1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
|
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.102 2004/02/14 17:35:07 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
** "Sorting And Searching", pages 473-480. Addison-Wesley
** Publishing Company, Reading, Massachusetts.
**
** The basic idea is that each page of the file contains N database
** entries and N+1 pointers to subpages.
**
** ----------------------------------------------------------------
** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
** ----------------------------------------------------------------
**
** All of the keys on the page that Ptr(0) points to have values less
** than Key(0). All of the keys on page Ptr(1) and its subpages have
** values greater than Key(0) and less than Key(1). All of the keys
** on Ptr(N+1) and its subpages have values greater than Key(N). And
** so forth.
**
** Finding a particular key retquires reading O(log(M)) pages from the
** disk where M is the number of entries in the tree.
**
** In this implementation, a single file can hold one or more separate
** BTrees. Each BTree is identified by the index of its root page. The
** key and data for any entry are combined to form the "payload". Up to
** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
** then surplus bytes are stored on overflow pages. The payload for an
** entry and the preceding pointer are combined to form a "Cell". Each
** page has a small header which contains the Ptr(N+1) pointer.
**
** The first page of the file contains a magic string used to verify that
** the file really is a valid BTree database, a pointer to a list of unused
** pages in the file, and some meta information. The root of the first
** BTree begins on page 2 of the file. (Pages are numbered beginning with
** 1, not 0.) Thus a minimum database contains 2 pages.
*/
#include "sqliteInt.h"
#include "pager.h"
#include "btree.h"
#include <assert.h>
/* Forward declarations */
static BtOps sqliteBtreeOps;
static BtCursorOps sqliteBtreeCursorOps;
/*
** Macros used for byteswapping. B is a pointer to the Btree
** structure. This is needed to access the Btree.needSwab boolean
** in order to tell if byte swapping is needed or not.
** X is an unsigned integer. SWAB16 byte swaps a 16-bit integer.
** SWAB32 byteswaps a 32-bit integer.
*/
#define SWAB16(B,X) ((B)->needSwab? swab16((u16)X) : ((u16)X))
#define SWAB32(B,X) ((B)->needSwab? swab32(X) : (X))
#define SWAB_ADD(B,X,A) \
if((B)->needSwab){ X=swab32(swab32(X)+A); }else{ X += (A); }
/*
** The following global variable - available only if SQLITE_TEST is
** defined - is used to determine whether new databases are created in
** native byte order or in non-native byte order. Non-native byte order
** databases are created for testing purposes only. Under normal operation,
** only native byte-order databases should be created, but we should be
** able to read or write existing databases regardless of the byteorder.
*/
#ifdef SQLITE_TEST
int btree_native_byte_order = 1;
#else
# define btree_native_byte_order 1
#endif
/*
** Forward declarations of structures used only in this file.
*/
typedef struct PageOne PageOne;
typedef struct MemPage MemPage;
typedef struct PageHdr PageHdr;
typedef struct Cell Cell;
typedef struct CellHdr CellHdr;
typedef struct FreeBlk FreeBlk;
typedef struct OverflowPage OverflowPage;
typedef struct FreelistInfo FreelistInfo;
/*
** All structures on a database page are aligned to 4-byte boundries.
** This routine rounds up a number of bytes to the next multiple of 4.
**
** This might need to change for computer architectures that retquire
** and 8-byte alignment boundry for structures.
*/
#define ROUNDUP(X) ((X+3) & ~3)
/*
** This is a magic string that appears at the beginning of every
** SQLite database in order to identify the file as a real database.
*/
static const char zMagicHeader[] =
"** This file contains an SQLite 2.1 database **";
#define MAGIC_SIZE (sizeof(zMagicHeader))
/*
** This is a magic integer also used to test the integrity of the database
** file. This integer is used in addition to the string above so that
** if the file is written on a little-endian architecture and read
** on a big-endian architectures (or vice versa) we can detect the
** problem.
**
** The number used was obtained at random and has no special
** significance other than the fact that it represents a different
** integer on little-endian and big-endian machines.
*/
#define MAGIC 0xdae37528
/*
** The first page of the database file contains a magic header string
** to identify the file as an SQLite database file. It also contains
** a pointer to the first free page of the file. Page 2 contains the
** root of the principle BTree. The file might contain other BTrees
** rooted on pages above 2.
**
** The first page also contains SQLITE_N_BTREE_META integers that
** can be used by higher-level routines.
**
** Remember that pages are numbered beginning with 1. (See pager.c
** for additional information.) Page 0 does not exist and a page
** number of 0 is used to mean "no such page".
*/
struct PageOne {
char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
int iMagic; /* Integer to verify correct byte order */
Pgno freeList; /* First free page in a list of all free pages */
int nFree; /* Number of pages on the free list */
int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
};
/*
** Each database page has a header that is an instance of this
** structure.
**
** PageHdr.firstFree is 0 if there is no free space on this page.
** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
** FreeBlk structure that describes the first block of free space.
** All free space is defined by a linked list of FreeBlk structures.
**
** Data is stored in a linked list of Cell structures. PageHdr.firstCell
** is the index into MemPage.u.aDisk[] of the first cell on the page. The
** Cells are kept in sorted order.
**
** A Cell contains all information about a database entry and a pointer
** to a child page that contains other entries less than itself. In
** other words, the i-th Cell contains both Ptr(i) and Key(i). The
** right-most pointer of the page is contained in PageHdr.rightChild.
*/
struct PageHdr {
Pgno rightChild; /* Child page that comes after all cells on this page */
u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
};
/*
** Entries on a page of the database are called "Cells". Each Cell
** has a header and data. This structure defines the header. The
** key and data (collectively the "payload") follow this header on
** the database page.
**
** A definition of the complete Cell structure is given below. The
** header for the cell must be defined first in order to do some
** of the sizing #defines that follow.
*/
struct CellHdr {
Pgno leftChild; /* Child page that comes before this cell */
u16 nKey; /* Number of bytes in the key */
u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
u8 nKeyHi; /* Upper 8 bits of key size for keys larger than 64K bytes */
u8 nDataHi; /* Upper 8 bits of data size when the size is more than 64K */
u16 nData; /* Number of bytes of data */
};
/*
** The key and data size are split into a lower 16-bit segment and an
** upper 8-bit segment in order to pack them together into a smaller
** space. The following macros reassembly a key or data size back
** into an integer.
*/
#define NKEY(b,h) (SWAB16(b,h.nKey) + h.nKeyHi*65536)
#define NDATA(b,h) (SWAB16(b,h.nData) + h.nDataHi*65536)
/*
** The minimum size of a complete Cell. The Cell must contain a header
** and at least 4 bytes of payload.
*/
#define MIN_CELL_SIZE (sizeof(CellHdr)+4)
/*
** The maximum number of database entries that can be held in a single
** page of the database.
*/
#define MX_CELL ((SQLITE_USABLE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
/*
** The amount of usable space on a single page of the BTree. This is the
** page size minus the overhead of the page header.
*/
#define USABLE_SPACE (SQLITE_USABLE_SIZE - sizeof(PageHdr))
/*
** The maximum amount of payload (in bytes) that can be stored locally for
** a database entry. If the entry contains more data than this, the
** extra goes onto overflow pages.
**
** This number is chosen so that at least 4 cells will fit on every page.
*/
#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
/*
** Data on a database page is stored as a linked list of Cell structures.
** Both the key and the data are stored in aPayload[]. The key always comes
** first. The aPayload[] field grows as necessary to hold the key and data,
** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
** page number of the first overflow page.
**
** Though this structure is fixed in size, the Cell on the database
** page varies in size. Every cell has a CellHdr and at least 4 bytes
** of payload space. Additional payload bytes (up to the maximum of
** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
** needed.
*/
struct Cell {
CellHdr h; /* The cell header */
char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
Pgno ovfl; /* The first overflow page */
};
/*
** Free space on a page is remembered using a linked list of the FreeBlk
** structures. Space on a database page is allocated in increments of
** at least 4 bytes and is always aligned to a 4-byte boundry. The
** linked list of FreeBlks is always kept in order by address.
*/
struct FreeBlk {
u16 iSize; /* Number of bytes in this block of free space */
u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
};
/*
** The number of bytes of payload that will fit on a single overflow page.
*/
#define OVERFLOW_SIZE (SQLITE_USABLE_SIZE-sizeof(Pgno))
/*
** When the key and data for a single entry in the BTree will not fit in
** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
** then all extra bytes are written to a linked list of overflow pages.
** Each overflow page is an instance of the following structure.
**
** Unused pages in the database are also represented by instances of
** the OverflowPage structure. The PageOne.freeList field is the
** page number of the first page in a linked list of unused database
** pages.
*/
struct OverflowPage {
Pgno iNext;
char aPayload[OVERFLOW_SIZE];
};
/*
** The PageOne.freeList field points to a linked list of overflow pages
** hold information about free pages. The aPayload section of each
** overflow page contains an instance of the following structure. The
** aFree[] array holds the page number of nFree unused pages in the disk
** file.
*/
struct FreelistInfo {
int nFree;
Pgno aFree[(OVERFLOW_SIZE-sizeof(int))/sizeof(Pgno)];
};
/*
** For every page in the database file, an instance of the following structure
** is stored in memory. The u.aDisk[] array contains the raw bits read from
** the disk. The rest is auxiliary information held in memory only. The
** auxiliary info is only valid for regular database pages - it is not
** used for overflow pages and pages on the freelist.
**
** Of particular interest in the auxiliary info is the apCell[] entry. Each
** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
** put in this array so that they can be accessed in constant time, rather
** than in linear time which would be needed if we had to walk the linked
** list on every access.
**
** Note that apCell[] contains enough space to hold up to two more Cells
** than can possibly fit on one page. In the steady state, every apCell[]
** points to memory inside u.aDisk[]. But in the middle of an insert
** operation, some apCell[] entries may temporarily point to data space
** outside of u.aDisk[]. This is a transient situation that is tquickly
** resolved. But while it is happening, it is possible for a database
** page to hold as many as two more cells than it might otherwise hold.
** The extra two entries in apCell[] are an allowance for this situation.
**
** The pParent field points back to the parent page. This allows us to
** walk up the BTree from any leaf to the root. Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
*/
struct MemPage {
union u_page_data {
char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
PageHdr hdr; /* Overlay page header */
} u;
u8 isInit; /* True if auxiliary data is initialized */
u8 idxShift; /* True if apCell[] indices have changed */
u8 isOverfull; /* Some apCell[] points outside u.aDisk[] */
MemPage *pParent; /* The parent of this page. NULL for root */
int idxParent; /* Index in pParent->apCell[] of this node */
int nFree; /* Number of free bytes in u.aDisk[] */
int nCell; /* Number of entries on this page */
Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
};
/*
** The in-memory image of a disk page has the auxiliary information appended
** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
** that extra information.
*/
#define EXTRA_SIZE (sizeof(MemPage)-sizeof(union u_page_data))
/*
** Everything we need to know about an open database
*/
struct Btree {
BtOps *pOps; /* Function table */
Pager *pPager; /* The page cache */
BtCursor *pCursor; /* A list of all open cursors */
PageOne *page1; /* First page of the database */
u8 inTrans; /* True if a transaction is in progress */
u8 inCkpt; /* True if there is a checkpoint on the transaction */
u8 readOnly; /* True if the underlying file is readonly */
u8 needSwab; /* Need to byte-swapping */
};
typedef Btree Bt;
/*
** A cursor is a pointer to a particular entry in the BTree.
** The entry is identified by its MemPage and the index in
** MemPage.apCell[] of the entry.
*/
struct BtCursor {
BtCursorOps *pOps; /* Function table */
Btree *pBt; /* The Btree to which this cursor belongs */
BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
BtCursor *pShared; /* Loop of cursors with the same root page */
Pgno pgnoRoot; /* The root page of this tree */
MemPage *pPage; /* Page that contains the entry */
int idx; /* Index of the entry in pPage->apCell[] */
u8 wrFlag; /* True if writable */
u8 eSkip; /* Determines if next step operation is a no-op */
u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
};
/*
** Legal values for BtCursor.eSkip.
*/
#define SKIP_NONE 0 /* Always step the cursor */
#define SKIP_NEXT 1 /* The next sqliteBtreeNext() is a no-op */
#define SKIP_PREV 2 /* The next sqliteBtreePrevious() is a no-op */
#define SKIP_INVALID 3 /* Calls to Next() and Previous() are invalid */
/* Forward declarations */
static int fileBtreeCloseCursor(BtCursor *pCur);
/*
** Routines for byte swapping.
*/
u16 swab16(u16 x){
return ((x & 0xff)<<8) | ((x>>8)&0xff);
}
u32 swab32(u32 x){
return ((x & 0xff)<<24) | ((x & 0xff00)<<8) |
((x>>8) & 0xff00) | ((x>>24)&0xff);
}
/*
** Compute the total number of bytes that a Cell needs on the main
** database page. The number returned includes the Cell header,
** local payload storage, and the pointer to overflow pages (if
** applicable). Additional space allocated on overflow pages
** is NOT included in the value returned from this routine.
*/
static int cellSize(Btree *pBt, Cell *pCell){
int n = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
if( n>MX_LOCAL_PAYLOAD ){
n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
}else{
n = ROUNDUP(n);
}
n += sizeof(CellHdr);
return n;
