/****************************************************************************
**
** Implementation of TQLCDNumber class
**
** Created : 940518
**
** Copyright (C) 1992-2008 Trolltech ASA.  All rights reserved.
**
** This file is part of the widgets module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing requirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at sales@trolltech.com.
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file.  Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/

#include "ntqlcdnumber.h"
#ifndef TQT_NO_LCDNUMBER
#include "ntqbitarray.h"
#include "ntqpainter.h"


/*!
    \class TQLCDNumber ntqlcdnumber.h

    \brief The TQLCDNumber widget displays a number with LCD-like digits.

    \ingroup basic
    \mainclass

    It can display a number in just about any size. It can display
    decimal, hexadecimal, octal or binary numbers. It is easy to
    connect to data sources using the display() slot, which is
    overloaded to take any of five argument types.

    There are also slots to change the base with setMode() and the
    decimal point with setSmallDecimalPoint().

    TQLCDNumber emits the overflow() signal when it is asked to display
    something beyond its range. The range is set by setNumDigits(),
    but setSmallDecimalPoint() also influences it. If the display is
    set to hexadecimal, octal or binary, the integer equivalent of the
    value is displayed.

    These digits and other symbols can be shown: 0/O, 1, 2, 3, 4, 5/S,
    6, 7, 8, 9/g, minus, decimal point, A, B, C, D, E, F, h, H, L, o,
    P, r, u, U, Y, colon, degree sign (which is specified as single
    quote in the string) and space. TQLCDNumber substitutes spaces for
    illegal characters.

    It is not possible to retrieve the contents of a TQLCDNumber
    object, although you can retrieve the numeric value with value().
    If you really need the text, we recommend that you connect the
    signals that feed the display() slot to another slot as well and
    store the value there.

    Incidentally, TQLCDNumber is the very oldest part of TQt, tracing
    back to a BASIC program on the \link
    http://www.nvg.ntnu.no/sinclair/computers/zxspectrum/zxspectrum.htm
    Sinclair Spectrum\endlink.

    <img src=qlcdnum-m.png> <img src=qlcdnum-w.png>

    \sa TQLabel, TQFrame
*/

/*!
    \enum TQLCDNumber::Mode

    This type determines how numbers are shown.

    \value Hex  Hexadecimal
    \value Dec  Decimal
    \value Oct  Octal
    \value Bin  Binary

    If the display is set to hexadecimal, octal or binary, the integer
    equivalent of the value is displayed.
*/

/*!
    \enum TQLCDNumber::SegmentStyle

    This type determines the visual appearance of the TQLCDNumber
    widget.

    \value Outline gives raised segments filled with the background brush.
    \value Filled gives raised segments filled with the foreground brush.
    \value Flat gives flat segments filled with the foreground brush.
*/



/*!
    \fn void TQLCDNumber::overflow()

    This signal is emitted whenever the TQLCDNumber is asked to display
    a too-large number or a too-long string.

    It is never emitted by setNumDigits().
*/


static TQString int2string( int num, int base, int ndigits, bool *oflow )
{
    TQString s;
    bool negative;
    if ( num < 0 ) {
        negative = TRUE;
        num      = -num;
    } else {
        negative = FALSE;
    }
    switch( base ) {
        case TQLCDNumber::HEX:
            s.sprintf( "%*x", ndigits, num );
            break;
        case TQLCDNumber::DEC:
            s.sprintf( "%*i", ndigits, num );
            break;
        case TQLCDNumber::OCT:
            s.sprintf( "%*o", ndigits, num );
            break;
        case TQLCDNumber::BIN:
            {
                char buf[42];
                char *p = &buf[41];
                uint n = num;
                int len = 0;
                *p = '\0';
                do {
                    *--p = (char)((n&1)+'0');
                    n >>= 1;
                    len++;
                } while ( n != 0 );
                len = ndigits - len;
                if ( len > 0 )
                s.fill( ' ', len );
                s += TQString::fromLatin1(p);
            }
            break;
    }
    if ( negative ) {
        for ( int i=0; i<(int)s.length(); i++ ) {
            if ( s[i] != ' ' ) {
                if ( i != 0 ) {
                    s[i-1] = '-';
                } else {
                    s.insert( 0, '-' );
                }
                break;
            }
        }
    }
    if ( oflow )
        *oflow = (int)s.length() > ndigits;
    return s;
}


