1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
|
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.112 2004/02/25 13:47:31 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
/*
** Construct a new expression node and return a pointer to it. Memory
** for this node is obtained from sqliteMalloc(). The calling function
** is responsible for making sure the node eventually gets freed.
*/
Expr *sqliteExpr(int op, Expr *pLeft, Expr *pRight, Token *pToken){
Expr *pNew;
pNew = sqliteMalloc( sizeof(Expr) );
if( pNew==0 ){
/* When malloc fails, we leak memory from pLeft and pRight */
return 0;
}
pNew->op = op;
pNew->pLeft = pLeft;
pNew->pRight = pRight;
if( pToken ){
assert( pToken->dyn==0 );
pNew->token = *pToken;
pNew->span = *pToken;
}else{
assert( pNew->token.dyn==0 );
assert( pNew->token.z==0 );
assert( pNew->token.n==0 );
if( pLeft && pRight ){
sqliteExprSpan(pNew, &pLeft->span, &pRight->span);
}else{
pNew->span = pNew->token;
}
}
return pNew;
}
/*
** Set the Expr.span field of the given expression to span all
** text between the two given tokens.
*/
void sqliteExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
assert( pRight!=0 );
assert( pLeft!=0 );
/* Note: pExpr might be NULL due to a prior malloc failure */
if( pExpr && pRight->z && pLeft->z ){
if( pLeft->dyn==0 && pRight->dyn==0 ){
pExpr->span.z = pLeft->z;
pExpr->span.n = pRight->n + Addr(pRight->z) - Addr(pLeft->z);
}else{
pExpr->span.z = 0;
}
}
}
/*
** Construct a new expression node for a function with multiple
** arguments.
*/
Expr *sqliteExprFunction(ExprList *pList, Token *pToken){
Expr *pNew;
pNew = sqliteMalloc( sizeof(Expr) );
if( pNew==0 ){
/* sqliteExprListDelete(pList); // Leak pList when malloc fails */
return 0;
}
pNew->op = TK_FUNCTION;
pNew->pList = pList;
if( pToken ){
assert( pToken->dyn==0 );
pNew->token = *pToken;
}else{
pNew->token.z = 0;
}
pNew->span = pNew->token;
return pNew;
}
/*
** Recursively delete an expression tree.
*/
void sqliteExprDelete(Expr *p){
if( p==0 ) return;
if( p->span.dyn ) sqliteFree((char*)p->span.z);
if( p->token.dyn ) sqliteFree((char*)p->token.z);
sqliteExprDelete(p->pLeft);
sqliteExprDelete(p->pRight);
sqliteExprListDelete(p->pList);
sqliteSelectDelete(p->pSelect);
sqliteFree(p);
}
/*
** The following group of routines make deep copies of expressions,
** expression lists, ID lists, and select statements. The copies can
** be deleted (by being passed to their respective ...Delete() routines)
** without effecting the originals.
**
** The expression list, ID, and source lists return by sqliteExprListDup(),
** sqliteIdListDup(), and sqliteSrcListDup() can not be further expanded
** by subsequent calls to sqlite*ListAppend() routines.
**
** Any tables that the SrcList might point to are not duplicated.
*/
Expr *sqliteExprDup(Expr *p){
Expr *pNew;
if( p==0 ) return 0;
pNew = sqliteMallocRaw( sizeof(*p) );
if( pNew==0 ) return 0;
memcpy(pNew, p, sizeof(*pNew));
if( p->token.z!=0 ){
pNew->token.z = sqliteStrDup(p->token.z);
pNew->token.dyn = 1;
}else{
assert( pNew->token.z==0 );
}
pNew->span.z = 0;
pNew->pLeft = sqliteExprDup(p->pLeft);
pNew->pRight = sqliteExprDup(p->pRight);
pNew->pList = sqliteExprListDup(p->pList);
pNew->pSelect = sqliteSelectDup(p->pSelect);
return pNew;
}
void sqliteTokenCopy(Token *pTo, Token *pFrom){
if( pTo->dyn ) sqliteFree((char*)pTo->z);
if( pFrom->z ){
pTo->n = pFrom->n;
pTo->z = sqliteStrNDup(pFrom->z, pFrom->n);
pTo->dyn = 1;
}else{
pTo->z = 0;
}
}
ExprList *sqliteExprListDup(ExprList *p){
ExprList *pNew;
struct ExprList_item *pItem;
int i;
if( p==0 ) return 0;
pNew = sqliteMalloc( sizeof(*pNew) );
if( pNew==0 ) return 0;
pNew->nExpr = pNew->nAlloc = p->nExpr;
pNew->a = pItem = sqliteMalloc( p->nExpr*sizeof(p->a[0]) );
for(i=0; pItem && i<p->nExpr; i++, pItem++){
Expr *pNewExpr, *pOldExpr;
pItem->pExpr = pNewExpr = sqliteExprDup(pOldExpr = p->a[i].pExpr);
if( pOldExpr->span.z!=0 && pNewExpr ){
/* Always make a copy of the span for top-level expressions in the
** expression list. The logic in SELECT processing that determines
** the names of columns in the result set needs this information */
sqliteTokenCopy(&pNewExpr->span, &pOldExpr->span);
}
assert( pNewExpr==0 || pNewExpr->span.z!=0
|| pOldExpr->span.z==0 || sqlite_malloc_failed );
pItem->zName = sqliteStrDup(p->a[i].zName);
pItem->sortOrder = p->a[i].sortOrder;
pItem->isAgg = p->a[i].isAgg;
pItem->done = 0;
}
return pNew;
}
SrcList *sqliteSrcListDup(SrcList *p){
SrcList *pNew;
int i;
int nByte;
if( p==0 ) return 0;
nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
pNew = sqliteMallocRaw( nByte );
if( pNew==0 ) return 0;
pNew->nSrc = pNew->nAlloc = p->nSrc;
for(i=0; i<p->nSrc; i++){
struct SrcList_item *pNewItem = &pNew->a[i];
struct SrcList_item *pOldItem = &p->a[i];
pNewItem->zDatabase = sqliteStrDup(pOldItem->zDatabase);
pNewItem->zName = sqliteStrDup(pOldItem->zName);
pNewItem->zAlias = sqliteStrDup(pOldItem->zAlias);
pNewItem->jointype = pOldItem->jointype;
pNewItem->iCursor = pOldItem->iCursor;
pNewItem->pTab = 0;
pNewItem->pSelect = sqliteSelectDup(pOldItem->pSelect);
pNewItem->pOn = sqliteExprDup(pOldItem->pOn);
pNewItem->pUsing = sqliteIdListDup(pOldItem->pUsing);
}
return pNew;
}
IdList *sqliteIdListDup(IdList *p){
IdList *pNew;
int i;
if( p==0 ) return 0;
pNew = sqliteMallocRaw( sizeof(*pNew) );
if( pNew==0 ) return 0;
pNew->nId = pNew->nAlloc = p->nId;
pNew->a = sqliteMallocRaw( p->nId*sizeof(p->a[0]) );
if( pNew->a==0 ) return 0;
for(i=0; i<p->nId; i++){
struct IdList_item *pNewItem = &pNew->a[i];
struct IdList_item *pOldItem = &p->a[i];
pNewItem->zName = sqliteStrDup(pOldItem->zName);
pNewItem->idx = pOldItem->idx;
}
return pNew;
}
Select *sqliteSelectDup(Select *p){
Select *pNew;
if( p==0 ) return 0;
pNew = sqliteMallocRaw( sizeof(*p) );
if( pNew==0 ) return 0;
pNew->isDistinct = p->isDistinct;
pNew->pEList = sqliteExprListDup(p->pEList);
pNew->pSrc = sqliteSrcListDup(p->pSrc);
pNew->pWhere = sqliteExprDup(p->pWhere);
pNew->pGroupBy = sqliteExprListDup(p->pGroupBy);
pNew->pHaving = sqliteExprDup(p->pHaving);
pNew->pOrderBy = sqliteExprListDup(p->pOrderBy);
pNew->op = p->op;
pNew->pPrior = sqliteSelectDup(p->pPrior);
pNew->nLimit = p->nLimit;
pNew->nOffset = p->nOffset;
pNew->zSelect = 0;
pNew->iLimit = -1;
pNew->iOffset = -1;
return pNew;
