summaryrefslogtreecommitdiffstats
path: root/src/kernel/qwmatrix.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/kernel/qwmatrix.cpp')
-rw-r--r--src/kernel/qwmatrix.cpp1036
1 files changed, 1036 insertions, 0 deletions
diff --git a/src/kernel/qwmatrix.cpp b/src/kernel/qwmatrix.cpp
new file mode 100644
index 000000000..f787820bf
--- /dev/null
+++ b/src/kernel/qwmatrix.cpp
@@ -0,0 +1,1036 @@
+/****************************************************************************
+**
+** Implementation of TQWMatrix class
+**
+** Created : 941020
+**
+** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
+**
+** This file is part of the kernel module of the TQt GUI Toolkit.
+**
+** This file may be used under the terms of the GNU General
+** Public License versions 2.0 or 3.0 as published by the Free
+** Software Foundation and appearing in the files LICENSE.GPL2
+** and LICENSE.GPL3 included in the packaging of this file.
+** Alternatively you may (at your option) use any later version
+** of the GNU General Public License if such license has been
+** publicly approved by Trolltech ASA (or its successors, if any)
+** and the KDE Free TQt Foundation.
+**
+** Please review the following information to ensure GNU General
+** Public Licensing retquirements will be met:
+** http://trolltech.com/products/qt/licenses/licensing/opensource/.
+** If you are unsure which license is appropriate for your use, please
+** review the following information:
+** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
+** or contact the sales department at sales@trolltech.com.
+**
+** This file may be used under the terms of the Q Public License as
+** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
+** included in the packaging of this file. Licensees holding valid TQt
+** Commercial licenses may use this file in accordance with the TQt
+** Commercial License Agreement provided with the Software.
+**
+** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
+** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
+** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
+** herein.
+**
+**********************************************************************/
+
+#include "qwmatrix.h"
+#include "qdatastream.h"
+#include "qregion.h"
+#if defined(Q_WS_X11)
+double qsincos( double, bool calcCos ); // defined in qpainter_x11.cpp
+#else
+#include <math.h>
+#endif
+
+#include <limits.h>
+
+#ifndef QT_NO_WMATRIX
+
+/*!
+ \class TQWMatrix qwmatrix.h
+ \brief The TQWMatrix class specifies 2D transformations of a
+ coordinate system.
+
+ \ingroup graphics
+ \ingroup images
+
+ The standard coordinate system of a \link TQPaintDevice paint
+ device\endlink has the origin located at the top-left position. X
+ values increase to the right; Y values increase downward.
+
+ This coordinate system is the default for the TQPainter, which
+ renders graphics in a paint device. A user-defined coordinate
+ system can be specified by setting a TQWMatrix for the painter.
+
+ Example:
+ \code
+ MyWidget::paintEvent( TQPaintEvent * )
+ {
+ TQPainter p; // our painter
+ TQWMatrix m; // our transformation matrix
+ m.rotate( 22.5 ); // rotated coordinate system
+ p.begin( this ); // start painting
+ p.setWorldMatrix( m ); // use rotated coordinate system
+ p.drawText( 30,20, "detator" ); // draw rotated text at 30,20
+ p.end(); // painting done
+ }
+ \endcode
+
+ A matrix specifies how to translate, scale, shear or rotate the
+ graphics; the actual transformation is performed by the drawing
+ routines in TQPainter and by TQPixmap::xForm().
+
+ The TQWMatrix class contains a 3x3 matrix of the form:
+ <table align=center border=1 cellpadding=1 cellspacing=0>
+ <tr align=center><td>m11</td><td>m12</td><td>&nbsp;0 </td></tr>
+ <tr align=center><td>m21</td><td>m22</td><td>&nbsp;0 </td></tr>
+ <tr align=center><td>dx</td> <td>dy</td> <td>&nbsp;1 </td></tr>
+ </table>
+
+ A matrix transforms a point in the plane to another point:
+ \code
+ x' = m11*x + m21*y + dx
+ y' = m22*y + m12*x + dy
+ \endcode
+
+ The point \e (x, y) is the original point, and \e (x', y') is the
+ transformed point. \e (x', y') can be transformed back to \e (x,
+ y) by performing the same operation on the \link
+ TQWMatrix::invert() inverted matrix\endlink.
+
+ The elements \e dx and \e dy specify horizontal and vertical
+ translation. The elements \e m11 and \e m22 specify horizontal and
+ vertical scaling. The elements \e m12 and \e m21 specify
+ horizontal and vertical shearing.