static TQString double2string( double num, int base, int ndigits, bool *oflow )
{
    TQString s;
    if ( base != TQLCDNumber::DEC ) {
        bool of = num >= 2147483648.0 || num < -2147483648.0;
        if ( of ) {                             // oops, integer overflow
            if ( oflow )
                *oflow = TRUE;
            return s;
        }
        s = int2string( (int)num, base, ndigits, 0 );
    } else {                                    // decimal base
        int nd = ndigits;
        do {
            s.sprintf( "%*.*g", ndigits, nd, num );
            int i = s.find('e');
            if ( i > 0 && s[i+1]=='+' ) {
                s[i] = ' ';
                s[i+1] = 'e';
            }
        } while (nd-- && (int)s.length() > ndigits);
    }
    if ( oflow )
        *oflow = (int)s.length() > ndigits;
    return s;
}


static const char *getSegments( char ch )               // gets list of segments for ch
{
    static const char segments[30][8] =
       { { 0, 1, 2, 4, 5, 6,99, 0},             // 0    0 / O
         { 2, 5,99, 0, 0, 0, 0, 0},             // 1    1
         { 0, 2, 3, 4, 6,99, 0, 0},             // 2    2
         { 0, 2, 3, 5, 6,99, 0, 0},             // 3    3
         { 1, 2, 3, 5,99, 0, 0, 0},             // 4    4
         { 0, 1, 3, 5, 6,99, 0, 0},             // 5    5 / S
         { 0, 1, 3, 4, 5, 6,99, 0},             // 6    6
         { 0, 2, 5,99, 0, 0, 0, 0},             // 7    7
         { 0, 1, 2, 3, 4, 5, 6,99},             // 8    8
         { 0, 1, 2, 3, 5, 6,99, 0},             // 9    9 / g
         { 3,99, 0, 0, 0, 0, 0, 0},             // 10   -
         { 7,99, 0, 0, 0, 0, 0, 0},             // 11   .
         { 0, 1, 2, 3, 4, 5,99, 0},             // 12   A
         { 1, 3, 4, 5, 6,99, 0, 0},             // 13   B
         { 0, 1, 4, 6,99, 0, 0, 0},             // 14   C
         { 2, 3, 4, 5, 6,99, 0, 0},             // 15   D
         { 0, 1, 3, 4, 6,99, 0, 0},             // 16   E
         { 0, 1, 3, 4,99, 0, 0, 0},             // 17   F
         { 1, 3, 4, 5,99, 0, 0, 0},             // 18   h
         { 1, 2, 3, 4, 5,99, 0, 0},             // 19   H
         { 1, 4, 6,99, 0, 0, 0, 0},             // 20   L
         { 3, 4, 5, 6,99, 0, 0, 0},             // 21   o
         { 0, 1, 2, 3, 4,99, 0, 0},             // 22   P
         { 3, 4,99, 0, 0, 0, 0, 0},             // 23   r
         { 4, 5, 6,99, 0, 0, 0, 0},             // 24   u
         { 1, 2, 4, 5, 6,99, 0, 0},             // 25   U
         { 1, 2, 3, 5, 6,99, 0, 0},             // 26   Y
         { 8, 9,99, 0, 0, 0, 0, 0},             // 27   :
         { 0, 1, 2, 3,99, 0, 0, 0},             // 28   '
         {99, 0, 0, 0, 0, 0, 0, 0} };           // 29   empty

    if (ch >= '0' && ch <= '9')
        return segments[ch - '0'];
    if (ch >= 'A' && ch <= 'F')
        return segments[ch - 'A' + 12];
    if (ch >= 'a' && ch <= 'f')
        return segments[ch - 'a' + 12];

