/**************************************************************************** ** ** Implementation of TQColor class for X11 ** ** Created : 940112 ** ** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved. ** ** This file is part of the kernel module of the TQt GUI Toolkit. ** ** This file may be used under the terms of the GNU General ** Public License versions 2.0 or 3.0 as published by the Free ** Software Foundation and appearing in the files LICENSE.GPL2 ** and LICENSE.GPL3 included in the packaging of this file. ** Alternatively you may (at your option) use any later version ** of the GNU General Public License if such license has been ** publicly approved by Trolltech ASA (or its successors, if any) ** and the KDE Free TQt Foundation. ** ** Please review the following information to ensure GNU General ** Public Licensing requirements will be met: ** http://trolltech.com/products/qt/licenses/licensing/opensource/. ** If you are unsure which license is appropriate for your use, please ** review the following information: ** http://trolltech.com/products/qt/licenses/licensing/licensingoverview ** or contact the sales department at sales@trolltech.com. ** ** This file may be used under the terms of the Q Public License as ** defined by Trolltech ASA and appearing in the file LICENSE.TQPL ** included in the packaging of this file. Licensees holding valid TQt ** Commercial licenses may use this file in accordance with the TQt ** Commercial License Agreement provided with the Software. ** ** This file is provided "AS IS" with NO WARRANTY OF ANY KIND, ** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted ** herein. ** **********************************************************************/ #include "tqcolor.h" #include "tqcolor_p.h" #include "string.h" #include "tqpaintdevice.h" #include "ntqapplication.h" #include "qapplication_p.h" #include "qt_x11_p.h" // NOT REVISED /***************************************************************************** The color dictionary speeds up color allocation significantly for X11. When there are no more colors, TQColor::alloc() will set the colors_avail flag to FALSE and try to find the nearest color. NOTE: From deep within the event loop, the colors_avail flag is reset to TRUE (calls the function qt_reset_color_avail()), because some other application might free its colors, thereby making them available for this TQt application. *****************************************************************************/ #include "tqintdict.h" struct TQColorData { uint pix; // allocated pixel value int context; // allocation context }; typedef TQIntDict TQColorDict; typedef TQIntDictIterator TQColorDictIt; static int current_alloc_context = 0; // current color alloc context static const uint col_std_dict = 419; static const uint col_large_dict = 18397; class TQColorScreenData { public: TQColorScreenData() { colorDict = 0; colors_avail = TRUE; g_vis = 0; g_carr = 0; g_carr_fetch = TRUE; g_cells = 0; g_our_alloc = 0; color_reduce = FALSE; } TQColorDict *colorDict; // dict of allocated colors bool colors_avail; // X colors available bool g_truecolor; // truecolor visual Visual *g_vis; // visual XColor *g_carr; // color array bool g_carr_fetch; // perform XQueryColors? int g_cells; // number of entries in g_carr bool *g_our_alloc; // our allocated colors uint red_mask , green_mask , blue_mask; int red_shift, green_shift, blue_shift; bool color_reduce; int col_div_r; int col_div_g; int col_div_b; }; static int screencount = 0; static TQColorScreenData **screendata = 0; // array of screendata pointers /* This function is called from the event loop. It resets the colors_avail flag so that the application can retry to allocate read-only colors that other applications may have deallocated lately. The g_our_alloc