}
/*
** Add a new element to the end of an expression list. If pList is
** initially NULL, then create a new expression list.
*/
ExprList *sqliteExprListAppend(ExprList *pList, Expr *pExpr, Token *pName){
if( pList==0 ){
pList = sqliteMalloc( sizeof(ExprList) );
if( pList==0 ){
/* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
return 0;
}
assert( pList->nAlloc==0 );
}
if( pList->nAlloc<=pList->nExpr ){
pList->nAlloc = pList->nAlloc*2 + 4;
pList->a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]));
if( pList->a==0 ){
/* sqliteExprDelete(pExpr); // Leak memory if malloc fails */
pList->nExpr = pList->nAlloc = 0;
return pList;
}
}
assert( pList->a!=0 );
if( pExpr || pName ){
struct ExprList_item *pItem = &pList->a[pList->nExpr++];
memset(pItem, 0, sizeof(*pItem));
pItem->pExpr = pExpr;
if( pName ){
sqliteSetNString(&pItem->zName, pName->z, pName->n, 0);
sqliteDequote(pItem->zName);
}
}
return pList;
}
/*
** Delete an entire expression list.
*/
void sqliteExprListDelete(ExprList *pList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nExpr; i++){
sqliteExprDelete(pList->a[i].pExpr);
sqliteFree(pList->a[i].zName);
}
sqliteFree(pList->a);
sqliteFree(pList);
}
/*
** Walk an expression tree. Return 1 if the expression is constant
** and 0 if it involves variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
int sqliteExprIsConstant(Expr *p){
switch( p->op ){
case TK_ID:
case TK_COLUMN:
case TK_DOT:
case TK_FUNCTION:
return 0;
case TK_NULL:
case TK_STRING:
case TK_INTEGER:
case TK_FLOAT:
case TK_VARIABLE:
return 1;
default: {
if( p->pLeft && !sqliteExprIsConstant(p->pLeft) ) return 0;
if( p->pRight && !sqliteExprIsConstant(p->pRight) ) return 0;
if( p->pList ){
int i;
for(i=0; i<p->pList->nExpr; i++){
if( !sqliteExprIsConstant(p->pList->a[i].pExpr) ) return 0;
}
}
return p->pLeft!=0 || p->pRight!=0 || (p->pList && p->pList->nExpr>0);
}
}
return 0;
}
/*
** If the given expression codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue. If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
*/
int sqliteExprIsInteger(Expr *p, int *pValue){
switch( p->op ){
case TK_INTEGER: {
if( sqliteFitsIn32Bits(p->token.z) ){
*pValue = atoi(p->token.z);
return 1;
}
break;
}
case TK_STRING: {
const char *z = p->token.z;
int n = p->token.n;
if( n>0 && z[0]=='-' ){ z++; n--; }
while( n>0 && *z && isdigit(*z) ){ z++; n--; }
if( n==0 && sqliteFitsIn32Bits(p->token.z) ){
*pValue = atoi(p->token.z);
return 1;
}
break;
}
case TK_UPLUS: {
return sqliteExprIsInteger(p->pLeft, pValue);
}
case TK_UMINUS: {
int v;
if( sqliteExprIsInteger(p->pLeft, &v) ){
*pValue = -v;
return 1;
}
break;
}
default: break;
}
return 0;
}
/*
** Return TRUE if the given string is a row-id column name.
*/
int sqliteIsRowid(const char *z){
if( sqliteStrICmp(z, "_ROWID_")==0 ) return 1;
if( sqliteStrICmp(z, "ROWID")==0 ) return 1;
if( sqliteStrICmp(z, "OID")==0 ) return 1;
return 0;