    int n;
    switch ( ch ) {
        case '-':
            n = 10;  break;
        case 'O':
            n = 0;   break;
        case 'g':
            n = 9;   break;
        case '.':
            n = 11;  break;
        case 'h':
            n = 18;  break;
        case 'H':
            n = 19;  break;
        case 'l':
        case 'L':
            n = 20;  break;
        case 'o':
            n = 21;  break;
        case 'p':
        case 'P':
            n = 22;  break;
        case 'r':
        case 'R':
            n = 23;  break;
        case 's':
        case 'S':
            n = 5;   break;
        case 'u':
            n = 24;  break;
        case 'U':
            n = 25;  break;
        case 'y':
        case 'Y':
            n = 26;  break;
        case ':':
            n = 27;  break;
        case '\'':
            n = 28;  break;
        default:
            n = 29;  break;
    }
    return segments[n];
}


/*!
    Constructs an LCD number, sets the number of digits to 5, the base
    to decimal, the decimal point mode to 'small' and the frame style
    to a raised box. The segmentStyle() is set to \c Outline.

    The \a parent and \a name arguments are passed to the TQFrame
    constructor.

    \sa setNumDigits(), setSmallDecimalPoint()
*/

TQLCDNumber::TQLCDNumber( TQWidget *parent, const char *name )
        : TQFrame( parent, name )
{
    ndigits = 5;
    init();
}


/*!
    Constructs an LCD number, sets the number of digits to \a
    numDigits, the base to decimal, the decimal point mode to 'small'
    and the frame style to a raised box. The segmentStyle() is set to
    \c Outline.

    The \a parent and \a name arguments are passed to the TQFrame
    constructor.

    \sa setNumDigits(), setSmallDecimalPoint()
*/

TQLCDNumber::TQLCDNumber( uint numDigits, TQWidget *parent, const char *name )
        : TQFrame( parent, name )
{
    ndigits = numDigits;
    init();
}

/*!
  \internal
*/

void TQLCDNumber::init()
{
    setFrameStyle( TQFrame::Box | TQFrame::Raised );
    val        = 0;
    base       = DEC;
    smallPoint = FALSE;
    setNumDigits( ndigits );
    setSegmentStyle( Outline );
    d = 0;
    setSizePolicy( TQSizePolicy( TQSizePolicy::Minimum, TQSizePolicy::Minimum ) );
}

/*!
    Destroys the LCD number.
*/

TQLCDNumber::~TQLCDNumber()
{
}


/*!
    \property TQLCDNumber::numDigits
    \brief the current number of digits displayed

    Corresponds to the current number of digits. If \l
    TQLCDNumber::smallDecimalPoint is FALSE, the decimal point occupies
    one digit position.

    \sa numDigits, smallDecimalPoint
*/

void TQLCDNumber::setNumDigits( int numDigits )
{
    if ( numDigits > 99 ) {
#if defined(QT_CHECK_RANGE)
        tqWarning( "TQLCDNumber::setNumDigits: (%s) Max 99 digits allowed",
                 name( "unnamed" ) );
#endif
        numDigits = 99;
    }
    if (numDigits < 0 ) {
#if defined(QT_CHECK_RANGE)
        tqWarning( "TQLCDNumber::setNumDigits: (%s) Min 0 digits allowed",
                 name( "unnamed" ) );
#endif
        numDigits = 0;
    }
    if ( digitStr.isNull() ) {                  // from constructor
        ndigits = numDigits;
        digitStr.fill( ' ', ndigits );
        points.fill( 0, ndigits );
        digitStr[ndigits - 1] = '0';            // "0" is the default number
    } else {
        bool doDisplay = ndigits == 0;
        if ( numDigits == ndigits )             // no change
            return;
        int i;
        int dif;
        if ( numDigits > ndigits ) {            // expand
            dif = numDigits - ndigits;
            TQString buf;
            buf.fill( ' ', dif );
            digitStr.insert( 0, buf );
            points.resize( numDigits );
            for ( i=numDigits-1; i>=dif; i-- )
                points.setBit( i, points.testBit(i-dif) );
            for ( i=0; i<dif; i++ )
                points.clearBit( i );
        } else {                                        // shrink
            dif = ndigits - numDigits;
            digitStr = digitStr.right( numDigits );
            TQBitArray tmpPoints = points.copy();
            points.resize( numDigits );
            for ( i=0; i<(int)numDigits; i++ )
                points.setBit( i, tmpPoints.testBit(i+dif) );
        }
        ndigits = numDigits;
        if ( doDisplay )
            display( value() );
        update();
    }
}


/*!
    \overload

    Returns TRUE if \a num is too big to be displayed in its entirety;
    otherwise returns FALSE.