+
+ The identity matrix has \e m11 and \e m22 set to 1; all others are
+ set to 0. This matrix maps a point to itself.
+
+ Translation is the simplest transformation. Setting \e dx and \e
+ dy will move the coordinate system \e dx units along the X axis
+ and \e dy units along the Y axis.
+
+ Scaling can be done by setting \e m11 and \e m22. For example,
+ setting \e m11 to 2 and \e m22 to 1.5 will double the height and
+ increase the width by 50%.
+
+ Shearing is controlled by \e m12 and \e m21. Setting these
+ elements to values different from zero will twist the coordinate
+ system.
+
+ Rotation is achieved by carefully setting both the shearing
+ factors and the scaling factors. The TQWMatrix also has a function
+ that sets \link rotate() rotation \endlink directly.
+
+ TQWMatrix lets you combine transformations like this:
+ \code
+ TQWMatrix m; // identity matrix
+ m.translate(10, -20); // first translate (10,-20)
+ m.rotate(25); // then rotate 25 degrees
+ m.scale(1.2, 0.7); // finally scale it
+ \endcode
+
+ Here's the same example using basic matrix operations:
+ \code
+ double a = pi/180 * 25; // convert 25 to radians
+ double sina = sin(a);
+ double cosa = cos(a);
+ TQWMatrix m1(1, 0, 0, 1, 10, -20); // translation matrix
+ TQWMatrix m2( cosa, sina, // rotation matrix
+ -sina, cosa, 0, 0 );
+ TQWMatrix m3(1.2, 0, 0, 0.7, 0, 0); // scaling matrix
+ TQWMatrix m;
+ m = m3 * m2 * m1; // combine all transformations
+ \endcode
+
+ \l TQPainter has functions to translate, scale, shear and rotate the
+ coordinate system without using a TQWMatrix. Although these
+ functions are very convenient, it can be more efficient to build a
+ TQWMatrix and call TQPainter::setWorldMatrix() if you want to perform
+ more than a single transform operation.
+
+ \sa TQPainter::setWorldMatrix(), TQPixmap::xForm()
+*/
+
+bool qt_old_transformations = TRUE;
+
+/*!
+ \enum TQWMatrix::TransformationMode
+
+ \keyword transformation matrix
+
+ TQWMatrix offers two transformation modes. Calculations can either
+ be done in terms of points (Points mode, the default), or in
+ terms of area (Area mode).
+
+ In Points mode the transformation is applied to the points that
+ mark out the shape's bounding line. In Areas mode the
+ transformation is applied in such a way that the area of the
+ contained region is correctly transformed under the matrix.
+
+ \value Points transformations are applied to the shape's points.
+ \value Areas transformations are applied (e.g. to the width and
+ height) so that the area is transformed.
+
+ Example:
+
+ Suppose we have a rectangle,
+ \c{TQRect( 10, 20, 30, 40 )} and a transformation matrix
+ \c{TQWMatrix( 2, 0, 0, 2, 0, 0 )} to double the rectangle's size.
+
+ In Points mode, the matrix will transform the top-left (10,20) and
+ the bottom-right (39,59) points producing a rectangle with its
+ top-left point at (20,40) and its bottom-right point at (78,118),
+ i.e. with a width of 59 and a height of 79.
+
+ In Areas mode, the matrix will transform the top-left point in
+ the same way as in Points mode to (20/40), and double the width
+ and height, so the bottom-right will become (69,99), i.e. a width
+ of 60 and a height of 80.
+
+ Because integer arithmetic is used (for speed), rounding
+ differences mean that the modes will produce slightly different
+ results given the same shape and the same transformation,
+ especially when scaling up. This also means that some operations
+ are not commutative.
+
+ Under Points mode, \c{matrix * ( region1 | region2 )} is not equal to
+ \c{matrix * region1 | matrix * region2}. Under Area mode, \c{matrix *
+ (pointarray[i])} is not neccesarily equal to
+ \c{(matrix * pointarry)[i]}.
+
+ \img xform.png Comparison of Points and Areas TransformationModes
+*/
+
+/*!
+ Sets the transformation mode that TQWMatrix and painter
+ transformations use to \a m.