}
/*
** Defragment the page given. All Cells are moved to the
** beginning of the page and all free space is collected
** into one big FreeBlk at the end of the page.
*/
static void defragmentPage(Btree *pBt, MemPage *pPage){
int pc, i, n;
FreeBlk *pFBlk;
char newPage[SQLITE_USABLE_SIZE];
assert( sqlitepager_iswriteable(pPage) );
assert( pPage->isInit );
pc = sizeof(PageHdr);
pPage->u.hdr.firstCell = SWAB16(pBt, pc);
memcpy(newPage, pPage->u.aDisk, pc);
for(i=0; i<pPage->nCell; i++){
Cell *pCell = pPage->apCell[i];
/* This routine should never be called on an overfull page. The
** following asserts verify that constraint. */
assert( Addr(pCell) > Addr(pPage) );
assert( Addr(pCell) < Addr(pPage) + SQLITE_USABLE_SIZE );
n = cellSize(pBt, pCell);
pCell->h.iNext = SWAB16(pBt, pc + n);
memcpy(&newPage[pc], pCell, n);
pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
pc += n;
}
assert( pPage->nFree==SQLITE_USABLE_SIZE-pc );
memcpy(pPage->u.aDisk, newPage, pc);
if( pPage->nCell>0 ){
pPage->apCell[pPage->nCell-1]->h.iNext = 0;
}
pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
pFBlk->iSize = SWAB16(pBt, SQLITE_USABLE_SIZE - pc);
pFBlk->iNext = 0;
pPage->u.hdr.firstFree = SWAB16(pBt, pc);
memset(&pFBlk[1], 0, SQLITE_USABLE_SIZE - pc - sizeof(FreeBlk));
}
/*
** Allocate nByte bytes of space on a page. nByte must be a
** multiple of 4.
**
** Return the index into pPage->u.aDisk[] of the first byte of
** the new allocation. Or return 0 if there is not enough free
** space on the page to satisfy the allocation request.
**
** If the page contains nBytes of free space but does not contain
** nBytes of contiguous free space, then this routine automatically
** calls defragementPage() to consolidate all free space before
** allocating the new chunk.
*/
static int allocateSpace(Btree *pBt, MemPage *pPage, int nByte){
FreeBlk *p;
u16 *pIdx;
int start;
int iSize;
#ifndef NDEBUG
int cnt = 0;
#endif
assert( sqlitepager_iswriteable(pPage) );
assert( nByte==ROUNDUP(nByte) );
assert( pPage->isInit );
if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
pIdx = &pPage->u.hdr.firstFree;
p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
while( (iSize = SWAB16(pBt, p->iSize))<nByte ){
assert( cnt++ < SQLITE_USABLE_SIZE/4 );
if( p->iNext==0 ){
defragmentPage(pBt, pPage);
pIdx = &pPage->u.hdr.firstFree;
}else{
pIdx = &p->iNext;
}
p = (FreeBlk*)&pPage->u.aDisk[SWAB16(pBt, *pIdx)];
}
if( iSize==nByte ){
start = SWAB16(pBt, *pIdx);
*pIdx = p->iNext;
}else{
FreeBlk *pNew;
start = SWAB16(pBt, *pIdx);
pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
pNew->iNext = p->iNext;
pNew->iSize = SWAB16(pBt, iSize - nByte);
*pIdx = SWAB16(pBt, start + nByte);
}
pPage->nFree -= nByte;
return start;
}
/*
** Return a section of the MemPage.u.aDisk[] to the freelist.
** The first byte of the new free block is pPage->u.aDisk[start]
** and the size of the block is "size" bytes. Size must be
** a multiple of 4.
**
** Most of the effort here is involved in coalesing adjacent
** free blocks into a single big free block.
*/
static void freeSpace(Btree *pBt, MemPage *pPage, int start, int size){
int end = start + size;
u16 *pIdx, idx;
FreeBlk *pFBlk;
FreeBlk *pNew;
FreeBlk *pNext;
int iSize;
assert( sqlitepager_iswriteable(pPage) );
assert( size == ROUNDUP(size) );
assert( start == ROUNDUP(start) );
assert( pPage->isInit );
pIdx = &pPage->u.hdr.firstFree;
idx = SWAB16(pBt, *pIdx);
while( idx!=0 && idx<start ){
pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
iSize = SWAB16(pBt, pFBlk->iSize);
if( idx + iSize == start ){
pFBlk->iSize = SWAB16(pBt, iSize + size);
if( idx + iSize + size == SWAB16(pBt, pFBlk->iNext) ){
pNext = (FreeBlk*)&pPage->u.aDisk[idx + iSize + size];
if( pBt->needSwab ){
pFBlk->iSize = swab16((u16)swab16(pNext->iSize)+iSize+size);
}else{
pFBlk->iSize += pNext->iSize;
}
pFBlk->iNext = pNext->iNext;
}
pPage->nFree += size;
return;
}
pIdx = &pFBlk->iNext;
idx = SWAB16(pBt, *pIdx);
}
pNew = (FreeBlk*)&pPage->u.aDisk[start];
if( idx != end ){
pNew->iSize = SWAB16(pBt, size);
pNew->iNext = SWAB16(pBt, idx);
}else{
pNext = (FreeBlk*)&pPage->u.aDisk[idx];
pNew->iSize = SWAB16(pBt, size + SWAB16(pBt, pNext->iSize));
pNew->iNext = pNext->iNext;
}
*pIdx = SWAB16(pBt, start);
pPage->nFree += size;
}
/*
** Initialize the auxiliary information for a disk block.
**
** The pParent parameter must be a pointer to the MemPage which
** is the parent of the page being initialized. The root of the
** BTree (usually page 2) has no parent and so for that page,
** pParent==NULL.
**
** Return SQLITE_OK on success. If we see that the page does
** not contain a well-formed database page, then return
** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
** guarantee that the page is well-formed. It only shows that
** we failed to detect any corruption.
*/
static int initPage(Bt *pBt, MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
int idx; /* An index into pPage->u.aDisk[] */
Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
int sz; /* The size of a Cell in bytes */
int freeSpace; /* Amount of free space on the page */
if( pPage->pParent ){
assert( pPage->pParent==pParent );
return SQLITE_OK;
}
if( pParent ){
pPage->pParent = pParent;
sqlitepager_ref(pParent);
}
if( pPage->isInit ) return SQLITE_OK;
pPage->isInit = 1;
pPage->nCell = 0;
freeSpace = USABLE_SPACE;
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx!=0 ){
if( idx>SQLITE_USABLE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
if( idx<sizeof(PageHdr) ) goto page_format_error;
if( idx!=ROUNDUP(idx) ) goto page_format_error;
pCell = (Cell*)&pPage->u.aDisk[idx];
sz = cellSize(pBt, pCell);
if( idx+sz > SQLITE_USABLE_SIZE ) goto page_format_error;
freeSpace -= sz;
pPage->apCell[pPage->nCell++] = pCell;
idx = SWAB16(pBt, pCell->h.iNext);
}
pPage->nFree = 0;
idx = SWAB16(pBt, pPage->u.hdr.firstFree);
while( idx!=0 ){
int iNext;
if( idx>SQLITE_USABLE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
if( idx<sizeof(PageHdr) ) goto page_format_error;
pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
pPage->nFree += SWAB16(pBt, pFBlk->iSize);
iNext = SWAB16(pBt, pFBlk->iNext);
if( iNext>0 && iNext <= idx ) goto page_format_error;
idx = iNext;
}
if( pPage->nCell==0 && pPage->nFree==0 ){
/* As a special case, an uninitialized root page appears to be
** an empty database */
return SQLITE_OK;
}
if( pPage->nFree!=freeSpace ) goto page_format_error;
return SQLITE_OK;
page_format_error:
return SQLITE_CORRUPT;
}
/*
** Set up a raw page so that it looks like a database page holding
** no entries.
*/
static void zeroPage(Btree *pBt, MemPage *pPage){
PageHdr *pHdr;
FreeBlk *pFBlk;
assert( sqlitepager_iswriteable(pPage) );
memset(pPage, 0, SQLITE_USABLE_SIZE);
pHdr = &pPage->u.hdr;
pHdr->firstCell = 0;
pHdr->firstFree = SWAB16(pBt, sizeof(*pHdr));
pFBlk = (FreeBlk*)&pHdr[1];
pFBlk->iNext = 0;
pPage->nFree = SQLITE_USABLE_SIZE - sizeof(*pHdr);
pFBlk->iSize = SWAB16(pBt, pPage->nFree);
pPage->nCell = 0;
pPage->isOverfull = 0;
}
/*
** This routine is called when the reference count for a page
** reaches zero. We need to unref the pParent pointer when that
** happens.
*/
static void pageDestructor(void *pData){
MemPage *pPage = (MemPage*)pData;
if( pPage->pParent ){
MemPage *pParent = pPage->pParent;
pPage->pParent = 0;
sqlitepager_unref(pParent);
}
}
/*
** Open a new database.
**
** Actually, this routine just sets up the internal data structures
** for accessing the database. We do not open the database file
** until the first page is loaded.
**
** zFilename is the name of the database file. If zFilename is NULL
** a new database with a random name is created. This randomly named
** database file will be deleted when sqliteBtreeClose() is called.
*/
int sqliteBtreeOpen(
const char *zFilename, /* Name of the file containing the BTree database */
int omitJournal, /* if TRUE then do not journal this file */
int nCache, /* How many pages in the page cache */
Btree **ppBtree /* Pointer to new Btree object written here */
){
Btree *pBt;
int rc;
/*
** The following asserts make sure that structures used by the btree are
** the right size. This is to guard against size changes that result
** when compiling on a different architecture.
*/
assert( sizeof(u32)==4 );
assert( sizeof(u16)==2 );
assert( sizeof(Pgno)==4 );
assert( sizeof(PageHdr)==8 );
assert( sizeof(CellHdr)==12 );
assert( sizeof(FreeBlk)==4 );
assert( sizeof(OverflowPage)==SQLITE_USABLE_SIZE );
assert( sizeof(FreelistInfo)==OVERFLOW_SIZE );
assert( sizeof(ptr)==sizeof(char*) );
assert( sizeof(uptr)==sizeof(ptr) );
pBt = sqliteMalloc( sizeof(*pBt) );
if( pBt==0 ){
*ppBtree = 0;
return SQLITE_NOMEM;
}
if( nCache<10 ) nCache = 10;
rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
!omitJournal);
if( rc!=SQLITE_OK ){
if( pBt->pPager ) sqlitepager_close(pBt->pPager);
sqliteFree(pBt);
*ppBtree = 0;
return rc;
}
sqlitepager_set_destructor(pBt->pPager, pageDestructor);
pBt->pCursor = 0;
pBt->page1 = 0;
pBt->readOnly = sqlitepager_isreadonly(pBt->pPager);
pBt->pOps = &sqliteBtreeOps;
*ppBtree = pBt;
return SQLITE_OK;
}
/*
** Close an open database and invalidate all cursors.
*/
static int fileBtreeClose(Btree *pBt){
while( pBt->pCursor ){
fileBtreeCloseCursor(pBt->pCursor);
}
sqlitepager_close(pBt->pPager);
sqliteFree(pBt);
return SQLITE_OK;
}
/*
** Change the limit on the number of pages allowed in the cache.
**
** The maximum number of cache pages is set to the absolute
** value of mxPage. If mxPage is negative, the pager will
** operate asynchronously - it will not stop to do fsync()s
** to insure data is written to the disk surface before
** continuing. Transactions still work if synchronous is off,
** and the database cannot be corrupted if this program
** crashes. But if the operating system crashes or there is
** an abrupt power failure when synchronous is off, the database
** could be left in an inconsistent and unrecoverable state.
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
static int fileBtreeSetCacheSize(Btree *pBt, int mxPage){
sqlitepager_set_cachesize(pBt->pPager, mxPage);
return SQLITE_OK;
}
/*
** Change the way data is synced to disk in order to increase or decrease
** how well the database resists damage due to OS crashes and power
** failures. Level 1 is the same as asynchronous (no syncs() occur and
** there is a high probability of damage) Level 2 is the default. There
** is a very low but non-zero probability of damage. Level 3 reduces the
** probability of damage to near zero but with a write performance reduction.
*/
static int fileBtreeSetSafetyLevel(Btree *pBt, int level){
sqlitepager_set_safety_level(pBt->pPager, level);
return SQLITE_OK;
}
/*
** Get a reference to page1 of the database file. This will
** also actquire a readlock on that file.
**
** SQLITE_OK is returned on success. If the file is not a
** well-formed database file, then SQLITE_CORRUPT is returned.
** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
** is returned if we run out of memory. SQLITE_PROTOCOL is returned
** if there is a locking protocol violation.
*/
static int lockBtree(Btree *pBt){
int rc;
if( pBt->page1 ) return SQLITE_OK;
rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
if( rc!=SQLITE_OK ) return rc;
/* Do some checking to help insure the file we opened really is
** a valid database file.
*/
if( sqlitepager_pagecount(pBt->pPager)>0 ){
PageOne *pP1 = pBt->page1;
if( strcmp(pP1->zMagic,zMagicHeader)!=0 ||
(pP1->iMagic!=MAGIC && swab32(pP1->iMagic)!=MAGIC) ){
rc = SQLITE_NOTADB;
goto page1_init_failed;
}
pBt->needSwab = pP1->iMagic!=MAGIC;
}
return rc;
page1_init_failed:
sqlitepager_unref(pBt->page1);
pBt->page1 = 0;
return rc;
}
/*
** If there are no outstanding cursors and we are not in the middle
** of a transaction but there is a read lock on the database, then
** this routine unrefs the first page of the database file which
** has the effect of releasing the read lock.
**
** If there are any outstanding cursors, this routine is a no-op.
**
** If there is a transaction in progress, this routine is a no-op.
*/
static void unlockBtreeIfUnused(Btree *pBt){
if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
sqlitepager_unref(pBt->page1);
pBt->page1 = 0;
pBt->inTrans = 0;
pBt->inCkpt = 0;
}
}
/*
** Create a new database by initializing the first two pages of the
** file.
*/
static int newDatabase(Btree *pBt){
MemPage *pRoot;
PageOne *pP1;
int rc;
if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
pP1 = pBt->page1;
rc = sqlitepager_write(pBt->page1);
if( rc ) return rc;
rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
if( rc ) return rc;
rc = sqlitepager_write(pRoot);
if( rc ){
sqlitepager_unref(pRoot);
return rc;
}
strcpy(pP1->zMagic, zMagicHeader);
if( btree_native_byte_order ){
pP1->iMagic = MAGIC;
pBt->needSwab = 0;
}else{
pP1->iMagic = swab32(MAGIC);
pBt->needSwab = 1;
}
zeroPage(pBt, pRoot);
sqlitepager_unref(pRoot);
return SQLITE_OK;