    \sa display(), numDigits(), smallDecimalPoint()
*/

bool TQLCDNumber::checkOverflow( int num ) const
{
    bool of;
    int2string( num, base, ndigits, &of );
    return of;
}


/*!
    Returns TRUE if \a num is too big to be displayed in its entirety;
    otherwise returns FALSE.

    \sa display(), numDigits(), smallDecimalPoint()
*/

bool TQLCDNumber::checkOverflow( double num ) const
{
    bool of;
    double2string( num, base, ndigits, &of );
    return of;
}


/*!
    \property TQLCDNumber::mode
    \brief the current display mode (number base)

    Corresponds to the current display mode, which is one of \c BIN,
    \c OCT, \c DEC (the default) and \c HEX. \c DEC mode can display
    floating point values, the other modes display the integer
    equivalent.

    \sa smallDecimalPoint(), setHexMode(), setDecMode(), setOctMode(), setBinMode()
*/

TQLCDNumber::Mode TQLCDNumber::mode() const
{
    return (TQLCDNumber::Mode) base;
}

void TQLCDNumber::setMode( Mode m )
{
    base = m;

    display( val );
}


/*!
    \property TQLCDNumber::value
    \brief the displayed value

    This property corresponds to the current value displayed by the
    LCDNumber.

    If the displayed value is not a number, the property has a value
    of 0.
*/

double TQLCDNumber::value() const
{
    return val;
}

/*!
    \overload

    Displays the number \a num.
*/
void TQLCDNumber::display( double num )
{
    val = num;
    bool of;
    TQString s = double2string( num, base, ndigits, &of );
    if ( of )
        emit overflow();
    else
        internalSetString( s );
}

/*!
    \property TQLCDNumber::intValue
    \brief the displayed value rounded to the nearest integer

    This property corresponds to the nearest integer to the current
    value displayed by the LCDNumber. This is the value used for
    hexadecimal, octal and binary modes.

    If the displayed value is not a number, the property has a value
    of 0.
*/
int TQLCDNumber::intValue() const
{
    return (int)(val < 0 ? val - 0.5 : val + 0.5);
}


/*!
    \overload

    Displays the number \a num.
*/
void TQLCDNumber::display( int num )
{
    val = (double)num;
    bool of;
    TQString s = int2string( num, base, ndigits, &of );
    if ( of )
        emit overflow();
    else
        internalSetString( s );
}


/*!
    Displays the number represented by the string \a s.

    This version of the function disregards mode() and
    smallDecimalPoint().

    These digits and other symbols can be shown: 0/O, 1, 2, 3, 4, 5/S,
    6, 7, 8, 9/g, minus, decimal point, A, B, C, D, E, F, h, H, L, o,
    P, r, u, U, Y, colon, degree sign (which is specified as single
    quote in the string) and space. TQLCDNumber substitutes spaces for
    illegal characters.
*/

void TQLCDNumber::display( const TQString &s )
{
    val = 0;
    bool ok = FALSE;
    double v = s.toDouble( &ok );
    if ( ok )
        val = v;
    internalSetString( s );
}

/*!
    Calls setMode( HEX ). Provided for convenience (e.g. for
    connecting buttons to it).

    \sa setMode(), setDecMode(), setOctMode(), setBinMode(), mode()
*/

void TQLCDNumber::setHexMode()
{
    setMode( HEX );
}


/*!
    Calls setMode( DEC ). Provided for convenience (e.g. for
    connecting buttons to it).

    \sa setMode(), setHexMode(), setOctMode(), setBinMode(), mode()
*/

void TQLCDNumber::setDecMode()
{
    setMode( DEC );
}


/*!
    Calls setMode( OCT ). Provided for convenience (e.g. for
    connecting buttons to it).