}
/*
** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
** that name in the set of source tables in pSrcList and make the pExpr
** expression node refer back to that source column. The following changes
** are made to pExpr:
**
** pExpr->iDb Set the index in db->aDb[] of the database holding
** the table.
** pExpr->iTable Set to the cursor number for the table obtained
** from pSrcList.
** pExpr->iColumn Set to the column number within the table.
** pExpr->dataType Set to the appropriate data type for the column.
** pExpr->op Set to TK_COLUMN.
** pExpr->pLeft Any expression this points to is deleted
** pExpr->pRight Any expression this points to is deleted.
**
** The pDbToken is the name of the database (the "X"). This value may be
** NULL meaning that name is of the form Y.Z or Z. Any available database
** can be used. The pTableToken is the name of the table (the "Y"). This
** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
** means that the form of the name is Z and that columns from any table
** can be used.
**
** If the name cannot be resolved unambiguously, leave an error message
** in pParse and return non-zero. Return zero on success.
*/
static int lookupName(
Parse *pParse, /* The parsing context */
Token *pDbToken, /* Name of the database containing table, or NULL */
Token *pTableToken, /* Name of table containing column, or NULL */
Token *pColumnToken, /* Name of the column. */
SrcList *pSrcList, /* List of tables used to resolve column names */
ExprList *pEList, /* List of expressions used to resolve "AS" */
Expr *pExpr /* Make this EXPR node point to the selected column */
){
char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
char *zCol = 0; /* Name of the column. The "Z" */
int i, j; /* Loop counters */
int cnt = 0; /* Number of matching column names */
int cntTab = 0; /* Number of matching table names */
sqlite *db = pParse->db; /* The database */
assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
if( pDbToken && pDbToken->z ){
zDb = sqliteStrNDup(pDbToken->z, pDbToken->n);
sqliteDequote(zDb);
}else{
zDb = 0;
}
if( pTableToken && pTableToken->z ){
zTab = sqliteStrNDup(pTableToken->z, pTableToken->n);
sqliteDequote(zTab);
}else{
assert( zDb==0 );
zTab = 0;
}
zCol = sqliteStrNDup(pColumnToken->z, pColumnToken->n);
sqliteDequote(zCol);
if( sqlite_malloc_failed ){
return 1; /* Leak memory (zDb and zTab) if malloc fails */
}
assert( zTab==0 || pEList==0 );
pExpr->iTable = -1;
for(i=0; i<pSrcList->nSrc; i++){
struct SrcList_item *pItem = &pSrcList->a[i];
Table *pTab = pItem->pTab;
Column *pCol;
if( pTab==0 ) continue;
assert( pTab->nCol>0 );
if( zTab ){
if( pItem->zAlias ){
char *zTabName = pItem->zAlias;
if( sqliteStrICmp(zTabName, zTab)!=0 ) continue;
}else{
char *zTabName = pTab->zName;
if( zTabName==0 || sqliteStrICmp(zTabName, zTab)!=0 ) continue;
if( zDb!=0 && sqliteStrICmp(db->aDb[pTab->iDb].zName, zDb)!=0 ){
continue;
}
}
}
if( 0==(cntTab++) ){
pExpr->iTable = pItem->iCursor;
pExpr->iDb = pTab->iDb;
}
for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
if( sqliteStrICmp(pCol->zName, zCol)==0 ){
cnt++;
pExpr->iTable = pItem->iCursor;
pExpr->iDb = pTab->iDb;
/* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
pExpr->iColumn = j==pTab->iPKey ? -1 : j;
pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
break;
}
}
}
/* If we have not already resolved the name, then maybe
** it is a new.* or old.* trigger argument reference
*/
if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
TriggerStack *pTriggerStack = pParse->trigStack;
Table *pTab = 0;
if( pTriggerStack->newIdx != -1 && sqliteStrICmp("new", zTab) == 0 ){
pExpr->iTable = pTriggerStack->newIdx;
assert( pTriggerStack->pTab );
pTab = pTriggerStack->pTab;
}else if( pTriggerStack->oldIdx != -1 && sqliteStrICmp("old", zTab) == 0 ){
pExpr->iTable = pTriggerStack->oldIdx;
assert( pTriggerStack->pTab );
pTab = pTriggerStack->pTab;
}
if( pTab ){
int j;
Column *pCol = pTab->aCol;
pExpr->iDb = pTab->iDb;
cntTab++;
for(j=0; j < pTab->nCol; j++, pCol++) {
if( sqliteStrICmp(pCol->zName, zCol)==0 ){
cnt++;
pExpr->iColumn = j==pTab->iPKey ? -1 : j;
pExpr->dataType = pCol->sortOrder & SQLITE_SO_TYPEMASK;
break;
}
}
}
}
/*
** Perhaps the name is a reference to the ROWID
*/
if( cnt==0 && cntTab==1 && sqliteIsRowid(zCol) ){
cnt = 1;
pExpr->iColumn = -1;
pExpr->dataType = SQLITE_SO_NUM;
}
/*
** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
** might refer to an result-set alias. This happens, for example, when
** we are resolving names in the WHERE clause of the following command:
**
** SELECT a+b AS x FROM table WHERE x<10;
**
** In cases like this, replace pExpr with a copy of the expression that
** forms the result set entry ("a+b" in the example) and return immediately.
** Note that the expression in the result set should have already been
** resolved by the time the WHERE clause is resolved.
*/
if( cnt==0 && pEList!=0 ){
for(j=0; j<pEList->nExpr; j++){
char *zAs = pEList->a[j].zName;
if( zAs!=0 && sqliteStrICmp(zAs, zCol)==0 ){
assert( pExpr->pLeft==0 && pExpr->pRight==0 );
pExpr->op = TK_AS;
pExpr->iColumn = j;
pExpr->pLeft = sqliteExprDup(pEList->a[j].pExpr);
sqliteFree(zCol);
assert( zTab==0 && zDb==0 );
return 0;
}
}
}
/*
** If X and Y are NULL (in other words if only the column name Z is
** supplied) and the value of Z is enclosed in double-quotes, then
** Z is a string literal if it doesn't match any column names. In that
** case, we need to return right away and not make any changes to
** pExpr.
*/
if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
sqliteFree(zCol);
return 0;
}
/*
** cnt==0 means there was not match. cnt>1 means there were two or
** more matches. Either way, we have an error.
*/
if( cnt!=1 ){
char *z = 0;
char *zErr;
zErr = cnt==0 ? "no such column: %s" : "ambiguous column name: %s";
if( zDb ){
sqliteSetString(&z, zDb, ".", zTab, ".", zCol, 0);
}else if( zTab ){
sqliteSetString(&z, zTab, ".", zCol, 0);
}else{
z = sqliteStrDup(zCol);
}
sqliteErrorMsg(pParse, zErr, z);
sqliteFree(z);
}
/* Clean up and return
*/
sqliteFree(zDb);
sqliteFree(zTab);
sqliteFree(zCol);
sqliteExprDelete(pExpr->pLeft);
pExpr->pLeft = 0;
sqliteExprDelete(pExpr->pRight);
pExpr->pRight = 0;
pExpr->op = TK_COLUMN;
sqliteAuthRead(pParse, pExpr, pSrcList);
return cnt!=1;