}
/*
** Attempt to start a new transaction.
**
** A transaction must be started before attempting any changes
** to the database. None of the following routines will work
** unless a transaction is started first:
**
** sqliteBtreeCreateTable()
** sqliteBtreeCreateIndex()
** sqliteBtreeClearTable()
** sqliteBtreeDropTable()
** sqliteBtreeInsert()
** sqliteBtreeDelete()
** sqliteBtreeUpdateMeta()
*/
static int fileBtreeBeginTrans(Btree *pBt){
int rc;
if( pBt->inTrans ) return SQLITE_ERROR;
if( pBt->readOnly ) return SQLITE_READONLY;
if( pBt->page1==0 ){
rc = lockBtree(pBt);
if( rc!=SQLITE_OK ){
return rc;
}
}
rc = sqlitepager_begin(pBt->page1);
if( rc==SQLITE_OK ){
rc = newDatabase(pBt);
}
if( rc==SQLITE_OK ){
pBt->inTrans = 1;
pBt->inCkpt = 0;
}else{
unlockBtreeIfUnused(pBt);
}
return rc;
}
/*
** Commit the transaction currently in progress.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
static int fileBtreeCommit(Btree *pBt){
int rc;
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_commit(pBt->pPager);
pBt->inTrans = 0;
pBt->inCkpt = 0;
unlockBtreeIfUnused(pBt);
return rc;
}
/*
** Rollback the transaction in progress. All cursors will be
** invalided by this operation. Any attempt to use a cursor
** that was open at the beginning of this operation will result
** in an error.
**
** This will release the write lock on the database file. If there
** are no active cursors, it also releases the read lock.
*/
static int fileBtreeRollback(Btree *pBt){
int rc;
BtCursor *pCur;
if( pBt->inTrans==0 ) return SQLITE_OK;
pBt->inTrans = 0;
pBt->inCkpt = 0;
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_rollback(pBt->pPager);
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->pPage && pCur->pPage->isInit==0 ){
sqlitepager_unref(pCur->pPage);
pCur->pPage = 0;
}
}
unlockBtreeIfUnused(pBt);
return rc;
}
/*
** Set the checkpoint for the current transaction. The checkpoint serves
** as a sub-transaction that can be rolled back independently of the
** main transaction. You must start a transaction before starting a
** checkpoint. The checkpoint is ended automatically if the transaction
** commits or rolls back.
**
** Only one checkpoint may be active at a time. It is an error to try
** to start a new checkpoint if another checkpoint is already active.
*/
static int fileBtreeBeginCkpt(Btree *pBt){
int rc;
if( !pBt->inTrans || pBt->inCkpt ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
rc = pBt->readOnly ? SQLITE_OK : sqlitepager_ckpt_begin(pBt->pPager);
pBt->inCkpt = 1;
return rc;
}
/*
** Commit a checkpoint to transaction currently in progress. If no
** checkpoint is active, this is a no-op.
*/
static int fileBtreeCommitCkpt(Btree *pBt){
int rc;
if( pBt->inCkpt && !pBt->readOnly ){
rc = sqlitepager_ckpt_commit(pBt->pPager);
}else{
rc = SQLITE_OK;
}
pBt->inCkpt = 0;
return rc;
}
/*
** Rollback the checkpoint to the current transaction. If there
** is no active checkpoint or transaction, this routine is a no-op.
**
** All cursors will be invalided by this operation. Any attempt
** to use a cursor that was open at the beginning of this operation
** will result in an error.
*/
static int fileBtreeRollbackCkpt(Btree *pBt){
int rc;
BtCursor *pCur;
if( pBt->inCkpt==0 || pBt->readOnly ) return SQLITE_OK;
rc = sqlitepager_ckpt_rollback(pBt->pPager);
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->pPage && pCur->pPage->isInit==0 ){
sqlitepager_unref(pCur->pPage);
pCur->pPage = 0;
}
}
pBt->inCkpt = 0;
return rc;
}
/*
** Create a new cursor for the BTree whose root is on the page
** iTable. The act of actquiring a cursor gets a read lock on
** the database file.
**
** If wrFlag==0, then the cursor can only be used for reading.
** If wrFlag==1, then the cursor can be used for reading or for
** writing if other conditions for writing are also met. These
** are the conditions that must be met in order for writing to
** be allowed:
**
** 1: The cursor must have been opened with wrFlag==1
**
** 2: No other cursors may be open with wrFlag==0 on the same table
**
** 3: The database must be writable (not on read-only media)
**
** 4: There must be an active transaction.
**
** Condition 2 warrants further discussion. If any cursor is opened
** on a table with wrFlag==0, that prevents all other cursors from
** writing to that table. This is a kind of "read-lock". When a cursor
** is opened with wrFlag==0 it is guaranteed that the table will not
** change as long as the cursor is open. This allows the cursor to
** do a sequential scan of the table without having to worry about
** entries being inserted or deleted during the scan. Cursors should
** be opened with wrFlag==0 only if this read-lock property is needed.
** That is to say, cursors should be opened with wrFlag==0 only if they
** intend to use the sqliteBtreeNext() system call. All other cursors
** should be opened with wrFlag==1 even if they never really intend
** to write.
**
** No checking is done to make sure that page iTable really is the
** root page of a b-tree. If it is not, then the cursor actquired
** will not work correctly.
*/
static int fileBtreeCursor(Btree *pBt, int iTable, int wrFlag, BtCursor **ppCur){
int rc;
BtCursor *pCur, *pRing;
if( pBt->page1==0 ){
rc = lockBtree(pBt);
if( rc!=SQLITE_OK ){
*ppCur = 0;
return rc;
}
}
pCur = sqliteMalloc( sizeof(*pCur) );
if( pCur==0 ){
rc = SQLITE_NOMEM;
goto create_cursor_exception;
}
pCur->pgnoRoot = (Pgno)iTable;
rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
if( rc!=SQLITE_OK ){
goto create_cursor_exception;
}
rc = initPage(pBt, pCur->pPage, pCur->pgnoRoot, 0);
if( rc!=SQLITE_OK ){
goto create_cursor_exception;
}
pCur->pOps = &sqliteBtreeCursorOps;
pCur->pBt = pBt;
pCur->wrFlag = wrFlag;
pCur->idx = 0;
pCur->eSkip = SKIP_INVALID;
pCur->pNext = pBt->pCursor;
if( pCur->pNext ){
pCur->pNext->pPrev = pCur;
}
pCur->pPrev = 0;
pRing = pBt->pCursor;
while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
if( pRing ){
pCur->pShared = pRing->pShared;
pRing->pShared = pCur;
}else{
pCur->pShared = pCur;
}
pBt->pCursor = pCur;
*ppCur = pCur;
return SQLITE_OK;
create_cursor_exception:
*ppCur = 0;
if( pCur ){
if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
sqliteFree(pCur);
}
unlockBtreeIfUnused(pBt);
return rc;
}
/*
** Close a cursor. The read lock on the database file is released
** when the last cursor is closed.
*/
static int fileBtreeCloseCursor(BtCursor *pCur){
Btree *pBt = pCur->pBt;
if( pCur->pPrev ){
pCur->pPrev->pNext = pCur->pNext;
}else{
pBt->pCursor = pCur->pNext;
}
if( pCur->pNext ){
pCur->pNext->pPrev = pCur->pPrev;
}
if( pCur->pPage ){
sqlitepager_unref(pCur->pPage);
}
if( pCur->pShared!=pCur ){
BtCursor *pRing = pCur->pShared;
while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
pRing->pShared = pCur->pShared;
}
unlockBtreeIfUnused(pBt);
sqliteFree(pCur);
return SQLITE_OK;
}
/*
** Make a temporary cursor by filling in the fields of pTempCur.
** The temporary cursor is not on the cursor list for the Btree.
*/
static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
memcpy(pTempCur, pCur, sizeof(*pCur));
pTempCur->pNext = 0;
pTempCur->pPrev = 0;
if( pTempCur->pPage ){
sqlitepager_ref(pTempCur->pPage);
}
}
/*
** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
** function above.
*/
static void releaseTempCursor(BtCursor *pCur){
if( pCur->pPage ){
sqlitepager_unref(pCur->pPage);
}
}
/*
** Set *pSize to the number of bytes of key in the entry the
** cursor currently points to. Always return SQLITE_OK.
** Failure is not possible. If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
static int fileBtreeKeySize(BtCursor *pCur, int *pSize){
Cell *pCell;
MemPage *pPage;
pPage = pCur->pPage;
assert( pPage!=0 );
if( pCur->idx >= pPage->nCell ){
*pSize = 0;
}else{
pCell = pPage->apCell[pCur->idx];
*pSize = NKEY(pCur->pBt, pCell->h);
}
return SQLITE_OK;
}
/*
** Read payload information from the entry that the pCur cursor is
** pointing to. Begin reading the payload at "offset" and read
** a total of "amt" bytes. Put the result in zBuf.
**
** This routine does not make a distinction between key and data.
** It just reads bytes from the payload area.
*/
static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
char *aPayload;
Pgno nextPage;
int rc;
Btree *pBt = pCur->pBt;
assert( pCur!=0 && pCur->pPage!=0 );
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
if( offset<MX_LOCAL_PAYLOAD ){
int a = amt;
if( a+offset>MX_LOCAL_PAYLOAD ){
a = MX_LOCAL_PAYLOAD - offset;
}
memcpy(zBuf, &aPayload[offset], a);
if( a==amt ){
return SQLITE_OK;
}
offset = 0;
zBuf += a;
amt -= a;
}else{
offset -= MX_LOCAL_PAYLOAD;
}
if( amt>0 ){
nextPage = SWAB32(pBt, pCur->pPage->apCell[pCur->idx]->ovfl);
}
while( amt>0 && nextPage ){
OverflowPage *pOvfl;
rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
if( rc!=0 ){
return rc;
}
nextPage = SWAB32(pBt, pOvfl->iNext);
if( offset<OVERFLOW_SIZE ){
int a = amt;
if( a + offset > OVERFLOW_SIZE ){
a = OVERFLOW_SIZE - offset;
}
memcpy(zBuf, &pOvfl->aPayload[offset], a);
offset = 0;
amt -= a;
zBuf += a;
}else{
offset -= OVERFLOW_SIZE;
}
sqlitepager_unref(pOvfl);
}
if( amt>0 ){
return SQLITE_CORRUPT;
}
return SQLITE_OK;
}
/*
** Read part of the key associated with cursor pCur. A maximum
** of "amt" bytes will be transfered into zBuf[]. The transfer
** begins at "offset". The number of bytes actually read is
** returned.
**
** Change: It used to be that the amount returned will be smaller
** than the amount requested if there are not enough bytes in the key
** to satisfy the request. But now, it must be the case that there
** is enough data available to satisfy the request. If not, an exception
** is raised. The change was made in an effort to boost performance
** by eliminating unneeded tests.
*/
static int fileBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
MemPage *pPage;
assert( amt>=0 );
assert( offset>=0 );
assert( pCur->pPage!=0 );
pPage = pCur->pPage;
if( pCur->idx >= pPage->nCell ){
return 0;
}
assert( amt+offset <= NKEY(pCur->pBt, pPage->apCell[pCur->idx]->h) );
getPayload(pCur, offset, amt, zBuf);
return amt;
}
/*
** Set *pSize to the number of bytes of data in the entry the
** cursor currently points to. Always return SQLITE_OK.
** Failure is not possible. If the cursor is not currently
** pointing to an entry (which can happen, for example, if
** the database is empty) then *pSize is set to 0.
*/
static int fileBtreeDataSize(BtCursor *pCur, int *pSize){
Cell *pCell;
MemPage *pPage;
pPage = pCur->pPage;
assert( pPage!=0 );
if( pCur->idx >= pPage->nCell ){
*pSize = 0;
}else{
pCell = pPage->apCell[pCur->idx];
*pSize = NDATA(pCur->pBt, pCell->h);
}
return SQLITE_OK;
}
/*
** Read part of the data associated with cursor pCur. A maximum
** of "amt" bytes will be transfered into zBuf[]. The transfer
** begins at "offset". The number of bytes actually read is
** returned. The amount returned will be smaller than the
** amount requested if there are not enough bytes in the data
** to satisfy the request.
*/
static int fileBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
Cell *pCell;
MemPage *pPage;
assert( amt>=0 );
assert( offset>=0 );
assert( pCur->pPage!=0 );
pPage = pCur->pPage;
if( pCur->idx >= pPage->nCell ){
return 0;
}
pCell = pPage->apCell[pCur->idx];
assert( amt+offset <= NDATA(pCur->pBt, pCell->h) );
getPayload(pCur, offset + NKEY(pCur->pBt, pCell->h), amt, zBuf);
return amt;