    \sa setMode(), setHexMode(), setDecMode(), setBinMode(), mode()
*/

void TQLCDNumber::setOctMode()
{
    setMode( OCT );
}


/*!
    Calls setMode( BIN ). Provided for convenience (e.g. for
    connecting buttons to it).

    \sa setMode(), setHexMode(), setDecMode(), setOctMode(), mode()
*/

void TQLCDNumber::setBinMode()
{
    setMode( BIN );
}


/*!
    \property TQLCDNumber::smallDecimalPoint
    \brief the style of the decimal point

    If TRUE the decimal point is drawn between two digit positions.
    Otherwise it occupies a digit position of its own, i.e. is drawn
    in a digit position. The default is FALSE.

    The inter-digit space is made slightly wider when the decimal
    point is drawn between the digits.

    \sa mode
*/

void TQLCDNumber::setSmallDecimalPoint( bool b )
{
    smallPoint = b;
}


/*!
    Draws the LCD number using painter \a p. This function is called
    from TQFrame::paintEvent().
*/


void TQLCDNumber::drawContents( TQPainter *p )
{
    if ( smallPoint )
        drawString( digitStr, *p, &points, FALSE );
    else
        drawString( digitStr, *p, 0, FALSE );
}


/*!
  \internal
*/

void TQLCDNumber::internalDisplay( const TQString & )
{
    // Not used anymore
}

void TQLCDNumber::internalSetString( const TQString& s )
{
    TQString buffer;
    int i;
    int len = s.length();
    TQBitArray newPoints(ndigits);

    if ( !smallPoint ) {
        if ( len == ndigits )
            buffer = s;
        else
            buffer = s.right( ndigits ).rightJustify( ndigits, ' ' );
    } else {
        int  index = -1;
        bool lastWasPoint = TRUE;
        newPoints.clearBit(0);
        for ( i=0; i<len; i++ ) {
            if ( s[i] == '.' ) {
                if ( lastWasPoint ) {           // point already set for digit?
                    if ( index == ndigits - 1 ) // no more digits
                        break;
                    index++;
                    buffer[index] = ' ';        // 2 points in a row, add space
                }
                newPoints.setBit(index);        // set decimal point
                lastWasPoint = TRUE;
            } else {
                if ( index == ndigits - 1 )
                    break;
                index++;
                buffer[index] = s[i];
                newPoints.clearBit(index);      // decimal point default off
                lastWasPoint = FALSE;
            }
        }
        if ( index < ((int) ndigits) - 1 ) {
            for( i=index; i>=0; i-- ) {
                buffer[ndigits - 1 - index + i] = buffer[i];
                newPoints.setBit( ndigits - 1 - index + i,
                                   newPoints.testBit(i) );
            }
            for( i=0; i<ndigits-index-1; i++ ) {
                buffer[i] = ' ';
                newPoints.clearBit(i);
            }
        }
    }

    if ( buffer == digitStr )
        return;

    if ( backgroundMode() == FixedPixmap
         || colorGroup().brush( TQColorGroup::Background ).pixmap() ) {
        digitStr = buffer;
        if ( smallPoint )
            points = newPoints;
        repaint( contentsRect() );
    } else {
        TQPainter p( this );
        if ( !smallPoint )
            drawString( buffer, p );
        else
            drawString( buffer, p, &newPoints );
    }
}

/*!
  \internal
*/

void TQLCDNumber::drawString( const TQString &s, TQPainter &p,
                             TQBitArray *newPoints, bool newString )
{
    TQPoint  pos;

    int digitSpace = smallPoint ? 2 : 1;
    int xSegLen    = width()*5/(ndigits*(5 + digitSpace) + digitSpace);
    int ySegLen    = height()*5/12;
    int segLen     = ySegLen > xSegLen ? xSegLen : ySegLen;
    int xAdvance   = segLen*( 5 + digitSpace )/5;
    int xOffset    = ( width() - ndigits*xAdvance + segLen/5 )/2;
    int yOffset    = ( height() - segLen*2 )/2;