}
/*
** This routine walks an expression tree and resolves references to
** table columns. Nodes of the form ID.ID or ID resolve into an
** index to the table in the table list and a column offset. The
** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
** value is changed to the index of the referenced table in pTabList
** plus the "base" value. The base value will ultimately become the
** VDBE cursor number for a cursor that is pointing into the referenced
** table. The Expr.iColumn value is changed to the index of the column
** of the referenced table. The Expr.iColumn value for the special
** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
** alias for ROWID.
**
** We also check for instances of the IN operator. IN comes in two
** forms:
**
** expr IN (exprlist)
** and
** expr IN (SELECT ...)
**
** The first form is handled by creating a set holding the list
** of allowed values. The second form causes the SELECT to generate
** a temporary table.
**
** This routine also looks for scalar SELECTs that are part of an expression.
** If it finds any, it generates code to write the value of that select
** into a memory cell.
**
** Unknown columns or tables provoke an error. The function returns
** the number of errors seen and leaves an error message on pParse->zErrMsg.
*/
int sqliteExprResolveIds(
Parse *pParse, /* The parser context */
SrcList *pSrcList, /* List of tables used to resolve column names */
ExprList *pEList, /* List of expressions used to resolve "AS" */
Expr *pExpr /* The expression to be analyzed. */
){
int i;
if( pExpr==0 || pSrcList==0 ) return 0;
for(i=0; i<pSrcList->nSrc; i++){
assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab );
}
switch( pExpr->op ){
/* Double-quoted strings (ex: "abc") are used as identifiers if
** possible. Otherwise they remain as strings. Single-quoted
** strings (ex: 'abc') are always string literals.
*/
case TK_STRING: {
if( pExpr->token.z[0]=='\'' ) break;
/* Fall thru into the TK_ID case if this is a double-quoted string */
}
/* A lone identifier is the name of a columnd.
*/
case TK_ID: {
if( lookupName(pParse, 0, 0, &pExpr->token, pSrcList, pEList, pExpr) ){
return 1;
}
break;
}
/* A table name and column name: ID.ID
** Or a database, table and column: ID.ID.ID
*/
case TK_DOT: {
Token *pColumn;
Token *pTable;
Token *pDb;
Expr *pRight;
pRight = pExpr->pRight;
if( pRight->op==TK_ID ){
pDb = 0;
pTable = &pExpr->pLeft->token;
pColumn = &pRight->token;
}else{
assert( pRight->op==TK_DOT );
pDb = &pExpr->pLeft->token;
pTable = &pRight->pLeft->token;
pColumn = &pRight->pRight->token;
}
if( lookupName(pParse, pDb, pTable, pColumn, pSrcList, 0, pExpr) ){
return 1;
}
break;
}
case TK_IN: {
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return 1;
if( sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
return 1;
}
if( pExpr->pSelect ){
/* Case 1: expr IN (SELECT ...)
**
** Generate code to write the results of the select into a temporary
** table. The cursor number of the temporary table has already
** been put in iTable by sqliteExprResolveInSelect().
*/
pExpr->iTable = pParse->nTab++;
sqliteVdbeAddOp(v, OP_OpenTemp, pExpr->iTable, 1);
sqliteSelect(pParse, pExpr->pSelect, SRT_Set, pExpr->iTable, 0,0,0);
}else if( pExpr->pList ){
/* Case 2: expr IN (exprlist)
**
** Create a set to put the exprlist values in. The Set id is stored
** in iTable.
*/
int i, iSet;
for(i=0; i<pExpr->pList->nExpr; i++){
Expr *pE2 = pExpr->pList->a[i].pExpr;
if( !sqliteExprIsConstant(pE2) ){
sqliteErrorMsg(pParse,
"right-hand side of IN operator must be constant");
return 1;
}
if( sqliteExprCheck(pParse, pE2, 0, 0) ){
return 1;
}
}
iSet = pExpr->iTable = pParse->nSet++;
for(i=0; i<pExpr->pList->nExpr; i++){
Expr *pE2 = pExpr->pList->a[i].pExpr;
switch( pE2->op ){
case TK_FLOAT:
case TK_INTEGER:
case TK_STRING: {
int addr;
assert( pE2->token.z );
addr = sqliteVdbeOp3(v, OP_SetInsert, iSet, 0,
pE2->token.z, pE2->token.n);
sqliteVdbeDequoteP3(v, addr);
break;
}
default: {
sqliteExprCode(pParse, pE2);
sqliteVdbeAddOp(v, OP_SetInsert, iSet, 0);
break;
}
}
}
}
break;
}
case TK_SELECT: {
/* This has to be a scalar SELECT. Generate code to put the
** value of this select in a memory cell and record the number
** of the memory cell in iColumn.
*/
pExpr->iColumn = pParse->nMem++;
if( sqliteSelect(pParse, pExpr->pSelect, SRT_Mem, pExpr->iColumn,0,0,0) ){
return 1;
}
break;
}
/* For all else, just recursively walk the tree */
default: {
if( pExpr->pLeft
&& sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pLeft) ){
return 1;
}
if( pExpr->pRight
&& sqliteExprResolveIds(pParse, pSrcList, pEList, pExpr->pRight) ){
return 1;
}
if( pExpr->pList ){
int i;
ExprList *pList = pExpr->pList;
for(i=0; i<pList->nExpr; i++){
Expr *pArg = pList->a[i].pExpr;
if( sqliteExprResolveIds(pParse, pSrcList, pEList, pArg) ){
return 1;
}
}
}
}
}
return 0;
}
/*
** pExpr is a node that defines a function of some kind. It might
** be a syntactic function like "count(x)" or it might be a function
** that implements an operator, like "a LIKE b".
**
** This routine makes *pzName point to the name of the function and
** *pnName hold the number of characters in the function name.
*/
static void getFunctionName(Expr *pExpr, const char **pzName, int *pnName){
switch( pExpr->op ){
case TK_FUNCTION: {
*pzName = pExpr->token.z;
*pnName = pExpr->token.n;
break;
}
case TK_LIKE: {
*pzName = "like";
*pnName = 4;
break;
}
case TK_GLOB: {
*pzName = "glob";
*pnName = 4;
break;
}
default: {
*pzName = "can't happen";
*pnName = 12;
break;