}
/*
** Compare an external key against the key on the entry that pCur points to.
**
** The external key is pKey and is nKey bytes long. The last nIgnore bytes
** of the key associated with pCur are ignored, as if they do not exist.
** (The normal case is for nIgnore to be zero in which case the entire
** internal key is used in the comparison.)
**
** The comparison result is written to *pRes as follows:
**
** *pRes<0 This means pCur<pKey
**
** *pRes==0 This means pCur==pKey for all nKey bytes
**
** *pRes>0 This means pCur>pKey
**
** When one key is an exact prefix of the other, the shorter key is
** considered less than the longer one. In order to be equal the
** keys must be exactly the same length. (The length of the pCur key
** is the actual key length minus nIgnore bytes.)
*/
static int fileBtreeKeyCompare(
BtCursor *pCur, /* Pointer to entry to compare against */
const void *pKey, /* Key to compare against entry that pCur points to */
int nKey, /* Number of bytes in pKey */
int nIgnore, /* Ignore this many bytes at the end of pCur */
int *pResult /* Write the result here */
){
Pgno nextPage;
int n, c, rc, nLocal;
Cell *pCell;
Btree *pBt = pCur->pBt;
const char *zKey = (const char*)pKey;
assert( pCur->pPage );
assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
pCell = pCur->pPage->apCell[pCur->idx];
nLocal = NKEY(pBt, pCell->h) - nIgnore;
if( nLocal<0 ) nLocal = 0;
n = nKey<nLocal ? nKey : nLocal;
if( n>MX_LOCAL_PAYLOAD ){
n = MX_LOCAL_PAYLOAD;
}
c = memcmp(pCell->aPayload, zKey, n);
if( c!=0 ){
*pResult = c;
return SQLITE_OK;
}
zKey += n;
nKey -= n;
nLocal -= n;
nextPage = SWAB32(pBt, pCell->ovfl);
while( nKey>0 && nLocal>0 ){
OverflowPage *pOvfl;
if( nextPage==0 ){
return SQLITE_CORRUPT;
}
rc = sqlitepager_get(pBt->pPager, nextPage, (void**)&pOvfl);
if( rc ){
return rc;
}
nextPage = SWAB32(pBt, pOvfl->iNext);
n = nKey<nLocal ? nKey : nLocal;
if( n>OVERFLOW_SIZE ){
n = OVERFLOW_SIZE;
}
c = memcmp(pOvfl->aPayload, zKey, n);
sqlitepager_unref(pOvfl);
if( c!=0 ){
*pResult = c;
return SQLITE_OK;
}
nKey -= n;
nLocal -= n;
zKey += n;
}
if( c==0 ){
c = nLocal - nKey;
}
*pResult = c;
return SQLITE_OK;
}
/*
** Move the cursor down to a new child page. The newPgno argument is the
** page number of the child page in the byte order of the disk image.
*/
static int moveToChild(BtCursor *pCur, int newPgno){
int rc;
MemPage *pNewPage;
Btree *pBt = pCur->pBt;
newPgno = SWAB32(pBt, newPgno);
rc = sqlitepager_get(pBt->pPager, newPgno, (void**)&pNewPage);
if( rc ) return rc;
rc = initPage(pBt, pNewPage, newPgno, pCur->pPage);
if( rc ) return rc;
assert( pCur->idx>=pCur->pPage->nCell
|| pCur->pPage->apCell[pCur->idx]->h.leftChild==SWAB32(pBt,newPgno) );
assert( pCur->idx<pCur->pPage->nCell
|| pCur->pPage->u.hdr.rightChild==SWAB32(pBt,newPgno) );
pNewPage->idxParent = pCur->idx;
pCur->pPage->idxShift = 0;
sqlitepager_unref(pCur->pPage);
pCur->pPage = pNewPage;
pCur->idx = 0;
if( pNewPage->nCell<1 ){
return SQLITE_CORRUPT;
}
return SQLITE_OK;
}
/*
** Move the cursor up to the parent page.
**
** pCur->idx is set to the cell index that contains the pointer
** to the page we are coming from. If we are coming from the
** right-most child page then pCur->idx is set to one more than
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
Pgno oldPgno;
MemPage *pParent;
MemPage *pPage;
int idxParent;
pPage = pCur->pPage;
assert( pPage!=0 );
pParent = pPage->pParent;
assert( pParent!=0 );
idxParent = pPage->idxParent;
sqlitepager_ref(pParent);
sqlitepager_unref(pPage);
pCur->pPage = pParent;
assert( pParent->idxShift==0 );
if( pParent->idxShift==0 ){
pCur->idx = idxParent;
#ifndef NDEBUG
/* Verify that pCur->idx is the correct index to point back to the child
** page we just came from
*/
oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
if( pCur->idx<pParent->nCell ){
assert( pParent->apCell[idxParent]->h.leftChild==oldPgno );
}else{
assert( pParent->u.hdr.rightChild==oldPgno );
}
#endif
}else{
/* The MemPage.idxShift flag indicates that cell indices might have
** changed since idxParent was set and hence idxParent might be out
** of date. So recompute the parent cell index by scanning all cells
** and locating the one that points to the child we just came from.
*/
int i;
pCur->idx = pParent->nCell;
oldPgno = SWAB32(pCur->pBt, sqlitepager_pagenumber(pPage));
for(i=0; i<pParent->nCell; i++){
if( pParent->apCell[i]->h.leftChild==oldPgno ){
pCur->idx = i;
break;
}
}
}
}
/*
** Move the cursor to the root page
*/
static int moveToRoot(BtCursor *pCur){
MemPage *pNew;
int rc;
Btree *pBt = pCur->pBt;
rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
if( rc ) return rc;
rc = initPage(pBt, pNew, pCur->pgnoRoot, 0);
if( rc ) return rc;
sqlitepager_unref(pCur->pPage);
pCur->pPage = pNew;
pCur->idx = 0;
return SQLITE_OK;
}
/*
** Move the cursor down to the left-most leaf entry beneath the
** entry to which it is currently pointing.
*/
static int moveToLeftmost(BtCursor *pCur){
Pgno pgno;
int rc;
while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
}
return SQLITE_OK;
}
/*
** Move the cursor down to the right-most leaf entry beneath the
** page to which it is currently pointing. Notice the difference
** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
** finds the left-most entry beneath the *entry* whereas moveToRightmost()
** finds the right-most entry beneath the *page*.
*/
static int moveToRightmost(BtCursor *pCur){
Pgno pgno;
int rc;
while( (pgno = pCur->pPage->u.hdr.rightChild)!=0 ){
pCur->idx = pCur->pPage->nCell;
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
}
pCur->idx = pCur->pPage->nCell - 1;
return SQLITE_OK;
}
/* Move the cursor to the first entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
static int fileBtreeFirst(BtCursor *pCur, int *pRes){
int rc;
if( pCur->pPage==0 ) return SQLITE_ABORT;
rc = moveToRoot(pCur);
if( rc ) return rc;
if( pCur->pPage->nCell==0 ){
*pRes = 1;
return SQLITE_OK;
}
*pRes = 0;
rc = moveToLeftmost(pCur);
pCur->eSkip = SKIP_NONE;
return rc;
}
/* Move the cursor to the last entry in the table. Return SQLITE_OK
** on success. Set *pRes to 0 if the cursor actually points to something
** or set *pRes to 1 if the table is empty.
*/
static int fileBtreeLast(BtCursor *pCur, int *pRes){
int rc;
if( pCur->pPage==0 ) return SQLITE_ABORT;
rc = moveToRoot(pCur);
if( rc ) return rc;
assert( pCur->pPage->isInit );
if( pCur->pPage->nCell==0 ){
*pRes = 1;
return SQLITE_OK;
}
*pRes = 0;
rc = moveToRightmost(pCur);
pCur->eSkip = SKIP_NONE;
return rc;
}
/* Move the cursor so that it points to an entry near pKey.
** Return a success code.
**
** If an exact match is not found, then the cursor is always
** left pointing at a leaf page which would hold the entry if it
** were present. The cursor might point to an entry that comes
** before or after the key.
**
** The result of comparing the key with the entry to which the
** cursor is left pointing is stored in pCur->iMatch. The same
** value is also written to *pRes if pRes!=NULL. The meaning of
** this value is as follows:
**
** *pRes<0 The cursor is left pointing at an entry that
** is smaller than pKey or if the table is empty
** and the cursor is therefore left point to nothing.
**
** *pRes==0 The cursor is left pointing at an entry that
** exactly matches pKey.
**
** *pRes>0 The cursor is left pointing at an entry that
** is larger than pKey.
*/
static
int fileBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
int rc;
if( pCur->pPage==0 ) return SQLITE_ABORT;
pCur->eSkip = SKIP_NONE;
rc = moveToRoot(pCur);
if( rc ) return rc;
for(;;){
int lwr, upr;
Pgno chldPg;
MemPage *pPage = pCur->pPage;
int c = -1; /* pRes return if table is empty must be -1 */
lwr = 0;
upr = pPage->nCell-1;
while( lwr<=upr ){
pCur->idx = (lwr+upr)/2;
rc = fileBtreeKeyCompare(pCur, pKey, nKey, 0, &c);
if( rc ) return rc;
if( c==0 ){
pCur->iMatch = c;
if( pRes ) *pRes = 0;
return SQLITE_OK;
}
if( c<0 ){
lwr = pCur->idx+1;
}else{
upr = pCur->idx-1;
}
}
assert( lwr==upr+1 );
assert( pPage->isInit );
if( lwr>=pPage->nCell ){
chldPg = pPage->u.hdr.rightChild;
}else{
chldPg = pPage->apCell[lwr]->h.leftChild;
}
if( chldPg==0 ){
pCur->iMatch = c;
if( pRes ) *pRes = c;
return SQLITE_OK;
}
pCur->idx = lwr;
rc = moveToChild(pCur, chldPg);
if( rc ) return rc;
}
/* NOT REACHED */
}
/*
** Advance the cursor to the next entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the last entry in the database before
** this routine was called, then set *pRes=1.
*/
static int fileBtreeNext(BtCursor *pCur, int *pRes){
int rc;
MemPage *pPage = pCur->pPage;
assert( pRes!=0 );
if( pPage==0 ){
*pRes = 1;
return SQLITE_ABORT;
}
assert( pPage->isInit );
assert( pCur->eSkip!=SKIP_INVALID );
if( pPage->nCell==0 ){
*pRes = 1;
return SQLITE_OK;
}
assert( pCur->idx<pPage->nCell );
if( pCur->eSkip==SKIP_NEXT ){
pCur->eSkip = SKIP_NONE;
*pRes = 0;
return SQLITE_OK;
}
pCur->eSkip = SKIP_NONE;
pCur->idx++;
if( pCur->idx>=pPage->nCell ){
if( pPage->u.hdr.rightChild ){
rc = moveToChild(pCur, pPage->u.hdr.rightChild);
if( rc ) return rc;
rc = moveToLeftmost(pCur);
*pRes = 0;
return rc;
}
do{
if( pPage->pParent==0 ){
*pRes = 1;
return SQLITE_OK;
}
moveToParent(pCur);
pPage = pCur->pPage;
}while( pCur->idx>=pPage->nCell );
*pRes = 0;
return SQLITE_OK;
}
*pRes = 0;
if( pPage->u.hdr.rightChild==0 ){
return SQLITE_OK;
}
rc = moveToLeftmost(pCur);
return rc;
}
/*
** Step the cursor to the back to the previous entry in the database. If
** successful then set *pRes=0. If the cursor
** was already pointing to the first entry in the database before
** this routine was called, then set *pRes=1.
*/
static int fileBtreePrevious(BtCursor *pCur, int *pRes){
int rc;
Pgno pgno;
MemPage *pPage;
pPage = pCur->pPage;
if( pPage==0 ){
*pRes = 1;
return SQLITE_ABORT;
}
assert( pPage->isInit );
assert( pCur->eSkip!=SKIP_INVALID );
if( pPage->nCell==0 ){
*pRes = 1;
return SQLITE_OK;
}
if( pCur->eSkip==SKIP_PREV ){
pCur->eSkip = SKIP_NONE;
*pRes = 0;
return SQLITE_OK;
}
pCur->eSkip = SKIP_NONE;
assert( pCur->idx>=0 );
if( (pgno = pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
rc = moveToChild(pCur, pgno);
if( rc ) return rc;
rc = moveToRightmost(pCur);
}else{
while( pCur->idx==0 ){
if( pPage->pParent==0 ){
if( pRes ) *pRes = 1;
return SQLITE_OK;
}
moveToParent(pCur);
pPage = pCur->pPage;
}
pCur->idx--;
rc = SQLITE_OK;
}
*pRes = 0;
return rc;
}
/*
** Allocate a new page from the database file.
**
** The new page is marked as dirty. (In other words, sqlitepager_write()
** has already been called on the new page.) The new page has also
** been referenced and the calling routine is responsible for calling
** sqlitepager_unref() on the new page when it is done.
**
** SQLITE_OK is returned on success. Any other return value indicates
** an error. *ppPage and *pPgno are undefined in the event of an error.
** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
**
** If the "nearby" parameter is not 0, then a (feeble) effort is made to
** locate a page close to the page number "nearby". This can be used in an
** attempt to keep related pages close to each other in the database file,
** which in turn can make database access faster.
*/
static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
PageOne *pPage1 = pBt->page1;
int rc;
if( pPage1->freeList ){
OverflowPage *pOvfl;
FreelistInfo *pInfo;
rc = sqlitepager_write(pPage1);
if( rc ) return rc;
SWAB_ADD(pBt, pPage1->nFree, -1);
rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
(void**)&pOvfl);
if( rc ) return rc;
rc = sqlitepager_write(pOvfl);
if( rc ){
sqlitepager_unref(pOvfl);
return rc;
}
pInfo = (FreelistInfo*)pOvfl->aPayload;
if( pInfo->nFree==0 ){
*pPgno = SWAB32(pBt, pPage1->freeList);
pPage1->freeList = pOvfl->iNext;
*ppPage = (MemPage*)pOvfl;
}else{
int closest, n;
n = SWAB32(pBt, pInfo->nFree);
if( n>1 && nearby>0 ){
int i, dist;
closest = 0;
dist = SWAB32(pBt, pInfo->aFree[0]) - nearby;
if( dist<0 ) dist = -dist;
for(i=1; i<n; i++){
int d2 = SWAB32(pBt, pInfo->aFree[i]) - nearby;
if( d2<0 ) d2 = -d2;
if( d2<dist ) closest = i;
}
}else{
closest = 0;
}
SWAB_ADD(pBt, pInfo->nFree, -1);
*pPgno = SWAB32(pBt, pInfo->aFree[closest]);
pInfo->aFree[closest] = pInfo->aFree[n-1];
rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
sqlitepager_unref(pOvfl);
if( rc==SQLITE_OK ){
sqlitepager_dont_rollback(*ppPage);
rc = sqlitepager_write(*ppPage);
}
}
}else{
*pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
if( rc ) return rc;
rc = sqlitepager_write(*ppPage);
}
return rc;