    for ( int i=0;  i<ndigits; i++ ) {
        pos = TQPoint( xOffset + xAdvance*i, yOffset );
        if ( newString )
            drawDigit( pos, p, segLen, s[i], digitStr[i].latin1() );
        else
            drawDigit( pos, p, segLen, s[i]);
        if ( newPoints ) {
            char newPoint = newPoints->testBit(i) ? '.' : ' ';
            if ( newString ) {
                char oldPoint = points.testBit(i) ? '.' : ' ';
                drawDigit( pos, p, segLen, newPoint, oldPoint );
            } else {
                drawDigit( pos, p, segLen, newPoint );
            }
        }
    }
    if ( newString ) {
        digitStr = s;
        if ( (int)digitStr.length() > ndigits )
            digitStr.truncate( ndigits );
        if ( newPoints )
            points = *newPoints;
    }
}


/*!
  \internal
*/

void TQLCDNumber::drawDigit( const TQPoint &pos, TQPainter &p, int segLen,
                            char newCh, char oldCh )
{
// Draws and/or erases segments to change display of a single digit
// from oldCh to newCh

    char updates[18][2];        // can hold 2 times number of segments, only
                                // first 9 used if segment table is correct
    int  nErases;
    int  nUpdates;
    const char *segs;
    int  i,j;

    const char erase      = 0;
    const char draw       = 1;
    const char leaveAlone = 2;

    segs = getSegments(oldCh);
    for ( nErases=0; segs[nErases] != 99; nErases++ ) {
        updates[nErases][0] = erase;            // get segments to erase to
        updates[nErases][1] = segs[nErases];    // remove old char
    }
    nUpdates = nErases;
    segs = getSegments(newCh);
    for(i = 0 ; segs[i] != 99 ; i++) {
        for ( j=0;  j<nErases; j++ )
            if ( segs[i] == updates[j][1] ) {   // same segment ?
                updates[j][0] = leaveAlone;     // yes, already on screen
                break;
            }
        if ( j == nErases ) {                   // if not already on screen
            updates[nUpdates][0] = draw;
            updates[nUpdates][1] = segs[i];
            nUpdates++;
        }
    }
    for ( i=0; i<nUpdates; i++ ) {
        if ( updates[i][0] == draw )
            drawSegment( pos, updates[i][1], p, segLen );
        if (updates[i][0] == erase)
            drawSegment( pos, updates[i][1], p, segLen, TRUE );
    }
}


static void addPoint( TQPointArray &a, const TQPoint &p )
{
    uint n = a.size();
    a.resize( n + 1 );
    a.setPoint( n, p );
}

/*!
  \internal
*/

void TQLCDNumber::drawSegment( const TQPoint &pos, char segmentNo, TQPainter &p,
                              int segLen, bool erase )
{
    TQPoint pt = pos;
    int width = segLen/5;

    const TQColorGroup & g = colorGroup();
    TQColor lightColor,darkColor,fgColor;
    if ( erase ){
        lightColor = backgroundColor();
        darkColor  = lightColor;
        fgColor    = lightColor;
    } else {
        lightColor = g.light();
        darkColor  = g.dark();
        fgColor    = g.foreground();
    }

#define LINETO(X,Y) addPoint( a, TQPoint(pt.x() + (X),pt.y() + (Y)))
#define LIGHT
#define DARK

    if ( fill ) {
        TQPointArray a(0);

