.access_virt_sarray = access_virt_sarray; - mem->pub.access_virt_barray = access_virt_barray; - mem->pub.free_pool = free_pool; - mem->pub.self_destruct = self_destruct; - - /* Make MAX_ALLOC_CHUNK accessible to other modules */ - mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; - - /* Initialize working state */ - mem->pub.max_memory_to_use = max_to_use; - - for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { - mem->small_list[pool] = NULL; - mem->large_list[pool] = NULL; - } - mem->virt_sarray_list = NULL; - mem->virt_barray_list = NULL; - - mem->total_space_allocated = SIZEOF(my_memory_mgr); - - /* Declare ourselves open for business */ - cinfo->mem = & mem->pub; - - /* Check for an environment variable JPEGMEM; if found, override the - * default max_memory setting from jpeg_mem_init. Note that the - * surrounding application may again override this value. - * If your system doesn't support getenv(), define NO_GETENV to disable - * this feature. - */ -#ifndef NO_GETENV - { char * memenv; - - if ((memenv = getenv("JPEGMEM")) != NULL) { - char ch = 'x'; - - if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { - if (ch == 'm' || ch == 'M') - max_to_use *= 1000L; - mem->pub.max_memory_to_use = max_to_use * 1000L; - } - } - } -#endif - -} |