+
+ \sa TQWMatrix::TransformationMode
+*/
+void TQWMatrix::setTransformationMode( TQWMatrix::TransformationMode m )
+{
+ if ( m == TQWMatrix::Points )
+ qt_old_transformations = TRUE;
+ else
+ qt_old_transformations = FALSE;
+}
+
+
+/*!
+ Returns the current transformation mode.
+
+ \sa TQWMatrix::TransformationMode
+*/
+TQWMatrix::TransformationMode TQWMatrix::transformationMode()
+{
+ return (qt_old_transformations ? TQWMatrix::Points : TQWMatrix::Areas );
+}
+
+
+// some defines to inline some code
+#define MAPDOUBLE( x, y, nx, ny ) \
+{ \
+ double fx = x; \
+ double fy = y; \
+ nx = _m11*fx + _m21*fy + _dx; \
+ ny = _m12*fx + _m22*fy + _dy; \
+}
+
+#define MAPINT( x, y, nx, ny ) \
+{ \
+ double fx = x; \
+ double fy = y; \
+ nx = qRound(_m11*fx + _m21*fy + _dx); \
+ ny = qRound(_m12*fx + _m22*fy + _dy); \
+}
+
+/*****************************************************************************
+ TQWMatrix member functions
+ *****************************************************************************/
+
+/*!
+ Constructs an identity matrix. All elements are set to zero except
+ \e m11 and \e m22 (scaling), which are set to 1.
+*/
+
+TQWMatrix::TQWMatrix()
+{
+ _m11 = _m22 = 1.0;
+ _m12 = _m21 = _dx = _dy = 0.0;
+}
+
+/*!
+ Constructs a matrix with the elements, \a m11, \a m12, \a m21, \a
+ m22, \a dx and \a dy.
+*/
+
+TQWMatrix::TQWMatrix( double m11, double m12, double m21, double m22,
+ double dx, double dy )
+{
+ _m11 = m11; _m12 = m12;
+ _m21 = m21; _m22 = m22;
+ _dx = dx; _dy = dy;
+}
+
+
+/*!
+ Sets the matrix elements to the specified values, \a m11, \a m12,
+ \a m21, \a m22, \a dx and \a dy.
+*/
+
+void TQWMatrix::setMatrix( double m11, double m12, double m21, double m22,
+ double dx, double dy )
+{
+ _m11 = m11; _m12 = m12;
+ _m21 = m21; _m22 = m22;
+ _dx = dx; _dy = dy;
+}
+
+
+/*!
+ \fn double TQWMatrix::m11() const
+
+ Returns the X scaling factor.
+*/
+
+/*!
+ \fn double TQWMatrix::m12() const
+
+ Returns the vertical shearing factor.
+*/
+
+/*!
+ \fn double TQWMatrix::m21() const
+
+ Returns the horizontal shearing factor.
+*/
+
+/*!
+ \fn double TQWMatrix::m22() const
+
+ Returns the Y scaling factor.
+*/
+
+/*!
+ \fn double TQWMatrix::dx() const
+
+ Returns the horizontal translation.
+*/
+
+/*!
+ \fn double TQWMatrix::dy() const
+
+ Returns the vertical translation.
+*/
+
+
+/*!
+ \overload
+
+ Transforms ( \a x, \a y ) to ( \a *tx, \a *ty ) using the
+ following formulae:
+
+ \code
+ *tx = m11*x + m21*y + dx
+ *ty = m22*y + m12*x + dy
+ \endcode
+*/
+
+void TQWMatrix::map( double x, double y, double *tx, double *ty ) const
+{
+ MAPDOUBLE( x, y, *tx, *ty );
+}
+
+/*!
+ Transforms ( \a x, \a y ) to ( \a *tx, \a *ty ) using the formulae:
+
+ \code
+ *tx = m11*x + m21*y + dx (rounded to the nearest integer)
+ *ty = m22*y + m12*x + dy (rounded to the nearest integer)
+ \endcode
+*/
+
+void TQWMatrix::map( int x, int y, int *tx, int *ty ) const
+{
+ MAPINT( x, y, *tx, *ty );
+}
+
+/*!
+ \fn TQPoint TQWMatrix::map( const TQPoint &p ) const
+
+ \overload
+
+ Transforms \a p to using the formulae:
+
+ \code
+ retx = m11*px + m21*py + dx (rounded to the nearest integer)
+ rety = m22*py + m12*px + dy (rounded to the nearest integer)
+ \endcode
+*/
+
+/*!
