/**************************************************************************** ** ** Implementation of TQRegExp class ** ** Created : 950126 ** ** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved. ** ** This file is part of the tools module of the TQt GUI Toolkit. ** ** This file may be used under the terms of the GNU General ** Public License versions 2.0 or 3.0 as published by the Free ** Software Foundation and appearing in the files LICENSE.GPL2 ** and LICENSE.GPL3 included in the packaging of this file. ** Alternatively you may (at your option) use any later version ** of the GNU General Public License if such license has been ** publicly approved by Trolltech ASA (or its successors, if any) ** and the KDE Free TQt Foundation. ** ** Please review the following information to ensure GNU General ** Public Licensing requirements will be met: ** http://trolltech.com/products/qt/licenses/licensing/opensource/. ** If you are unsure which license is appropriate for your use, please ** review the following information: ** http://trolltech.com/products/qt/licenses/licensing/licensingoverview ** or contact the sales department at sales@trolltech.com. ** ** This file may be used under the terms of the Q Public License as ** defined by Trolltech ASA and appearing in the file LICENSE.TQPL ** included in the packaging of this file. Licensees holding valid TQt ** Commercial licenses may use this file in accordance with the TQt ** Commercial License Agreement provided with the Software. ** ** This file is provided "AS IS" with NO WARRANTY OF ANY KIND, ** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR ** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted ** herein. ** **********************************************************************/ #include "tqregexp.h" #ifndef TQT_NO_REGEXP #include "tqmemarray.h" #include "tqbitarray.h" #include "tqcache.h" #include "tqcleanuphandler.h" #include "tqintdict.h" #include "tqmap.h" #include "tqptrvector.h" #include "tqstring.h" #include "tqtl.h" #ifdef TQT_THREAD_SUPPORT #include "tqthreadstorage.h" #include #endif // TQT_THREAD_SUPPORT #undef TQT_TRANSLATE_NOOP #define TQT_TRANSLATE_NOOP( context, sourceText ) sourceText #include // error strings for the regexp parser #define RXERR_OK TQT_TRANSLATE_NOOP( "TQRegExp", "no error occurred" ) #define RXERR_DISABLED TQT_TRANSLATE_NOOP( "TQRegExp", "disabled feature used" ) #define RXERR_CHARCLASS TQT_TRANSLATE_NOOP( "TQRegExp", "bad char class syntax" ) #define RXERR_LOOKAHEAD TQT_TRANSLATE_NOOP( "TQRegExp", "bad lookahead syntax" ) #define RXERR_REPETITION TQT_TRANSLATE_NOOP( "TQRegExp", "bad repetition syntax" ) #define RXERR_OCTAL TQT_TRANSLATE_NOOP( "TQRegExp", "invalid octal value" ) #define RXERR_LEFTDELIM TQT_TRANSLATE_NOOP( "TQRegExp", "missing left delim" ) #define RXERR_END TQT_TRANSLATE_NOOP( "TQRegExp", "unexpected end" ) #define RXERR_LIMIT TQT_TRANSLATE_NOOP( "TQRegExp", "met internal limit" ) /* WARNING! Be sure to read tqregexp.tex before modifying this file. */ /*! \class TQRegExp tqregexp.h \reentrant \brief The TQRegExp class provides pattern matching using regular expressions. \ingroup tools \ingroup misc \ingroup shared \mainclass \keyword regular expression Regular expressions, or "regexps", provide a way to find patterns within text. This is useful in many contexts, for example: \table \row \i Validation \i A regexp can be used to check whether a piece of text meets some criteria, e.g. is an integer or contains no whitespace. \row \i Searching \i Regexps provide a much more powerful means of searching text than simple string matching does. For example we can create a regexp which says "find one of the words 'mail', 'letter' or 'correspondence' but not any of the words 'email', 'mailman' 'mailer', 'letterbox' etc." \row \i Search and Replace \i A regexp can be used to replace a pattern with a piece of text, for example replace all occurrences of '&' with '\&' except where the '&' is already followed by 'amp;'. \row \i String Splitting \i A regexp can be used to identify where a string should be split into its component fields, e.g. splitting tab-delimited strings. \endtable We present a very brief introduction to regexps, a description of TQt's regexp language, some code examples, and finally the function documentation itself. TQRegExp is modeled on Perl's regexp language, and also fully supports Unicode. TQRegExp can also be used in the weaker 'wildcard' (globbing) mode which works in a similar way to command shells. A good text on regexps is \e {Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools} by Jeffrey E. Friedl, ISBN 1565922573. Experienced regexp users may prefer to skip the introduction and go directly to the relevant information. In case of multi-threaded programming, note that TQRegExp depends on TQThreadStorage internally. For that reason, TQRegExp should only be used with threads started with TQThread, i.e. not with threads started with platform-specific APIs. \tableofcontents \section1 Introduction Regexps are built up from expressions, quantifiers, and assertions. The simplest form of expression is simply a character, e.g. x or 5. An expression can also be a set of characters. For example, [ABCD], will match an A or a B or a C or a D. As a shorthand we could write this as [A-D]. If we want to match any of the captital letters in the English alphabet we can write [A-Z]. A quantifier tells the regexp engine how many occurrences of the expression we want, e.g. x{1,1} means match an x which occurs at least once and at most once. We'll look at assertions and more complex expressions later. Note that in general regexps cannot be used to check for balanced brackets or tags. For example if you want to match an opening html \c and its closing \c you can only use a regexp if you know that these tags are not nested; the html fragment, \c{bold bolder} will not match as expected. If you know the maximum level of nesting it is possible to create a regexp that will match correctly, but for an unknown level of nesting, regexps will fail. We'll start by writing a regexp to match integers in the range 0 to 99. We will require at least one digit so we will start with [0-9]{1,1} which means match a digit exactly once. This regexp alone will match integers in the range 0 to 9. To match one or two digits we can increase the maximum number of occurrences so the regexp becomes [0-9]{1,2} meaning match a digit at least once and at most twice. However, this regexp as it stands will not match correctly. This regexp will match one or two digits \e within a string. To ensure that we match against the whole string we must use the anchor assertions. We need ^ (caret) which when it is the first character in the regexp means that the regexp must match from the beginning of the string. And we also need $ (dollar) which when it is the last character in the regexp means that the regexp must match until the end of the string. So now our regexp is ^[0-9]{1,2}$. Note that assertions, such as ^ and $, do not match any characters. If you've seen regexps elsewhere they may have looked different from the ones above. This is because some sets of characters and some quantifiers are so common that they have special symbols to represent them. [0-9] can be replaced with the symbol \d. The quantifier to match exactly one occurrence, {1,1}, can be replaced with the expression itself. This means that x{1,1} is exactly the same as x alone. So our 0 to 99 matcher could be written ^\d{1,2}$. Another way of writing it would be ^\d\d{0,1}$, i.e. from the start of the string match a digit followed by zero or one digits. In practice most people would write it ^\d\d?$. The ? is a shorthand for the quantifier {0,1}, i.e. a minimum of no occurrences a maximum of one occurrence. This is used to make an expression optional. The regexp ^\d\d?$ means "from the beginning of the string match one digit followed by zero or one digits and then the end of the string". Our second example is matching the words 'mail', 'letter' or 'correspondence' but without matching 'email', 'mailman', 'mailer', 'letterbox' etc. We'll start by just matching 'mail'. In full the regexp is, m{1,1}a{1,1}i{1,1}l{1,1}, but since each expression itself is automatically quantified by {1,1} we can simply write this as mail; an 'm' followed by an 'a' followed by an 'i' followed by an 'l'. The symbol '|' (bar) is used for \e alternation, so our regexp now becomes mail|letter|correspondence which means match 'mail' \e or 'letter' \e or 'correspondence'. Whilst this regexp will find the words we want it will also find words we don't want such as 'email'. We will start by putting our regexp in parentheses, (mail|letter|correspondence). Parentheses have two effects, firstly they group expressions together and secondly they identify parts of the regexp that we wish to \link #capturing-text capture \endlink. Our regexp still matches any of the three words but now they are grouped together as a unit. This is useful for building up more complex regexps. It is also useful because it allows us to examine which of the words actually matched. We need to use another assertion, this time \b "word boundary": \b(mail|letter|correspondence)\b. This regexp means "match a word boundary followed by the expression in parentheses followed by another word boundary". The \b assertion matches at a \e position in the regexp not a \e character in the regexp. A word boundary is any non-word character such as a space a newline or the beginning or end of the string. For our third example we want to replace ampersands with the HTML entity '\&'. The regexp to match is simple: \&, i.e. match one ampersand. Unfortunately this will mess up our text if some of the ampersands have already been turned into HTML entities. So what we really want to say is replace an ampersand providing it is not followed by 'amp;'. For this we need the negative lookahead assertion and our regexp becomes: \&(?!amp;). The negative lookahead assertion is introduced with '(?!' and finishes at the ')'. It means that the text it contains, 'amp;' in our example, must \e not follow the expression that preceeds it. Regexps provide a rich language that can be used in a variety of ways. For example suppose we want to count all the occurrences of 'Eric' and 'Eirik' in a string. Two valid regexps to match these are \\b(Eric|Eirik)\\b and \\bEi?ri[ck]\\b. We need the word boundary '\b' so we don't get 'Ericsson' etc. The second regexp actually matches more than we want, 'Eric', 'Erik', 'Eiric' and 'Eirik'. We will implement some the examples above in the \link #code-examples code examples \endlink section. \target characters-and-abbreviations-for-sets-of-characters \section1 Characters and Abbreviations for Sets of Characters \table \header \i Element \i Meaning \row \i c \i Any character represents itself unless it has a special regexp meaning. Thus c matches the character \e c. \row \i \\c \i A character that follows a backslash matches the character itself except where mentioned below. For example if you wished to match a literal caret at the beginning of a string you would write \^. \row \i \\a \i This matches the ASCII bell character (BEL, 0x07). \row \i \\f \i This matches the ASCII form feed character (FF, 0x0C). \row \i \\n \i This matches the ASCII line feed character (LF, 0x0A, Unix newline). \row \i \\r \i This matches the ASCII carriage return character (CR, 0x0D). \row \i \\t \i This matches the ASCII horizontal tab character (HT, 0x09). \row \i \\v \i This matches the ASCII vertical tab character (VT, 0x0B). \row \i \\xhhhh \i This matches the Unicode character corresponding to the hexadecimal number hhhh (between 0x0000 and 0xFFFF). \0ooo (i.e., \zero ooo) matches the ASCII/Latin-1 character corresponding to the octal number ooo (between 0 and 0377). \row \i . (dot) \i This matches any character (including newline). \row \i \\d \i This matches a digit (TQChar::isDigit()). \row \i \\D \i This matches a non-digit. \row \i \\s \i This matches a whitespace (TQChar::isSpace()). \row \i \\S \i This matches a non-whitespace. \row \i \\w \i This matches a word character (TQChar::isLetterOrNumber() or '_'). \row \i \\W \i This matches a non-word character. \row \i \\n \i The n-th \link #capturing-text backreference \endlink, e.g. \1, \2, etc. \endtable \e {Note that the C++ compiler transforms backslashes in strings so to include a \\ in a regexp you will need to enter it twice, i.e. \\\\.