}
/*
** Add a page of the database file to the freelist. Either pgno or
** pPage but not both may be 0.
**
** sqlitepager_unref() is NOT called for pPage.
*/
static int freePage(Btree *pBt, void *pPage, Pgno pgno){
PageOne *pPage1 = pBt->page1;
OverflowPage *pOvfl = (OverflowPage*)pPage;
int rc;
int needUnref = 0;
MemPage *pMemPage;
if( pgno==0 ){
assert( pOvfl!=0 );
pgno = sqlitepager_pagenumber(pOvfl);
}
assert( pgno>2 );
assert( sqlitepager_pagenumber(pOvfl)==pgno );
pMemPage = (MemPage*)pPage;
pMemPage->isInit = 0;
if( pMemPage->pParent ){
sqlitepager_unref(pMemPage->pParent);
pMemPage->pParent = 0;
}
rc = sqlitepager_write(pPage1);
if( rc ){
return rc;
}
SWAB_ADD(pBt, pPage1->nFree, 1);
if( pPage1->nFree!=0 && pPage1->freeList!=0 ){
OverflowPage *pFreeIdx;
rc = sqlitepager_get(pBt->pPager, SWAB32(pBt, pPage1->freeList),
(void**)&pFreeIdx);
if( rc==SQLITE_OK ){
FreelistInfo *pInfo = (FreelistInfo*)pFreeIdx->aPayload;
int n = SWAB32(pBt, pInfo->nFree);
if( n<(sizeof(pInfo->aFree)/sizeof(pInfo->aFree[0])) ){
rc = sqlitepager_write(pFreeIdx);
if( rc==SQLITE_OK ){
pInfo->aFree[n] = SWAB32(pBt, pgno);
SWAB_ADD(pBt, pInfo->nFree, 1);
sqlitepager_unref(pFreeIdx);
sqlitepager_dont_write(pBt->pPager, pgno);
return rc;
}
}
sqlitepager_unref(pFreeIdx);
}
}
if( pOvfl==0 ){
assert( pgno>0 );
rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
if( rc ) return rc;
needUnref = 1;
}
rc = sqlitepager_write(pOvfl);
if( rc ){
if( needUnref ) sqlitepager_unref(pOvfl);
return rc;
}
pOvfl->iNext = pPage1->freeList;
pPage1->freeList = SWAB32(pBt, pgno);
memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
if( needUnref ) rc = sqlitepager_unref(pOvfl);
return rc;
}
/*
** Erase all the data out of a cell. This involves returning overflow
** pages back the freelist.
*/
static int clearCell(Btree *pBt, Cell *pCell){
Pager *pPager = pBt->pPager;
OverflowPage *pOvfl;
Pgno ovfl, nextOvfl;
int rc;
if( NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h) <= MX_LOCAL_PAYLOAD ){
return SQLITE_OK;
}
ovfl = SWAB32(pBt, pCell->ovfl);
pCell->ovfl = 0;
while( ovfl ){
rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
if( rc ) return rc;
nextOvfl = SWAB32(pBt, pOvfl->iNext);
rc = freePage(pBt, pOvfl, ovfl);
if( rc ) return rc;
sqlitepager_unref(pOvfl);
ovfl = nextOvfl;
}
return SQLITE_OK;
}
/*
** Create a new cell from key and data. Overflow pages are allocated as
** necessary and linked to this cell.
*/
static int fillInCell(
Btree *pBt, /* The whole Btree. Needed to allocate pages */
Cell *pCell, /* Populate this Cell structure */
const void *pKey, int nKey, /* The key */
const void *pData,int nData /* The data */
){
OverflowPage *pOvfl, *pPrior;
Pgno *pNext;
int spaceLeft;
int n, rc;
int nPayload;
const char *pPayload;
char *pSpace;
Pgno nearby = 0;
pCell->h.leftChild = 0;
pCell->h.nKey = SWAB16(pBt, nKey & 0xffff);
pCell->h.nKeyHi = nKey >> 16;
pCell->h.nData = SWAB16(pBt, nData & 0xffff);
pCell->h.nDataHi = nData >> 16;
pCell->h.iNext = 0;
pNext = &pCell->ovfl;
pSpace = pCell->aPayload;
spaceLeft = MX_LOCAL_PAYLOAD;
pPayload = pKey;
pKey = 0;
nPayload = nKey;
pPrior = 0;
while( nPayload>0 ){
if( spaceLeft==0 ){
rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext, nearby);
if( rc ){
*pNext = 0;
}else{
nearby = *pNext;
}
if( pPrior ) sqlitepager_unref(pPrior);
if( rc ){
clearCell(pBt, pCell);
return rc;
}
if( pBt->needSwab ) *pNext = swab32(*pNext);
pPrior = pOvfl;
spaceLeft = OVERFLOW_SIZE;
pSpace = pOvfl->aPayload;
pNext = &pOvfl->iNext;
}
n = nPayload;
if( n>spaceLeft ) n = spaceLeft;
memcpy(pSpace, pPayload, n);
nPayload -= n;
if( nPayload==0 && pData ){
pPayload = pData;
nPayload = nData;
pData = 0;
}else{
pPayload += n;
}
spaceLeft -= n;
pSpace += n;
}
*pNext = 0;
if( pPrior ){
sqlitepager_unref(pPrior);
}
return SQLITE_OK;
}
/*
** Change the MemPage.pParent pointer on the page whose number is
** given in the second argument so that MemPage.pParent holds the
** pointer in the third argument.
*/
static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent,int idx){
MemPage *pThis;
if( pgno==0 ) return;
assert( pPager!=0 );
pThis = sqlitepager_lookup(pPager, pgno);
if( pThis && pThis->isInit ){
if( pThis->pParent!=pNewParent ){
if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
pThis->pParent = pNewParent;
if( pNewParent ) sqlitepager_ref(pNewParent);
}
pThis->idxParent = idx;
sqlitepager_unref(pThis);
}
}
/*
** Reparent all children of the given page to be the given page.
** In other words, for every child of pPage, invoke reparentPage()
** to make sure that each child knows that pPage is its parent.
**
** This routine gets called after you memcpy() one page into
** another.
*/
static void reparentChildPages(Btree *pBt, MemPage *pPage){
int i;
Pager *pPager = pBt->pPager;
for(i=0; i<pPage->nCell; i++){
reparentPage(pPager, SWAB32(pBt, pPage->apCell[i]->h.leftChild), pPage, i);
}
reparentPage(pPager, SWAB32(pBt, pPage->u.hdr.rightChild), pPage, i);
pPage->idxShift = 0;
}
/*
** Remove the i-th cell from pPage. This routine effects pPage only.
** The cell content is not freed or deallocated. It is assumed that
** the cell content has been copied someplace else. This routine just
** removes the reference to the cell from pPage.
**
** "sz" must be the number of bytes in the cell.
**
** Do not bother maintaining the integrity of the linked list of Cells.
** Only the pPage->apCell[] array is important. The relinkCellList()
** routine will be called soon after this routine in order to rebuild
** the linked list.
*/
static void dropCell(Btree *pBt, MemPage *pPage, int idx, int sz){
int j;
assert( idx>=0 && idx<pPage->nCell );
assert( sz==cellSize(pBt, pPage->apCell[idx]) );
assert( sqlitepager_iswriteable(pPage) );
freeSpace(pBt, pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
for(j=idx; j<pPage->nCell-1; j++){
pPage->apCell[j] = pPage->apCell[j+1];
}
pPage->nCell--;
pPage->idxShift = 1;
}
/*
** Insert a new cell on pPage at cell index "i". pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there. If it
** will not fit, then just make pPage->apCell[i] point to the content
** and set pPage->isOverfull.
**
** Do not bother maintaining the integrity of the linked list of Cells.
** Only the pPage->apCell[] array is important. The relinkCellList()
** routine will be called soon after this routine in order to rebuild
** the linked list.
*/
static void insertCell(Btree *pBt, MemPage *pPage, int i, Cell *pCell, int sz){
int idx, j;
assert( i>=0 && i<=pPage->nCell );
assert( sz==cellSize(pBt, pCell) );
assert( sqlitepager_iswriteable(pPage) );
idx = allocateSpace(pBt, pPage, sz);
for(j=pPage->nCell; j>i; j--){
pPage->apCell[j] = pPage->apCell[j-1];
}
pPage->nCell++;
if( idx<=0 ){
pPage->isOverfull = 1;
pPage->apCell[i] = pCell;
}else{
memcpy(&pPage->u.aDisk[idx], pCell, sz);
pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
}
pPage->idxShift = 1;
}
/*
** Rebuild the linked list of cells on a page so that the cells
** occur in the order specified by the pPage->apCell[] array.
** Invoke this routine once to repair damage after one or more
** invocations of either insertCell() or dropCell().
*/
static void relinkCellList(Btree *pBt, MemPage *pPage){
int i;
u16 *pIdx;
assert( sqlitepager_iswriteable(pPage) );
pIdx = &pPage->u.hdr.firstCell;
for(i=0; i<pPage->nCell; i++){
int idx = Addr(pPage->apCell[i]) - Addr(pPage);
assert( idx>0 && idx<SQLITE_USABLE_SIZE );
*pIdx = SWAB16(pBt, idx);
pIdx = &pPage->apCell[i]->h.iNext;
}
*pIdx = 0;
}
/*
** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
** pointers that point into pFrom->u.aDisk[] must be adjusted to point
** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
** not point to pFrom->u.aDisk[]. Those are unchanged.
*/
static void copyPage(MemPage *pTo, MemPage *pFrom){
uptr from, to;
int i;
memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_USABLE_SIZE);
pTo->pParent = 0;
pTo->isInit = 1;
pTo->nCell = pFrom->nCell;
pTo->nFree = pFrom->nFree;
pTo->isOverfull = pFrom->isOverfull;
to = Addr(pTo);
from = Addr(pFrom);
for(i=0; i<pTo->nCell; i++){
uptr x = Addr(pFrom->apCell[i]);
if( x>from && x<from+SQLITE_USABLE_SIZE ){
*((uptr*)&pTo->apCell[i]) = x + to - from;
}else{
pTo->apCell[i] = pFrom->apCell[i];
}
}
}
/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation. NN is the number of neighbors on either side
** of the page that participate in the balancing operation. NB is the
** total number of pages that participate, including the target page and
** NN neighbors on either side.
**
** The minimum value of NN is 1 (of course). Increasing NN above 1
** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
** in exchange for a larger degradation in INSERT and UPDATE performance.
** The value of NN appears to give the best results overall.
*/
#define NN 1 /* Number of neighbors on either side of pPage */
#define NB (NN*2+1) /* Total pages involved in the balance */
/*
** This routine redistributes Cells on pPage and up to two siblings
** of pPage so that all pages have about the same amount of free space.
** Usually one sibling on either side of pPage is used in the balancing,
** though both siblings might come from one side if pPage is the first
** or last child of its parent. If pPage has fewer than two siblings
** (something which can only happen if pPage is the root page or a
** child of root) then all available siblings participate in the balancing.
**
** The number of siblings of pPage might be increased or decreased by
** one in an effort to keep pages between 66% and 100% full. The root page
** is special and is allowed to be less than 66% full. If pPage is
** the root page, then the depth of the tree might be increased
** or decreased by one, as necessary, to keep the root page from being
** overfull or empty.
**
** This routine calls relinkCellList() on its input page regardless of
** whether or not it does any real balancing. Client routines will typically
** invoke insertCell() or dropCell() before calling this routine, so we
** need to call relinkCellList() to clean up the mess that those other
** routines left behind.
**
** pCur is left pointing to the same cell as when this routine was called
** even if that cell gets moved to a different page. pCur may be NULL.
** Set the pCur parameter to NULL if you do not care about keeping track
** of a cell as that will save this routine the work of keeping track of it.
**
** Note that when this routine is called, some of the Cells on pPage
** might not actually be stored in pPage->u.aDisk[]. This can happen
** if the page is overfull. Part of the job of this routine is to
** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
**
** In the course of balancing the siblings of pPage, the parent of pPage
** might become overfull or underfull. If that happens, then this routine
** is called recursively on the parent.
**
** If this routine fails for any reason, it might leave the database
** in a corrupted state. So if this routine fails, the database should
** be rolled back.
*/
static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
MemPage *pParent; /* The parent of pPage */
int nCell; /* Number of cells in apCell[] */
int nOld; /* Number of pages in apOld[] */
int nNew; /* Number of pages in apNew[] */
int nDiv; /* Number of cells in apDiv[] */
int i, j, k; /* Loop counters */
int idx; /* Index of pPage in pParent->apCell[] */
int nxDiv; /* Next divider slot in pParent->apCell[] */
int rc; /* The return code */
int iCur; /* apCell[iCur] is the cell of the cursor */
MemPage *pOldCurPage; /* The cursor originally points to this page */
int subtotal; /* Subtotal of bytes in cells on one page */
MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
MemPage *apOld[NB]; /* pPage and up to two siblings */
Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
MemPage *apNew[NB+1]; /* pPage and up to NB siblings after balancing */
Pgno pgnoNew[NB+1]; /* Page numbers for each page in apNew[] */
int idxDiv[NB]; /* Indices of divider cells in pParent */
Cell *apDiv[NB]; /* Divider cells in pParent */
Cell aTemp[NB]; /* Temporary holding area for apDiv[] */
int cntNew[NB+1]; /* Index in apCell[] of cell after i-th page */
int szNew[NB+1]; /* Combined size of cells place on i-th page */
MemPage aOld[NB]; /* Temporary copies of pPage and its siblings */
Cell *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
/*
** Return without doing any work if pPage is neither overfull nor
** underfull.
*/
assert( sqlitepager_iswriteable(pPage) );
if( !pPage->isOverfull && pPage->nFree<SQLITE_USABLE_SIZE/2
&& pPage->nCell>=2){
relinkCellList(pBt, pPage);
return SQLITE_OK;
}
/*
** Find the parent of the page to be balanceed.
** If there is no parent, it means this page is the root page and
** special rules apply.
*/
pParent = pPage->pParent;
if( pParent==0 ){
Pgno pgnoChild;
MemPage *pChild;
assert( pPage->isInit );
if( pPage->nCell==0 ){
if( pPage->u.hdr.rightChild ){
/*
** The root page is empty. Copy the one child page
** into the root page and return. This reduces the depth
** of the BTree by one.
*/
pgnoChild = SWAB32(pBt, pPage->u.hdr.rightChild);
rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
if( rc ) return rc;
memcpy(pPage, pChild, SQLITE_USABLE_SIZE);
pPage->isInit = 0;
rc = initPage(pBt, pPage, sqlitepager_pagenumber(pPage), 0);
assert( rc==SQLITE_OK );
reparentChildPages(pBt, pPage);
if( pCur && pCur->pPage==pChild ){
sqlitepager_unref(pChild);
pCur->pPage = pPage;
sqlitepager_ref(pPage);
}
freePage(pBt, pChild, pgnoChild);
sqlitepager_unref(pChild);
}else{
relinkCellList(pBt, pPage);
}
return SQLITE_OK;
}
if( !pPage->isOverfull ){
/* It is OK for the root page to be less than half full.