+ \fn TQRect TQWMatrix::map( const TQRect &r ) const
+
+ \obsolete
+
+ Please use \l TQWMatrix::mapRect() instead.
+
+ Note that this method does return the bounding rectangle of the \a r, when
+ shearing or rotations are used.
+*/
+
+/*!
+ \fn TQPointArray TQWMatrix::map( const TQPointArray &a ) const
+
+ \overload
+
+ Returns the point array \a a transformed by calling map for each point.
+*/
+
+
+/*!
+ \fn TQRegion TQWMatrix::map( const TQRegion &r ) const
+
+ \overload
+
+ Transforms the region \a r.
+
+ Calling this method can be rather expensive, if rotations or
+ shearing are used.
+*/
+
+/*!
+ \fn TQRegion TQWMatrix::mapToRegion( const TQRect &rect ) const
+
+ Returns the transformed rectangle \a rect.
+
+ A rectangle which has been rotated or sheared may result in a
+ non-rectangular region being returned.
+
+ Calling this method can be expensive, if rotations or shearing are
+ used. If you just need to know the bounding rectangle of the
+ returned region, use mapRect() which is a lot faster than this
+ function.
+
+ \sa TQWMatrix::mapRect()
+*/
+
+
+/*!
+ Returns the transformed rectangle \a rect.
+
+ The bounding rectangle is returned if rotation or shearing has
+ been specified.
+
+ If you need to know the exact region \a rect maps to use \l
+ operator*().
+
+ \sa operator*()
+*/
+
+TQRect TQWMatrix::mapRect( const TQRect &rect ) const
+{
+ TQRect result;
+ if( qt_old_transformations ) {
+ if ( _m12 == 0.0F && _m21 == 0.0F ) {
+ result = TQRect( map(rect.topLeft()), map(rect.bottomRight()) ).normalize();
+ } else {
+ TQPointArray a( rect );
+ a = map( a );
+ result = a.boundingRect();
+ }
+ } else {
+ if ( _m12 == 0.0F && _m21 == 0.0F ) {
+ int x = qRound( _m11*rect.x() + _dx );
+ int y = qRound( _m22*rect.y() + _dy );
+ int w = qRound( _m11*rect.width() );
+ int h = qRound( _m22*rect.height() );
+ if ( w < 0 ) {
+ w = -w;
+ x -= w-1;
+ }
+ if ( h < 0 ) {
+ h = -h;
+ y -= h-1;
+ }
+ result = TQRect( x, y, w, h );
+ } else {
+
+ // see mapToPolygon for explanations of the algorithm.
+ double x0, y0;
+ double x, y;
+ MAPDOUBLE( rect.left(), rect.top(), x0, y0 );
+ double xmin = x0;
+ double ymin = y0;
+ double xmax = x0;
+ double ymax = y0;
+ MAPDOUBLE( rect.right() + 1, rect.top(), x, y );
+ xmin = TQMIN( xmin, x );
+ ymin = TQMIN( ymin, y );
+ xmax = TQMAX( xmax, x );
+ ymax = TQMAX( ymax, y );
+ MAPDOUBLE( rect.right() + 1, rect.bottom() + 1, x, y );
+ xmin = TQMIN( xmin, x );
+ ymin = TQMIN( ymin, y );
+ xmax = TQMAX( xmax, x );
+ ymax = TQMAX( ymax, y );
+ MAPDOUBLE( rect.left(), rect.bottom() + 1, x, y );
+ xmin = TQMIN( xmin, x );
+ ymin = TQMIN( ymin, y );
+ xmax = TQMAX( xmax, x );
+ ymax = TQMAX( ymax, y );
+ double w = xmax - xmin;
+ double h = ymax - ymin;
+ xmin -= ( xmin - x0 ) / w;
+ ymin -= ( ymin - y0 ) / h;
+ xmax -= ( xmax - x0 ) / w;
+ ymax -= ( ymax - y0 ) / h;
+ result = TQRect( qRound(xmin), qRound(ymin), qRound(xmax)-qRound(xmin)+1, qRound(ymax)-qRound(ymin)+1 );
+ }
+ }
+ return result;
+}
+
+
+/*!
+ \internal
+*/
+TQPoint TQWMatrix::operator *( const TQPoint &p ) const
+{
+ double fx = p.x();
+ double fy = p.y();
+ return TQPoint( qRound(_m11*fx + _m21*fy + _dx),
+ qRound(_m12*fx + _m22*fy + _dy) );
+}
+
+
+struct TQWMDoublePoint {
+ double x;
+ double y;
+};
+
+/*!