} \target sets-of-characters \section1 Sets of Characters Square brackets are used to match any character in the set of characters contained within the square brackets. All the character set abbreviations described above can be used within square brackets. Apart from the character set abbreviations and the following two exceptions no characters have special meanings in square brackets. \table \row \i ^ \i The caret negates the character set if it occurs as the first character, i.e. immediately after the opening square bracket. For example, [abc] matches 'a' or 'b' or 'c', but [^abc] matches anything \e except 'a' or 'b' or 'c'. \row \i - \i The dash is used to indicate a range of characters, for example [W-Z] matches 'W' or 'X' or 'Y' or 'Z'. \endtable Using the predefined character set abbreviations is more portable than using character ranges across platforms and languages. For example, [0-9] matches a digit in Western alphabets but \d matches a digit in \e any alphabet. Note that in most regexp literature sets of characters are called "character classes". \target quantifiers \section1 Quantifiers By default an expression is automatically quantified by {1,1}, i.e. it should occur exactly once. In the following list \e {E} stands for any expression. An expression is a character or an abbreviation for a set of characters or a set of characters in square brackets or any parenthesised expression. \table \row \i \e {E}? \i Matches zero or one occurrence of \e E. This quantifier means "the previous expression is optional" since it will match whether or not the expression occurs in the string. It is the same as \e {E}{0,1}. For example dents? will match 'dent' and 'dents'. \row \i \e {E}+ \i Matches one or more occurrences of \e E. This is the same as \e {E}{1,MAXINT}. For example, 0+ will match '0', '00', '000', etc. \row \i \e {E}* \i Matches zero or more occurrences of \e E. This is the same as \e {E}{0,MAXINT}. The * quantifier is often used by a mistake. Since it matches \e zero or more occurrences it will match no occurrences at all. For example if we want to match strings that end in whitespace and use the regexp \s*$ we would get a match on every string. This is because we have said find zero or more whitespace followed by the end of string, so even strings that don't end in whitespace will match. The regexp we want in this case is \s+$ to match strings that have at least one whitespace at the end. \row \i \e {E}{n} \i Matches exactly \e n occurrences of the expression. This is the same as repeating the expression \e n times. For example, x{5} is the same as xxxxx. It is also the same as \e {E}{n,n}, e.g. x{5,5}. \row \i \e {E}{n,} \i Matches at least \e n occurrences of the expression. This is the same as \e {E}{n,MAXINT}. \row \i \e {E}{,m} \i Matches at most \e m occurrences of the expression. This is the same as \e {E}{0,m}. \row \i \e {E}{n,m} \i Matches at least \e n occurrences of the expression and at most \e m occurrences of the expression. \endtable (MAXINT is implementation dependent but will not be smaller than 1024.) If we wish to apply a quantifier to more than just the preceding character we can use parentheses to group characters together in an expression. For example, tag+ matches a 't' followed by an 'a' followed by at least one 'g', whereas (tag)+ matches at least one occurrence of 'tag'. Note that quantifiers are "greedy". They will match as much text as they can. For example, 0+ will match as many zeros as it can from the first zero it finds, e.g. '2.0005'. Quantifiers can be made non-greedy, see setMinimal(). \target capturing-text \section1 Capturing Text Parentheses allow us to group elements together so that we can quantify and capture them. For example if we have the expression mail|letter|correspondence that matches a string we know that \e one of the words matched but not which one. Using parentheses allows us to "capture" whatever is matched within their bounds, so if we used (mail|letter|correspondence) and matched this regexp against the string "I sent you some email" we can use the cap() or capturedTexts() functions to extract the matched characters, in this case 'mail'. We can use captured text within the regexp itself. To refer to the captured text we use \e backreferences which are indexed from 1, the same as for cap(). For example we could search for duplicate words in a string using \b(\w+)\W+\1\b which means match a word boundary followed by one or more word characters followed by one or more non-word characters followed by the same text as the first parenthesised expression followed by a word boundary. If we want to use parentheses purely for grouping and not for capturing we can use the non-capturing syntax, e.g. (?:green|blue). Non-capturing parentheses begin '(?:' and end ')'. In this example we match either 'green' or 'blue' but we do not capture the match so we only know whether or not we matched but not which color we actually found. Using non-capturing parentheses is more efficient than using capturing parentheses since the regexp engine has to do less book-keeping. Both capturing and non-capturing parentheses may be nested. \target assertions \section1 Assertions Assertions make some statement about the text at the point where they occur in the regexp but they do not match any characters. In the following list \e {E} stands for any expression. \table \row \i ^ \i The caret signifies the beginning of the string. If you wish to match a literal \c{^} you must escape it by writing \^. For example, ^#include will only match strings which \e begin with the characters '#include'. (When the caret is the first character of a character set it has a special meaning, see \link #sets-of-characters Sets of Characters \endlink.) \row \i $ \i The dollar signifies the end of the string. For example \d\s*$ will match strings which end with a digit optionally followed by whitespace. If you wish to match a literal \c{$} you must escape it by writing \$. \row \i \\b \i A word boundary. For example the regexp \\bOK\\b means match immediately after a word boundary (e.g. start of string or whitespace) the letter 'O' then the letter 'K' immediately before another word boundary (e.g. end of string or whitespace). But note that the assertion does not actually match any whitespace so if we write (\\bOK\\b) and we have a match it will only contain 'OK' even if the string is "Its OK now". \row \i \\B \i A non-word boundary. This assertion is true wherever \\b is false. For example if we searched for \\Bon\\B in "Left on" the match would fail (space and end of string aren't non-word boundaries), but it would match in "tonne". \row \i (?=\e E) \i Positive lookahead. This assertion is true if the expression matches at this point in the regexp. For example, const(?=\\s+char) matches 'const' whenever it is followed by 'char', as in 'static const char *'. (Compare with const\\s+char, which matches 'static const char *'.) \row \i (?!\e E) \i Negative lookahead. This assertion is true if the expression does not match at this point in the regexp. For example, const(?!\\s+char) matches 'const' \e except when it is followed by 'char'. \endtable \target wildcard-matching \section1 Wildcard Matching (globbing) Most command shells such as \e bash or \e cmd.exe support "file globbing", the ability to identify a group of files by using wildcards. The setWildcard() function is used to switch between regexp and wildcard mode. Wildcard matching is much simpler than full regexps and has only four features: \table \row \i c \i Any character represents itself apart from those mentioned below. Thus c matches the character \e c. \row \i ? \i This matches any single character. It is the same as . in full regexps. \row \i * \i This matches zero or more of any characters. It is the same as .* in full regexps. \row \i [...] \i Sets of characters can be represented in square brackets, similar to full regexps. Within the character class, like outside, backslash has no special meaning. \endtable For example if we are in wildcard mode and have strings which contain filenames we could identify HTML files with *.html. This will match zero or more characters followed by a dot followed by 'h', 't', 'm' and 'l'. \target perl-users \section1 Notes for Perl Users Most of the character class abbreviations supported by Perl are supported by TQRegExp, see \link #characters-and-abbreviations-for-sets-of-characters characters and abbreviations for sets of characters \endlink. In TQRegExp, apart from within character classes, \c{^} always signifies the start of the string, so carets must always be escaped unless used for that purpose. In Perl the meaning of caret varies automagically depending on where it occurs so escaping it is rarely necessary. The same applies to \c{$} which in TQRegExp always signifies the end of the string. TQRegExp's quantifiers are the same as Perl's greedy quantifiers. Non-greedy matching cannot be applied to individual quantifiers, but can be applied to all the quantifiers in the pattern. For example, to match the Perl regexp ro+?m requires: \code TQRegExp rx( "ro+m" ); rx.setMinimal( TRUE ); \endcode The equivalent of Perl's \c{/i} option is setCaseSensitive(FALSE). Perl's \c{/g} option can be emulated using a \link #cap_in_a_loop loop \endlink. In TQRegExp . matches any character, therefore all TQRegExp regexps have the equivalent of Perl's \c{/s} option. TQRegExp does not have an equivalent to Perl's \c{/m} option, but this can be emulated in various ways for example by splitting the input into lines or by looping with a regexp that searches for newlines. Because TQRegExp is string oriented there are no \A, \Z or \z assertions. The \G assertion is not supported but can be emulated in a loop. Perl's $& is cap(0) or capturedTexts()[0]. There are no TQRegExp equivalents for $`, $' or $+. Perl's capturing variables, $1, $2, ... correspond to cap(1) or capturedTexts()[1], cap(2) or capturedTexts()[2], etc. To substitute a pattern use TQString::replace(). Perl's extended \c{/x} syntax is not supported, nor are directives, e.g. (?i), or regexp comments, e.g. (?#comment). On the other hand, C++'s rules for literal strings can be used to achieve the same: \code TQRegExp mark( "\\b" // word boundary "[Mm]ark" // the word we want to match ); \endcode Both zero-width positive and zero-width negative lookahead assertions (?=pattern) and (?!pattern) are supported with the same syntax as Perl. Perl's lookbehind assertions, "independent" subexpressions and conditional expressions are not supported. Non-capturing parentheses are also supported, with the same (?:pattern) syntax. See TQStringList::split() and TQStringList::join() for equivalents to Perl's split and join functions. Note: because C++ transforms \\'s they must be written \e twice in code, e.g. \\b must be written \\\\b. \target code-examples \section1 Code Examples \code TQRegExp rx( "^\\d\\d?$" ); // match integers 0 to 99 rx.search( "123" ); // returns -1 (no match) rx.search( "-6" ); // returns -1 (no match) rx.search( "6" ); // returns 0 (matched as position 0) \endcode The third string matches '6'. This is a simple validation regexp for integers in the range 0 to 99. \code TQRegExp rx( "^\\S+$" ); // match strings without whitespace rx.search( "Hello world" ); // returns -1 (no match) rx.search( "This_is-OK" ); // returns 0 (matched at position 0) \endcode The second string matches 'This_is-OK'. We've used the character set abbreviation '\S' (non-whitespace) and the anchors to match strings which contain no whitespace. In the following example we match strings containing 'mail' or 'letter' or 'correspondence' but only match whole words i.e. not 'email' \code TQRegExp rx( "\\b(mail|letter|correspondence)\\b" ); rx.search( "I sent you an email" ); // returns -1 (no match) rx.search( "Please write the letter" ); // returns 17 \endcode The second string matches "Please write the letter". The word 'letter' is also captured (because of the parentheses). We can see what text we've captured like this: \code TQString captured = rx.cap( 1 ); // captured == "letter" \endcode This will capture the text from the first set of capturing parentheses (counting capturing left parentheses from left to right). The parentheses are counted from 1 since cap( 0 ) is the whole matched regexp (equivalent to '&' in most regexp engines). \code TQRegExp rx( "&(?!amp;)" ); // match ampersands but not & TQString line1 = "This & that"; line1.replace( rx, "&" ); // line1 == "This & that" TQString line2 = "His & hers & theirs"; line2.replace( rx, "&" ); // line2 == "His & hers & theirs" \endcode Here we've passed the TQRegExp to TQString's replace() function to replace the matched text with new text. \code TQString str = "One Eric another Eirik, and an Ericsson." " How many Eiriks, Eric?"; TQRegExp rx( "\\b(Eric|Eirik)\\b" ); // match Eric or Eirik int pos = 0; // where we are in the string int count = 0; // how many Eric and Eirik's we've counted while ( pos >= 0 ) { pos = rx.search( str, pos ); if ( pos >= 0 ) { pos++; // move along in str count++; // count our Eric or Eirik } } \endcode We've used the search() function to repeatedly match the regexp in the string. Note that instead of moving forward by one character at a time \c pos++ we could have written \c {pos += rx.matchedLength()} to skip over the already matched string. The count will equal 3, matching 'One Eric another Eirik, and an Ericsson. How many Eiriks, Eric?'; it doesn't match 'Ericsson' or 'Eiriks' because they are not bounded by non-word boundaries. One common use of regexps is to split lines of delimited data into their component fields. \code str = "Trolltech AS\twww.trolltech.com\tNorway"; TQString company, web, country; rx.setPattern( "^([^\t]+)\t([^\t]+)\t([^\t]+)$" ); if ( rx.search( str ) != -1 ) { company = rx.cap( 1 ); web = rx.cap( 2 ); country = rx.cap( 3 ); } \endcode In this example our input lines have the format company name, web address and country. Unfortunately the regexp is rather long and not very versatile -- the code will break if we add any more fields. A simpler and better solution is to look for the separator, '\t' in this case, and take the surrounding text. The TQStringList split() function can take a separator string or regexp as an argument and split a string accordingly. \code TQStringList field = TQStringList::split( "\t", str ); \endcode Here field[0] is the company, field[1] the web address and so on. To imitate the matching of a shell we can use wildcard mode. \code TQRegExp rx( "*.html" ); // invalid regexp: * doesn't quantify anything rx.setWildcard( TRUE ); // now it's a valid wildcard regexp rx.exactMatch( "index.html" ); // returns TRUE rx.exactMatch( "default.htm" ); // returns FALSE rx.exactMatch( "readme.txt" ); // returns FALSE \endcode Wildcard matching can be convenient because of its simplicity, but any wildcard regexp can be defined using full regexps, e.g. .*\.html$. Notice that we can't match both \c .html and \c .htm files with a wildcard unless we use *.htm* which will also match 'test.html.bak'. A full regexp gives us the precision we need, .*\\.html?$. TQRegExp can match case insensitively using setCaseSensitive(), and can use non-greedy matching, see setMinimal(). By default TQRegExp uses full regexps but this can be changed with setWildcard(). Searching can be forward with search() or backward with searchRev(). Captured text can be accessed using capturedTexts() which returns a string list of all captured strings, or using cap() which returns the captured string for the given index. The pos() function takes a match index and returns the position in the string where the match was made (or -1 if there was no match). \sa TQRegExpValidator TQString TQStringList \target member-function-documentation */ const int NumBadChars = 64; #define BadChar( ch ) ( (ch).unicode() % NumBadChars ) const int NoOccurrence = INT_MAX; const int EmptyCapture = INT_MAX; const int InftyLen = INT_MAX; const int InftyRep = 1025; const int EOS = -1; static bool isWord( TQChar ch ) { return ch.isLetterOrNumber() || ch == TQChar( '_' ); } /* Merges two TQMemArrays of ints and puts the result into the first one. */ static void mergeInto( TQMemArray *a, const TQMemArray& b ) { int asize = a->size(); int bsize = b.size(); if ( asize == 0 ) { *a = b.copy(); #ifndef TQT_NO_REGEXP_OPTIM } else if ( bsize == 1 && (*a)[asize - 1] < b[0] ) { a->resize( asize + 1 ); (*a)[asize] = b[0]; #endif } else if ( bsize >= 1 ) { int csize = asize + bsize; TQMemArray c( csize ); int i = 0, j = 0, k = 0; while ( i < asize ) { if ( j < bsize ) { if ( (*a)[i] == b[j] ) { i++; csize--; } else if ( (*a)[i] < b[j] ) { c[k++] = (*a)[i++]; } else { c[k++] = b[j++]; } } else { memcpy( c.data() + k, (*a).data() + i, (asize - i) * sizeof(int) ); break; } } c.resize( csize ); if ( j < bsize ) memcpy( c.data() + k, b.data() + j, (bsize - j) * sizeof(int) ); *a = c; } } /* Merges two disjoint TQMaps of (int, int) pairs and puts the result into the first one. */ static void mergeInto( TQMap *a, const TQMap& b ) { TQMap::ConstIterator it; for ( it = b.begin(); it != b.end(); ++it ) a->insert( it.key(), *it ); } /* Returns the value associated to key k in TQMap m of (int, int) pairs, or 0 if no such value is explicitly present. */ static int at( const TQMap& m, int k ) { TQMap::ConstIterator it = m.find( k ); if ( it == m.end() ) return 0; else return *it; } #ifndef TQT_NO_REGEXP_WILDCARD /* Translates a wildcard pattern to an equivalent regular expression pattern (e.g., *.cpp to .*\.cpp). */ static TQString wc2rx( const TQString& wc_str ) { int wclen = wc_str.length(); TQString rx = TQString::fromLatin1( "" ); int i = 0; const TQChar *wc = wc_str.unicode(); while ( i < wclen ) { TQChar c = wc[i++]; switch ( c.unicode() ) { case '*': rx += TQString::fromLatin1( ".*" ); break; case '?': rx += TQChar( '.' ); break; case '$': case '(': case ')': case '+': case '.': case '\\': case '^': case '{': case '|': case '}': rx += TQChar( '\\' ); rx += c; break; case '[': rx += c; if ( wc[i] == TQChar('^') ) rx += wc[i++]; if ( i < wclen ) { if ( rx[i] == ']' ) rx += wc[i++]; while ( i < wclen && wc[i] != TQChar(']') ) { if ( wc[i] == '\\' ) rx += TQChar( '\\' ); rx += wc[i++]; } } break; default: rx += c; } } return rx; } #endif /* The class TQRegExpEngine encapsulates a modified nondeterministic finite automaton (NFA). */ class TQRegExpEngine : public TQShared { public: #ifndef TQT_NO_REGEXP_CCLASS /* The class CharClass represents a set of characters, such as can be found in regular expressions (e.g., [a-z] denotes the set {a, b, ..., z}). */ class CharClass { public: CharClass(); CharClass( const CharClass& cc ) { operator=( cc ); } CharClass& operator=( const CharClass& cc ); void clear(); bool negative() const { return n; } void setNegative( bool negative ); void addCategories( int cats ); void addRange( ushort from, ushort to ); void addSingleton( ushort ch ) { addRange( ch, ch ); } bool in( TQChar ch ) const; #ifndef TQT_NO_REGEXP_OPTIM const TQMemArray& firstOccurrence() const { return occ1; } #endif #if defined(QT_DEBUG) void dump() const; #endif private: /* The struct Range represents a range of characters (e.g., [0-9] denotes range 48 to 57). */ struct Range { ushort from; // 48 ushort to; // 57 }; int c; // character classes TQMemArray r; // character ranges bool n; // negative? #ifndef TQT_NO_REGEXP_OPTIM TQMemArray occ1; // first-occurrence array #endif }; #else struct CharClass { int dummy; #ifndef TQT_NO_REGEXP_OPTIM CharClass() { occ1.fill( 0, NumBadChars ); } const TQMemArray& firstOccurrence() const { return occ1; } TQMemArray occ1; #endif }; #endif TQRegExpEngine( bool caseSensitive ) { setup( caseSensitive ); } TQRegExpEngine( const TQString& rx, bool caseSensitive ); #ifndef TQT_NO_REGEXP_OPTIM ~TQRegExpEngine(); #endif bool isValid() const { return valid; } bool caseSensitive() const { return cs; } const TQString& errorString() const { return yyError; } int numCaptures() const { return officialncap; } void match( const TQString& str, int pos, bool minimal, bool oneTest, int caretIndex, TQMemArray& captured ); int partialMatchLength() const { return mmOneTestMatchedLen; } int createState( TQChar ch ); int createState( const CharClass& cc ); #ifndef TQT_NO_REGEXP_BACKREF int createState( int bref ); #endif void addCatTransitions( const TQMemArray& from, const TQMemArray& to ); #ifndef TQT_NO_REGEXP_CAPTURE void addPlusTransitions( const TQMemArray& from, const TQMemArray& to, int atom ); #endif #ifndef TQT_NO_REGEXP_ANCHOR_ALT int anchorAlternation( int a, int b ); int anchorConcatenation( int a, int b ); #else int anchorAlternation( int a, int b ) { return a & b; } int anchorConcatenation( int a, int b ) { return a | b; } #endif void addAnchors( int from, int to, int a ); #ifndef TQT_NO_REGEXP_OPTIM void heuristicallyChooseHeuristic(); #endif #if defined(QT_DEBUG) void dump() const; #endif private: enum { CharClassBit = 0x10000, BackRefBit = 0x20000 }; /* The struct State represents one state in a modified NFA. The input characters matched are stored in the state instead of on the transitions, something possible for an automaton constructed from a regular expression. */ struct State { #ifndef TQT_NO_REGEXP_CAPTURE int atom; // which atom does this state belong to? #endif int match; // what does it match? (see CharClassBit and BackRefBit) TQMemArray outs; // out-transitions TQMap *reenter; // atoms reentered when transiting out TQMap *anchors; // anchors met when transiting out #ifndef TQT_NO_REGEXP_CAPTURE State( int a, int m ) : atom( a ), match( m ), reenter( 0 ), anchors( 0 ) { } #else State( int m ) : match( m ), reenter( 0 ), anchors( 0 ) { } #endif ~State() { delete reenter; delete anchors; } }; #ifndef TQT_NO_REGEXP_LOOKAHEAD /* The struct Lookahead represents a lookahead a la Perl (e.g., (?=foo) and (?!bar)). */ struct Lookahead { TQRegExpEngine *eng; // NFA representing the embedded regular expression bool neg; // negative lookahead? Lookahead( TQRegExpEngine *eng0, bool neg0 ) : eng( eng0 ), neg( neg0 ) { } ~Lookahead() { delete eng; } }; #endif #ifndef TQT_NO_REGEXP_CAPTURE /* The struct Atom represents one node in the hierarchy of regular expression atoms. */ struct Atom { int parent; // index of parent in array of atoms int capture; // index of capture, from 1 to ncap }; #endif #ifndef TQT_NO_REGEXP_ANCHOR_ALT /* The struct AnchorAlternation represents a pair of anchors with OR semantics. */ struct AnchorAlternation { int a; // this anchor... int b; // ...or this one }; #endif enum { InitialState = 0, FinalState = 1 }; void setup( bool caseSensitive ); int setupState( int match ); /* Let's hope that 13 lookaheads and 14 back-references are enough. */ enum { MaxLookaheads = 13, MaxBackRefs = 14 }; enum { Anchor_Dollar = 0x00000001, Anchor_Caret = 0x00000002, Anchor_Word = 0x00000004, Anchor_NonWord = 0x00000008, Anchor_FirstLookahead = 0x00000010, Anchor_BackRef1Empty = Anchor_FirstLookahead << MaxLookaheads, Anchor_BackRef0Empty = Anchor_BackRef1Empty >> 1, Anchor_Alternation = Anchor_BackRef1Empty << MaxBackRefs, Anchor_LookaheadMask = ( Anchor_FirstLookahead - 1 ) ^ ( (Anchor_FirstLookahead << MaxLookaheads) - 1 ) }; #ifndef TQT_NO_REGEXP_CAPTURE int startAtom( bool capture ); void finishAtom( int atom ) { cf = f[atom].parent; } #endif #ifndef TQT_NO_REGEXP_LOOKAHEAD int addLookahead( TQRegExpEngine *eng, bool negative ); #endif #ifndef TQT_NO_REGEXP_CAPTURE bool isBetterCapture( const int *begin1, const int *end1, const int *begin2, const int *end2 ); #endif bool testAnchor( int i, int a, const int *capBegin ); #ifndef TQT_NO_REGEXP_OPTIM bool goodStringMatch(); bool badCharMatch(); #else bool bruteMatch(); #endif bool matchHere(); TQPtrVector s; // array of states int ns; // number of states #ifndef TQT_NO_REGEXP_CAPTURE TQMemArray f; // atom hierarchy int nf; // number of atoms int cf; // current atom #endif int officialncap; // number of captures, seen from the outside int ncap; // number of captures, seen from the inside #ifndef TQT_NO_REGEXP_CCLASS TQPtrVector cl; // array of character classes #endif #ifndef TQT_NO_REGEXP_LOOKAHEAD TQPtrVector ahead; // array of lookaheads #endif #ifndef TQT_NO_REGEXP_ANCHOR_ALT TQMemArray aa; // array of (a, b) pairs of anchors #endif #ifndef TQT_NO_REGEXP_OPTIM bool caretAnchored; // does the regexp start with ^? bool trivial; // is the good-string all that needs to match? #endif bool valid; // is the regular expression valid? bool cs; // case sensitive? #ifndef TQT_NO_REGEXP_BACKREF int nbrefs; // number of back-references #endif #ifndef TQT_NO_REGEXP_OPTIM bool useGoodStringHeuristic; // use goodStringMatch? otherwise badCharMatch int goodEarlyStart; // the index where goodStr can first occur in a match int goodLateStart; // the index where goodStr can last occur in a match TQString goodStr; // the string that any match has to contain int minl; // the minimum length of a match TQMemArray occ1; // first-occurrence array #endif /* The class Box is an abstraction for a regular expression fragment. It can also be seen as one node in the syntax tree of a regular expression with synthetized attributes. Its interface is ugly for performance reasons. */ class Box { public: Box( TQRegExpEngine *engine ); Box( const Box& b ) { operator=( b ); } Box& operator=( const Box& b ); void clear() { operator=( Box(eng) ); } void set( TQChar ch ); void set( const CharClass& cc ); #ifndef TQT_NO_REGEXP_BACKREF void set( int bref ); #endif void cat( const Box& b ); void orx( const Box& b ); void plus( int atom ); void opt(); void catAnchor( int a ); #ifndef TQT_NO_REGEXP_OPTIM void