}
}
}
/*
** Error check the functions in an expression. Make sure all
** function names are recognized and all functions have the correct
** number of arguments. Leave an error message in pParse->zErrMsg
** if anything is amiss. Return the number of errors.
**
** if pIsAgg is not null and this expression is an aggregate function
** (like count(*) or max(value)) then write a 1 into *pIsAgg.
*/
int sqliteExprCheck(Parse *pParse, Expr *pExpr, int allowAgg, int *pIsAgg){
int nErr = 0;
if( pExpr==0 ) return 0;
switch( pExpr->op ){
case TK_GLOB:
case TK_LIKE:
case TK_FUNCTION: {
int n = pExpr->pList ? pExpr->pList->nExpr : 0; /* Number of arguments */
int no_such_func = 0; /* True if no such function exists */
int wrong_num_args = 0; /* True if wrong number of arguments */
int is_agg = 0; /* True if is an aggregate function */
int i;
int nId; /* Number of characters in function name */
const char *zId; /* The function name. */
FuncDef *pDef;
getFunctionName(pExpr, &zId, &nId);
pDef = sqliteFindFunction(pParse->db, zId, nId, n, 0);
if( pDef==0 ){
pDef = sqliteFindFunction(pParse->db, zId, nId, -1, 0);
if( pDef==0 ){
no_such_func = 1;
}else{
wrong_num_args = 1;
}
}else{
is_agg = pDef->xFunc==0;
}
if( is_agg && !allowAgg ){
sqliteErrorMsg(pParse, "misuse of aggregate function %.*s()", nId, zId);
nErr++;
is_agg = 0;
}else if( no_such_func ){
sqliteErrorMsg(pParse, "no such function: %.*s", nId, zId);
nErr++;
}else if( wrong_num_args ){
sqliteErrorMsg(pParse,"wrong number of arguments to function %.*s()",
nId, zId);
nErr++;
}
if( is_agg ){
pExpr->op = TK_AGG_FUNCTION;
if( pIsAgg ) *pIsAgg = 1;
}
for(i=0; nErr==0 && i<n; i++){
nErr = sqliteExprCheck(pParse, pExpr->pList->a[i].pExpr,
allowAgg && !is_agg, pIsAgg);
}
if( pDef==0 ){
/* Already reported an error */
}else if( pDef->dataType>=0 ){
if( pDef->dataType<n ){
pExpr->dataType =
sqliteExprType(pExpr->pList->a[pDef->dataType].pExpr);
}else{
pExpr->dataType = SQLITE_SO_NUM;
}
}else if( pDef->dataType==SQLITE_ARGS ){
pDef->dataType = SQLITE_SO_TEXT;
for(i=0; i<n; i++){
if( sqliteExprType(pExpr->pList->a[i].pExpr)==SQLITE_SO_NUM ){
pExpr->dataType = SQLITE_SO_NUM;
break;
}
}
}else if( pDef->dataType==SQLITE_NUMERIC ){
pExpr->dataType = SQLITE_SO_NUM;
}else{
pExpr->dataType = SQLITE_SO_TEXT;
}
}
default: {
if( pExpr->pLeft ){
nErr = sqliteExprCheck(pParse, pExpr->pLeft, allowAgg, pIsAgg);
}
if( nErr==0 && pExpr->pRight ){
nErr = sqliteExprCheck(pParse, pExpr->pRight, allowAgg, pIsAgg);
}
if( nErr==0 && pExpr->pList ){
int n = pExpr->pList->nExpr;
int i;
for(i=0; nErr==0 && i<n; i++){
Expr *pE2 = pExpr->pList->a[i].pExpr;
nErr = sqliteExprCheck(pParse, pE2, allowAgg, pIsAgg);
}
}
break;
}
}
return nErr;
}
/*
** Return either SQLITE_SO_NUM or SQLITE_SO_TEXT to indicate whether the
** given expression should sort as numeric values or as text.
**
** The sqliteExprResolveIds() and sqliteExprCheck() routines must have
** both been called on the expression before it is passed to this routine.
*/
int sqliteExprType(Expr *p){
if( p==0 ) return SQLITE_SO_NUM;
while( p ) switch( p->op ){
case TK_PLUS:
case TK_MINUS:
case TK_STAR:
case TK_SLASH:
case TK_AND:
case TK_OR:
case TK_ISNULL:
case TK_NOTNULL:
case TK_NOT:
case TK_UMINUS:
case TK_UPLUS:
case TK_BITAND:
case TK_BITOR:
case TK_BITNOT:
case TK_LSHIFT:
case TK_RSHIFT:
case TK_REM:
case TK_INTEGER:
case TK_FLOAT:
case TK_IN:
case TK_BETWEEN:
case TK_GLOB:
case TK_LIKE:
return SQLITE_SO_NUM;
case TK_STRING:
case TK_NULL:
case TK_CONCAT:
case TK_VARIABLE:
return SQLITE_SO_TEXT;
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ:
if( sqliteExprType(p->pLeft)==SQLITE_SO_NUM ){
return SQLITE_SO_NUM;
}
p = p->pRight;
break;
case TK_AS:
p = p->pLeft;
break;
case TK_COLUMN:
case TK_FUNCTION:
case TK_AGG_FUNCTION:
return p->dataType;
case TK_SELECT:
assert( p->pSelect );
assert( p->pSelect->pEList );
assert( p->pSelect->pEList->nExpr>0 );
p = p->pSelect->pEList->a[0].pExpr;
break;
case TK_CASE: {
if( p->pRight && sqliteExprType(p->pRight)==SQLITE_SO_NUM ){
return SQLITE_SO_NUM;
}
if( p->pList ){
int i;
ExprList *pList = p->pList;
for(i=1; i<pList->nExpr; i+=2){
if( sqliteExprType(pList->a[i].pExpr)==SQLITE_SO_NUM ){
return SQLITE_SO_NUM;
}
}
}
return SQLITE_SO_TEXT;
}
default:
assert( p->op==TK_ABORT ); /* Can't Happen */
break;
}
return SQLITE_SO_NUM;