*/
relinkCellList(pBt, pPage);
return SQLITE_OK;
}
/*
** If we get to here, it means the root page is overfull.
** When this happens, Create a new child page and copy the
** contents of the root into the child. Then make the root
** page an empty page with rightChild pointing to the new
** child. Then fall thru to the code below which will cause
** the overfull child page to be split.
*/
rc = sqlitepager_write(pPage);
if( rc ) return rc;
rc = allocatePage(pBt, &pChild, &pgnoChild, sqlitepager_pagenumber(pPage));
if( rc ) return rc;
assert( sqlitepager_iswriteable(pChild) );
copyPage(pChild, pPage);
pChild->pParent = pPage;
pChild->idxParent = 0;
sqlitepager_ref(pPage);
pChild->isOverfull = 1;
if( pCur && pCur->pPage==pPage ){
sqlitepager_unref(pPage);
pCur->pPage = pChild;
}else{
extraUnref = pChild;
}
zeroPage(pBt, pPage);
pPage->u.hdr.rightChild = SWAB32(pBt, pgnoChild);
pParent = pPage;
pPage = pChild;
}
rc = sqlitepager_write(pParent);
if( rc ) return rc;
assert( pParent->isInit );
/*
** Find the Cell in the parent page whose h.leftChild points back
** to pPage. The "idx" variable is the index of that cell. If pPage
** is the rightmost child of pParent then set idx to pParent->nCell
*/
if( pParent->idxShift ){
Pgno pgno, swabPgno;
pgno = sqlitepager_pagenumber(pPage);
swabPgno = SWAB32(pBt, pgno);
for(idx=0; idx<pParent->nCell; idx++){
if( pParent->apCell[idx]->h.leftChild==swabPgno ){
break;
}
}
assert( idx<pParent->nCell || pParent->u.hdr.rightChild==swabPgno );
}else{
idx = pPage->idxParent;
}
/*
** Initialize variables so that it will be safe to jump
** directly to balance_cleanup at any moment.
*/
nOld = nNew = 0;
sqlitepager_ref(pParent);
/*
** Find sibling pages to pPage and the Cells in pParent that divide
** the siblings. An attempt is made to find NN siblings on either
** side of pPage. More siblings are taken from one side, however, if
** pPage there are fewer than NN siblings on the other side. If pParent
** has NB or fewer children then all children of pParent are taken.
*/
nxDiv = idx - NN;
if( nxDiv + NB > pParent->nCell ){
nxDiv = pParent->nCell - NB + 1;
}
if( nxDiv<0 ){
nxDiv = 0;
}
nDiv = 0;
for(i=0, k=nxDiv; i<NB; i++, k++){
if( k<pParent->nCell ){
idxDiv[i] = k;
apDiv[i] = pParent->apCell[k];
nDiv++;
pgnoOld[i] = SWAB32(pBt, apDiv[i]->h.leftChild);
}else if( k==pParent->nCell ){
pgnoOld[i] = SWAB32(pBt, pParent->u.hdr.rightChild);
}else{
break;
}
rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
if( rc ) goto balance_cleanup;
rc = initPage(pBt, apOld[i], pgnoOld[i], pParent);
if( rc ) goto balance_cleanup;
apOld[i]->idxParent = k;
nOld++;
}
/*
** Set iCur to be the index in apCell[] of the cell that the cursor
** is pointing to. We will need this later on in order to keep the
** cursor pointing at the same cell. If pCur points to a page that
** has no involvement with this rebalancing, then set iCur to a large
** number so that the iCur==j tests always fail in the main cell
** distribution loop below.
*/
if( pCur ){
iCur = 0;
for(i=0; i<nOld; i++){
if( pCur->pPage==apOld[i] ){
iCur += pCur->idx;
break;
}
iCur += apOld[i]->nCell;
if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
break;
}
iCur++;
}
pOldCurPage = pCur->pPage;
}
/*
** Make copies of the content of pPage and its siblings into aOld[].
** The rest of this function will use data from the copies rather
** that the original pages since the original pages will be in the
** process of being overwritten.
*/
for(i=0; i<nOld; i++){
copyPage(&aOld[i], apOld[i]);
}
/*
** Load pointers to all cells on sibling pages and the divider cells
** into the local apCell[] array. Make copies of the divider cells
** into aTemp[] and remove the the divider Cells from pParent.
*/
nCell = 0;
for(i=0; i<nOld; i++){
MemPage *pOld = &aOld[i];
for(j=0; j<pOld->nCell; j++){
apCell[nCell] = pOld->apCell[j];
szCell[nCell] = cellSize(pBt, apCell[nCell]);
nCell++;
}
if( i<nOld-1 ){
szCell[nCell] = cellSize(pBt, apDiv[i]);
memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
apCell[nCell] = &aTemp[i];
dropCell(pBt, pParent, nxDiv, szCell[nCell]);
assert( SWAB32(pBt, apCell[nCell]->h.leftChild)==pgnoOld[i] );
apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
nCell++;
}
}
/*
** Figure out the number of pages needed to hold all nCell cells.
** Store this number in "k". Also compute szNew[] which is the total
** size of all cells on the i-th page and cntNew[] which is the index
** in apCell[] of the cell that divides path i from path i+1.
** cntNew[k] should equal nCell.
**
** This little patch of code is critical for keeping the tree
** balanced.
*/
for(subtotal=k=i=0; i<nCell; i++){
subtotal += szCell[i];
if( subtotal > USABLE_SPACE ){
szNew[k] = subtotal - szCell[i];
cntNew[k] = i;
subtotal = 0;
k++;
}
}
szNew[k] = subtotal;
cntNew[k] = nCell;
k++;
for(i=k-1; i>0; i--){
while( szNew[i]<USABLE_SPACE/2 ){
cntNew[i-1]--;
assert( cntNew[i-1]>0 );
szNew[i] += szCell[cntNew[i-1]];
szNew[i-1] -= szCell[cntNew[i-1]-1];
}
}
assert( cntNew[0]>0 );
/*
** Allocate k new pages. Reuse old pages where possible.
*/
for(i=0; i<k; i++){
if( i<nOld ){
apNew[i] = apOld[i];
pgnoNew[i] = pgnoOld[i];
apOld[i] = 0;
sqlitepager_write(apNew[i]);
}else{
rc = allocatePage(pBt, &apNew[i], &pgnoNew[i], pgnoNew[i-1]);
if( rc ) goto balance_cleanup;
}
nNew++;
zeroPage(pBt, apNew[i]);
apNew[i]->isInit = 1;
}
/* Free any old pages that were not reused as new pages.
*/
while( i<nOld ){
rc = freePage(pBt, apOld[i], pgnoOld[i]);
if( rc ) goto balance_cleanup;
sqlitepager_unref(apOld[i]);
apOld[i] = 0;
i++;
}
/*
** Put the new pages in accending order. This helps to
** keep entries in the disk file in order so that a scan
** of the table is a linear scan through the file. That
** in turn helps the operating system to deliver pages
** from the disk more rapidly.
**
** An O(n^2) insertion sort algorithm is used, but since
** n is never more than NB (a small constant), that should
** not be a problem.
**
** When NB==3, this one optimization makes the database
** about 25% faster for large insertions and deletions.
*/
for(i=0; i<k-1; i++){
int minV = pgnoNew[i];
int minI = i;
for(j=i+1; j<k; j++){
if( pgnoNew[j]<(unsigned)minV ){
minI = j;
minV = pgnoNew[j];
}
}
if( minI>i ){
int t;
MemPage *pT;
t = pgnoNew[i];
pT = apNew[i];
pgnoNew[i] = pgnoNew[minI];
apNew[i] = apNew[minI];
pgnoNew[minI] = t;
apNew[minI] = pT;
}
}
/*
** Evenly distribute the data in apCell[] across the new pages.
** Insert divider cells into pParent as necessary.
*/
j = 0;
for(i=0; i<nNew; i++){
MemPage *pNew = apNew[i];
while( j<cntNew[i] ){
assert( pNew->nFree>=szCell[j] );
if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
insertCell(pBt, pNew, pNew->nCell, apCell[j], szCell[j]);
j++;
}
assert( pNew->nCell>0 );
assert( !pNew->isOverfull );
relinkCellList(pBt, pNew);
if( i<nNew-1 && j<nCell ){
pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
apCell[j]->h.leftChild = SWAB32(pBt, pgnoNew[i]);
if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
insertCell(pBt, pParent, nxDiv, apCell[j], szCell[j]);
j++;
nxDiv++;
}
}
assert( j==nCell );
apNew[nNew-1]->u.hdr.rightChild = aOld[nOld-1].u.hdr.rightChild;
if( nxDiv==pParent->nCell ){
pParent->u.hdr.rightChild = SWAB32(pBt, pgnoNew[nNew-1]);
}else{
pParent->apCell[nxDiv]->h.leftChild = SWAB32(pBt, pgnoNew[nNew-1]);
}
if( pCur ){
if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
assert( pCur->pPage==pOldCurPage );
pCur->idx += nNew - nOld;
}else{
assert( pOldCurPage!=0 );
sqlitepager_ref(pCur->pPage);
sqlitepager_unref(pOldCurPage);
}
}
/*
** Reparent children of all cells.
*/
for(i=0; i<nNew; i++){
reparentChildPages(pBt, apNew[i]);
}
reparentChildPages(pBt, pParent);
/*
** balance the parent page.
*/
rc = balance(pBt, pParent, pCur);
/*
** Cleanup before returning.
*/
balance_cleanup:
if( extraUnref ){
sqlitepager_unref(extraUnref);
}
for(i=0; i<nOld; i++){
if( apOld[i]!=0 && apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
}
for(i=0; i<nNew; i++){
sqlitepager_unref(apNew[i]);
}
if( pCur && pCur->pPage==0 ){
pCur->pPage = pParent;
pCur->idx = 0;
}else{
sqlitepager_unref(pParent);
}
return rc;
}
/*
** This routine checks all cursors that point to the same table
** as pCur points to. If any of those cursors were opened with
** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
** cursors point to the same table were opened with wrFlag==1
** then this routine returns SQLITE_OK.
**
** In addition to checking for read-locks (where a read-lock
** means a cursor opened with wrFlag==0) this routine also moves
** all cursors other than pCur so that they are pointing to the
** first Cell on root page. This is necessary because an insert
** or delete might change the number of cells on a page or delete
** a page entirely and we do not want to leave any cursors
** pointing to non-existant pages or cells.
*/
static int checkReadLocks(BtCursor *pCur){
BtCursor *p;
assert( pCur->wrFlag );
for(p=pCur->pShared; p!=pCur; p=p->pShared){
assert( p );
assert( p->pgnoRoot==pCur->pgnoRoot );
if( p->wrFlag==0 ) return SQLITE_LOCKED;
if( sqlitepager_pagenumber(p->pPage)!=p->pgnoRoot ){
moveToRoot(p);
}
}
return SQLITE_OK;
}
/*
** Insert a new record into the BTree. The key is given by (pKey,nKey)
** and the data is given by (pData,nData). The cursor is used only to
** define what database the record should be inserted into. The cursor
** is left pointing at the new record.
*/
static int fileBtreeInsert(
BtCursor *pCur, /* Insert data into the table of this cursor */
const void *pKey, int nKey, /* The key of the new record */
const void *pData, int nData /* The data of the new record */
){
Cell newCell;
int rc;
int loc;
int szNew;
MemPage *pPage;
Btree *pBt = pCur->pBt;
if( pCur->pPage==0 ){
return SQLITE_ABORT; /* A rollback destroyed this cursor */
}
if( !pBt->inTrans || nKey+nData==0 ){
/* Must start a transaction before doing an insert */
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
assert( !pBt->readOnly );
if( !pCur->wrFlag ){
return SQLITE_PERM; /* Cursor not open for writing */
}
if( checkReadLocks(pCur) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
rc = fileBtreeMoveto(pCur, pKey, nKey, &loc);
if( rc ) return rc;
pPage = pCur->pPage;
assert( pPage->isInit );
rc = sqlitepager_write(pPage);
if( rc ) return rc;
rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
if( rc ) return rc;
szNew = cellSize(pBt, &newCell);
if( loc==0 ){
newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
rc = clearCell(pBt, pPage->apCell[pCur->idx]);
if( rc ) return rc;
dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pPage->apCell[pCur->idx]));
}else if( loc<0 && pPage->nCell>0 ){
assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
pCur->idx++;
}else{
assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
}
insertCell(pBt, pPage, pCur->idx, &newCell, szNew);
rc = balance(pCur->pBt, pPage, pCur);
/* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
/* fflush(stdout); */
pCur->eSkip = SKIP_INVALID;
return rc;