setupHeuristics(); #endif #if defined(QT_DEBUG) void dump() const; #endif private: void addAnchorsToEngine( const Box& to ) const; TQRegExpEngine *eng; // the automaton under construction TQMemArray ls; // the left states (firstpos) TQMemArray rs; // the right states (lastpos) TQMap lanchors; // the left anchors TQMap ranchors; // the right anchors int skipanchors; // the anchors to match if the box is skipped #ifndef TQT_NO_REGEXP_OPTIM int earlyStart; // the index where str can first occur int lateStart; // the index where str can last occur TQString str; // a string that has to occur in any match TQString leftStr; // a string occurring at the left of this box TQString rightStr; // a string occurring at the right of this box int maxl; // the maximum length of this box (possibly InftyLen) #endif int minl; // the minimum length of this box #ifndef TQT_NO_REGEXP_OPTIM TQMemArray occ1; // first-occurrence array #endif }; friend class Box; /* This is the lexical analyzer for regular expressions. */ enum { Tok_Eos, Tok_Dollar, Tok_LeftParen, Tok_MagicLeftParen, Tok_PosLookahead, Tok_NegLookahead, Tok_RightParen, Tok_CharClass, Tok_Caret, Tok_Quantifier, Tok_Bar, Tok_Word, Tok_NonWord, Tok_Char = 0x10000, Tok_BackRef = 0x20000 }; int getChar(); int getEscape(); #ifndef TQT_NO_REGEXP_INTERVAL int getRep( int def ); #endif #ifndef TQT_NO_REGEXP_LOOKAHEAD void skipChars( int n ); #endif void error( const char *msg ); void startTokenizer( const TQChar *rx, int len ); int getToken(); const TQChar *yyIn; // a pointer to the input regular expression pattern int yyPos0; // the position of yyTok in the input pattern int yyPos; // the position of the next character to read int yyLen; // the length of yyIn int yyCh; // the last character read CharClass *yyCharClass; // attribute for Tok_CharClass tokens int yyMinRep; // attribute for Tok_Quantifier int yyMaxRep; // ditto TQString yyError; // syntax error or overflow during parsing? /* This is the syntactic analyzer for regular expressions. */ int parse( const TQChar *rx, int len ); void parseAtom( Box *box ); void parseFactor( Box *box ); void parseTerm( Box *box ); void parseExpression( Box *box ); int yyTok; // the last token read bool yyMayCapture; // set this to FALSE to disable capturing /* This is the engine state during matching. */ const TQString *mmStr; // a pointer to the input TQString const TQChar *mmIn; // a pointer to the input string data int mmPos; // the current position in the string int mmCaretPos; int mmLen; // the length of the input string bool mmMinimal; // minimal matching? TQMemArray mmBigArray; // big TQMemArray array int *mmInNextStack; // is state is mmNextStack? int *mmCurStack; // stack of current states int *mmNextStack; // stack of next states int *mmCurCapBegin; // start of current states' captures int *mmNextCapBegin; // start of next states' captures int *mmCurCapEnd; // end of current states' captures int *mmNextCapEnd; // end of next states' captures int *mmTempCapBegin; // start of temporary captures int *mmTempCapEnd; // end of temporary captures int *mmCapBegin; // start of captures for a next state int *mmCapEnd; // end of captures for a next state int *mmSlideTab; // bump-along slide table for bad-character heuristic int mmSlideTabSize; // size of slide table #ifndef TQT_NO_REGEXP_BACKREF TQIntDict mmSleeping; // dictionary of back-reference sleepers #endif int mmMatchLen; // length of match int mmOneTestMatchedLen; // length of partial match }; TQRegExpEngine::TQRegExpEngine( const TQString& rx, bool caseSensitive ) #ifndef TQT_NO_REGEXP_BACKREF : mmSleeping( 101 ) #endif { setup( caseSensitive ); valid = ( parse(rx.unicode(), rx.length()) == (int) rx.length() ); if ( !valid ) { #ifndef TQT_NO_REGEXP_OPTIM trivial = FALSE; #endif error( RXERR_LEFTDELIM ); } } #ifndef TQT_NO_REGEXP_OPTIM TQRegExpEngine::~TQRegExpEngine() { } #endif /* Tries to match in str and returns an array of (begin, length) pairs for captured text. If there is no match, all pairs are (-1, -1). */ void TQRegExpEngine::match( const TQString& str, int pos, bool minimal, bool oneTest, int caretIndex, TQMemArray& captured ) { bool matched = FALSE; #ifndef TQT_NO_REGEXP_OPTIM if ( trivial && !oneTest ) { mmPos = str.find( goodStr, pos, cs ); mmMatchLen = goodStr.length(); matched = ( mmPos != -1 ); } else #endif { mmStr = &str; mmIn = str.unicode(); if ( mmIn == 0 ) mmIn = &TQChar::null; mmPos = pos; mmCaretPos = caretIndex; mmLen = str.length(); mmMinimal = minimal; mmMatchLen = 0; mmOneTestMatchedLen = 0; if ( valid && mmPos >= 0 && mmPos <= mmLen ) { #ifndef TQT_NO_REGEXP_OPTIM if ( oneTest ) { matched = matchHere(); } else { if ( mmPos <= mmLen - minl ) { if ( caretAnchored ) { matched = matchHere(); } else if ( useGoodStringHeuristic ) { matched = goodStringMatch(); } else { matched = badCharMatch(); } } } #else matched = oneTest ? matchHere() : bruteMatch(); #endif } } int capturedSize = 2 + 2 * officialncap; captured.detach(); captured.resize( capturedSize ); if ( matched ) { captured[0] = mmPos; captured[1] = mmMatchLen; for ( int j = 0; j < officialncap; j++ ) { int len = mmCapEnd[j] - mmCapBegin[j]; captured[2 + 2 * j] = len > 0 ? mmPos + mmCapBegin[j] : 0; captured[2 + 2 * j + 1] = len; } } else { // we rely on 2's complement here memset( captured.data(), -1, capturedSize * sizeof(int) ); } } /* The three following functions add one state to the automaton and return the number of the state. */ int TQRegExpEngine::createState( TQChar ch ) { return setupState( ch.unicode() ); } int TQRegExpEngine::createState( const CharClass& cc ) { #ifndef TQT_NO_REGEXP_CCLASS int n = cl.size(); cl.resize( n + 1 ); cl.insert( n, new CharClass(cc) ); return setupState( CharClassBit | n ); #else Q_UNUSED( cc ); return setupState( CharClassBit ); #endif } #ifndef TQT_NO_REGEXP_BACKREF int TQRegExpEngine::createState( int bref ) { if ( bref > nbrefs ) { nbrefs = bref; if ( nbrefs > MaxBackRefs ) { error( RXERR_LIMIT ); return 0; } } return setupState( BackRefBit | bref ); } #endif /* The two following functions add a transition between all pairs of states (i, j) where i is fond in from, and j is found in to. Cat-transitions are distinguished from plus-transitions for capturing. */ void TQRegExpEngine::addCatTransitions( const TQMemArray& from, const TQMemArray& to ) { for ( int i = 0; i < (int) from.size(); i++ ) { State *st = s[from[i]]; mergeInto( &st->outs, to ); } } #ifndef TQT_NO_REGEXP_CAPTURE void TQRegExpEngine::addPlusTransitions( const TQMemArray& from, const TQMemArray& to, int atom ) { for ( int i = 0; i < (int) from.size(); i++ ) { State *st = s[from[i]]; TQMemArray oldOuts = st->outs.copy(); mergeInto( &st->outs, to ); if ( f[atom].capture >= 0 ) { if ( st->reenter == 0 ) st->reenter = new TQMap; for ( int j = 0; j < (int) to.size(); j++ ) { if ( !st->reenter->contains(to[j]) && oldOuts.bsearch(to[j]) < 0 ) st->reenter->insert( to[j], atom ); } } } } #endif #ifndef TQT_NO_REGEXP_ANCHOR_ALT /* Returns an anchor that means a OR b. */ int TQRegExpEngine::anchorAlternation( int a, int b ) { if ( ((a & b) == a || (a & b) == b) && ((a | b) & Anchor_Alternation) == 0 ) return a & b; int n = aa.size(); #ifndef TQT_NO_REGEXP_OPTIM if ( n > 0 && aa[n - 1].a == a && aa[n - 1].b == b ) return Anchor_Alternation | ( n - 1 ); #endif aa.resize( n + 1 ); aa[n].a = a; aa[n].b = b; return Anchor_Alternation | n; } /* Returns an anchor that means a AND b. */ int TQRegExpEngine::anchorConcatenation( int a, int b ) { if ( ((a | b) & Anchor_Alternation) == 0 ) return a | b; if ( (b & Anchor_Alternation) != 0 ) tqSwap( a, b ); int aprime = anchorConcatenation( aa[a ^ Anchor_Alternation].a, b ); int bprime = anchorConcatenation( aa[a ^ Anchor_Alternation].b, b ); return anchorAlternation( aprime, bprime ); } #endif /* Adds anchor a on a transition caracterised by its from state and its to state. */ void TQRegExpEngine::addAnchors( int from, int to, int a ) { State *st = s[from]; if ( st->anchors == 0 ) st->anchors = new TQMap; if ( st->anchors->contains(to) ) a = anchorAlternation( (*st->anchors)[to], a ); st->anchors->insert( to, a ); } #ifndef TQT_NO_REGEXP_OPTIM /* This function chooses between the good-string and the bad-character heuristics. It computes two scores and chooses the heuristic with the highest score. Here are some common-sense constraints on the scores that should be respected if the formulas are ever modified: (1) If goodStr is empty, the good-string heuristic scores 0. (2) If the regular expression is trivial, the good-string heuristic should be used. (3) If the search is case insensitive, the good-string heuristic should be used, unless it scores 0. (Case insensitivity turns all entries of occ1 to 0.) (4) If (goodLateStart - goodEarlyStart) is big, the good-string heuristic should score less. */ void TQRegExpEngine::heuristicallyChooseHeuristic() { if ( minl == 0 ) { useGoodStringHeuristic = FALSE; } else if ( trivial ) { useGoodStringHeuristic = TRUE; } else { /* Magic formula: The good string has to constitute a good proportion of the minimum-length string, and appear at a more-or-less known index. */ int goodStringScore = ( 64 * goodStr.length() / minl ) - ( goodLateStart - goodEarlyStart ); /* Less magic formula: We pick some characters at random, and check whether they are good or bad. */ int badCharScore = 0; int step = TQMAX( 1, NumBadChars / 32 ); for ( int i = 1; i < NumBadChars; i += step ) { if ( occ1[i] == NoOccurrence ) badCharScore += minl; else badCharScore += occ1[i]; } badCharScore /= minl; useGoodStringHeuristic = ( goodStringScore > badCharScore ); } } #endif #if defined(QT_DEBUG) void TQRegExpEngine::dump() const { int i, j; tqDebug( "Case %ssensitive engine", cs ? "" : "in" ); tqDebug( " States" ); for ( i = 0; i < ns; i++ ) { tqDebug( " %d%s", i, i == InitialState ? " (initial)" : i == FinalState ? " (final)" : "" ); #ifndef TQT_NO_REGEXP_CAPTURE tqDebug( " in atom %d", s[i]->atom ); #endif int m = s[i]->match; if ( (m & CharClassBit) != 0 ) { tqDebug( " match character class %d", m ^ CharClassBit ); #ifndef TQT_NO_REGEXP_CCLASS cl[m ^ CharClassBit]->dump(); #else tqDebug( " negative character class" ); #endif } else if ( (m & BackRefBit) != 0 ) { tqDebug( " match back-reference %d", m ^ BackRefBit ); } else if ( m >= 0x20 && m <= 0x7e ) { tqDebug( " match 0x%.4x (%c)", m, m ); } else { tqDebug( " match 0x%.4x", m ); } for ( j = 0; j < (int) s[i]->outs.size(); j++ ) { int next = s[i]->outs[j]; tqDebug( " -> %d", next ); if ( s[i]->reenter != 0 && s[i]->reenter->contains(next) ) tqDebug( " [reenter %d]", (*s[i]->reenter)[next] ); if ( s[i]->anchors != 0 && at(*s[i]->anchors, next) != 0 ) tqDebug( " [anchors 0x%.8x]", (*s[i]->anchors)[next] ); } } #ifndef TQT_NO_REGEXP_CAPTURE if ( nf > 0 ) { tqDebug( " Atom Parent Capture" ); for ( i = 0; i < nf; i++ ) tqDebug( " %6d %6d %6d", i, f[i].parent, f[i].capture ); } #endif #ifndef TQT_NO_REGEXP_ANCHOR_ALT for ( i = 0; i < (int) aa.size(); i++ ) tqDebug( " Anchor alternation 0x%.8x: 0x%.8x 0x%.9x", i, aa[i].a, aa[i].b ); #endif } #endif void TQRegExpEngine::setup( bool caseSensitive ) { s.setAutoDelete( TRUE ); s.resize( 32 ); ns = 0; #ifndef TQT_NO_REGEXP_CAPTURE f.resize( 32 ); nf = 0; cf = -1; #endif officialncap = 0; ncap = 0; #ifndef TQT_NO_REGEXP_CCLASS cl.setAutoDelete( TRUE ); #endif #ifndef TQT_NO_REGEXP_LOOKAHEAD ahead.setAutoDelete( TRUE ); #endif #ifndef TQT_NO_REGEXP_OPTIM caretAnchored = TRUE; trivial = TRUE; #endif valid = FALSE; cs = caseSensitive; #ifndef TQT_NO_REGEXP_BACKREF nbrefs = 0; #endif #ifndef TQT_NO_REGEXP_OPTIM useGoodStringHeuristic = TRUE; minl = 0; occ1.fill( 0, NumBadChars ); #endif } int TQRegExpEngine::setupState( int match ) { if ( (ns & (ns + 1)) == 0 && ns + 1 >= (int) s.size() ) s.resize( (ns + 1) << 1 ); #ifndef TQT_NO_REGEXP_CAPTURE s.insert( ns, new State(cf, match) ); #else s.insert( ns, new State(match) ); #endif return ns++; } #ifndef TQT_NO_REGEXP_CAPTURE /* Functions startAtom() and finishAtom() should be called to delimit atoms. When a state is created, it is assigned to the current atom. The information is later used for capturing. */ int TQRegExpEngine::startAtom( bool capture ) { if ( (nf & (nf + 1)) == 0 && nf + 1 >= (int) f.size() ) f.resize( (nf + 1) << 1 ); f[nf].parent = cf; cf = nf++; f[cf].capture = capture ? ncap++ : -1; return cf; } #endif #ifndef TQT_NO_REGEXP_LOOKAHEAD /* Creates a lookahead anchor. */ int TQRegExpEngine::addLookahead( TQRegExpEngine *eng, bool negative ) { int n = ahead.size(); if ( n == MaxLookaheads ) { error( RXERR_LIMIT ); return 0; } ahead.resize( n + 1 ); ahead.insert( n, new Lookahead(eng, negative) ); return Anchor_FirstLookahead << n; } #endif #ifndef TQT_NO_REGEXP_CAPTURE /* We want the longest