1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
|
/****************************************************************************
**
** Implementation of TQPointArray class
**
** Created : 940213
**
** Copyright (C) 1992-2008 Trolltech ASA. All rights reserved.
**
** This file is part of the kernel module of the TQt GUI Toolkit.
**
** This file may be used under the terms of the GNU General
** Public License versions 2.0 or 3.0 as published by the Free
** Software Foundation and appearing in the files LICENSE.GPL2
** and LICENSE.GPL3 included in the packaging of this file.
** Alternatively you may (at your option) use any later version
** of the GNU General Public License if such license has been
** publicly approved by Trolltech ASA (or its successors, if any)
** and the KDE Free TQt Foundation.
**
** Please review the following information to ensure GNU General
** Public Licensing requirements will be met:
** http://trolltech.com/products/qt/licenses/licensing/opensource/.
** If you are unsure which license is appropriate for your use, please
** review the following information:
** http://trolltech.com/products/qt/licenses/licensing/licensingoverview
** or contact the sales department at sales@trolltech.com.
**
** This file may be used under the terms of the Q Public License as
** defined by Trolltech ASA and appearing in the file LICENSE.TQPL
** included in the packaging of this file. Licensees holding valid TQt
** Commercial licenses may use this file in accordance with the TQt
** Commercial License Agreement provided with the Software.
**
** This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
** INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
** A PARTICULAR PURPOSE. Trolltech reserves all rights not granted
** herein.
**
**********************************************************************/
#include "ntqpointarray.h"
#include "ntqrect.h"
#include "ntqdatastream.h"
#include "ntqwmatrix.h"
#include <stdarg.h>
const double Q_PI = 3.14159265358979323846; // pi // one more useful comment
/*!
\class TQPointArray ntqpointarray.h
\brief The TQPointArray class provides an array of points.
\ingroup images
\ingroup graphics
\ingroup shared
A TQPointArray is an array of TQPoint objects. In addition to the
functions provided by TQMemArray, TQPointArray provides some
point-specific functions.
For convenient reading and writing of the point data use
setPoints(), putPoints(), point(), and setPoint().
For geometry operations use boundingRect() and translate(). There
is also the TQWMatrix::map() function for more general
transformations of TQPointArrays. You can also create arcs and
ellipses with makeArc() and makeEllipse().
Among others, TQPointArray is used by TQPainter::drawLineSegments(),
TQPainter::drawPolyline(), TQPainter::drawPolygon() and
TQPainter::drawCubicBezier().
Note that because this class is a TQMemArray, copying an array and
modifying the copy modifies the original as well, i.e. a shallow
copy. If you need a deep copy use copy() or detach(), for example:
\code
void drawGiraffe( const TQPointArray & r, TQPainter * p )
{
TQPointArray tmp = r;
tmp.detach();
// some code that modifies tmp
p->drawPoints( tmp );
}
\endcode
If you forget the tmp.detach(), the const array will be modified.
\sa TQPainter TQWMatrix TQMemArray
*/
/*****************************************************************************
TQPointArray member functions
*****************************************************************************/
/*!
\fn TQPointArray::TQPointArray()
Constructs a null point array.
\sa isNull()
*/
/*!
\fn TQPointArray::TQPointArray( int size )
Constructs a point array with room for \a size points. Makes a
null array if \a size == 0.
\sa resize(), isNull()
*/
/*!
\fn TQPointArray::TQPointArray( const TQPointArray &a )
Constructs a shallow copy of the point array \a a.
\sa copy() detach()
*/
/*!
Constructs a point array from the rectangle \a r.
If \a closed is FALSE, then the point array just contains the
following four points in the listed order: r.topLeft(),
r.topRight(), r.bottomRight() and r.bottomLeft().
If \a closed is TRUE, then a fifth point is set to r.topLeft().
*/
TQPointArray::TQPointArray( const TQRect &r, bool closed )
{
setPoints( 4, r.left(), r.top(),
r.right(), r.top(),
r.right(), r.bottom(),
r.left(), r.bottom() );
if ( closed ) {
resize( 5 );
setPoint( 4, r.left(), r.top() );
}
}
/*!
\internal
Constructs a point array with \a nPoints points, taken from the
\a points array.
Equivalent to setPoints(nPoints, points).
*/
TQPointArray::TQPointArray( int nPoints, const TQCOORD *points )
{
setPoints( nPoints, points );
}
/*!
\fn TQPointArray::~TQPointArray()
Destroys the point array.
*/
/*!
\fn TQPointArray &TQPointArray::operator=( const TQPointArray &a )
Assigns a shallow copy of \a a to this point array and returns a
reference to this point array.
Equivalent to assign(a).
\sa copy() detach()
*/
/*!
\fn TQPointArray TQPointArray::copy() const
Creates a deep copy of the array.
\sa detach()
*/
/*!
Translates all points in the array by \a (dx, dy).
*/
void TQPointArray::translate( int dx, int dy )
{
TQPoint *p = data();
int i = size();
TQPoint pt( dx, dy );
while ( i-- ) {
*p += pt;
p++;
}
}
/*!
Reads the coordinates of the point at position \a index within the
array and writes them into \a *x and \a *y.
*/
void TQPointArray::point( uint index, int *x, int *y ) const
{
TQPoint p = TQMemArray<TQPoint>::at( index );
if ( x )
*x = (int)p.x();
if ( y )
*y = (int)p.y();
}
/*!
\overload
Returns the point at position \a index within the array.
*/
TQPoint TQPointArray::point( uint index ) const
{ // #### index out of bounds
return TQMemArray<TQPoint>::at( index );
}
/*!
\fn void TQPointArray::setPoint( uint i, const TQPoint &p )
\overload
Sets the point at array index \a i to \a p.
*/
/*!