}
/*
** Delete the entry that the cursor is pointing to.
**
** The cursor is left pointing at either the next or the previous
** entry. If the cursor is left pointing to the next entry, then
** the pCur->eSkip flag is set to SKIP_NEXT which forces the next call to
** sqliteBtreeNext() to be a no-op. That way, you can always call
** sqliteBtreeNext() after a delete and the cursor will be left
** pointing to the first entry after the deleted entry. Similarly,
** pCur->eSkip is set to SKIP_PREV is the cursor is left pointing to
** the entry prior to the deleted entry so that a subsequent call to
** sqliteBtreePrevious() will always leave the cursor pointing at the
** entry immediately before the one that was deleted.
*/
static int fileBtreeDelete(BtCursor *pCur){
MemPage *pPage = pCur->pPage;
Cell *pCell;
int rc;
Pgno pgnoChild;
Btree *pBt = pCur->pBt;
assert( pPage->isInit );
if( pCur->pPage==0 ){
return SQLITE_ABORT; /* A rollback destroyed this cursor */
}
if( !pBt->inTrans ){
/* Must start a transaction before doing a delete */
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
assert( !pBt->readOnly );
if( pCur->idx >= pPage->nCell ){
return SQLITE_ERROR; /* The cursor is not pointing to anything */
}
if( !pCur->wrFlag ){
return SQLITE_PERM; /* Did not open this cursor for writing */
}
if( checkReadLocks(pCur) ){
return SQLITE_LOCKED; /* The table pCur points to has a read lock */
}
rc = sqlitepager_write(pPage);
if( rc ) return rc;
pCell = pPage->apCell[pCur->idx];
pgnoChild = SWAB32(pBt, pCell->h.leftChild);
clearCell(pBt, pCell);
if( pgnoChild ){
/*
** The entry we are about to delete is not a leaf so if we do not
** do something we will leave a hole on an internal page.
** We have to fill the hole by moving in a cell from a leaf. The
** next Cell after the one to be deleted is guaranteed to exist and
** to be a leaf so we can use it.
*/
BtCursor leafCur;
Cell *pNext;
int szNext;
int notUsed;
getTempCursor(pCur, &leafCur);
rc = fileBtreeNext(&leafCur, ¬Used);
if( rc!=SQLITE_OK ){
if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
return rc;
}
rc = sqlitepager_write(leafCur.pPage);
if( rc ) return rc;
dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
pNext = leafCur.pPage->apCell[leafCur.idx];
szNext = cellSize(pBt, pNext);
pNext->h.leftChild = SWAB32(pBt, pgnoChild);
insertCell(pBt, pPage, pCur->idx, pNext, szNext);
rc = balance(pBt, pPage, pCur);
if( rc ) return rc;
pCur->eSkip = SKIP_NEXT;
dropCell(pBt, leafCur.pPage, leafCur.idx, szNext);
rc = balance(pBt, leafCur.pPage, pCur);
releaseTempCursor(&leafCur);
}else{
dropCell(pBt, pPage, pCur->idx, cellSize(pBt, pCell));
if( pCur->idx>=pPage->nCell ){
pCur->idx = pPage->nCell-1;
if( pCur->idx<0 ){
pCur->idx = 0;
pCur->eSkip = SKIP_NEXT;
}else{
pCur->eSkip = SKIP_PREV;
}
}else{
pCur->eSkip = SKIP_NEXT;
}
rc = balance(pBt, pPage, pCur);
}
return rc;
}
/*
** Create a new BTree table. Write into *piTable the page
** number for the root page of the new table.
**
** In the current implementation, BTree tables and BTree indices are the
** the same. In the future, we may change this so that BTree tables
** are restricted to having a 4-byte integer key and arbitrary data and
** BTree indices are restricted to having an arbitrary key and no data.
** But for now, this routine also serves to create indices.
*/
static int fileBtreeCreateTable(Btree *pBt, int *piTable){
MemPage *pRoot;
Pgno pgnoRoot;
int rc;
if( !pBt->inTrans ){
/* Must start a transaction first */
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
if( pBt->readOnly ){
return SQLITE_READONLY;
}
rc = allocatePage(pBt, &pRoot, &pgnoRoot, 0);
if( rc ) return rc;
assert( sqlitepager_iswriteable(pRoot) );
zeroPage(pBt, pRoot);
sqlitepager_unref(pRoot);
*piTable = (int)pgnoRoot;
return SQLITE_OK;
}
/*
** Erase the given database page and all its children. Return
** the page to the freelist.
*/
static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
MemPage *pPage;
int rc;
Cell *pCell;
int idx;
rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
if( rc ) return rc;
rc = sqlitepager_write(pPage);
if( rc ) return rc;
rc = initPage(pBt, pPage, pgno, 0);
if( rc ) return rc;
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 ){
pCell = (Cell*)&pPage->u.aDisk[idx];
idx = SWAB16(pBt, pCell->h.iNext);
if( pCell->h.leftChild ){
rc = clearDatabasePage(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
if( rc ) return rc;
}
rc = clearCell(pBt, pCell);
if( rc ) return rc;
}
if( pPage->u.hdr.rightChild ){
rc = clearDatabasePage(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
if( rc ) return rc;
}
if( freePageFlag ){
rc = freePage(pBt, pPage, pgno);
}else{
zeroPage(pBt, pPage);
}
sqlitepager_unref(pPage);
return rc;
}
/*
** Delete all information from a single table in the database.
*/
static int fileBtreeClearTable(Btree *pBt, int iTable){
int rc;
BtCursor *pCur;
if( !pBt->inTrans ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->pgnoRoot==(Pgno)iTable ){
if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
moveToRoot(pCur);
}
}
rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
if( rc ){
fileBtreeRollback(pBt);
}
return rc;
}
/*
** Erase all information in a table and add the root of the table to
** the freelist. Except, the root of the principle table (the one on
** page 2) is never added to the freelist.
*/
static int fileBtreeDropTable(Btree *pBt, int iTable){
int rc;
MemPage *pPage;
BtCursor *pCur;
if( !pBt->inTrans ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
if( pCur->pgnoRoot==(Pgno)iTable ){
return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
}
}
rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
if( rc ) return rc;
rc = fileBtreeClearTable(pBt, iTable);
if( rc ) return rc;
if( iTable>2 ){
rc = freePage(pBt, pPage, iTable);
}else{
zeroPage(pBt, pPage);
}
sqlitepager_unref(pPage);
return rc;
}
#if 0 /* UNTESTED */
/*
** Copy all cell data from one database file into another.
** pages back the freelist.
*/
static int copyCell(Btree *pBtFrom, BTree *pBtTo, Cell *pCell){
Pager *pFromPager = pBtFrom->pPager;
OverflowPage *pOvfl;
Pgno ovfl, nextOvfl;
Pgno *pPrev;
int rc = SQLITE_OK;
MemPage *pNew, *pPrevPg;
Pgno new;
if( NKEY(pBtTo, pCell->h) + NDATA(pBtTo, pCell->h) <= MX_LOCAL_PAYLOAD ){
return SQLITE_OK;
}
pPrev = &pCell->ovfl;
pPrevPg = 0;
ovfl = SWAB32(pBtTo, pCell->ovfl);
while( ovfl && rc==SQLITE_OK ){
rc = sqlitepager_get(pFromPager, ovfl, (void**)&pOvfl);
if( rc ) return rc;
nextOvfl = SWAB32(pBtFrom, pOvfl->iNext);
rc = allocatePage(pBtTo, &pNew, &new, 0);
if( rc==SQLITE_OK ){
rc = sqlitepager_write(pNew);
if( rc==SQLITE_OK ){
memcpy(pNew, pOvfl, SQLITE_USABLE_SIZE);
*pPrev = SWAB32(pBtTo, new);
if( pPrevPg ){
sqlitepager_unref(pPrevPg);
}
pPrev = &pOvfl->iNext;
pPrevPg = pNew;
}
}
sqlitepager_unref(pOvfl);
ovfl = nextOvfl;
}
if( pPrevPg ){
sqlitepager_unref(pPrevPg);
}
return rc;
}
#endif
#if 0 /* UNTESTED */
/*
** Copy a page of data from one database over to another.
*/
static int copyDatabasePage(
Btree *pBtFrom,
Pgno pgnoFrom,
Btree *pBtTo,
Pgno *pTo
){
MemPage *pPageFrom, *pPage;
Pgno to;
int rc;
Cell *pCell;
int idx;
rc = sqlitepager_get(pBtFrom->pPager, pgno, (void**)&pPageFrom);
if( rc ) return rc;
rc = allocatePage(pBt, &pPage, pTo, 0);
if( rc==SQLITE_OK ){
rc = sqlitepager_write(pPage);
}
if( rc==SQLITE_OK ){
memcpy(pPage, pPageFrom, SQLITE_USABLE_SIZE);
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 ){
pCell = (Cell*)&pPage->u.aDisk[idx];
idx = SWAB16(pBt, pCell->h.iNext);
if( pCell->h.leftChild ){
Pgno newChld;
rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pCell->h.leftChild),
pBtTo, &newChld);
if( rc ) return rc;
pCell->h.leftChild = SWAB32(pBtFrom, newChld);
}
rc = copyCell(pBtFrom, pBtTo, pCell);
if( rc ) return rc;
}
if( pPage->u.hdr.rightChild ){
Pgno newChld;
rc = copyDatabasePage(pBtFrom, SWAB32(pBtFrom, pPage->u.hdr.rightChild),
pBtTo, &newChld);
if( rc ) return rc;
pPage->u.hdr.rightChild = SWAB32(pBtTo, newChild);
}
}
sqlitepager_unref(pPage);
return rc;
}
#endif
/*
** Read the meta-information out of a database file.
*/
static int fileBtreeGetMeta(Btree *pBt, int *aMeta){
PageOne *pP1;
int rc;
int i;
rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
if( rc ) return rc;
aMeta[0] = SWAB32(pBt, pP1->nFree);
for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
aMeta[i+1] = SWAB32(pBt, pP1->aMeta[i]);
}
sqlitepager_unref(pP1);
return SQLITE_OK;
}
/*
** Write meta-information back into the database.
*/
static int fileBtreeUpdateMeta(Btree *pBt, int *aMeta){
PageOne *pP1;
int rc, i;
if( !pBt->inTrans ){
return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
}
pP1 = pBt->page1;
rc = sqlitepager_write(pP1);
if( rc ) return rc;
for(i=0; i<sizeof(pP1->aMeta)/sizeof(pP1->aMeta[0]); i++){
pP1->aMeta[i] = SWAB32(pBt, aMeta[i+1]);
}
return SQLITE_OK;
}
/******************************************************************************
** The complete implementation of the BTree subsystem is above this line.
** All the code the follows is for testing and troubleshooting the BTree
** subsystem. None of the code that follows is used during normal operation.
******************************************************************************/
/*
** Print a disassembly of the given page on standard output. This routine
** is used for debugging and testing only.
*/
#ifdef SQLITE_TEST
static int fileBtreePageDump(Btree *pBt, int pgno, int recursive){
int rc;
MemPage *pPage;
int i, j;
int nFree;
u16 idx;
char range[20];
unsigned char payload[20];
rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
if( rc ){
return rc;
}
if( recursive ) printf("PAGE %d:\n", pgno);
i = 0;
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 && idx<=SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
int sz = cellSize(pBt, pCell);
sprintf(range,"%d..%d", idx, idx+sz-1);
sz = NKEY(pBt, pCell->h) + NDATA(pBt, pCell->h);
if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
memcpy(payload, pCell->aPayload, sz);
for(j=0; j<sz; j++){
if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
}
payload[sz] = 0;
printf(
"cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
i, range, (int)pCell->h.leftChild,
NKEY(pBt, pCell->h), NDATA(pBt, pCell->h),
payload
);
if( pPage->isInit && pPage->apCell[i]!=pCell ){
printf("**** apCell[%d] does not match on prior entry ****\n", i);
}
i++;
idx = SWAB16(pBt, pCell->h.iNext);
}
if( idx!=0 ){
printf("ERROR: next cell index out of range: %d\n", idx);
}
printf("right_child: %d\n", SWAB32(pBt, pPage->u.hdr.rightChild));
nFree = 0;
i = 0;
idx = SWAB16(pBt, pPage->u.hdr.firstFree);
while( idx>0 && idx<SQLITE_USABLE_SIZE ){
FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
sprintf(range,"%d..%d", idx, idx+p->iSize-1);
nFree += SWAB16(pBt, p->iSize);
printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
i, range, SWAB16(pBt, p->iSize), nFree);
idx = SWAB16(pBt, p->iNext);
i++;
}
if( idx!=0 ){
printf("ERROR: next freeblock index out of range: %d\n", idx);
}
if( recursive && pPage->u.hdr.rightChild!=0 ){
idx = SWAB16(pBt, pPage->u.hdr.firstCell);
while( idx>0 && idx<SQLITE_USABLE_SIZE-MIN_CELL_SIZE ){
Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
fileBtreePageDump(pBt, SWAB32(pBt, pCell->h.leftChild), 1);
idx = SWAB16(pBt, pCell->h.iNext);
}
fileBtreePageDump(pBt, SWAB32(pBt, pPage->u.hdr.rightChild), 1);
}
sqlitepager_unref(pPage);
return SQLITE_OK;
}
#endif
#ifdef SQLITE_TEST
/*
** Fill aResult[] with information about the entry and page that the
** cursor is pointing to.
**
** aResult[0] = The page number
** aResult[1] = The entry number
** aResult[2] = Total number of entries on this page
** aResult[3] = Size of this entry
** aResult[4] = Number of free bytes on this page
** aResult[5] = Number of free blocks on the page
** aResult[6] = Page number of the left child of this entry
** aResult[7] = Page number of the right child for the whole page
**
** This routine is used for testing and debugging only.
*/
static int fileBtreeCursorDump(BtCursor *pCur, int *aResult){
int cnt, idx;
MemPage *pPage = pCur->pPage;
Btree *pBt = pCur->pBt;
aResult[0] = sqlitepager_pagenumber(pPage);
aResult[1] = pCur->idx;
aResult[2] = pPage->nCell;
if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
aResult[3] = cellSize(pBt, pPage->apCell[pCur->idx]);
aResult[6] = SWAB32(pBt, pPage->apCell[pCur->idx]->h.leftChild);
}else{
aResult[3] = 0;
aResult[6] = 0;
}
aResult[4] = pPage->nFree;
cnt = 0;
idx = SWAB16(pBt, pPage->u.hdr.firstFree);
while( idx>0 && idx<SQLITE_USABLE_SIZE ){
cnt++;
idx = SWAB16(pBt, ((FreeBlk*)&pPage->u.aDisk[idx])->iNext);
}
aResult[5] = cnt;
aResult[7] = SWAB32(pBt, pPage->u.hdr.rightChild);
return SQLITE_OK;