and g_carr are global arrays that optimize color approximation when there are no more colors left to allocate. */ void qt_reset_color_avail() { int i; for ( i = 0; i < screencount; i++ ) { screendata[i]->colors_avail = TRUE; screendata[i]->g_carr_fetch = TRUE; // do XQueryColors if !colors_avail } } /* Finds the nearest color. */ static int find_nearest_color( int r, int g, int b, int* mindist_out, TQColorScreenData *sd ) { int mincol = -1; int mindist = 200000; int rx, gx, bx, dist; XColor *xc = &sd->g_carr[0]; for ( int i=0; ig_cells; i++ ) { rx = r - (xc->red >> 8); gx = g - (xc->green >> 8); bx = b - (xc->blue>> 8); dist = rx*rx + gx*gx + bx*bx; // calculate distance if ( dist < mindist ) { // minimal? mindist = dist; mincol = i; } xc++; } *mindist_out = mindist; return mincol; } /***************************************************************************** TQColor misc internal functions *****************************************************************************/ static int highest_bit( uint v ) { int i; uint b = (uint)1 << 31; // get pos of highest bit in v for ( i=31; ((b & v) == 0) && i>=0; i-- ) b >>= 1; return i; } /***************************************************************************** TQColor static member functions *****************************************************************************/ /*! Returns the maximum number of colors supported by the underlying window system if the window system uses a palette. Otherwise returns -1. Use numBitPlanes() to calculate the available colors in that case. */ int TQColor::maxColors() { Visual *visual = (Visual *) TQPaintDevice::x11AppVisual(); if (visual->c_class & 1) return TQPaintDevice::x11AppCells(); return -1; } /*! Returns the number of color bit planes for the underlying window system. The returned value is equal to the default pixmap depth. \sa TQPixmap::defaultDepth() */ int TQColor::numBitPlanes() { return TQPaintDevice::x11AppDepth(); } /*! Internal initialization required for TQColor. This function is called from the TQApplication constructor. \sa cleanup() */ void TQColor::initialize() { static const int blackIdx = 2; static const int whiteIdx = 3; if ( color_init ) // already initialized return; color_init = TRUE; Display *dpy = TQPaintDevice::x11AppDisplay(); int spec = TQApplication::colorSpec(); screencount = ScreenCount( dpy ); screendata = new TQColorScreenData*[ screencount ]; int scr; for ( scr = 0; scr < screencount; ++scr ) { screendata[scr] = new TQColorScreenData; screendata[scr]->g_vis = (Visual *) TQPaintDevice::x11AppVisual( scr ); screendata[scr]->g_truecolor = screendata[scr]->g_vis->c_class == TrueColor || screendata[scr]->g_vis->c_class == DirectColor; int ncols = TQPaintDevice::x11AppCells( scr ); if ( screendata[scr]->g_truecolor ) { if (scr == DefaultScreen(dpy)) colormodel = d32; } else { if (scr == DefaultScreen(dpy)) colormodel = d8; // Create the g_our_alloc array, which remembers which color pixels // we allocated. screendata[scr]->g_cells = TQMIN(ncols,256); screendata[scr]->g_carr = new XColor[screendata[scr]->g_cells]; TQ_CHECK_PTR( screendata[scr]->g_carr ); memset( screendata[scr]->g_carr, 0, screendata[scr]->g_cells*sizeof(XColor) ); screendata[scr]->g_carr_fetch = TRUE; // run XQueryColors on demand screendata[scr]->g_our_alloc = new bool[screendata[scr]->g_cells]; TQ_CHECK_PTR( screendata[scr]->g_our_alloc ); memset( screendata[scr]->g_our_alloc, FALSE, screendata[scr]->g_cells*sizeof(bool) ); XColor *xc = &screendata[scr]->g_carr[0]; for ( int i=0; ig_cells; i++ ) { xc->pixel = i; // g_carr[i] = color i xc++; } } int dictsize; if ( screendata[scr]->g_truecolor ) { // truecolor dictsize = 1; // will not need color dict screendata[scr]->red_mask = (uint)screendata[scr]->g_vis->red_mask; screendata[scr]->green_mask = (uint)screendata[scr]->g_vis->green_mask; screendata[scr]->blue_mask = (uint)screendata[scr]->g_vis->blue_mask; screendata[scr]->red_shift = highest_bit( screendata[scr]->red_mask ) - 7; screendata[scr]->green_shift = highest_bit( screendata[scr]->green_mask ) - 7; screendata[scr]->blue_shift = highest_bit( screendata[scr]->blue_mask ) - 7; } else { dictsize = col_std_dict; } screendata[scr]->colorDict = new TQColorDict(dictsize); // create dictionary TQ_CHECK_PTR( screendata[scr]->colorDict ); if ( spec == (int)TQApplication::ManyColor ) { screendata[scr]->color_reduce = TRUE; switch ( qt_ncols_option ) { case 216: // 6:6:6 screendata[scr]->col_div_r = screendata[scr]->col_div_g = screendata[scr]->col_div_b = (255/(6-1)); break; default: { // 2:3:1 proportions, solved numerically if ( qt_ncols_option > 255 ) qt_ncols_option = 255; if ( qt_ncols_option < 1 ) qt_ncols_option = 1; int nr = 2; int ng = 2; int nb = 2; for (;;) { if ( nb*2 < nr && (nb+1)*nr*ng < qt_ncols_option ) nb++; else if ( nr*3 < ng*2 && nb*(nr+1)*ng < qt_ncols_option ) nr++; else if ( nb*nr*(ng+1) < qt_ncols_option ) ng++; else break; } qt_ncols_option = nr*ng*nb; screendata[scr]->col_div_r = (255/(nr-1)); screendata[scr]->col_div_g = (255/(ng-1)); screendata[scr]->col_div_b = (255/(nb-1)); } } } } scr = TQPaintDevice::x11AppScreen(); // Initialize global color objects if ( TQPaintDevice::x11AppDefaultVisual(scr) && TQPaintDevice::x11AppDefaultColormap(scr) ) { globalColors()[blackIdx].setPixel((uint) BlackPixel(dpy, scr)); globalColors()[whiteIdx].setPixel((uint) WhitePixel(dpy, scr)); } else { globalColors()[blackIdx].alloc(scr); globalColors()[whiteIdx].alloc(scr); } #if 0 /* 0 == allocate colors on demand */ setLazyAlloc( FALSE ); // allocate global colors ((TQColor*)(&darkGray))-> alloc(); ((TQColor*)(&gray))-> alloc(); ((TQColor*)(&lightGray))-> alloc(); ((TQColor*)(&::red))-> alloc(); ((TQColor*)(&::green))-> alloc(); ((TQColor*)(&::blue))-> alloc(); ((TQColor*)(&cyan))-> alloc(); ((TQColor*)(&magenta))-> alloc(); ((TQColor*)(&yellow))-> alloc(); ((TQColor*)(&darkRed))-> alloc(); ((TQColor*)(&darkGreen))-> alloc(); ((TQColor*)(&darkBlue))-> alloc(); ((TQColor*)(&darkCyan))-> alloc(); ((TQColor*)(&darkMagenta))-> alloc(); ((TQColor*)(&darkYellow))-> alloc(); setLazyAlloc( TRUE ); #endif } /*! Internal clean up required for TQColor. This function is called from the TQApplication destructor. \sa initialize() */ void TQColor::cleanup() { if ( !color_init ) return; color_init = FALSE; int scr; for ( scr = 0; scr < screencount; scr++ ) { if ( screendata[scr]->g_carr ) { delete [] screendata[scr]->g_carr; screendata[scr]->g_carr = 0; } if ( screendata[scr]->g_our_alloc ) { delete [] screendata[scr]->g_our_alloc; screendata[scr]->g_our_alloc = 0; } if ( screendata[scr]->colorDict ) { screendata[scr]->colorDict->setAutoDelete( TRUE ); screendata[scr]->colorDict->clear(); delete screendata[scr]->colorDict; screendata[scr]->colorDict = 0; } delete screendata[scr]; screendata[scr] = 0; } delete [] screendata; screendata = 0; screencount = 0; } /***************************************************************************** TQColor member functions *****************************************************************************/ /*! \internal Allocates the color on screen \a screen. Only used in X11. \sa alloc(), pixel() */ uint TQColor::alloc( int screen ) { Display *dpy = TQPaintDevice::x11AppDisplay(); if ( screen < 0 ) screen = TQPaintDevice::x11AppScreen(); if ( !color_init ) return dpy ? (uint)BlackPixel(dpy, screen) : 0; int r = tqRed(d.argb); int g = tqGreen(d.argb); int b = tqBlue(d.argb); uint pix = 0; TQColorScreenData *sd = screendata[screen]; if ( sd->g_truecolor ) { // truecolor: map to pixel r = sd->red_shift > 0 ? r << sd->red_shift : r >> -sd->red_shift; g = sd->green_shift > 0 ? g << sd->green_shift : g >> -sd->green_shift; b = sd->blue_shift > 0 ? b << sd->blue_shift : b >> -sd->blue_shift; pix = (b & sd->blue_mask) | (g & sd->green_mask) | (r & sd->red_mask) | ~(sd->blue_mask | sd->green_mask | sd->red_mask); if (TQPaintDevice::x11AppDepth(screen) == 32) { int a = tqAlpha(d.argb); pix = pix & 0x00ffffff; pix = pix | (a << 24); } if ( screen == TQPaintDevice::x11AppScreen() ) { d.d32.pix = pix; } return pix; } TQColorData *c = sd->colorDict->find( (long)(d.argb) ); if ( c ) { // found color in dictionary pix = c->pix; if ( screen == TQPaintDevice::x11AppScreen() ) { d.d8.invalid = FALSE; // color ok d.d8.dirty = FALSE; d.d8.pix = pix; // use same pixel value if ( c->context != current_alloc_context ) { c->context = 0; // convert to default context sd->g_our_alloc[pix] = TRUE; // reuse without XAllocColor } } return pix; } XColor col; col.red = r << 8; col.green = g << 8; col.blue = b << 8; bool try_again = FALSE; bool try_alloc = !sd->color_reduce; int try_count = 0; do { // This loop is run until we manage to either allocate or // find an approximate color, it stops after a few iterations. try_again = FALSE; if ( try_alloc && sd->colors_avail && XAllocColor(dpy, TQPaintDevice::x11AppColormap( screen ),&col) ) { // We could allocate the color pix = (uint) col.pixel; if ( screen == TQPaintDevice::x11AppScreen() ) { d.d8.pix = pix; d.d8.invalid = FALSE; d.d8.dirty = FALSE; sd->g_carr[d.d8.pix] = col; // update color array if ( current_alloc_context == 0 ) sd->g_our_alloc[d.d8.pix] = TRUE; // reuse without XAllocColor } } else { // No available colors, or we did not want to allocate one int i; sd->colors_avail = FALSE; // no more available colors if ( sd->g_carr_fetch ) { // refetch color array sd->g_carr_fetch = FALSE; XQueryColors( dpy, TQPaintDevice::x11AppColormap( screen ), sd->g_carr, sd->g_cells ); } int mindist; i = find_nearest_color( r, g, b, &mindist, sd ); if ( mindist != 0 && !try_alloc ) { // Not an exact match with an existing color int rr = ((r+sd->col_div_r/2)/sd->col_div_r)*sd->col_div_r; int rg = ((g+sd->col_div_g/2)/sd->col_div_g)*sd->col_div_g; int rb = ((b+sd->col_div_b/2)/sd->col_div_b)*sd->col_div_b; int rx = rr - r; int gx = rg - g; int bx = rb - b; int dist = rx*rx + gx*gx + bx*bx; // calculate distance if ( dist < mindist ) { // reduced color is closer - try to alloc it r = rr; g = rg; b = rb; col.red = r << 8; col.green = g << 8; col.blue = b << 8; try_alloc = TRUE; try_again = TRUE; sd->colors_avail = TRUE; continue; // Try alloc reduced color } } if ( i == -1 ) { // no nearest color?! int unused, value; hsv(&unused, &unused, &value); if (value < 128) { // dark, use black d.argb = tqRgb(0,0,0); pix = (uint)BlackPixel( dpy, screen ); if ( screen == TQPaintDevice::x11AppScreen() ) { d.d8.invalid = FALSE; d.d8.dirty = FALSE; d.d8.pix = pix; } } else { // light, use white d.argb = tqRgb(0xff,0xff,0xff); pix = (uint)WhitePixel( dpy, screen ); if ( screen == TQPaintDevice::x11AppScreen() ) { d.d8.invalid = FALSE; d.d8.dirty = FALSE; d.d8.pix = pix; } } return pix; } if ( sd->g_our_alloc[i] ) { // we've already allocated it ; // i == g_carr[i].pixel } else { // Try to allocate existing color col = sd->g_carr[i]; if ( XAllocColor(dpy, TQPaintDevice::x11AppColormap( screen ), &col) ) { i = (uint)col.pixel; sd->g_carr[i] = col; // update color array if ( screen == TQPaintDevice::x11AppScreen() ) { if ( current_alloc_context == 0 ) sd->g_our_alloc[i] = TRUE; // only in the default context } } else { // Oops, it's gone again try_count++; try_again = TRUE; sd->colors_avail = TRUE; sd->g_carr_fetch = TRUE; } } if ( !try_again ) { // got it pix = (uint)sd->g_carr[i].pixel; if ( screen == TQPaintDevice::x11AppScreen() ) { d.d8.invalid = FALSE; d.d8.dirty = FALSE; d.d8.pix = pix; // allocated