leftmost captures. */ bool TQRegExpEngine::isBetterCapture( const int *begin1, const int *end1, const int *begin2, const int *end2 ) { for ( int i = 0; i < ncap; i++ ) { int delta = begin2[i] - begin1[i]; // it has to start early... if ( delta == 0 ) delta = end1[i] - end2[i]; // ...and end late (like a party) if ( delta != 0 ) return delta > 0; } return FALSE; } #endif /* Returns TRUE if anchor a matches at position mmPos + i in the input string, otherwise FALSE. */ bool TQRegExpEngine::testAnchor( int i, int a, const int *capBegin ) { int j; #ifndef TQT_NO_REGEXP_ANCHOR_ALT if ( (a & Anchor_Alternation) != 0 ) { return testAnchor( i, aa[a ^ Anchor_Alternation].a, capBegin ) || testAnchor( i, aa[a ^ Anchor_Alternation].b, capBegin ); } #endif if ( (a & Anchor_Caret) != 0 ) { if ( mmPos + i != mmCaretPos ) return FALSE; } if ( (a & Anchor_Dollar) != 0 ) { if ( mmPos + i != mmLen ) return FALSE; } #ifndef TQT_NO_REGEXP_ESCAPE if ( (a & (Anchor_Word | Anchor_NonWord)) != 0 ) { bool before = FALSE; bool after = FALSE; if ( mmPos + i != 0 ) before = isWord( mmIn[mmPos + i - 1] ); if ( mmPos + i != mmLen ) after = isWord( mmIn[mmPos + i] ); if ( (a & Anchor_Word) != 0 && (before == after) ) return FALSE; if ( (a & Anchor_NonWord) != 0 && (before != after) ) return FALSE; } #endif #ifndef TQT_NO_REGEXP_LOOKAHEAD if ( (a & Anchor_LookaheadMask) != 0 ) { TQConstString cstr = TQConstString( (TQChar *) mmIn + mmPos + i, mmLen - mmPos - i ); for ( j = 0; j < (int) ahead.size(); j++ ) { if ( (a & (Anchor_FirstLookahead << j)) != 0 ) { TQMemArray captured; ahead[j]->eng->match( cstr.string(), 0, TRUE, TRUE, mmCaretPos - mmPos - i, captured ); if ( (captured[0] == 0) == ahead[j]->neg ) return FALSE; } } } #endif #ifndef TQT_NO_REGEXP_CAPTURE #ifndef TQT_NO_REGEXP_BACKREF for ( j = 0; j < nbrefs; j++ ) { if ( (a & (Anchor_BackRef1Empty << j)) != 0 ) { if ( capBegin[j] != EmptyCapture ) return FALSE; } } #endif #endif return TRUE; } #ifndef TQT_NO_REGEXP_OPTIM /* The three following functions are what Jeffrey Friedl would call transmissions (or bump-alongs). Using one or the other should make no difference except in performance. */ bool TQRegExpEngine::goodStringMatch() { int k = mmPos + goodEarlyStart; while ( (k = mmStr->find(goodStr, k, cs)) != -1 ) { int from = k - goodLateStart; int to = k - goodEarlyStart; if ( from > mmPos ) mmPos = from; while ( mmPos <= to ) { if ( matchHere() ) return TRUE; mmPos++; } k++; } return FALSE; } bool TQRegExpEngine::badCharMatch() { int slideHead = 0; int slideNext = 0; int i; int lastPos = mmLen - minl; memset( mmSlideTab, 0, mmSlideTabSize * sizeof(int) ); /* Set up the slide table, used for the bad-character heuristic, using the table of first occurrence of each character. */ for ( i = 0; i < minl; i++ ) { int sk = occ1[BadChar(mmIn[mmPos + i])]; if ( sk == NoOccurrence ) sk = i + 1; if ( sk > 0 ) { int k = i + 1 - sk; if ( k < 0 ) { sk = i + 1; k = 0; } if ( sk > mmSlideTab[k] ) mmSlideTab[k] = sk; } } if ( mmPos > lastPos ) return FALSE; for ( ;; ) { if ( ++slideNext >= mmSlideTabSize ) slideNext = 0; if ( mmSlideTab[slideHead] > 0 ) { if ( mmSlideTab[slideHead] - 1 > mmSlideTab[slideNext] ) mmSlideTab[slideNext] = mmSlideTab[slideHead] - 1; mmSlideTab[slideHead] = 0; } else { if ( matchHere() ) return TRUE; } if ( mmPos == lastPos ) break; /* Update the slide table. This code has much in common with the initialization code. */ int sk = occ1[BadChar(mmIn[mmPos + minl])]; if ( sk == NoOccurrence ) { mmSlideTab[slideNext] = minl; } else if ( sk > 0 ) { int k = slideNext + minl - sk; if ( k >= mmSlideTabSize ) k -= mmSlideTabSize; if ( sk > mmSlideTab[k] ) mmSlideTab[k] = sk; } slideHead = slideNext; mmPos++; } return FALSE; } #else bool TQRegExpEngine::bruteMatch() { while ( mmPos <= mmLen ) { if ( matchHere() ) return TRUE; mmPos++; } return FALSE; } #endif /* Here's the core of the engine. It tries to do a match here and now. */ bool TQRegExpEngine::matchHere() { int ncur = 1, nnext = 0; int i = 0, j, k, m; bool stop = FALSE; mmMatchLen = -1; mmOneTestMatchedLen = -1; mmCurStack[0] = InitialState; #ifndef TQT_NO_REGEXP_CAPTURE if ( ncap > 0 ) { for ( j = 0; j < ncap; j++ ) { mmCurCapBegin[j] = EmptyCapture; mmCurCapEnd[j] = EmptyCapture; } } #endif #ifndef TQT_NO_REGEXP_BACKREF int *zzZ = 0; while ( (ncur > 0 || !mmSleeping.isEmpty()) && i <= mmLen - mmPos && !stop ) #else while ( ncur > 0 && i <= mmLen - mmPos && !stop ) #endif { int ch = ( i < mmLen - mmPos ) ? mmIn[mmPos + i].unicode() : 0; for ( j = 0; j < ncur; j++ ) { int cur = mmCurStack[j]; State *scur = s[cur]; TQMemArray& outs = scur->outs; for ( k = 0; k < (int) outs.size(); k++ ) { int next = outs[k]; State *snext = s[next]; bool in = TRUE; #ifndef TQT_NO_REGEXP_BACKREF int needSomeSleep = 0; #endif /* First, check if the anchors are anchored properly. */ if ( scur->anchors != 0 ) { int a = at( *scur->anchors, next ); if ( a != 0 && !testAnchor(i, a, mmCurCapBegin + j * ncap) ) in = FALSE; } /* If indeed they are, check if the input character is correct for this transition. */ if ( in ) { m = snext->match; if ( (m & (CharClassBit | BackRefBit)) == 0 ) { if ( cs ) in = ( m == ch ); else in = ( TQChar(m).lower() == TQChar(ch).lower() ); } else if ( next == FinalState ) { mmMatchLen = i; stop = mmMinimal; in = TRUE; } else if ( (m & CharClassBit) != 0 ) { #ifndef TQT_NO_REGEXP_CCLASS const CharClass *cc = cl[m ^ CharClassBit]; if ( cs ) in = cc->in( ch ); else if ( cc->negative() ) in = cc->in( TQChar(ch).lower() ) && cc->in( TQChar(ch).upper() ); else in = cc->in( TQChar(ch).lower() ) || cc->in( TQChar(ch).upper() ); #endif #ifndef TQT_NO_REGEXP_BACKREF } else { /* ( (m & BackRefBit) != 0 ) */ int bref = m ^ BackRefBit; int ell = j * ncap + ( bref - 1 ); in = bref <= ncap && mmCurCapBegin[ell] != EmptyCapture; if ( in ) { if ( cs ) in = ( mmIn[mmPos + mmCurCapBegin[ell]] == TQChar(ch) ); else in = ( mmIn[mmPos + mmCurCapBegin[ell]].lower() == TQChar(ch).lower() ); } if ( in ) { int delta; if ( mmCurCapEnd[ell] == EmptyCapture ) delta = i - mmCurCapBegin[ell]; else delta = mmCurCapEnd[ell] - mmCurCapBegin[ell]; in = ( delta <= mmLen - (mmPos + i) ); if ( in && delta > 1 ) { int n = 1; if ( cs ) { while ( n < delta ) { if ( mmIn[mmPos + mmCurCapBegin[ell] + n] != mmIn[mmPos + i + n] ) break; n++; } } else { while ( n < delta ) { TQChar a = mmIn[mmPos + mmCurCapBegin[ell] + n]; TQChar b = mmIn[mmPos + i + n]; if ( a.lower() != b.lower() ) break; n++; } } in = ( n == delta ); if ( in ) needSomeSleep = delta - 1; } } #endif } } /* We must now update our data structures. */ if ( in ) { #ifndef TQT_NO_REGEXP_CAPTURE int *capBegin, *capEnd; #endif /* If the next state was not encountered yet, all is fine. */ if ( (m = mmInNextStack[next]) == -1 ) { m = nnext++; mmNextStack[m] = next; mmInNextStack[next] = m; #ifndef TQT_NO_REGEXP_CAPTURE capBegin = mmNextCapBegin + m * ncap; capEnd = mmNextCapEnd + m * ncap; /* Otherwise, we'll first maintain captures in temporary arrays, and decide at the end whether it's best to keep the previous capture zones or the new ones. */ } else { capBegin = mmTempCapBegin; capEnd = mmTempCapEnd; #endif } #ifndef TQT_NO_REGEXP_CAPTURE /* Updating the capture zones is much of a task. */ if ( ncap > 0 ) { memcpy( capBegin, mmCurCapBegin + j * ncap, ncap * sizeof(int) ); memcpy( capEnd, mmCurCapEnd + j * ncap, ncap * sizeof(int) ); int c = scur->atom, n = snext->atom; int p = -1, q = -1; int cap; /* Lemma 1. For any x in the range [0..nf), we have f[x].parent < x. Proof. By looking at startAtom(), it is clear that cf < nf holds all the time, and thus that f[nf].parent < nf. */ /* If we are reentering an atom, we empty all capture zones inside it. */ if ( scur->reenter != 0 && (q = at(*scur->reenter, next)) != 0 ) { TQBitArray b; b.fill( FALSE, nf ); b.setBit( q, TRUE ); for ( int ell = q + 1; ell < nf; ell++ ) { if ( b.testBit(f[ell].parent) ) { b.setBit( ell, TRUE ); cap = f[ell].capture; if ( cap >= 0 ) { capBegin[cap] = EmptyCapture; capEnd[cap] = EmptyCapture; } } } p = f[q].parent; /* Otherwise, close the capture zones we are leaving. We are leaving f[c].capture, f[f[c].parent].capture, f[f[f[c].parent].parent].capture, ..., until f[x].capture, with x such that f[x].parent is the youngest common ancestor for c and n. We go up along c's and n's ancestry until we find x. */ } else { p = c; q = n; while ( p != q ) { if ( p > q ) { cap = f[p].capture; if ( cap >= 0 ) { if ( capBegin[cap] == i ) { capBegin[cap] = EmptyCapture; capEnd[cap] = EmptyCapture; } else { capEnd[cap] = i; } } p = f[p].parent; } else { q = f[q].parent; } } } /* In any case, we now open the capture zones we are entering. We work upwards from n until we reach p (the parent of the atom we reenter or the youngest common ancestor). */ while ( n > p ) { cap = f[n].capture; if ( cap >= 0 ) { capBegin[cap] = i; capEnd[cap] = EmptyCapture; } n = f[n].parent; } /* If the next state was already in mmNextStack, we must choose carefully which capture zones we want to keep. */ if ( capBegin == mmTempCapBegin && isBetterCapture(capBegin, capEnd, mmNextCapBegin + m * ncap, mmNextCapEnd + m * ncap) ) { memcpy( mmNextCapBegin + m * ncap, capBegin, ncap * sizeof(int) ); memcpy( mmNextCapEnd + m * ncap, capEnd, ncap * sizeof(int) ); } } #ifndef TQT_NO_REGEXP_BACKREF /* We are done with updating the capture zones. It's now time to put the next state to sleep, if it needs to, and to remove it from mmNextStack. */ if ( needSomeSleep > 0 ) { zzZ = new int[1 + 2 * ncap]; zzZ[0] = next; if ( ncap > 0 ) { memcpy( zzZ + 1, capBegin, ncap * sizeof(int) ); memcpy( zzZ + 1 + ncap, capEnd, ncap * sizeof(int) ); } mmInNextStack[mmNextStack[--nnext]] = -1; mmSleeping.insert( i + needSomeSleep, zzZ ); } #endif #endif } } } #ifndef TQT_NO_REGEXP_CAPTURE /* If we reached the final state, hurray! Copy the captured zone. */ if ( ncap > 0 && (m = mmInNextStack[FinalState]) != -1 ) { memcpy( mmCapBegin, mmNextCapBegin + m * ncap, ncap * sizeof(int) ); memcpy( mmCapEnd, mmNextCapEnd + m * ncap, ncap * sizeof(int) ); } #ifndef TQT_NO_REGEXP_BACKREF /* It's time to wake up the sleepers. */ if ( !mmSleeping.isEmpty() ) { while ( (zzZ = mmSleeping.take(i)) != 0 ) { int next = zzZ[0]; int *capBegin = zzZ + 1; int *capEnd = zzZ + 1 + ncap; bool copyOver = TRUE; if ( (m = mmInNextStack[zzZ[0]]) == -1 ) { m = nnext++; mmNextStack[m] = next; mmInNextStack[next] = m; } else { copyOver = isBetterCapture( mmNextCapBegin + m * ncap, mmNextCapEnd + m * ncap, capBegin, capEnd ); } if ( copyOver ) { memcpy( mmNextCapBegin + m * ncap, capBegin, ncap * sizeof(int) ); memcpy( mmNextCapEnd + m * ncap, capEnd, ncap * sizeof(int) ); } delete[] zzZ; } } #endif #endif for ( j = 0; j < nnext; j++ ) mmInNextStack[mmNextStack[j]] = -1; // avoid needless iteration that confuses mmOneTestMatchedLen if ( nnext == 1 && mmNextStack[0] == FinalState #ifndef TQT_NO_REGEXP_BACKREF && mmSleeping.isEmpty() #endif ) stop = TRUE; tqSwap( mmCurStack, mmNextStack ); #ifndef TQT_NO_REGEXP_CAPTURE tqSwap( mmCurCapBegin, mmNextCapBegin ); tqSwap( mmCurCapEnd, mmNextCapEnd ); #endif ncur = nnext; nnext = 0; i++; } #ifndef TQT_NO_REGEXP_BACKREF /* If minimal matching is enabled, we might have some sleepers left. */ while ( !mmSleeping.isEmpty() ) { zzZ = mmSleeping.take( *TQIntDictIterator(mmSleeping) ); delete[] zzZ; } #endif mmOneTestMatchedLen = i - 1; return ( mmMatchLen >= 0 ); } #ifndef TQT_NO_REGEXP_CCLASS TQRegExpEngine::CharClass::CharClass() : c( 0 ), n( FALSE ) { #ifndef TQT_NO_REGEXP_OPTIM occ1.fill( NoOccurrence, NumBadChars ); #endif } TQRegExpEngine::CharClass& TQRegExpEngine::CharClass::operator=( const CharClass& cc ) { c = cc.c; r = cc.r.copy(); n = cc.n; #ifndef TQT_NO_REGEXP_OPTIM occ1 = cc.occ1; #endif return *this; } void TQRegExpEngine::CharClass::clear() { c = 0; r.resize( 0 ); n = FALSE; } void TQRegExpEngine::CharClass::setNegative( bool negative ) { n = negative; #ifndef TQT_NO_REGEXP_OPTIM occ1.fill( 0, NumBadChars ); #endif } void TQRegExpEngine::CharClass::addCategories( int cats ) { c |= cats; #ifndef TQT_NO_REGEXP_OPTIM occ1.fill( 0, NumBadChars ); #endif } void TQRegExpEngine::CharClass::addRange( ushort from, ushort to ) { if ( from > to ) tqSwap( from, to ); int m = r.size(); r.resize( m + 1 ); r[m].from = from; r[m].to = to; #ifndef TQT_NO_REGEXP_OPTIM int i; if ( to - from < NumBadChars ) { occ1.detach(); if ( from % NumBadChars <= to % NumBadChars ) { for ( i = from % NumBadChars; i <= to % NumBadChars; i++ ) occ1[i] = 0; } else { for ( i = 0; i <= to % NumBadChars; i++ ) occ1[i] = 0; for ( i = from % NumBadChars; i < NumBadChars; i++ ) occ1[i] = 0; } } else { occ1.fill( 0, NumBadChars ); } #endif } bool TQRegExpEngine::CharClass::in( TQChar ch ) const { #ifndef