        //The following is an exact copy of the switch below.
        //don't make any changes here
        switch ( segmentNo ) {
        case 0 :
            p.moveTo(pt);
            LIGHT;
            LINETO(segLen - 1,0);
            DARK;
            LINETO(segLen - width - 1,width);
            LINETO(width,width);
            LINETO(0,0);
            break;
        case 1 :
            pt += TQPoint(0 , 1);
            p.moveTo(pt);
            LIGHT;
            LINETO(width,width);
            DARK;
            LINETO(width,segLen - width/2 - 2);
            LINETO(0,segLen - 2);
            LIGHT;
            LINETO(0,0);
            break;
        case 2 :
            pt += TQPoint(segLen - 1 , 1);
            p.moveTo(pt);
            DARK;
            LINETO(0,segLen - 2);
            LINETO(-width,segLen - width/2 - 2);
            LIGHT;
            LINETO(-width,width);
            LINETO(0,0);
            break;
        case 3 :
            pt += TQPoint(0 , segLen);
            p.moveTo(pt);
            LIGHT;
            LINETO(width,-width/2);
            LINETO(segLen - width - 1,-width/2);
            LINETO(segLen - 1,0);
            DARK;
            if (width & 1) {            // adjust for integer division error
                LINETO(segLen - width - 3,width/2 + 1);
                LINETO(width + 2,width/2 + 1);
            } else {
                LINETO(segLen - width - 1,width/2);
                LINETO(width,width/2);
            }
            LINETO(0,0);
            break;
        case 4 :
            pt += TQPoint(0 , segLen + 1);
            p.moveTo(pt);
            LIGHT;
            LINETO(width,width/2);
            DARK;
            LINETO(width,segLen - width - 2);
            LINETO(0,segLen - 2);
            LIGHT;
            LINETO(0,0);
            break;
        case 5 :
            pt += TQPoint(segLen - 1 , segLen + 1);
            p.moveTo(pt);
            DARK;
            LINETO(0,segLen - 2);
            LINETO(-width,segLen - width - 2);
            LIGHT;
            LINETO(-width,width/2);
            LINETO(0,0);
            break;
        case 6 :
            pt += TQPoint(0 , segLen*2);
            p.moveTo(pt);
            LIGHT;
            LINETO(width,-width);
            LINETO(segLen - width - 1,-width);
            LINETO(segLen - 1,0);
            DARK;
            LINETO(0,0);
            break;
        case 7 :
            if ( smallPoint )   // if smallpoint place'.' between other digits
                pt += TQPoint(segLen + width/2 , segLen*2);
            else
                pt += TQPoint(segLen/2 , segLen*2);
            p.moveTo(pt);
            DARK;
            LINETO(width,0);
            LINETO(width,-width);
            LIGHT;
            LINETO(0,-width);
            LINETO(0,0);
            break;
        case 8 :
            pt += TQPoint(segLen/2 - width/2 + 1 , segLen/2 + width);
            p.moveTo(pt);
            DARK;
            LINETO(width,0);
            LINETO(width,-width);
            LIGHT;
            LINETO(0,-width);
            LINETO(0,0);
            break;
        case 9 :
            pt += TQPoint(segLen/2 - width/2 + 1 , 3*segLen/2 + width);
            p.moveTo(pt);
            DARK;
            LINETO(width,0);
            LINETO(width,-width);
            LIGHT;
            LINETO(0,-width);
            LINETO(0,0);
            break;
#if defined(QT_CHECK_RANGE)
        default :
            tqWarning( "TQLCDNumber::drawSegment: (%s) Internal error."
                     "  Illegal segment id: %d\n",
                     name( "unnamed" ), segmentNo );
#endif
        }
        // End exact copy
        p.setPen( fgColor );
        p.setBrush( fgColor );
        p.drawPolygon( a );
        p.setBrush( NoBrush );