}
/*
** Generate code into the current Vdbe to evaluate the given
** expression and leave the result on the top of stack.
*/
void sqliteExprCode(Parse *pParse, Expr *pExpr){
Vdbe *v = pParse->pVdbe;
int op;
if( v==0 || pExpr==0 ) return;
switch( pExpr->op ){
case TK_PLUS: op = OP_Add; break;
case TK_MINUS: op = OP_Subtract; break;
case TK_STAR: op = OP_Multiply; break;
case TK_SLASH: op = OP_Divide; break;
case TK_AND: op = OP_And; break;
case TK_OR: op = OP_Or; break;
case TK_LT: op = OP_Lt; break;
case TK_LE: op = OP_Le; break;
case TK_GT: op = OP_Gt; break;
case TK_GE: op = OP_Ge; break;
case TK_NE: op = OP_Ne; break;
case TK_EQ: op = OP_Eq; break;
case TK_ISNULL: op = OP_IsNull; break;
case TK_NOTNULL: op = OP_NotNull; break;
case TK_NOT: op = OP_Not; break;
case TK_UMINUS: op = OP_Negative; break;
case TK_BITAND: op = OP_BitAnd; break;
case TK_BITOR: op = OP_BitOr; break;
case TK_BITNOT: op = OP_BitNot; break;
case TK_LSHIFT: op = OP_ShiftLeft; break;
case TK_RSHIFT: op = OP_ShiftRight; break;
case TK_REM: op = OP_Remainder; break;
default: break;
}
switch( pExpr->op ){
case TK_COLUMN: {
if( pParse->useAgg ){
sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
}else if( pExpr->iColumn>=0 ){
sqliteVdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
}else{
sqliteVdbeAddOp(v, OP_Recno, pExpr->iTable, 0);
}
break;
}
case TK_STRING:
case TK_FLOAT:
case TK_INTEGER: {
if( pExpr->op==TK_INTEGER && sqliteFitsIn32Bits(pExpr->token.z) ){
sqliteVdbeAddOp(v, OP_Integer, atoi(pExpr->token.z), 0);
}else{
sqliteVdbeAddOp(v, OP_String, 0, 0);
}
assert( pExpr->token.z );
sqliteVdbeChangeP3(v, -1, pExpr->token.z, pExpr->token.n);
sqliteVdbeDequoteP3(v, -1);
break;
}
case TK_NULL: {
sqliteVdbeAddOp(v, OP_String, 0, 0);
break;
}
case TK_VARIABLE: {
sqliteVdbeAddOp(v, OP_Variable, pExpr->iTable, 0);
break;
}
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ: {
if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
op += 6; /* Convert numeric opcodes to text opcodes */
}
/* Fall through into the next case */
}
case TK_AND:
case TK_OR:
case TK_PLUS:
case TK_STAR:
case TK_MINUS:
case TK_REM:
case TK_BITAND:
case TK_BITOR:
case TK_SLASH: {
sqliteExprCode(pParse, pExpr->pLeft);
sqliteExprCode(pParse, pExpr->pRight);
sqliteVdbeAddOp(v, op, 0, 0);
break;
}
case TK_LSHIFT:
case TK_RSHIFT: {
sqliteExprCode(pParse, pExpr->pRight);
sqliteExprCode(pParse, pExpr->pLeft);
sqliteVdbeAddOp(v, op, 0, 0);
break;
}
case TK_CONCAT: {
sqliteExprCode(pParse, pExpr->pLeft);
sqliteExprCode(pParse, pExpr->pRight);
sqliteVdbeAddOp(v, OP_Concat, 2, 0);
break;
}
case TK_UMINUS: {
assert( pExpr->pLeft );
if( pExpr->pLeft->op==TK_FLOAT || pExpr->pLeft->op==TK_INTEGER ){
Token *p = &pExpr->pLeft->token;
char *z = sqliteMalloc( p->n + 2 );
sprintf(z, "-%.*s", p->n, p->z);
if( pExpr->pLeft->op==TK_INTEGER && sqliteFitsIn32Bits(z) ){
sqliteVdbeAddOp(v, OP_Integer, atoi(z), 0);
}else{
sqliteVdbeAddOp(v, OP_String, 0, 0);
}
sqliteVdbeChangeP3(v, -1, z, p->n+1);
sqliteFree(z);
break;
}
/* Fall through into TK_NOT */
}
case TK_BITNOT:
case TK_NOT: {
sqliteExprCode(pParse, pExpr->pLeft);
sqliteVdbeAddOp(v, op, 0, 0);
break;
}
case TK_ISNULL:
case TK_NOTNULL: {
int dest;
sqliteVdbeAddOp(v, OP_Integer, 1, 0);
sqliteExprCode(pParse, pExpr->pLeft);
dest = sqliteVdbeCurrentAddr(v) + 2;
sqliteVdbeAddOp(v, op, 1, dest);
sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
break;
}
case TK_AGG_FUNCTION: {
sqliteVdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
break;
}
case TK_GLOB:
case TK_LIKE:
case TK_FUNCTION: {
ExprList *pList = pExpr->pList;
int nExpr = pList ? pList->nExpr : 0;
FuncDef *pDef;
int nId;
const char *zId;
getFunctionName(pExpr, &zId, &nId);
pDef = sqliteFindFunction(pParse->db, zId, nId, nExpr, 0);
assert( pDef!=0 );
nExpr = sqliteExprCodeExprList(pParse, pList, pDef->includeTypes);
sqliteVdbeOp3(v, OP_Function, nExpr, 0, (char*)pDef, P3_POINTER);
break;
}
case TK_SELECT: {
sqliteVdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
break;
}
case TK_IN: {
int addr;
sqliteVdbeAddOp(v, OP_Integer, 1, 0);
sqliteExprCode(pParse, pExpr->pLeft);
addr = sqliteVdbeCurrentAddr(v);
sqliteVdbeAddOp(v, OP_NotNull, -1, addr+4);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, addr+6);
if( pExpr->pSelect ){
sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, addr+6);
}else{
sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, addr+6);
}
sqliteVdbeAddOp(v, OP_AddImm, -1, 0);
break;
}
case TK_BETWEEN: {
sqliteExprCode(pParse, pExpr->pLeft);
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
sqliteVdbeAddOp(v, OP_Ge, 0, 0);
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
sqliteVdbeAddOp(v, OP_Le, 0, 0);
sqliteVdbeAddOp(v, OP_And, 0, 0);
break;
}
case TK_UPLUS:
case TK_AS: {
sqliteExprCode(pParse, pExpr->pLeft);
break;
}
case TK_CASE: {
int expr_end_label;
int jumpInst;
int addr;
int nExpr;
int i;
assert(pExpr->pList);
assert((pExpr->pList->nExpr % 2) == 0);
assert(pExpr->pList->nExpr > 0);
nExpr = pExpr->pList->nExpr;
expr_end_label = sqliteVdbeMakeLabel(v);
if( pExpr->pLeft ){
sqliteExprCode(pParse, pExpr->pLeft);
}
for(i=0; i<nExpr; i=i+2){
sqliteExprCode(pParse, pExpr->pList->a[i].pExpr);
if( pExpr->pLeft ){
sqliteVdbeAddOp(v, OP_Dup, 1, 1);
jumpInst = sqliteVdbeAddOp(v, OP_Ne, 1, 0);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
}else{
jumpInst = sqliteVdbeAddOp(v, OP_IfNot, 1, 0);
}
sqliteExprCode(pParse, pExpr->pList->a[i+1].pExpr);
sqliteVdbeAddOp(v, OP_Goto, 0, expr_end_label);
addr = sqliteVdbeCurrentAddr(v);
sqliteVdbeChangeP2(v, jumpInst, addr);
}
if( pExpr->pLeft ){
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
}
if( pExpr->pRight ){
sqliteExprCode(pParse, pExpr->pRight);
}else{
sqliteVdbeAddOp(v, OP_String, 0, 0);
}
sqliteVdbeResolveLabel(v, expr_end_label);
break;
}
case TK_RAISE: {
if( !pParse->trigStack ){
sqliteErrorMsg(pParse,
"RAISE() may only be used within a trigger-program");
pParse->nErr++;
return;
}
if( pExpr->iColumn == OE_Rollback ||
pExpr->iColumn == OE_Abort ||
pExpr->iColumn == OE_Fail ){
sqliteVdbeOp3(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn,
pExpr->token.z, pExpr->token.n);
sqliteVdbeDequoteP3(v, -1);
} else {
assert( pExpr->iColumn == OE_Ignore );
sqliteVdbeOp3(v, OP_Goto, 0, pParse->trigStack->ignoreJump,
"(IGNORE jump)", 0);
}
}
break;