+ \internal
+*/
+TQPointArray TQWMatrix::operator *( const TQPointArray &a ) const
+{
+ if( qt_old_transformations ) {
+ TQPointArray result = a.copy();
+ int x, y;
+ for ( int i=0; i<(int)result.size(); i++ ) {
+ result.point( i, &x, &y );
+ MAPINT( x, y, x, y );
+ result.setPoint( i, x, y );
+ }
+ return result;
+ } else {
+ int size = a.size();
+ int i;
+ TQMemArray<TQWMDoublePoint> p( size );
+ TQPoint *da = a.data();
+ TQWMDoublePoint *dp = p.data();
+ double xmin = INT_MAX;
+ double ymin = xmin;
+ double xmax = INT_MIN;
+ double ymax = xmax;
+ int xminp = 0;
+ int yminp = 0;
+ for( i = 0; i < size; i++ ) {
+ dp[i].x = da[i].x();
+ dp[i].y = da[i].y();
+ if ( dp[i].x < xmin ) {
+ xmin = dp[i].x;
+ xminp = i;
+ }
+ if ( dp[i].y < ymin ) {
+ ymin = dp[i].y;
+ yminp = i;
+ }
+ xmax = TQMAX( xmax, dp[i].x );
+ ymax = TQMAX( ymax, dp[i].y );
+ }
+ double w = TQMAX( xmax - xmin, 1 );
+ double h = TQMAX( ymax - ymin, 1 );
+ for( i = 0; i < size; i++ ) {
+ dp[i].x += (dp[i].x - xmin)/w;
+ dp[i].y += (dp[i].y - ymin)/h;
+ MAPDOUBLE( dp[i].x, dp[i].y, dp[i].x, dp[i].y );
+ }
+
+ // now apply correction back for transformed values...
+ xmin = INT_MAX;
+ ymin = xmin;
+ xmax = INT_MIN;
+ ymax = xmax;
+ for( i = 0; i < size; i++ ) {
+ xmin = TQMIN( xmin, dp[i].x );
+ ymin = TQMIN( ymin, dp[i].y );
+ xmax = TQMAX( xmax, dp[i].x );
+ ymax = TQMAX( ymax, dp[i].y );
+ }
+ w = TQMAX( xmax - xmin, 1 );
+ h = TQMAX( ymax - ymin, 1 );
+
+ TQPointArray result( size );
+ TQPoint *dr = result.data();
+ for( i = 0; i < size; i++ ) {
+ dr[i].setX( qRound( dp[i].x - (dp[i].x - dp[xminp].x)/w ) );
+ dr[i].setY( qRound( dp[i].y - (dp[i].y - dp[yminp].y)/h ) );
+ }
+ return result;
+ }
+}
+
+/*!
+\internal
+*/
+TQRegion TQWMatrix::operator * (const TQRect &rect ) const
+{
+ TQRegion result;
+ if ( isIdentity() ) {
+ result = rect;
+ } else if ( _m12 == 0.0F && _m21 == 0.0F ) {
+ if( qt_old_transformations ) {
+ result = TQRect( map(rect.topLeft()), map(rect.bottomRight()) ).normalize();
+ } else {
+ int x = qRound( _m11*rect.x() + _dx );
+ int y = qRound( _m22*rect.y() + _dy );
+ int w = qRound( _m11*rect.width() );
+ int h = qRound( _m22*rect.height() );
+ if ( w < 0 ) {
+ w = -w;
+ x -= w - 1;
+ }
+ if ( h < 0 ) {
+ h = -h;
+ y -= h - 1;
+ }
+ result = TQRect( x, y, w, h );
+ }
+ } else {
+ result = TQRegion( mapToPolygon( rect ) );
+ }
+ return result;
+
+}
+
+/*!
+ Returns the transformed rectangle \a rect as a polygon.
+
+ Polygons and rectangles behave slightly differently
+ when transformed (due to integer rounding), so
+ \c{matrix.map( TQPointArray( rect ) )} is not always the same as
+ \c{matrix.mapToPolygon( rect )}.