TQT_NO_REGEXP_OPTIM if ( occ1[BadChar(ch)] == NoOccurrence ) return n; #endif if ( c != 0 && (c & (1 << (int) ch.category())) != 0 ) return !n; for ( int i = 0; i < (int) r.size(); i++ ) { if ( ch.unicode() >= r[i].from && ch.unicode() <= r[i].to ) return !n; } return n; } #if defined(QT_DEBUG) void TQRegExpEngine::CharClass::dump() const { int i; tqDebug( " %stive character class", n ? "nega" : "posi" ); #ifndef TQT_NO_REGEXP_CCLASS if ( c != 0 ) tqDebug( " categories 0x%.8x", c ); #endif for ( i = 0; i < (int) r.size(); i++ ) tqDebug( " 0x%.4x through 0x%.4x", r[i].from, r[i].to ); } #endif #endif TQRegExpEngine::Box::Box( TQRegExpEngine *engine ) : eng( engine ), skipanchors( 0 ) #ifndef TQT_NO_REGEXP_OPTIM , earlyStart( 0 ), lateStart( 0 ), maxl( 0 ) #endif { #ifndef TQT_NO_REGEXP_OPTIM occ1.fill( NoOccurrence, NumBadChars ); #endif minl = 0; } TQRegExpEngine::Box& TQRegExpEngine::Box::operator=( const Box& b ) { eng = b.eng; ls = b.ls; rs = b.rs; lanchors = b.lanchors; ranchors = b.ranchors; skipanchors = b.skipanchors; #ifndef TQT_NO_REGEXP_OPTIM earlyStart = b.earlyStart; lateStart = b.lateStart; str = b.str; leftStr = b.leftStr; rightStr = b.rightStr; maxl = b.maxl; occ1 = b.occ1; #endif minl = b.minl; return *this; } void TQRegExpEngine::Box::set( TQChar ch ) { ls.resize( 1 ); ls[0] = eng->createState( ch ); rs = ls; rs.detach(); #ifndef TQT_NO_REGEXP_OPTIM str = ch; leftStr = ch; rightStr = ch; maxl = 1; occ1.detach(); occ1[BadChar(ch)] = 0; #endif minl = 1; } void TQRegExpEngine::Box::set( const CharClass& cc ) { ls.resize( 1 ); ls[0] = eng->createState( cc ); rs = ls; rs.detach(); #ifndef TQT_NO_REGEXP_OPTIM maxl = 1; occ1 = cc.firstOccurrence(); #endif minl = 1; } #ifndef TQT_NO_REGEXP_BACKREF void TQRegExpEngine::Box::set( int bref ) { ls.resize( 1 ); ls[0] = eng->createState( bref ); rs = ls; rs.detach(); if ( bref >= 1 && bref <= MaxBackRefs ) skipanchors = Anchor_BackRef0Empty << bref; #ifndef TQT_NO_REGEXP_OPTIM maxl = InftyLen; #endif minl = 0; } #endif void TQRegExpEngine::Box::cat( const Box& b ) { eng->addCatTransitions( rs, b.ls ); addAnchorsToEngine( b ); if ( minl == 0 ) { mergeInto( &lanchors, b.lanchors ); if ( skipanchors != 0 ) { for ( int i = 0; i < (int) b.ls.size(); i++ ) { int a = eng->anchorConcatenation( at(lanchors, b.ls[i]), skipanchors ); lanchors.insert( b.ls[i], a ); } } mergeInto( &ls, b.ls ); } if ( b.minl == 0 ) { mergeInto( &ranchors, b.ranchors ); if ( b.skipanchors != 0 ) { for ( int i = 0; i < (int) rs.size(); i++ ) { int a = eng->anchorConcatenation( at(ranchors, rs[i]), b.skipanchors ); ranchors.insert( rs[i], a ); } } mergeInto( &rs, b.rs ); } else { ranchors = b.ranchors; rs = b.rs; } #ifndef TQT_NO_REGEXP_OPTIM if ( maxl != InftyLen ) { if ( rightStr.length() + b.leftStr.length() > TQMAX(str.length(), b.str.length()) ) { earlyStart = minl - rightStr.length(); lateStart = maxl - rightStr.length(); str = rightStr + b.leftStr; } else if ( b.str.length() > str.length() ) { earlyStart = minl + b.earlyStart; lateStart = maxl + b.lateStart; str = b.str; } } if ( (int) leftStr.length() == maxl ) leftStr += b.leftStr; if ( (int) b.rightStr.length() == b.maxl ) { rightStr += b.rightStr; } else { rightStr = b.rightStr; } if ( maxl == InftyLen || b.maxl == InftyLen ) { maxl = InftyLen; } else { maxl += b.maxl; } occ1.detach(); for ( int i = 0; i < NumBadChars; i++ ) { if ( b.occ1[i] != NoOccurrence && minl + b.occ1[i] < occ1[i] ) occ1[i] = minl + b.occ1[i]; } #endif minl += b.minl; if ( minl == 0 ) skipanchors = eng->anchorConcatenation( skipanchors, b.skipanchors ); else skipanchors = 0; } void TQRegExpEngine::Box::orx( const Box& b ) { mergeInto( &ls, b.ls ); mergeInto( &lanchors, b.lanchors ); mergeInto( &rs, b.rs ); mergeInto( &ranchors, b.ranchors ); if ( b.minl == 0 ) { if ( minl == 0 ) skipanchors = eng->anchorAlternation( skipanchors, b.skipanchors ); else skipanchors = b.skipanchors; } #ifndef TQT_NO_REGEXP_OPTIM occ1.detach(); for ( int i = 0; i < NumBadChars; i++ ) { if ( occ1[i] > b.occ1[i] ) occ1[i] = b.occ1[i]; } earlyStart = 0; lateStart = 0; str = TQString(); leftStr = TQString(); rightStr = TQString(); if ( b.maxl > maxl ) maxl = b.maxl; #endif if ( b.minl < minl ) minl = b.minl; } void TQRegExpEngine::Box::plus( int atom ) { #ifndef TQT_NO_REGEXP_CAPTURE eng->addPlusTransitions( rs, ls, atom ); #else Q_UNUSED( atom ); eng->addCatTransitions( rs, ls ); #endif addAnchorsToEngine( *this ); #ifndef TQT_NO_REGEXP_OPTIM maxl = InftyLen; #endif } void TQRegExpEngine::Box::opt() { #ifndef TQT_NO_REGEXP_OPTIM earlyStart = 0; lateStart = 0; str = TQString(); leftStr = TQString(); rightStr = TQString(); #endif skipanchors = 0; minl = 0; } void TQRegExpEngine::Box::catAnchor( int a ) { if ( a != 0 ) { for ( int i = 0; i < (int) rs.size(); i++ ) { a = eng->anchorConcatenation( at(ranchors, rs[i]), a ); ranchors.insert( rs[i], a ); } if ( minl == 0 ) skipanchors = eng->anchorConcatenation( skipanchors, a ); } } #ifndef TQT_NO_REGEXP_OPTIM void TQRegExpEngine::Box::setupHeuristics() { eng->goodEarlyStart = earlyStart; eng->goodLateStart = lateStart; eng->goodStr = eng->cs ? str : str.lower(); eng->minl = minl; if ( eng->cs ) { /* A regular expression such as 112|1 has occ1['2'] = 2 and minl = 1 at this point. An entry of occ1 has to be at most minl or infinity for the rest of the algorithm to go well. We waited until here before normalizing these cases (instead of doing it in Box::orx()) because sometimes things improve by themselves. Consider for example (112|1)34. */ for ( int i = 0; i < NumBadChars; i++ ) { if ( occ1[i] != NoOccurrence && occ1[i] >= minl ) occ1[i] = minl; } eng->occ1 = occ1; } else { eng->occ1.fill( 0, NumBadChars ); } eng->heuristicallyChooseHeuristic(); } #endif #if defined(QT_DEBUG) void TQRegExpEngine::Box::dump() const { int i; tqDebug( "Box of at least %d character%s", minl, minl == 1 ? "" : "s" ); tqDebug( " Left states:" ); for ( i = 0; i < (int) ls.size(); i++ ) { if ( at(lanchors, ls[i]) == 0 ) tqDebug( " %d", ls[i] ); else tqDebug( " %d [anchors 0x%.8x]", ls[i], lanchors[ls[i]] ); } tqDebug( " Right states:" ); for ( i = 0; i < (int) rs.size(); i++ ) { if ( at(ranchors, rs[i]) == 0 ) tqDebug( " %d", rs[i] ); else tqDebug( " %d [anchors 0x%.8x]", rs[i], ranchors[rs[i]] ); } tqDebug( " Skip anchors: 0x%.8x", skipanchors ); } #endif void TQRegExpEngine::Box::addAnchorsToEngine( const Box& to ) const { for ( int i = 0; i < (int) to.ls.size(); i++ ) { for ( int j = 0; j < (int) rs.size(); j++ ) { int a = eng->anchorConcatenation( at(ranchors, rs[j]), at(to.lanchors, to.ls[i]) ); eng->addAnchors( rs[j], to.ls[i], a ); } } } int TQRegExpEngine::getChar() { return ( yyPos == yyLen ) ? EOS : yyIn[yyPos++].unicode(); } int TQRegExpEngine::getEscape() { #ifndef TQT_NO_REGEXP_ESCAPE const char tab[] = "afnrtv"; // no b, as \b means word boundary const char backTab[] = "\a\f\n\r\t\v"; ushort low; int i; #endif ushort val; int prevCh = yyCh; if ( prevCh == EOS ) { error( RXERR_END ); return Tok_Char | '\\'; } yyCh = getChar(); #ifndef TQT_NO_REGEXP_ESCAPE if ( (prevCh & ~0xff) == 0 ) { const char *p = strchr( tab, prevCh ); if ( p != 0 ) return Tok_Char | backTab[p - tab]; } #endif switch ( prevCh ) { #ifndef TQT_NO_REGEXP_ESCAPE case '0': val = 0; for ( i = 0; i < 3; i++ ) { if ( yyCh >= '0' && yyCh <= '7' ) val = ( val << 3 ) | ( yyCh - '0' ); else break; yyCh = getChar(); } if ( (val & ~0377) != 0 ) error( RXERR_OCTAL ); return Tok_Char | val; #endif #ifndef TQT_NO_REGEXP_ESCAPE case 'B': return Tok_NonWord; #endif #ifndef TQT_NO_REGEXP_CCLASS case 'D': // see TQChar::isDigit() yyCharClass->addCategories( 0x7fffffef ); return Tok_CharClass; case 'S': // see TQChar::isSpace() yyCharClass->addCategories( 0x7ffff87f ); yyCharClass->addRange( 0x0000, 0x0008 ); yyCharClass->addRange( 0x000e, 0x001f ); yyCharClass->addRange( 0x007f, 0x009f ); return Tok_CharClass; case 'W': // see TQChar::isLetterOrNumber() yyCharClass->addCategories( 0x7fe07f8f ); yyCharClass->addRange( 0x203f, 0x2040 ); yyCharClass->addSingleton( 0x2040 ); yyCharClass->addSingleton( 0x30fb ); yyCharClass->addRange( 0xfe33, 0xfe34 ); yyCharClass->addRange( 0xfe4d, 0xfe4f ); yyCharClass->addSingleton( 0xff3f ); yyCharClass->addSingleton( 0xff65 ); return Tok_CharClass; #endif #ifndef TQT_NO_REGEXP_ESCAPE case 'b': return Tok_Word; #endif #ifndef TQT_NO_REGEXP_CCLASS case 'd': // see TQChar::isDigit() yyCharClass->addCategories( 0x00000010 ); return Tok_CharClass; case 's': // see TQChar::isSpace() yyCharClass->addCategories( 0x00000380 ); yyCharClass->addRange( 0x0009, 0x000d ); return Tok_CharClass; case 'w': // see TQChar::isLetterOrNumber() yyCharClass->addCategories( 0x000f8070 ); yyCharClass->addSingleton( 0x005f ); // '_' return Tok_CharClass; #endif #ifndef TQT_NO_REGEXP_ESCAPE case 'x': val = 0; for ( i = 0; i < 4; i++ ) { low = TQChar( yyCh ).lower(); if ( low >= '0' && low <= '9' ) val = ( val << 4 ) | ( low - '0' ); else if ( low >= 'a' && low <= 'f' ) val = ( val << 4 ) | ( low - 'a' + 10 ); else break; yyCh = getChar(); } return Tok_Char | val; #endif default: if ( prevCh >= '1' && prevCh <= '9' ) { #ifndef TQT_NO_REGEXP_BACKREF val = prevCh - '0'; while ( yyCh >= '0' && yyCh <= '9' ) { val = ( val * 10 ) + ( yyCh - '0' ); yyCh = getChar(); } return Tok_BackRef | val; #else error( RXERR_DISABLED ); #endif } return Tok_Char | prevCh; } } #ifndef TQT_NO_REGEXP_INTERVAL int TQRegExpEngine::getRep( int def ) { if ( yyCh >= '0' && yyCh <= '9' ) { int rep = 0; do { rep = 10 * rep + yyCh - '0'; if ( rep >= InftyRep ) { error( RXERR_REPETITION ); rep = def; } yyCh = getChar(); } while ( yyCh >= '0' && yyCh <= '9' ); return rep; } else { return def; } } #endif #ifndef TQT_NO_REGEXP_LOOKAHEAD void TQRegExpEngine::skipChars( int n ) { if ( n > 0 ) { yyPos += n - 1; yyCh = getChar(); } } #endif void TQRegExpEngine::error( const char *msg ) { if ( yyError.isEmpty() ) yyError = TQString::fromLatin1( msg ); } void TQRegExpEngine::startTokenizer( const TQChar *rx, int len ) { yyIn = rx; yyPos0 = 0; yyPos = 0; yyLen = len; yyCh = getChar(); yyCharClass = new CharClass; yyMinRep = 0; yyMaxRep = 0; yyError = TQString(); } int TQRegExpEngine::getToken() { #ifndef TQT_NO_REGEXP_CCLASS ushort pendingCh = 0; bool charPending; bool rangePending; int tok; #endif int prevCh = yyCh; yyPos0 = yyPos - 1; #ifndef TQT_NO_REGEXP_CCLASS yyCharClass->clear(); #endif yyMinRep = 0; yyMaxRep = 0; yyCh = getChar(); switch ( prevCh ) { case EOS: yyPos0 = yyPos; return Tok_Eos; case '$': return Tok_Dollar; case '(': if ( yyCh == '?' ) { prevCh = getChar(); yyCh = getChar(); switch ( prevCh ) { #ifndef TQT_NO_REGEXP_LOOKAHEAD case '!': return Tok_NegLookahead; case '=': return Tok_PosLookahead; #endif case ':': return Tok_MagicLeftParen; default: error( RXERR_LOOKAHEAD ); return Tok_MagicLeftParen; } } else { return Tok_LeftParen; } case ')': return Tok_RightParen; case '*': yyMinRep = 0; yyMaxRep = InftyRep; return Tok_Quantifier; case '+': yyMinRep = 1; yyMaxRep = InftyRep; return Tok_Quantifier; case '.': #ifndef TQT_NO_REGEXP_CCLASS yyCharClass->setNegative( TRUE ); #endif return Tok_CharClass; case '?': yyMinRep = 0; yyMaxRep = 1; return Tok_Quantifier; case '[': #ifndef TQT_NO_REGEXP_CCLASS if ( yyCh == '^' ) { yyCharClass->setNegative( TRUE ); yyCh = getChar(); } charPending = FALSE; rangePending = FALSE; do { if ( yyCh == '-' && charPending && !rangePending ) { rangePending = TRUE; yyCh = getChar(); } else { if ( charPending && !rangePending ) { yyCharClass->addSingleton( pendingCh ); charPending = FALSE; } if ( yyCh == '\\' ) { yyCh = getChar(); tok = getEscape(); if ( tok == Tok_Word ) tok = '\b'; } else { tok = Tok_Char | yyCh; yyCh = getChar(); } if ( tok == Tok_CharClass ) { if ( rangePending ) { yyCharClass->addSingleton( '-' ); yyCharClass->addSingleton( pendingCh ); charPending = FALSE; rangePending = FALSE; } } else if ( (tok & Tok_Char) != 0 ) { if ( rangePending ) { yyCharClass->addRange( pendingCh, tok ^ Tok_Char ); charPending = FALSE; rangePending = FALSE; } else { pendingCh = tok ^ Tok_Char; charPending = TRUE; } } else { error( RXERR_CHARCLASS ); } } } while ( yyCh != ']' && yyCh != EOS ); if ( rangePending ) yyCharClass->addSingleton( '-' ); if ( charPending ) yyCharClass->addSingleton( pendingCh ); if ( yyCh == EOS ) error( RXERR_END ); else yyCh = getChar(); return Tok_CharClass; #else error( RXERR_END ); return Tok_Char | '['; #endif case '\\': return getEscape(); case ']': error( RXERR_LEFTDELIM ); return Tok_Char | ']'; case '^': return Tok_Caret; case '{': #ifndef TQT_NO_REGEXP_INTERVAL yyMinRep = getRep( 0 ); yyMaxRep = yyMinRep; if ( yyCh == ',' ) { yyCh = getChar(); yyMaxRep = getRep( InftyRep ); } if ( yyMaxRep < yyMinRep ) tqSwap( yyMinRep, yyMaxRep ); if ( yyCh != '}' ) error( RXERR_REPETITION ); yyCh = getChar(); return Tok_Quantifier; #else error( RXERR_DISABLED ); return Tok_Char | '{'; #endif case '|': return Tok_Bar; case '}': error( RXERR_LEFTDELIM ); return Tok_Char | '}'; default: return Tok_Char | prevCh; } } int TQRegExpEngine::parse( const TQChar *pattern, int len ) { valid = TRUE; startTokenizer( pattern, len ); yyTok = getToken(); #ifndef TQT_NO_REGEXP_CAPTURE yyMayCapture = TRUE; #else yyMayCapture = FALSE; #endif #ifndef TQT_NO_REGEXP_CAPTURE int atom = startAtom( FALSE ); #endif CharClass anything; Box box( this ); // create InitialState box.set( anything ); Box rightBox( this ); // create FinalState rightBox.set( anything ); Box middleBox( this ); parseExpression( &middleBox ); #ifndef TQT_NO_REGEXP_CAPTURE finishAtom( atom ); #endif #ifndef TQT_NO_REGEXP_OPTIM middleBox.setupHeuristics(); #endif box.cat( middleBox ); box.cat( rightBox ); delete yyCharClass; yyCharClass = 0; officialncap = ncap; #ifndef TQT_NO_REGEXP_BACKREF if ( nbrefs > ncap ) ncap = nbrefs; #endif /* We use one TQMemArray for all the big data used a lot in matchHere() and friends. */ #ifndef TQT_NO_REGEXP_OPTIM mmSlideTabSize = TQMAX( minl + 1, 16 ); #else mmSlideTabSize = 0; #endif mmBigArray.resize( (3 + 4 * ncap) * ns + 4 * ncap + mmSlideTabSize ); mmInNextStack = mmBigArray.data(); memset( mmInNextStack, -1, ns * sizeof(int) ); mmCurStack = mmInNextStack + ns; mmNextStack = mmInNextStack + 2 * ns; mmCurCapBegin = mmInNextStack + 3 * ns; mmNextCapBegin = mmCurCapBegin + ncap * ns; mmCurCapEnd = mmCurCapBegin + 2 * ncap * ns; mmNextCapEnd = mmCurCapBegin + 3 * ncap * ns; mmTempCapBegin = mmCurCapBegin + 4 * ncap * ns; mmTempCapEnd = mmTempCapBegin + ncap; mmCapBegin = mmTempCapBegin + 2 * ncap; mmCapEnd = mmTempCapBegin + 3 * ncap; mmSlideTab = mmTempCapBegin + 4 * ncap; if ( !yyError.isEmpty() ) return -1; #ifndef TQT_NO_REGEXP_OPTIM State *sinit = s[InitialState]; caretAnchored = ( sinit->anchors != 0 ); if ( caretAnchored ) { TQMap& anchors = *sinit->anchors; TQMap::ConstIterator a; for ( a = anchors.begin(); a != anchors.end(); ++a ) { if ( #ifndef TQT_NO_REGEXP_ANCHOR_ALT (*a & Anchor_Alternation) != 0 || #endif (*a & Anchor_Caret) == 0 ) { caretAnchored = FALSE; break; } } } #endif return yyPos0; } void TQRegExpEngine::parseAtom( Box *box ) { #ifndef TQT_NO_REGEXP_LOOKAHEAD TQRegExpEngine *eng = 0; bool neg; int len; #endif if ( (yyTok & Tok_Char) != 0 ) { box->set( TQChar(yyTok ^ Tok_Char) ); } else { #ifndef TQT_NO_REGEXP_OPTIM trivial = FALSE; #endif switch ( yyTok ) { case Tok_Dollar: box->catAnchor( Anchor_Dollar ); break; case Tok_Caret: box->catAnchor( Anchor_Caret ); break; #ifndef TQT_NO_REGEXP_LOOKAHEAD case Tok_PosLookahead: case Tok_NegLookahead: neg = ( yyTok == Tok_NegLookahead ); eng = new TQRegExpEngine( cs ); len = eng->parse( yyIn + yyPos - 1, yyLen - yyPos + 1 ); if ( len >= 0 ) skipChars( len ); else error( RXERR_LOOKAHEAD ); box->catAnchor( addLookahead(eng, neg) ); yyTok = getToken(); if ( yyTok != Tok_RightParen ) error( RXERR_LOOKAHEAD ); break; #endif #ifndef TQT_NO_REGEXP_ESCAPE case Tok_Word: box->catAnchor( Anchor_Word ); break; case Tok_NonWord: box->catAnchor( Anchor_NonWord ); break; #endif case Tok_LeftParen: case Tok_MagicLeftParen: yyTok = getToken(); parseExpression( box ); if ( yyTok != Tok_RightParen ) error( RXERR_END ); break; case Tok_CharClass: box->set( *yyCharClass ); break; case Tok_Quantifier: error( RXERR_REPETITION ); break; default: #ifndef TQT_NO_REGEXP_BACKREF if ( (yyTok & Tok_BackRef) != 0 ) box->set( yyTok ^ Tok_BackRef ); else #endif error( RXERR_DISABLED ); } } yyTok = getToken(); } void TQRegExpEngine::parseFactor( Box *box ) { #ifndef TQT_NO_REGEXP_CAPTURE int atom = startAtom( yyMayCapture && yyTok == Tok_LeftParen ); #else static const int atom = 0; #endif #ifndef TQT_NO_REGEXP_INTERVAL #define YYREDO() \ yyIn = in, yyPos0 = pos0, yyPos = pos, yyLen = len, yyCh = ch, \ *yyCharClass = charClass, yyMinRep = 0, yyMaxRep = 0, yyTok = tok const TQChar *in = yyIn; int pos0 = yyPos0; int pos = yyPos; int len = yyLen; int ch = yyCh; CharClass charClass; if ( yyTok == Tok_CharClass ) charClass = *yyCharClass; int tok = yyTok; bool mayCapture = yyMayCapture; #endif parseAtom( box ); #ifndef TQT_NO_REGEXP_CAPTURE finishAtom( atom ); #endif if ( yyTok == Tok_Quantifier ) { #ifndef TQT_NO_REGEXP_OPTIM trivial = FALSE; #endif if ( yyMaxRep == InftyRep ) { box->plus( atom ); #ifndef TQT_NO_REGEXP_INTERVAL } else if ( yyMaxRep == 0 ) { box->clear(); #endif } if ( yyMinRep == 0 ) box->opt(); #ifndef TQT_NO_REGEXP_INTERVAL yyMayCapture = FALSE; int alpha = ( yyMinRep == 0 ) ? 0 : yyMinRep - 1; int beta = ( yyMaxRep == InftyRep ) ? 0 : yyMaxRep - ( alpha + 1 ); Box rightBox( this ); int i; for ( i = 0; i < beta; i++ ) { YYREDO(); Box leftBox( this ); parseAtom( &leftBox ); leftBox.cat( rightBox ); leftBox.opt(); rightBox = leftBox; } for ( i = 0; i < alpha; i++ ) { YYREDO(); Box leftBox( this ); parseAtom( &leftBox ); leftBox.cat( rightBox ); rightBox = leftBox; } rightBox.cat( *box ); *box = rightBox; #endif yyTok = getToken(); #ifndef TQT_NO_REGEXP_INTERVAL yyMayCapture = mayCapture; #endif } #undef YYREDO } void TQRegExpEngine::parseTerm( Box *box ) { #ifndef TQT_NO_REGEXP_OPTIM if ( yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar ) parseFactor( box ); #endif while ( yyTok != Tok_Eos && yyTok != Tok_RightParen && yyTok != Tok_Bar ) { Box rightBox( this ); parseFactor( &rightBox ); box->cat( rightBox ); } } void TQRegExpEngine::parseExpression( Box *box ) { parseTerm( box ); while ( yyTok == Tok_Bar ) { #ifndef TQT_NO_REGEXP_OPTIM trivial = FALSE; #endif Box rightBox( this ); yyTok = getToken(); parseTerm( &rightBox ); box->orx( rightBox ); } } /* The struct TQRegExpPrivate contains the private data of a regular expression other than the automaton. It makes it possible for many TQRegExp objects to use the same TQRegExpEngine object with different TQRegExpPrivate objects. */ struct TQRegExpPrivate { TQString pattern; // regular-expression or wildcard pattern TQString rxpattern; // regular-expression pattern #ifndef TQT_NO_REGEXP_WILDCARD bool wc : 1; // wildcard mode? #endif bool min : 1; // minimal matching? (instead of maximal) bool cs : 1; // case sensitive? #ifndef TQT_NO_REGEXP_CAPTURE TQString t; // last string passed to TQRegExp::search() or searchRev() TQStringList capturedCache; // what TQRegExp::capturedTexts() returned last #endif TQMemArray captured; // what TQRegExpEngine::search() returned last TQRegExpPrivate() { captured.fill( -1, 2 ); } }; #ifndef TQT_NO_REGEXP_OPTIM static TQSingleCleanupHandler > cleanup_cache; # ifndef TQT_THREAD_SUPPORT static TQCache *engineCache = 0; # endif // TQT_THREAD_SUPPORT #endif // TQT_NO_REGEXP_OPTIM static void regexpEngine( TQRegExpEngine *&eng, const TQString &pattern, bool caseSensitive, bool deref ) { # ifdef TQT_THREAD_SUPPORT static TQThreadStorage *> engineCaches; TQCache *engineCache = 0; TQThreadInstance *currentThread = TQThreadInstance::current(); if (currentThread) engineCache = engineCaches.localData(); #endif // TQT_THREAD_SUPPORT if ( !deref ) { #ifndef TQT_NO_REGEXP_OPTIM # ifdef TQT_THREAD_SUPPORT if ( currentThread ) # endif { if ( engineCache != 0 ) { eng = engineCache->take( pattern ); if ( eng == 0 || eng->caseSensitive() != caseSensitive ) { delete eng; } else { eng->ref(); return; } } } #endif // TQT_NO_REGEXP_OPTIM eng = new TQRegExpEngine( pattern, caseSensitive ); return; } if ( eng->deref() ) { #ifndef TQT_NO_REGEXP_OPTIM # ifdef TQT_THREAD_SUPPORT if ( currentThread ) # endif { if ( engineCache == 0 ) { engineCache = new TQCache; engineCache->setAutoDelete( TRUE ); # ifdef TQT_THREAD_SUPPORT engineCaches.setLocalData(engineCache); # else cleanup_cache.set( &engineCache ); # endif // !TQT_THREAD_SUPPORT } if ( !pattern.isNull() && engineCache->insert(pattern, eng, 4 + pattern.length() / 4) ) return; } #else Q_UNUSED( pattern ); #endif // TQT_NO_REGEXP_OPTIM delete eng; eng = 0; } } /*! \enum TQRegExp::CaretMode The CaretMode enum defines the different meanings of the caret (^) in a regular expression. The possible values are: \value CaretAtZero The caret corresponds to index 0 in the searched string. \value CaretAtOffset The caret corresponds to the start offset of the search. \value CaretWontMatch The caret never matches. */ /*! Constructs an empty regexp. \sa isValid() errorString() */ TQRegExp::TQRegExp() : eng( 0 ) { priv = new TQRegExpPrivate; #ifndef TQT_NO_REGEXP_WILDCARD priv->wc = FALSE; #endif priv->min = FALSE; priv->cs = TRUE; } /*! Constructs a regular expression object for the given \a pattern string. The pattern must be given using wildcard notation if \a wildcard is TRUE (default is FALSE). The pattern is case sensitive, unless \a caseSensitive is FALSE. Matching is greedy (maximal), but can be changed by calling setMinimal(). \sa setPattern() setCaseSensitive() setWildcard() setMinimal() */ TQRegExp::TQRegExp( const TQString& pattern, bool caseSensitive, bool wildcard ) : eng( 0 ) { priv = new TQRegExpPrivate; priv->pattern = pattern; #ifndef TQT_NO_REGEXP_WILDCARD priv->wc = wildcard; #endif priv->min = FALSE; priv->cs = caseSensitive; } /*! Constructs a regular expression as a copy of \a rx. \sa operator=() */ TQRegExp::TQRegExp( const TQRegExp& rx ) : eng( 0 ) { priv = new TQRegExpPrivate; operator=( rx ); } /*! Destroys the regular expression and cleans up its internal data. */ TQRegExp::~TQRegExp() { invalidateEngine(); delete priv; } /*! Copies the regular expression \a rx and returns a reference to the copy. The case sensitivity, wildcard and minimal matching options are also copied. */ TQRegExp& TQRegExp::operator=( const TQRegExp& rx ) { TQRegExpEngine *otherEng = rx.eng; if ( otherEng != 0 ) otherEng->ref(); invalidateEngine(); eng = otherEng; priv->pattern = rx.priv->pattern; priv->rxpattern = rx.priv->rxpattern; #ifndef TQT_NO_REGEXP_WILDCARD priv->wc = rx.priv->wc; #endif priv->min = rx.priv->min; priv->cs = rx.priv->cs; #ifndef TQT_NO_REGEXP_CAPTURE priv->t = rx.priv->t; priv->capturedCache = rx.priv->capturedCache; #endif priv->captured = rx.priv->captured; return *this; } /*! Returns TRUE if this regular expression is equal to \a rx; otherwise returns FALSE. Two TQRegExp objects are equal if they have the same pattern strings and the same settings for case sensitivity, wildcard and minimal matching. */ bool TQRegExp::operator==( const TQRegExp& rx ) const { return priv->pattern == rx.priv->pattern && #ifndef TQT_NO_REGEXP_WILDCARD priv->wc == rx.priv->wc && #endif priv->min == rx.priv->min && priv->cs == rx.priv->cs; } /*! \fn bool TQRegExp::operator!=( const TQRegExp& rx ) const Returns TRUE if this regular expression is not equal to \a rx; otherwise returns FALSE. \sa operator==() */ /*! Returns TRUE if the pattern string is empty; otherwise returns FALSE. If you call exactMatch() with an empty pattern on an empty string it will return TRUE; otherwise it returns FALSE since it operates over the whole string. If you call search() with an empty pattern on \e any string it will return the start offset (0 by default) because the empty pattern matches the 'emptiness' at the start of the string. In this case the length of the match returned by matchedLength() will be 0. See TQString::isEmpty(). */ bool TQRegExp::isEmpty() const { return priv->pattern.isEmpty(); } /*! Returns TRUE if the regular expression is valid; otherwise returns FALSE. An invalid regular expression never matches. The pattern [a-z is an example of an invalid pattern, since it lacks a closing square bracket. Note that the validity of a regexp may also depend on the setting of the wildcard flag, for example *.html is a valid wildcard regexp but an invalid full regexp. \sa errorString() */ bool TQRegExp::isValid() const { if ( priv->pattern.isEmpty() ) { return TRUE; } else { prepareEngine(); return eng->isValid(); } } /*! Returns the pattern string of the regular expression. The pattern has either regular expression syntax or wildcard syntax, depending on wildcard(). \sa setPattern() */ TQString TQRegExp::pattern() const { return priv->pattern; } /*! Sets the pattern string to \a pattern. The case sensitivity, wildcard and minimal matching options are not changed. \sa pattern() */ void TQRegExp::setPattern( const TQString& pattern ) { if ( priv->pattern != pattern ) { priv->pattern = pattern; invalidateEngine(); } } /*! Returns TRUE if case sensitivity is enabled; otherwise returns FALSE. The default is TRUE. \sa setCaseSensitive() */ bool TQRegExp::caseSensitive() const { return priv->cs; } /*! Sets case sensitive matching to \a sensitive. If \a sensitive is TRUE, \\.txt$ matches \c{readme.txt} but not \c{README.TXT}. \sa caseSensitive() */ void TQRegExp::setCaseSensitive( bool sensitive ) { if ( sensitive != priv->cs ) { priv->cs = sensitive; invalidateEngine(); } } #ifndef TQT_NO_REGEXP_WILDCARD /*! Returns TRUE if wildcard mode is enabled; otherwise returns FALSE. The default is FALSE. \sa setWildcard() */ bool TQRegExp::wildcard() const { return priv->wc; } /*! Sets the wildcard mode for the regular expression. The default is FALSE. Setting \a wildcard to TRUE enables simple shell-like wildcard matching. (See \link #wildcard-matching wildcard matching (globbing) \endlink.) For example, r*.txt matches the string \c{readme.txt} in wildcard mode, but does not match \c{readme}. \sa wildcard() */ void TQRegExp::setWildcard( bool wildcard ) { if ( wildcard != priv->wc ) { priv->wc = wildcard; invalidateEngine(); } } #endif /*! Returns TRUE if minimal (non-greedy) matching is enabled; otherwise returns FALSE. \sa setMinimal() */ bool TQRegExp::minimal() const { return priv->min; } /*! Enables or disables minimal matching. If \a minimal is FALSE, matching is greedy (maximal) which is the default. For example, suppose we have the input string "We must be \bold\, very \bold\!" and the pattern \.