}
}
/*
** Generate code that pushes the value of every element of the given
** expression list onto the stack. If the includeTypes flag is true,
** then also push a string that is the datatype of each element onto
** the stack after the value.
**
** Return the number of elements pushed onto the stack.
*/
int sqliteExprCodeExprList(
Parse *pParse, /* Parsing context */
ExprList *pList, /* The expression list to be coded */
int includeTypes /* TRUE to put datatypes on the stack too */
){
struct ExprList_item *pItem;
int i, n;
Vdbe *v;
if( pList==0 ) return 0;
v = sqliteGetVdbe(pParse);
n = pList->nExpr;
for(pItem=pList->a, i=0; i<n; i++, pItem++){
sqliteExprCode(pParse, pItem->pExpr);
if( includeTypes ){
sqliteVdbeOp3(v, OP_String, 0, 0,
sqliteExprType(pItem->pExpr)==SQLITE_SO_NUM ? "numeric" : "text",
P3_STATIC);
}
}
return includeTypes ? n*2 : n;
}
/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is true but execution
** continues straight thru if the expression is false.
**
** If the expression evaluates to NULL (neither true nor false), then
** take the jump if the jumpIfNull flag is true.
*/
void sqliteExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
Vdbe *v = pParse->pVdbe;
int op = 0;
if( v==0 || pExpr==0 ) return;
switch( pExpr->op ){
case TK_LT: op = OP_Lt; break;
case TK_LE: op = OP_Le; break;
case TK_GT: op = OP_Gt; break;
case TK_GE: op = OP_Ge; break;
case TK_NE: op = OP_Ne; break;
case TK_EQ: op = OP_Eq; break;
case TK_ISNULL: op = OP_IsNull; break;
case TK_NOTNULL: op = OP_NotNull; break;
default: break;
}
switch( pExpr->op ){
case TK_AND: {
int d2 = sqliteVdbeMakeLabel(v);
sqliteExprIfFalse(pParse, pExpr->pLeft, d2, !jumpIfNull);
sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
sqliteVdbeResolveLabel(v, d2);
break;
}
case TK_OR: {
sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
sqliteExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
break;
}
case TK_NOT: {
sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
break;
}
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ: {
sqliteExprCode(pParse, pExpr->pLeft);
sqliteExprCode(pParse, pExpr->pRight);
if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
op += 6; /* Convert numeric opcodes to text opcodes */
}
sqliteVdbeAddOp(v, op, jumpIfNull, dest);
break;
}
case TK_ISNULL:
case TK_NOTNULL: {
sqliteExprCode(pParse, pExpr->pLeft);
sqliteVdbeAddOp(v, op, 1, dest);
break;
}
case TK_IN: {
int addr;
sqliteExprCode(pParse, pExpr->pLeft);
addr = sqliteVdbeCurrentAddr(v);
sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
if( pExpr->pSelect ){
sqliteVdbeAddOp(v, OP_Found, pExpr->iTable, dest);
}else{
sqliteVdbeAddOp(v, OP_SetFound, pExpr->iTable, dest);
}
break;
}
case TK_BETWEEN: {
int addr;
sqliteExprCode(pParse, pExpr->pLeft);
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
addr = sqliteVdbeAddOp(v, OP_Lt, !jumpIfNull, 0);
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
sqliteVdbeAddOp(v, OP_Le, jumpIfNull, dest);
sqliteVdbeAddOp(v, OP_Integer, 0, 0);
sqliteVdbeChangeP2(v, addr, sqliteVdbeCurrentAddr(v));
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
break;
}
default: {
sqliteExprCode(pParse, pExpr);
sqliteVdbeAddOp(v, OP_If, jumpIfNull, dest);
break;
}
}
}
/*
** Generate code for a boolean expression such that a jump is made
** to the label "dest" if the expression is false but execution
** continues straight thru if the expression is true.
**
** If the expression evaluates to NULL (neither true nor false) then
** jump if jumpIfNull is true or fall through if jumpIfNull is false.
*/
void sqliteExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
Vdbe *v = pParse->pVdbe;
int op = 0;
if( v==0 || pExpr==0 ) return;
switch( pExpr->op ){
case TK_LT: op = OP_Ge; break;
case TK_LE: op = OP_Gt; break;
case TK_GT: op = OP_Le; break;
case TK_GE: op = OP_Lt; break;
case TK_NE: op = OP_Eq; break;
case TK_EQ: op = OP_Ne; break;
case TK_ISNULL: op = OP_NotNull; break;
case TK_NOTNULL: op = OP_IsNull; break;
default: break;
}
switch( pExpr->op ){
case TK_AND: {
sqliteExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
break;
}
case TK_OR: {
int d2 = sqliteVdbeMakeLabel(v);
sqliteExprIfTrue(pParse, pExpr->pLeft, d2, !jumpIfNull);
sqliteExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
sqliteVdbeResolveLabel(v, d2);
break;
}
case TK_NOT: {
sqliteExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
break;
}
case TK_LT:
case TK_LE:
case TK_GT:
case TK_GE:
case TK_NE:
case TK_EQ: {
if( pParse->db->file_format>=4 && sqliteExprType(pExpr)==SQLITE_SO_TEXT ){
/* Convert numeric comparison opcodes into text comparison opcodes.