X11 color } } } } while ( try_again && try_count < 2 ); if ( try_again ) { // no hope of allocating color int unused, value; hsv(&unused, &unused, &value); if (value < 128) { // dark, use black d.argb = tqRgb(0,0,0); pix = (uint)BlackPixel( dpy, screen ); if ( screen == TQPaintDevice::x11AppScreen() ) { d.d8.invalid = FALSE; d.d8.dirty = FALSE; d.d8.pix = pix; } } else { // light, use white d.argb = tqRgb(0xff,0xff,0xff); pix = (uint)WhitePixel( dpy, screen ); if ( screen == TQPaintDevice::x11AppScreen() ) { d.d8.invalid = FALSE; d.d8.dirty = FALSE; d.d8.pix = pix; } } return pix; } // All colors outside context 0 must go into the dictionary bool many = sd->colorDict->count() >= sd->colorDict->size() * 8; if ( many && sd->colorDict->size() == col_std_dict ) { sd->colorDict->resize( col_large_dict ); } if ( !many || current_alloc_context != 0 ) { c = new TQColorData; // insert into color dict TQ_CHECK_PTR( c ); c->pix = pix; c->context = current_alloc_context; sd->colorDict->insert( (long)d.argb, c ); // store color in dict } return pix; } /*! Allocates the RGB color and returns the pixel value. Allocating a color means to obtain a pixel value from the RGB specification. The pixel value is an index into the global color table, but should be considered an arbitrary platform-dependent value. The pixel() function calls alloc() if necessary, so in general you don't need to call this function. \sa enterAllocContext() */ // ### 4.0 - remove me? uint TQColor::alloc() { return alloc( -1 ); } /*! \overload Returns the pixel value for screen \a screen. This value is used by the underlying window system to refer to a color. It can be thought of as an index into the display hardware's color table, but the value is an arbitrary 32-bit value. \sa alloc() */ uint TQColor::pixel( int screen ) const { if (screen != TQPaintDevice::x11AppScreen() && // don't allocate color0 or color1, they have fixed pixel // values for all screens d.argb != tqRgba(255, 255, 255, 1) && d.argb != tqRgba(0, 0, 0, 1)) return ((TQColor*)this)->alloc( screen ); return pixel(); } void TQColor::setSystemNamedColor( const TQString& name ) { // setSystemNamedColor should look up rgb values from the built in // color tables first (see tqcolor_p.cpp), and failing that, use // the window system's interface for translating names to rgb values... // we do this so that things like uic can load an XPM file with named colors // and convert it to a png without having to use window system functions... d.argb = qt_get_rgb_val( name.latin1() ); TQRgb rgb; if ( qt_get_named_rgb( name.latin1(), &rgb ) ) { setRgb( tqRed(rgb), tqGreen(rgb), tqBlue(rgb) ); if ( colormodel == d8 ) { d.d8.invalid = FALSE; d.d8.dirty = TRUE; d.d8.pix = 0; } else { alloc(); } } else if ( !color_init ) { #if defined(QT_CHECK_STATE) tqWarning( "TQColor::setSystemNamedColor: Cannot perform this operation " "because TQApplication does not exist" ); #endif // set color to invalid *this = TQColor(); } else { XColor col, hw_col; if ( XLookupColor(TQPaintDevice::x11AppDisplay(), TQPaintDevice::x11AppColormap(), name.latin1(), &col, &hw_col) ) { setRgb( col.red>>8, col.green>>8, col.blue>>8 ); } else { // set color to invalid *this = TQColor(); } } } #define MAX_CONTEXTS 16 static int context_stack[MAX_CONTEXTS]; static int context_ptr = 0; static void init_context_stack() { static bool did_init = FALSE; if ( !did_init ) { did_init = TRUE; context_stack[0] = current_alloc_context = 0; } } /*! Enters a color allocation context and returns a non-zero unique identifier. Color allocation contexts are useful for programs that need to allocate many colors and throw them away later, like image viewers. The allocation context functions work for true color displays as well as for colormap displays, except that TQColor::destroyAllocContext() does