        pt = pos;
    }
#undef LINETO
#undef LIGHT
#undef DARK

#define LINETO(X,Y) p.lineTo(TQPoint(pt.x() + (X),pt.y() + (Y)))
#define LIGHT p.setPen(lightColor)
#define DARK  p.setPen(darkColor)
    if ( shadow )
        switch ( segmentNo ) {
        case 0 :
            p.moveTo(pt);
            LIGHT;
            LINETO(segLen - 1,0);
            DARK;
            LINETO(segLen - width - 1,width);
            LINETO(width,width);
            LINETO(0,0);
            break;
        case 1 :
            pt += TQPoint(0,1);
            p.moveTo(pt);
            LIGHT;
            LINETO(width,width);
            DARK;
            LINETO(width,segLen - width/2 - 2);
            LINETO(0,segLen - 2);
            LIGHT;
            LINETO(0,0);
            break;
        case 2 :
            pt += TQPoint(segLen - 1 , 1);
            p.moveTo(pt);
            DARK;
            LINETO(0,segLen - 2);
            LINETO(-width,segLen - width/2 - 2);
            LIGHT;
            LINETO(-width,width);
            LINETO(0,0);
            break;
        case 3 :
            pt += TQPoint(0 , segLen);
            p.moveTo(pt);
            LIGHT;
            LINETO(width,-width/2);
            LINETO(segLen - width - 1,-width/2);
            LINETO(segLen - 1,0);
            DARK;
            if (width & 1) {            // adjust for integer division error
                LINETO(segLen - width - 3,width/2 + 1);
                LINETO(width + 2,width/2 + 1);
            } else {
                LINETO(segLen - width - 1,width/2);
                LINETO(width,width/2);
            }
            LINETO(0,0);
            break;
        case 4 :
            pt += TQPoint(0 , segLen + 1);
            p.moveTo(pt);
            LIGHT;
            LINETO(width,width/2);
            DARK;
            LINETO(width,segLen - width - 2);
            LINETO(0,segLen - 2);
            LIGHT;
            LINETO(0,0);
            break;
        case 5 :
            pt += TQPoint(segLen - 1 , segLen + 1);
            p.moveTo(pt);
            DARK;
            LINETO(0,segLen - 2);
            LINETO(-width,segLen - width - 2);
            LIGHT;
            LINETO(-width,width/2);
            LINETO(0,0);
            break;
        case 6 :
            pt += TQPoint(0 , segLen*2);
            p.moveTo(pt);
            LIGHT;
            LINETO(width,-width);
            LINETO(segLen - width - 1,-width);
            LINETO(segLen - 1,0);
            DARK;
            LINETO(0,0);
            break;
        case 7 :
            if ( smallPoint )   // if smallpoint place'.' between other digits
                pt += TQPoint(segLen + width/2 , segLen*2);
            else
                pt += TQPoint(segLen/2 , segLen*2);
            p.moveTo(pt);
            DARK;
            LINETO(width,0);
            LINETO(width,-width);
            LIGHT;
            LINETO(0,-width);
            LINETO(0,0);
            break;
        case 8 :
            pt += TQPoint(segLen/2 - width/2 + 1 , segLen/2 + width);
            p.moveTo(pt);
            DARK;
            LINETO(width,0);
            LINETO(width,-width);
            LIGHT;
            LINETO(0,-width);
            LINETO(0,0);
            break;
        case 9 :
            pt += TQPoint(segLen/2 - width/2 + 1 , 3*segLen/2 + width);
            p.moveTo(pt);
            DARK;
            LINETO(width,0);
            LINETO(width,-width);
            LIGHT;
            LINETO(0,-width);
            LINETO(0,0);
            break;
#if defined(QT_CHECK_RANGE)
        default :
            tqWarning( "TQLCDNumber::drawSegment: (%s) Internal error."
                     "  Illegal segment id: %d\n",
                     name( "unnamed" ), segmentNo );
#endif
        }

#undef LINETO
#undef LIGHT
#undef DARK
}



/*!
    \property TQLCDNumber::segmentStyle
    \brief the style of the LCDNumber

    \table
    \header \i Style \i Result
    \row \i \c Outline
	 \i Produces raised segments filled with the background color
	    (this is the default).
    \row \i \c Filled
	 \i Produces raised segments filled with the foreground color.
    \row \i \c Flat
	 \i Produces flat segments filled with the foreground color.
    \endtable

    \c Outline and \c Filled will additionally use
    TQColorGroup::light() and TQColorGroup::dark() for shadow effects.
*/
void TQLCDNumber::setSegmentStyle( SegmentStyle s )
{
    fill = ( s == Flat || s == Filled );
    shadow = ( s == Outline || s == Filled );
    update();
}

TQLCDNumber::SegmentStyle TQLCDNumber::segmentStyle() const
{
    Q_ASSERT( fill || shadow );
    if ( !fill && shadow )
        return Outline;
    if ( fill && shadow )
        return Filled;
    return Flat;
}


/*!\reimp
*/
TQSize TQLCDNumber::sizeHint() const
{
    return TQSize( 10 + 9 * (numDigits() + (smallDecimalPoint() ? 0 : 1)), 23 );
}

#endif // TQT_NO_LCDNUMBER