** This step depends on the fact that the text comparision opcodes are
** always 6 greater than their corresponding numeric comparison
** opcodes.
*/
assert( OP_Eq+6 == OP_StrEq );
op += 6;
}
sqliteExprCode(pParse, pExpr->pLeft);
sqliteExprCode(pParse, pExpr->pRight);
sqliteVdbeAddOp(v, op, jumpIfNull, dest);
break;
}
case TK_ISNULL:
case TK_NOTNULL: {
sqliteExprCode(pParse, pExpr->pLeft);
sqliteVdbeAddOp(v, op, 1, dest);
break;
}
case TK_IN: {
int addr;
sqliteExprCode(pParse, pExpr->pLeft);
addr = sqliteVdbeCurrentAddr(v);
sqliteVdbeAddOp(v, OP_NotNull, -1, addr+3);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, jumpIfNull ? dest : addr+4);
if( pExpr->pSelect ){
sqliteVdbeAddOp(v, OP_NotFound, pExpr->iTable, dest);
}else{
sqliteVdbeAddOp(v, OP_SetNotFound, pExpr->iTable, dest);
}
break;
}
case TK_BETWEEN: {
int addr;
sqliteExprCode(pParse, pExpr->pLeft);
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
sqliteExprCode(pParse, pExpr->pList->a[0].pExpr);
addr = sqliteVdbeCurrentAddr(v);
sqliteVdbeAddOp(v, OP_Ge, !jumpIfNull, addr+3);
sqliteVdbeAddOp(v, OP_Pop, 1, 0);
sqliteVdbeAddOp(v, OP_Goto, 0, dest);
sqliteExprCode(pParse, pExpr->pList->a[1].pExpr);
sqliteVdbeAddOp(v, OP_Gt, jumpIfNull, dest);
break;
}
default: {
sqliteExprCode(pParse, pExpr);
sqliteVdbeAddOp(v, OP_IfNot, jumpIfNull, dest);
break;
}
}
}
/*
** Do a deep comparison of two expression trees. Return TRUE (non-zero)
** if they are identical and return FALSE if they differ in any way.
*/
int sqliteExprCompare(Expr *pA, Expr *pB){
int i;
if( pA==0 ){
return pB==0;
}else if( pB==0 ){
return 0;
}
if( pA->op!=pB->op ) return 0;
if( !sqliteExprCompare(pA->pLeft, pB->pLeft) ) return 0;
if( !sqliteExprCompare(pA->pRight, pB->pRight) ) return 0;
if( pA->pList ){
if( pB->pList==0 ) return 0;
if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
for(i=0; i<pA->pList->nExpr; i++){
if( !sqliteExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
return 0;
}
}
}else if( pB->pList ){
return 0;
}
if( pA->pSelect || pB->pSelect ) return 0;
if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
if( pA->token.z ){
if( pB->token.z==0 ) return 0;
if( pB->token.n!=pA->token.n ) return 0;
if( sqliteStrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
}
return 1;
}
/*
** Add a new element to the pParse->aAgg[] array and return its index.
*/
static int appendAggInfo(Parse *pParse){
if( (pParse->nAgg & 0x7)==0 ){
int amt = pParse->nAgg + 8;
AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
if( aAgg==0 ){
return -1;
}
pParse->aAgg = aAgg;
}
memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));
return pParse->nAgg++;
}
/*
** Analyze the given expression looking for aggregate functions and
** for variables that need to be added to the pParse->aAgg[] array.
** Make additional entries to the pParse->aAgg[] array as necessary.
**
** This routine should only be called after the expression has been
** analyzed by sqliteExprResolveIds() and sqliteExprCheck().
**
** If errors are seen, leave an error message in zErrMsg and return
** the number of errors.
*/
int sqliteExprAnalyzeAggregates(Parse *pParse, Expr *pExpr){
int i;
AggExpr *aAgg;
int nErr = 0;
if( pExpr==0 ) return 0;
switch( pExpr->op ){
case TK_COLUMN: {
aAgg = pParse->aAgg;
for(i=0; i<pParse->nAgg; i++){
if( aAgg[i].isAgg ) continue;
if( aAgg[i].pExpr->iTable==pExpr->iTable
&& aAgg[i].pExpr->iColumn==pExpr->iColumn ){
break;
}
}
if( i>=pParse->nAgg ){
i = appendAggInfo(pParse);
if( i<0 ) return 1;
pParse->aAgg[i].isAgg = 0;
pParse->aAgg[i].pExpr = pExpr;
}
pExpr->iAgg = i;
break;
}
case TK_AGG_FUNCTION: {
aAgg = pParse->aAgg;
for(i=0; i<pParse->nAgg; i++){
if( !aAgg[i].isAgg ) continue;
if( sqliteExprCompare(aAgg[i].pExpr, pExpr) ){
break;
}
}
if( i>=pParse->nAgg ){
i = appendAggInfo(pParse);
if( i<0 ) return 1;
pParse->aAgg[i].isAgg = 1;
pParse->aAgg[i].pExpr = pExpr;
pParse->aAgg[i].pFunc = sqliteFindFunction(pParse->db,
pExpr->token.z, pExpr->token.n,
pExpr->pList ? pExpr->pList->nExpr : 0, 0);
}
pExpr->iAgg = i;
break;
}
default: {
if( pExpr->pLeft ){
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pLeft);
}
if( nErr==0 && pExpr->pRight ){
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pRight);
}
if( nErr==0 && pExpr->pList ){
int n = pExpr->pList->nExpr;
int i;
for(i=0; nErr==0 && i<n; i++){
nErr = sqliteExprAnalyzeAggregates(pParse, pExpr->pList->a[i].pExpr);
}
}
break;
}
}
return nErr;
}
/*
** Locate a user function given a name and a number of arguments.
** Return a pointer to the FuncDef structure that defines that
** function, or return NULL if the function does not exist.
**
** If the createFlag argument is true, then a new (blank) FuncDef
** structure is created and liked into the "db" structure if a
** no matching function previously existed. When createFlag is true
** and the nArg parameter is -1, then only a function that accepts
** any number of arguments will be returned.
**
** If createFlag is false and nArg is -1, then the first valid
** function found is returned. A function is valid if either xFunc
** or xStep is non-zero.
*/
FuncDef *sqliteFindFunction(
sqlite *db, /* An open database */
const char *zName, /* Name of the function. Not null-terminated */
int nName, /* Number of characters in the name */
int nArg, /* Number of arguments. -1 means any number */
int createFlag /* Create new entry if true and does not otherwise exist */
){
FuncDef *pFirst, *p, *pMaybe;
pFirst = p = (FuncDef*)sqliteHashFind(&db->aFunc, zName, nName);
if( p && !createFlag && nArg<0 ){
while( p && p->xFunc==0 && p->xStep==0 ){ p = p->pNext; }
return p;
}
pMaybe = 0;
while( p && p->nArg!=nArg ){
if( p->nArg<0 && !createFlag && (p->xFunc || p->xStep) ) pMaybe = p;
p = p->pNext;
}
if( p && !createFlag && p->xFunc==0 && p->xStep==0 ){
return 0;
}
if( p==0 && pMaybe ){
assert( createFlag==0 );
return pMaybe;
}
if( p==0 && createFlag && (p = sqliteMalloc(sizeof(*p)))!=0 ){
p->nArg = nArg;
p->pNext = pFirst;
p->dataType = pFirst ? pFirst->dataType : SQLITE_NUMERIC;
sqliteHashInsert(&db->aFunc, zName, nName, (void*)p);
}
return p;
}
|