+*/
+TQPointArray TQWMatrix::mapToPolygon( const TQRect &rect ) const
+{
+ TQPointArray a( 4 );
+ if ( qt_old_transformations ) {
+ a = TQPointArray( rect );
+ return operator *( a );
+ }
+ double x[4], y[4];
+ if ( _m12 == 0.0F && _m21 == 0.0F ) {
+ x[0] = qRound( _m11*rect.x() + _dx );
+ y[0] = qRound( _m22*rect.y() + _dy );
+ double w = qRound( _m11*rect.width() );
+ double h = qRound( _m22*rect.height() );
+ if ( w < 0 ) {
+ w = -w;
+ x[0] -= w - 1.;
+ }
+ if ( h < 0 ) {
+ h = -h;
+ y[0] -= h - 1.;
+ }
+ x[1] = x[0]+w-1;
+ x[2] = x[1];
+ x[3] = x[0];
+ y[1] = y[0];
+ y[2] = y[0]+h-1;
+ y[3] = y[2];
+ } else {
+ MAPINT( rect.left(), rect.top(), x[0], y[0] );
+ MAPINT( rect.right() + 1, rect.top(), x[1], y[1] );
+ MAPINT( rect.right() + 1, rect.bottom() + 1, x[2], y[2] );
+ MAPINT( rect.left(), rect.bottom() + 1, x[3], y[3] );
+
+ /*
+ Including rectangles as we have are evil.
+
+ We now have a rectangle that is one pixel to wide and one to
+ high. the tranformed position of the top-left corner is
+ correct. All other points need some adjustments.
+
+ Doing this mathematically exact would force us to calculate some square roots,
+ something we don't want for the sake of speed.
+
+ Instead we use an approximation, that converts to the correct
+ answer when m12 -> 0 and m21 -> 0, and accept smaller
+ errors in the general transformation case.
+
+ The solution is to calculate the width and height of the
+ bounding rect, and scale the points 1/2/3 by (xp-x0)/xw pixel direction
+ to point 0.
+ */
+
+ double xmin = x[0];
+ double ymin = y[0];
+ double xmax = x[0];
+ double ymax = y[0];
+ int i;
+ for( i = 1; i< 4; i++ ) {
+ xmin = TQMIN( xmin, x[i] );
+ ymin = TQMIN( ymin, y[i] );
+ xmax = TQMAX( xmax, x[i] );
+ ymax = TQMAX( ymax, y[i] );
+ }
+ double w = xmax - xmin;
+ double h = ymax - ymin;
+
+ for( i = 1; i < 4; i++ ) {
+ x[i] -= (x[i] - x[0])/w;
+ y[i] -= (y[i] - y[0])/h;
+ }
+ }
+#if 0
+ int i;
+ for( i = 0; i< 4; i++ )
+ qDebug("coords(%d) = (%f/%f) (%d/%d)", i, x[i], y[i], qRound(x[i]), qRound(y[i]) );
+ qDebug( "width=%f, height=%f", sqrt( (x[1]-x[0])*(x[1]-x[0]) + (y[1]-y[0])*(y[1]-y[0]) ),
+ sqrt( (x[0]-x[3])*(x[0]-x[3]) + (y[0]-y[3])*(y[0]-y[3]) ) );
+#endif
+ // all coordinates are correctly, tranform to a pointarray
+ // (rounding to the next integer)
+ a.setPoints( 4, qRound( x[0] ), qRound( y[0] ),
+ qRound( x[1] ), qRound( y[1] ),
+ qRound( x[2] ), qRound( y[2] ),
+ qRound( x[3] ), qRound( y[3] ) );
+ return a;
+}
+
+/*!
+\internal
+*/
+TQRegion TQWMatrix::operator * (const TQRegion &r ) const
+{
+ if ( isIdentity() )
+ return r;
+ TQMemArray<TQRect> rects = r.rects();
+ TQRegion result;
+ register TQRect *rect = rects.data();
+ register int i = rects.size();
+ if ( _m12 == 0.0F && _m21 == 0.0F && _m11 > 1.0F && _m22 > 1.0F ) {
+ // simple case, no rotation
+ while ( i ) {
+ int x = qRound( _m11*rect->x() + _dx );
+ int y = qRound( _m22*rect->y() + _dy );
+ int w = qRound( _m11*rect->width() );
+ int h = qRound( _m22*rect->height() );
+ if ( w < 0 ) {
+ w = -w;
+ x -= w-1;
+ }
+ if ( h < 0 ) {
+ h = -h;
+ y -= h-1;
+ }
+ *rect = TQRect( x, y, w, h );
+ rect++;
+ i--;
+ }
+ result.setRects( rects.data(), rects.size() );
+ } else {
+ while ( i ) {
+ result |= operator *( *rect );
+ rect++;
+ i--;
+ }
+ }
+ return result;
+}
+
+/*!