nothing for true color. Example: \code TQPixmap loadPixmap( TQString fileName ) { static int alloc_context = 0; if ( alloc_context ) TQColor::destroyAllocContext( alloc_context ); alloc_context = TQColor::enterAllocContext(); TQPixmap pm( fileName ); TQColor::leaveAllocContext(); return pm; } \endcode The example code loads a pixmap from file. It frees up all colors that were allocated the last time loadPixmap() was called. The initial/default context is 0. TQt keeps a list of colors associated with their allocation contexts. You can call destroyAllocContext() to get rid of all colors that were allocated in a specific context. Calling enterAllocContext() enters an allocation context. The allocation context lasts until you call leaveAllocContext(). TQColor has an internal stack of allocation contexts. Each call to enterAllocContex() must have a corresponding leaveAllocContext(). \code // context 0 active int c1 = TQColor::enterAllocContext(); // enter context c1 // context c1 active int c2 = TQColor::enterAllocContext(); // enter context c2 // context c2 active TQColor::leaveAllocContext(); // leave context c2 // context c1 active TQColor::leaveAllocContext(); // leave context c1 // context 0 active // Now, free all colors that were allocated in context c2 TQColor::destroyAllocContext( c2 ); \endcode You may also want to set the application's color specification. See TQApplication::setColorSpec() for more information. \sa leaveAllocContext(), currentAllocContext(), destroyAllocContext(), TQApplication::setColorSpec() */ int TQColor::enterAllocContext() { static int context_seq_no = 0; init_context_stack(); if ( context_ptr+1 == MAX_CONTEXTS ) { #if defined(QT_CHECK_STATE) tqWarning( "TQColor::enterAllocContext: Context stack overflow" ); #endif return 0; } current_alloc_context = context_stack[++context_ptr] = ++context_seq_no; return current_alloc_context; } /*! Leaves a color allocation context. See enterAllocContext() for a detailed explanation. \sa enterAllocContext(), currentAllocContext() */ void TQColor::leaveAllocContext() { init_context_stack(); if ( context_ptr == 0 ) { #if defined(QT_CHECK_STATE) tqWarning( "TQColor::leaveAllocContext: Context stack underflow" ); #endif return; } current_alloc_context = context_stack[--context_ptr]; } /*! Returns the current color allocation context. The default context is 0. \sa enterAllocContext(), leaveAllocContext() */ int TQColor::currentAllocContext() { return current_alloc_context; } /*! Destroys a color allocation context, \e context. This function deallocates all colors that were allocated in the specified \a context. If \a context == -1, it frees up all colors that the application has allocated. If \a context == -2, it frees up all colors that the application has allocated, except those in the default context. The function does nothing for true color displays. \sa enterAllocContext(), alloc() */ void TQColor::destroyAllocContext( int context ) { init_context_stack(); if ( !color_init ) return; int screen; for ( screen = 0; screen < screencount; ++screen ) { if ( screendata[screen]->g_truecolor ) continue; ulong pixels[256]; bool freeing[256]; memset( freeing, FALSE, screendata[screen]->g_cells*sizeof(bool) ); TQColorData *d; TQColorDictIt it( *screendata[screen]->colorDict ); int i = 0; uint rgbv; while ( (d=it.current()) ) { rgbv = (uint)it.currentKey(); if ( (d->context || context==-1) && (d->context == context || context < 0) ) { if ( !screendata[screen]->g_our_alloc[d->pix] && !freeing[d->pix] ) { // will free this color pixels[i++] = d->pix; freeing[d->pix] = TRUE; } // remove from dict screendata[screen]->colorDict->remove( (long)rgbv ); } ++it; } if ( i ) XFreeColors( TQPaintDevice::x11AppDisplay(), TQPaintDevice::x11AppColormap( screen ), pixels, i, 0 ); } }