}
#endif
/*
** Return the pager associated with a BTree. This routine is used for
** testing and debugging only.
*/
static Pager *fileBtreePager(Btree *pBt){
return pBt->pPager;
}
/*
** This structure is passed around through all the sanity checking routines
** in order to keep track of some global state information.
*/
typedef struct IntegrityCk IntegrityCk;
struct IntegrityCk {
Btree *pBt; /* The tree being checked out */
Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
int nPage; /* Number of pages in the database */
int *anRef; /* Number of times each page is referenced */
char *zErrMsg; /* An error message. NULL of no errors seen. */
};
/*
** Append a message to the error message string.
*/
static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
if( pCheck->zErrMsg ){
char *zOld = pCheck->zErrMsg;
pCheck->zErrMsg = 0;
sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
sqliteFree(zOld);
}else{
sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
}
}
/*
** Add 1 to the reference count for page iPage. If this is the second
** reference to the page, add an error message to pCheck->zErrMsg.
** Return 1 if there are 2 ore more references to the page and 0 if
** if this is the first reference to the page.
**
** Also check that the page number is in bounds.
*/
static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
if( iPage==0 ) return 1;
if( iPage>pCheck->nPage || iPage<0 ){
char zBuf[100];
sprintf(zBuf, "invalid page number %d", iPage);
checkAppendMsg(pCheck, zContext, zBuf);
return 1;
}
if( pCheck->anRef[iPage]==1 ){
char zBuf[100];
sprintf(zBuf, "2nd reference to page %d", iPage);
checkAppendMsg(pCheck, zContext, zBuf);
return 1;
}
return (pCheck->anRef[iPage]++)>1;
}
/*
** Check the integrity of the freelist or of an overflow page list.
** Verify that the number of pages on the list is N.
*/
static void checkList(
IntegrityCk *pCheck, /* Integrity checking context */
int isFreeList, /* True for a freelist. False for overflow page list */
int iPage, /* Page number for first page in the list */
int N, /* Expected number of pages in the list */
char *zContext /* Context for error messages */
){
int i;
char zMsg[100];
while( N-- > 0 ){
OverflowPage *pOvfl;
if( iPage<1 ){
sprintf(zMsg, "%d pages missing from overflow list", N+1);
checkAppendMsg(pCheck, zContext, zMsg);
break;
}
if( checkRef(pCheck, iPage, zContext) ) break;
if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
sprintf(zMsg, "failed to get page %d", iPage);
checkAppendMsg(pCheck, zContext, zMsg);
break;
}
if( isFreeList ){
FreelistInfo *pInfo = (FreelistInfo*)pOvfl->aPayload;
int n = SWAB32(pCheck->pBt, pInfo->nFree);
for(i=0; i<n; i++){
checkRef(pCheck, SWAB32(pCheck->pBt, pInfo->aFree[i]), zContext);
}
N -= n;
}
iPage = SWAB32(pCheck->pBt, pOvfl->iNext);
sqlitepager_unref(pOvfl);
}
}
/*
** Return negative if zKey1<zKey2.
** Return zero if zKey1==zKey2.
** Return positive if zKey1>zKey2.
*/
static int keyCompare(
const char *zKey1, int nKey1,
const char *zKey2, int nKey2
){
int min = nKey1>nKey2 ? nKey2 : nKey1;
int c = memcmp(zKey1, zKey2, min);
if( c==0 ){
c = nKey1 - nKey2;
}
return c;
}
/*
** Do various sanity checks on a single page of a tree. Return
** the tree depth. Root pages return 0. Parents of root pages
** return 1, and so forth.
**
** These checks are done:
**
** 1. Make sure that cells and freeblocks do not overlap
** but combine to completely cover the page.
** 2. Make sure cell keys are in order.
** 3. Make sure no key is less than or equal to zLowerBound.
** 4. Make sure no key is greater than or equal to zUpperBound.
** 5. Check the integrity of overflow pages.
** 6. Recursively call checkTreePage on all children.
** 7. Verify that the depth of all children is the same.
** 8. Make sure this page is at least 33% full or else it is
** the root of the tree.
*/
static int checkTreePage(
IntegrityCk *pCheck, /* Context for the sanity check */
int iPage, /* Page number of the page to check */
MemPage *pParent, /* Parent page */
char *zParentContext, /* Parent context */
char *zLowerBound, /* All keys should be greater than this, if not NULL */
int nLower, /* Number of characters in zLowerBound */
char *zUpperBound, /* All keys should be less than this, if not NULL */
int nUpper /* Number of characters in zUpperBound */
){
MemPage *pPage;
int i, rc, depth, d2, pgno;
char *zKey1, *zKey2;
int nKey1, nKey2;
BtCursor cur;
Btree *pBt;
char zMsg[100];
char zContext[100];
char hit[SQLITE_USABLE_SIZE];
/* Check that the page exists
*/
cur.pBt = pBt = pCheck->pBt;
if( iPage==0 ) return 0;
if( checkRef(pCheck, iPage, zParentContext) ) return 0;
sprintf(zContext, "On tree page %d: ", iPage);
if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
sprintf(zMsg, "unable to get the page. error code=%d", rc);
checkAppendMsg(pCheck, zContext, zMsg);
return 0;
}
if( (rc = initPage(pBt, pPage, (Pgno)iPage, pParent))!=0 ){
sprintf(zMsg, "initPage() returns error code %d", rc);
checkAppendMsg(pCheck, zContext, zMsg);
sqlitepager_unref(pPage);
return 0;
}
/* Check out all the cells.
*/
depth = 0;
if( zLowerBound ){
zKey1 = sqliteMalloc( nLower+1 );
memcpy(zKey1, zLowerBound, nLower);
zKey1[nLower] = 0;
}else{
zKey1 = 0;
}
nKey1 = nLower;
cur.pPage = pPage;
for(i=0; i<pPage->nCell; i++){
Cell *pCell = pPage->apCell[i];
int sz;
/* Check payload overflow pages
*/
nKey2 = NKEY(pBt, pCell->h);
sz = nKey2 + NDATA(pBt, pCell->h);
sprintf(zContext, "On page %d cell %d: ", iPage, i);
if( sz>MX_LOCAL_PAYLOAD ){
int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
checkList(pCheck, 0, SWAB32(pBt, pCell->ovfl), nPage, zContext);
}
/* Check that keys are in the right order
*/
cur.idx = i;
zKey2 = sqliteMallocRaw( nKey2+1 );
getPayload(&cur, 0, nKey2, zKey2);
if( zKey1 && keyCompare(zKey1, nKey1, zKey2, nKey2)>=0 ){
checkAppendMsg(pCheck, zContext, "Key is out of order");
}
/* Check sanity of left child page.
*/
pgno = SWAB32(pBt, pCell->h.leftChild);
d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zKey2,nKey2);
if( i>0 && d2!=depth ){
checkAppendMsg(pCheck, zContext, "Child page depth differs");
}
depth = d2;
sqliteFree(zKey1);
zKey1 = zKey2;
nKey1 = nKey2;
}
pgno = SWAB32(pBt, pPage->u.hdr.rightChild);
sprintf(zContext, "On page %d at right child: ", iPage);
checkTreePage(pCheck, pgno, pPage, zContext, zKey1,nKey1,zUpperBound,nUpper);
sqliteFree(zKey1);
/* Check for complete coverage of the page
*/
memset(hit, 0, sizeof(hit));
memset(hit, 1, sizeof(PageHdr));
for(i=SWAB16(pBt, pPage->u.hdr.firstCell); i>0 && i<SQLITE_USABLE_SIZE; ){
Cell *pCell = (Cell*)&pPage->u.aDisk[i];
int j;
for(j=i+cellSize(pBt, pCell)-1; j>=i; j--) hit[j]++;
i = SWAB16(pBt, pCell->h.iNext);
}
for(i=SWAB16(pBt,pPage->u.hdr.firstFree); i>0 && i<SQLITE_USABLE_SIZE; ){
FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
int j;
for(j=i+SWAB16(pBt,pFBlk->iSize)-1; j>=i; j--) hit[j]++;
i = SWAB16(pBt,pFBlk->iNext);
}
for(i=0; i<SQLITE_USABLE_SIZE; i++){
if( hit[i]==0 ){
sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
checkAppendMsg(pCheck, zMsg, 0);
break;
}else if( hit[i]>1 ){
sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
checkAppendMsg(pCheck, zMsg, 0);
break;
}
}
/* Check that free space is kept to a minimum
*/
#if 0
if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_USABLE_SIZE/4 ){
sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
SQLITE_USABLE_SIZE/3);
checkAppendMsg(pCheck, zContext, zMsg);
}
#endif
sqlitepager_unref(pPage);
return depth;
}
/*
** This routine does a complete check of the given BTree file. aRoot[] is
** an array of pages numbers were each page number is the root page of
** a table. nRoot is the number of entries in aRoot.
**
** If everything checks out, this routine returns NULL. If something is
** amiss, an error message is written into memory obtained from malloc()
** and a pointer to that error message is returned. The calling function
** is responsible for freeing the error message when it is done.
*/
char *fileBtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
int i;
int nRef;
IntegrityCk sCheck;
nRef = *sqlitepager_stats(pBt->pPager);
if( lockBtree(pBt)!=SQLITE_OK ){
return sqliteStrDup("Unable to actquire a read lock on the database");
}
sCheck.pBt = pBt;
sCheck.pPager = pBt->pPager;
sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
if( sCheck.nPage==0 ){
unlockBtreeIfUnused(pBt);
return 0;
}
sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
sCheck.anRef[1] = 1;
for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
sCheck.zErrMsg = 0;
/* Check the integrity of the freelist
*/
checkList(&sCheck, 1, SWAB32(pBt, pBt->page1->freeList),
SWAB32(pBt, pBt->page1->nFree), "Main freelist: ");
/* Check all the tables.
*/
for(i=0; i<nRoot; i++){
if( aRoot[i]==0 ) continue;
checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
}
/* Make sure every page in the file is referenced
*/
for(i=1; i<=sCheck.nPage; i++){
if( sCheck.anRef[i]==0 ){
char zBuf[100];
sprintf(zBuf, "Page %d is never used", i);
checkAppendMsg(&sCheck, zBuf, 0);
}
}
/* Make sure this analysis did not leave any unref() pages
*/
unlockBtreeIfUnused(pBt);
if( nRef != *sqlitepager_stats(pBt->pPager) ){
char zBuf[100];
sprintf(zBuf,
"Outstanding page count goes from %d to %d during this analysis",
nRef, *sqlitepager_stats(pBt->pPager)
);
checkAppendMsg(&sCheck, zBuf, 0);
}
/* Clean up and report errors.
*/
sqliteFree(sCheck.anRef);
return sCheck.zErrMsg;
}
/*
** Return the full pathname of the underlying database file.
*/
static const char *fileBtreeGetFilename(Btree *pBt){
assert( pBt->pPager!=0 );
return sqlitepager_filename(pBt->pPager);
}
/*
** Copy the complete content of pBtFrom into pBtTo. A transaction
** must be active for both files.
**
** The size of file pBtFrom may be reduced by this operation.
** If anything goes wrong, the transaction on pBtFrom is rolled back.
*/
static int fileBtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
int rc = SQLITE_OK;
Pgno i, nPage, nToPage;
if( !pBtTo->inTrans || !pBtFrom->inTrans ) return SQLITE_ERROR;
if( pBtTo->needSwab!=pBtFrom->needSwab ) return SQLITE_ERROR;
if( pBtTo->pCursor ) return SQLITE_BUSY;
memcpy(pBtTo->page1, pBtFrom->page1, SQLITE_USABLE_SIZE);
rc = sqlitepager_overwrite(pBtTo->pPager, 1, pBtFrom->page1);
nToPage = sqlitepager_pagecount(pBtTo->pPager);
nPage = sqlitepager_pagecount(pBtFrom->pPager);
for(i=2; rc==SQLITE_OK && i<=nPage; i++){
void *pPage;
rc = sqlitepager_get(pBtFrom->pPager, i, &pPage);
if( rc ) break;
rc = sqlitepager_overwrite(pBtTo->pPager, i, pPage);
if( rc ) break;
sqlitepager_unref(pPage);
}
for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
void *pPage;
rc = sqlitepager_get(pBtTo->pPager, i, &pPage);
if( rc ) break;
rc = sqlitepager_write(pPage);
sqlitepager_unref(pPage);
sqlitepager_dont_write(pBtTo->pPager, i);
}
if( !rc && nPage<nToPage ){
rc = sqlitepager_truncate(pBtTo->pPager, nPage);
}
if( rc ){
fileBtreeRollback(pBtTo);
}
return rc;
}
/*
** The following tables contain pointers to all of the interface
** routines for this implementation of the B*Tree backend. To
** substitute a different implemention of the backend, one has merely
** to provide pointers to alternative functions in similar tables.
*/
static BtOps sqliteBtreeOps = {
fileBtreeClose,
fileBtreeSetCacheSize,
fileBtreeSetSafetyLevel,
fileBtreeBeginTrans,
fileBtreeCommit,
fileBtreeRollback,
fileBtreeBeginCkpt,
fileBtreeCommitCkpt,
fileBtreeRollbackCkpt,
fileBtreeCreateTable,
fileBtreeCreateTable, /* Really sqliteBtreeCreateIndex() */
fileBtreeDropTable,
fileBtreeClearTable,
fileBtreeCursor,
fileBtreeGetMeta,
fileBtreeUpdateMeta,
fileBtreeIntegrityCheck,
fileBtreeGetFilename,
fileBtreeCopyFile,
fileBtreePager,
#ifdef SQLITE_TEST
fileBtreePageDump,
#endif
};
static BtCursorOps sqliteBtreeCursorOps = {
fileBtreeMoveto,
fileBtreeDelete,
fileBtreeInsert,
fileBtreeFirst,
fileBtreeLast,
fileBtreeNext,
fileBtreePrevious,
fileBtreeKeySize,
fileBtreeKey,
fileBtreeKeyCompare,
fileBtreeDataSize,
fileBtreeData,
fileBtreeCloseCursor,
#ifdef SQLITE_TEST
fileBtreeCursorDump,
#endif
};
|