+ Resets the matrix to an identity matrix.
+
+ All elements are set to zero, except \e m11 and \e m22 (scaling)
+ which are set to 1.
+
+ \sa isIdentity()
+*/
+
+void TQWMatrix::reset()
+{
+ _m11 = _m22 = 1.0;
+ _m12 = _m21 = _dx = _dy = 0.0;
+}
+
+/*!
+ Returns TRUE if the matrix is the identity matrix; otherwise returns FALSE.
+
+ \sa reset()
+*/
+bool TQWMatrix::isIdentity() const
+{
+ return _m11 == 1.0 && _m22 == 1.0 && _m12 == 0.0 && _m21 == 0.0
+ && _dx == 0.0 && _dy == 0.0;
+}
+
+/*!
+ Moves the coordinate system \a dx along the X-axis and \a dy along
+ the Y-axis.
+
+ Returns a reference to the matrix.
+
+ \sa scale(), shear(), rotate()
+*/
+
+TQWMatrix &TQWMatrix::translate( double dx, double dy )
+{
+ _dx += dx*_m11 + dy*_m21;
+ _dy += dy*_m22 + dx*_m12;
+ return *this;
+}
+
+/*!
+ Scales the coordinate system unit by \a sx horizontally and \a sy
+ vertically.
+
+ Returns a reference to the matrix.
+
+ \sa translate(), shear(), rotate()
+*/
+
+TQWMatrix &TQWMatrix::scale( double sx, double sy )
+{
+ _m11 *= sx;
+ _m12 *= sx;
+ _m21 *= sy;
+ _m22 *= sy;
+ return *this;
+}
+
+/*!
+ Shears the coordinate system by \a sh horizontally and \a sv
+ vertically.
+
+ Returns a reference to the matrix.
+
+ \sa translate(), scale(), rotate()
+*/
+
+TQWMatrix &TQWMatrix::shear( double sh, double sv )
+{
+ double tm11 = sv*_m21;
+ double tm12 = sv*_m22;
+ double tm21 = sh*_m11;
+ double tm22 = sh*_m12;
+ _m11 += tm11;
+ _m12 += tm12;
+ _m21 += tm21;
+ _m22 += tm22;
+ return *this;
+}
+
+const double deg2rad = 0.017453292519943295769; // pi/180
+
+/*!
+ Rotates the coordinate system \a a degrees counterclockwise.
+
+ Returns a reference to the matrix.
+
+ \sa translate(), scale(), shear()
+*/
+
+TQWMatrix &TQWMatrix::rotate( double a )
+{
+ double b = deg2rad*a; // convert to radians
+#if defined(Q_WS_X11)
+ double sina = qsincos(b,FALSE); // fast and convenient
+ double cosa = qsincos(b,TRUE);
+#else
+ double sina = sin(b);
+ double cosa = cos(b);
+#endif
+ double tm11 = cosa*_m11 + sina*_m21;
+ double tm12 = cosa*_m12 + sina*_m22;
+ double tm21 = -sina*_m11 + cosa*_m21;
+ double tm22 = -sina*_m12 + cosa*_m22;
+ _m11 = tm11; _m12 = tm12;
+ _m21 = tm21; _m22 = tm22;
+ return *this;
+}
+
+/*!
+ \fn bool TQWMatrix::isInvertible() const
+
+ Returns TRUE if the matrix is invertible; otherwise returns FALSE.
+
+ \sa invert()
+*/
+
+/*!
+ \fn double TQWMatrix::det() const
+
+ Returns the matrix's determinant.
+*/
+
+
+/*!
+ Returns the inverted matrix.
+
+ If the matrix is singular (not invertible), the identity matrix is
+ returned.
+
+ If \a invertible is not 0: the value of \a *invertible is set
+ to TRUE if the matrix is invertible; otherwise \a *invertible is
+ set to FALSE.