*\. With the default greedy (maximal) matching, the match is "We must be \bold\, very \bold\!". But with minimal (non-greedy) matching the first match is: "We must be \bold\, very \bold\!" and the second match is "We must be \bold\, very \bold\!". In practice we might use the pattern \[^\<]+\ instead, although this will still fail for nested tags. \sa minimal() */ void TQRegExp::setMinimal( bool minimal ) { priv->min = minimal; } /*! Returns TRUE if \a str is matched exactly by this regular expression; otherwise returns FALSE. You can determine how much of the string was matched by calling matchedLength(). For a given regexp string, R, exactMatch("R") is the equivalent of search("^R$") since exactMatch() effectively encloses the regexp in the start of string and end of string anchors, except that it sets matchedLength() differently. For example, if the regular expression is blue, then exactMatch() returns TRUE only for input \c blue. For inputs \c bluebell, \c blutak and \c lightblue, exactMatch() returns FALSE and matchedLength() will return 4, 3 and 0 respectively. Although const, this function sets matchedLength(), capturedTexts() and pos(). \sa search() searchRev() TQRegExpValidator */ bool TQRegExp::exactMatch( const TQString& str ) const { prepareEngineForMatch( str ); eng->match( str, 0, priv->min, TRUE, 0, priv->captured ); if ( priv->captured[1] == (int) str.length() ) { return TRUE; } else { priv->captured[0] = 0; priv->captured[1] = eng->partialMatchLength(); return FALSE; } } #ifndef TQT_NO_COMPAT /*! \obsolete Attempts to match in \a str, starting from position \a index. Returns the position of the match, or -1 if there was no match. The length of the match is stored in \a *len, unless \a len is a null pointer. If \a indexIsStart is TRUE (the default), the position \a index in the string will match the start of string anchor, ^, in the regexp, if present. Otherwise, position 0 in \a str will match. Use search() and matchedLength() instead of this function. \sa TQString::mid() TQConstString */ int TQRegExp::match( const TQString& str, int index, int *len, bool indexIsStart ) const { int pos = search( str, index, indexIsStart ? CaretAtOffset : CaretAtZero ); if ( len != 0 ) *len = matchedLength(); return pos; } #endif // TQT_NO_COMPAT int TQRegExp::search( const TQString& str, int offset ) const { return search( str, offset, CaretAtZero ); } /*! Attempts to find a match in \a str from position \a offset (0 by default). If \a offset is -1, the search starts at the last character; if -2, at the next to last character; etc. Returns the position of the first match, or -1 if there was no match. The \a caretMode parameter can be used to instruct whether ^ should match at index 0 or at \a offset. You might prefer to use TQString::find(), TQString::contains() or even TQStringList::grep(). To replace matches use TQString::replace(). Example: \code TQString str = "offsets: 1.23 .50 71.00 6.00"; TQRegExp rx( "\\d*\\.\\d+" ); // primitive floating point matching int count = 0; int pos = 0; while ( (pos = rx.search(str, pos)) != -1 ) { count++; pos += rx.matchedLength(); } // pos will be 9, 14, 18 and finally 24; count will end up as 4 \endcode Although const, this function sets matchedLength(), capturedTexts() and pos(). \sa searchRev() exactMatch() */ int TQRegExp::search( const TQString& str, int offset, CaretMode caretMode ) const { prepareEngineForMatch( str ); if ( offset < 0 ) offset += str.length(); eng->match( str, offset, priv->min, FALSE, caretIndex(offset, caretMode), priv->captured ); return priv->captured[0]; } int TQRegExp::searchRev( const TQString& str, int offset ) const { return searchRev( str, offset, CaretAtZero ); } /*! Attempts to find a match backwards in \a str from position \a offset. If \a offset is -1 (the default), the search starts at the last character; if -2, at the next to last character; etc. Returns the position of the first match, or -1 if there was no match. The \a caretMode parameter can be used to instruct whether ^ should match at index 0 or at \a offset. Although const, this function sets matchedLength(), capturedTexts() and pos(). \warning Searching backwards is much slower than searching forwards. \sa search() exactMatch() */ int TQRegExp::searchRev( const TQString& str, int offset, CaretMode caretMode ) const { prepareEngineForMatch( str ); if ( offset < 0 ) offset += str.length(); if ( offset < 0 || offset > (int) str.length() ) { priv->captured.detach(); priv->captured.fill( -1 ); return -1; } while ( offset >= 0 ) { eng->match( str, offset, priv->min, TRUE, caretIndex(offset, caretMode), priv->captured ); if ( priv->captured[0] == offset ) return offset; offset--; } return -1; } /*! Returns the length of the last matched string, or -1 if there was no match. \sa exactMatch() search() searchRev() */ int TQRegExp::matchedLength() const { return priv->captured[1]; } #ifndef TQT_NO_REGEXP_CAPTURE /*! Returns the number of captures contained in the regular expression. */ int TQRegExp::numCaptures() const { prepareEngine(); return eng->numCaptures(); } /*! Returns a list of the captured text strings. The first string in the list is the entire matched string. Each subsequent list element contains a string that matched a (capturing) subexpression of the regexp. For example: \code TQRegExp rx( "(\\d+)(\\s*)(cm|inch(es)?)" ); int pos = rx.search( "Length: 36 inches" ); TQStringList list = rx.capturedTexts(); // list is now ( "36 inches", "36", " ", "inches", "es" ) \endcode The above example also captures elements that may be present but which we have no interest in. This problem can be solved by using non-capturing parentheses: \code TQRegExp rx( "(\\d+)(?:\\s*)(cm|inch(?:es)?)" ); int pos = rx.search( "Length: 36 inches" ); TQStringList list = rx.capturedTexts(); // list is now ( "36 inches", "36", "inches" ) \endcode Note that if you want to iterate over the list, you should iterate over a copy, e.g. \code TQStringList list = rx.capturedTexts(); TQStringList::Iterator it = list.begin(); while( it != list.end() ) { myProcessing( *it ); ++it; } \endcode Some regexps can match an indeterminate number of times. For example if the input string is "Offsets: 12 14 99 231 7" and the regexp, \c{rx}, is (\\d+)+, we would hope to get a list of all the numbers matched. However, after calling \c{rx.search(str)}, capturedTexts() will return the list ( "12", "12" ), i.e. the entire match was "12" and the first subexpression matched was "12". The correct approach is to use cap() in a \link #cap_in_a_loop loop \endlink. The order of elements in the string list is as follows. The first element is the entire matching string. Each subsequent element corresponds to the next capturing open left parentheses. Thus capturedTexts()[1] is the text of the first capturing parentheses, capturedTexts()[2] is the text of the second and so on (corresponding to $1, $2, etc., in some other regexp languages). \sa cap() pos() exactMatch() search() searchRev() */ TQStringList TQRegExp::capturedTexts() { if ( priv->capturedCache.isEmpty() ) { for ( int i = 0; i < (int) priv->captured.size(); i += 2 ) { TQString m; if ( priv->captured[i + 1] == 0 ) m = TQString::fromLatin1( "" ); else if ( priv->captured[i] >= 0 ) m = priv->t.mid( priv->captured[i], priv->captured[i + 1] ); priv->capturedCache.append( m ); } priv->t = TQString::null; } return priv->capturedCache; } /*! Returns the text captured by the \a nth subexpression. The entire match has index 0 and the parenthesized subexpressions have indices starting from 1 (excluding non-capturing parentheses). \code TQRegExp rxlen( "(\\d+)(?:\\s*)(cm|inch)" ); int pos = rxlen.search( "Length: 189cm" ); if ( pos > -1 ) { TQString value = rxlen.cap( 1 ); // "189" TQString unit = rxlen.cap( 2 ); // "cm" // ... } \endcode The order of elements matched by cap() is as follows. The first element, cap(0), is the entire matching string. Each subsequent element corresponds to the next capturing open left parentheses. Thus cap(1) is the text of the first capturing parentheses, cap(2) is the text of the second, and so on. \target cap_in_a_loop Some patterns may lead to a number of matches which cannot be determined in advance, for example: \code TQRegExp rx( "(\\d+)" ); str = "Offsets: 12 14 99 231 7"; TQStringList list; pos = 0; while ( pos >= 0 ) { pos = rx.search( str, pos ); if ( pos > -1 ) { list += rx.cap( 1 ); pos += rx.matchedLength(); } } // list contains "12", "14", "99", "231", "7" \endcode \sa capturedTexts() pos() exactMatch() search() searchRev() */ TQString TQRegExp::cap( int nth ) { if ( nth < 0 || nth >= (int) priv->captured.size() / 2 ) { return TQString::null; } else { return capturedTexts()[nth]; } } /*! Returns the position of the \a nth captured text in the searched string. If \a nth is 0 (the default), pos() returns the position of the whole match. Example: \code TQRegExp rx( "/([a-z]+)/([a-z]+)" ); rx.search( "Output /dev/null" ); // returns 7 (position of /dev/null) rx.pos( 0 ); // returns 7 (position of /dev/null) rx.pos( 1 ); // returns 8 (position of dev) rx.pos( 2 ); // returns 12 (position of null) \endcode For zero-length matches, pos() always returns -1. (For example, if cap(4) would return an empty string, pos(4) returns -1.) This is due to an implementation tradeoff. \sa capturedTexts() exactMatch() search() searchRev() */ int TQRegExp::pos( int nth ) { if ( nth < 0 || nth >= (int) priv->captured.size() / 2 ) return -1; else return priv->captured[2 * nth]; } /*! Returns a text string that explains why a regexp pattern is invalid the case being; otherwise returns "no error occurred". \sa isValid() */ TQString TQRegExp::errorString() { if ( isValid() ) { return TQString( RXERR_OK ); } else { return eng->errorString(); } } #endif /*! Returns the string \a str with every regexp special character escaped with a backslash. The special characters are $, (, ), *, +, ., ?, [, \, ], ^, {, | and }. Example: \code s1 = TQRegExp::escape( "bingo" ); // s1 == "bingo" s2 = TQRegExp::escape( "f(x)" ); // s2 == "f\\(x\\)" \endcode This function is useful to construct regexp patterns dynamically: \code TQRegExp rx( "(" + TQRegExp::escape(name) + "|" + TQRegExp::escape(alias) + ")" ); \endcode */ TQString TQRegExp::escape( const TQString& str ) { static const char meta[] = "$()*+.?[\\]^{|}"; TQString quoted = str; int i = 0; while ( i < (int) quoted.length() ) { if ( strchr(meta, quoted[i].latin1()) != 0 ) quoted.insert( i++, "\\" ); i++; } return quoted; } void TQRegExp::prepareEngine() const { if ( eng == 0 ) { #ifndef TQT_NO_REGEXP_WILDCARD if ( priv->wc ) priv->rxpattern = wc2rx( priv->pattern ); else #endif priv->rxpattern = priv->pattern.isNull() ? TQString::fromLatin1( "" ) : priv->pattern; TQRegExp *that = (TQRegExp *) this; // that->eng = newEngine( priv->rxpattern, priv->cs ); regexpEngine( that->eng, priv->rxpattern, priv->cs, FALSE ); priv->captured.detach(); priv->captured.fill( -1, 2 + 2 * eng->numCaptures() ); } } void TQRegExp::prepareEngineForMatch( const TQString& str ) const { prepareEngine(); #ifndef TQT_NO_REGEXP_CAPTURE priv->t = str; priv->capturedCache.clear(); #else Q_UNUSED( str ); #endif } void TQRegExp::invalidateEngine() { if ( eng != 0 ) { regexpEngine( eng, priv->rxpattern, priv->cs, TRUE ); priv->rxpattern = TQString(); eng = 0; } } int TQRegExp::caretIndex( int offset, CaretMode caretMode ) { if ( caretMode == CaretAtZero ) { return 0; } else if ( caretMode == CaretAtOffset ) { return offset; } else { // CaretWontMatch return -1; } } #endif // TQT_NO_REGEXP