+
+ \sa isInvertible()
+*/
+
+TQWMatrix TQWMatrix::invert( bool *invertible ) const
+{
+ double determinant = det();
+ if ( determinant == 0.0 ) {
+ if ( invertible )
+ *invertible = FALSE; // singular matrix
+ TQWMatrix defaultMatrix;
+ return defaultMatrix;
+ }
+ else { // invertible matrix
+ if ( invertible )
+ *invertible = TRUE;
+ double dinv = 1.0/determinant;
+ TQWMatrix imatrix( (_m22*dinv), (-_m12*dinv),
+ (-_m21*dinv), ( _m11*dinv),
+ ((_m21*_dy - _m22*_dx)*dinv),
+ ((_m12*_dx - _m11*_dy)*dinv) );
+ return imatrix;
+ }
+}
+
+
+/*!
+ Returns TRUE if this matrix is equal to \a m; otherwise returns FALSE.
+*/
+
+bool TQWMatrix::operator==( const TQWMatrix &m ) const
+{
+ return _m11 == m._m11 &&
+ _m12 == m._m12 &&
+ _m21 == m._m21 &&
+ _m22 == m._m22 &&
+ _dx == m._dx &&
+ _dy == m._dy;
+}
+
+/*!
+ Returns TRUE if this matrix is not equal to \a m; otherwise returns FALSE.
+*/
+
+bool TQWMatrix::operator!=( const TQWMatrix &m ) const
+{
+ return _m11 != m._m11 ||
+ _m12 != m._m12 ||
+ _m21 != m._m21 ||
+ _m22 != m._m22 ||
+ _dx != m._dx ||
+ _dy != m._dy;
+}
+
+/*!
+ Returns the result of multiplying this matrix by matrix \a m.
+*/
+
+TQWMatrix &TQWMatrix::operator*=( const TQWMatrix &m )
+{
+ double tm11 = _m11*m._m11 + _m12*m._m21;
+ double tm12 = _m11*m._m12 + _m12*m._m22;
+ double tm21 = _m21*m._m11 + _m22*m._m21;
+ double tm22 = _m21*m._m12 + _m22*m._m22;
+
+ double tdx = _dx*m._m11 + _dy*m._m21 + m._dx;
+ double tdy = _dx*m._m12 + _dy*m._m22 + m._dy;
+
+ _m11 = tm11; _m12 = tm12;
+ _m21 = tm21; _m22 = tm22;
+ _dx = tdx; _dy = tdy;
+ return *this;
+}
+
+/*!
+ \overload
+ \relates TQWMatrix
+ Returns the product of \a m1 * \a m2.
+
+ Note that matrix multiplication is not commutative, i.e. a*b !=
+ b*a.
+*/
+
+TQWMatrix operator*( const TQWMatrix &m1, const TQWMatrix &m2 )
+{
+ TQWMatrix result = m1;
+ result *= m2;
+ return result;
+}
+
+/*****************************************************************************
+ TQWMatrix stream functions
+ *****************************************************************************/
+#ifndef QT_NO_DATASTREAM
+/*!
+ \relates TQWMatrix
+
+ Writes the matrix \a m to the stream \a s and returns a reference
+ to the stream.
+
+ \sa \link datastreamformat.html Format of the TQDataStream operators \endlink
+*/
+
+TQDataStream &operator<<( TQDataStream &s, const TQWMatrix &m )
+{
+ if ( s.version() == 1 )
+ s << (float)m.m11() << (float)m.m12() << (float)m.m21()
+ << (float)m.m22() << (float)m.dx() << (float)m.dy();
+ else
+ s << m.m11() << m.m12() << m.m21() << m.m22()
+ << m.dx() << m.dy();
+ return s;
+}
+
+/*!
+ \relates TQWMatrix
+
+ Reads the matrix \a m from the stream \a s and returns a reference
+ to the stream.
+
+ \sa \link datastreamformat.html Format of the TQDataStream operators \endlink
+*/
+
+TQDataStream &operator>>( TQDataStream &s, TQWMatrix &m )
+{
+ if ( s.version() == 1 ) {
+ float m11, m12, m21, m22, dx, dy;
+ s >> m11; s >> m12; s >> m21; s >> m22;
+ s >> dx; s >> dy;
+ m.setMatrix( m11, m12, m21, m22, dx, dy );
+ }
+ else {
+ double m11, m12, m21, m22, dx, dy;
+ s >> m11; s >> m12; s >> m21; s >> m22;
+ s >> dx; s >> dy;
+ m.setMatrix( m11, m12, m21, m22, dx, dy );
+ }
+ return s;
+}
+#endif // QT_NO_DATASTREAM
+
+#endif // QT_NO_WMATRIX
+