Sets the point at position \a index in the array to \a (x, y).
*/
void TQPointArray::setPoint( uint index, int x, int y )
{ // #### index out of bounds
TQMemArray<TQPoint>::at( index ) = TQPoint( x, y );
}
/*!
\internal
Resizes the array to \a nPoints and sets the points in the array to
the values taken from \a points.
Returns TRUE if successful, or FALSE if the array could not be
resized (normally due to lack of memory).
The example code creates an array with two points (1,2) and (3,4):
\code
static TQCOORD points[] = { 1,2, 3,4 };
TQPointArray a;
a.setPoints( 2, points );
\endcode
\sa resize(), putPoints()
*/
bool TQPointArray::setPoints( int nPoints, const TQCOORD *points )
{
if ( !resize(nPoints) )
return FALSE;
int i = 0;
while ( nPoints-- ) { // make array of points
setPoint( i++, *points, *(points+1) );
points++;
points++;
}
return TRUE;
}
/*!
\overload
Resizes the array to \a nPoints and sets the points in the array
to the values taken from the variable argument list.
Returns TRUE if successful, or FALSE if the array could not be
resized (typically due to lack of memory).
The example code creates an array with two points (1,2) and (3,4):
\code
TQPointArray a;
a.setPoints( 2, 1,2, 3,4 );
\endcode
The points are given as a sequence of integers, starting with \a
firstx then \a firsty, and so on.
\sa resize(), putPoints()
*/
bool TQPointArray::setPoints( int nPoints, int firstx, int firsty, ... )
{
va_list ap;
if ( !resize(nPoints) )
return FALSE;
setPoint( 0, firstx, firsty ); // set first point
int i = 1, x, y;
nPoints--;
va_start( ap, firsty );
while ( nPoints-- ) {
x = va_arg( ap, int );
y = va_arg( ap, int );
setPoint( i++, x, y );
}
va_end( ap );
return TRUE;
}
/*! \overload
\internal
Copies \a nPoints points from the \a points coord array into
this point array, and resizes the point array if
\c{index+nPoints} exceeds the size of the array.
Returns TRUE if successful, or FALSE if the array could not be
resized (typically due to lack of memory).
*/
bool TQPointArray::putPoints( int index, int nPoints, const TQCOORD *points )
{
if ( index + nPoints > (int)size() ) { // extend array
if ( !resize( index + nPoints ) )
return FALSE;
}
int i = index;
while ( nPoints-- ) { // make array of points
setPoint( i++, *points, *(points+1) );
points++;
points++;
}
return TRUE;
}
/*!
Copies \a nPoints points from the variable argument list into this
point array from position \a index, and resizes the point array if
\c{index+nPoints} exceeds the size of the array.
Returns TRUE if successful, or FALSE if the array could not be
resized (typically due to lack of memory).
The example code creates an array with three points (4,5), (6,7)
and (8,9), by expanding the array from 1 to 3 points:
\code
TQPointArray a( 1 );
a[0] = TQPoint( 4, 5 );
a.putPoints( 1, 2, 6,7, 8,9 ); // index == 1, points == 2
\endcode
This has the same result, but here putPoints overwrites rather
than extends:
\code
TQPointArray a( 3 );
a.putPoints( 0, 3, 4,5, 0,0, 8,9 );
a.putPoints( 1, 1, 6,7 );
\endcode
The points are given as a sequence of integers, starting with \a
firstx then \a firsty, and so on.
\sa resize()
*/
bool TQPointArray::putPoints( int index, int nPoints, int firstx, int firsty,
... )
{
va_list ap;
if ( index + nPoints > (int)size() ) { // extend array
if ( !resize(index + nPoints) )
return FALSE;
}
if ( nPoints <= 0 )
return TRUE;
setPoint( index, firstx, firsty ); // set first point
int i = index + 1, x, y;
nPoints--;
va_start( ap, firsty );
while ( nPoints-- ) {
x = va_arg( ap, int );
y = va_arg( ap, int );
setPoint( i++, x, y );
}
va_end( ap );
return TRUE;
}
/*!
\overload
This version of the function copies \a nPoints from \a from into
this array, starting at \a index in this array and \a fromIndex in
\a from. \a fromIndex is 0 by default.
\code
TQPointArray a;
a.putPoints( 0, 3, 1,2, 0,0, 5,6 );
// a is now the three-point array ( 1,2, 0,0, 5,6 );
TQPointArray b;
b.putPoints( 0, 3, 4,4, 5,5, 6,6 );
// b is now ( 4,4, 5,5, 6,6 );
a.putPoints( 2, 3, b );
// a is now ( 1,2, 0,0, 4,4, 5,5, 6,6 );
\endcode
*/
bool TQPointArray::putPoints( int index, int nPoints,
const TQPointArray & from, int fromIndex )
{
if ( index + nPoints > (int)size() ) { // extend array
if ( !resize(index + nPoints) )
return FALSE;
}
if ( nPoints <= 0 )
return TRUE;
int n = 0;
while( n < nPoints ) {
setPoint( index+n, from[fromIndex+n] );
n++;
}
return TRUE;
}
/*!
Returns the bounding rectangle of the points in the array, or
TQRect(0,0,0,0) if the array is empty.
*/
TQRect TQPointArray::boundingRect() const
{
if ( isEmpty() )
return TQRect( 0, 0, 0, 0 ); // null rectangle
TQPoint *pd = data();
int minx, maxx, miny, maxy;
minx = maxx = pd->x();
miny = maxy = pd->y();
pd++;
for ( int i=1; i<(int)size(); i++ ) { // find min+max x and y
if ( pd->x() < minx )
minx = pd->x();
else if ( pd->x() > maxx )
maxx = pd->x();
if ( pd->y() < miny )
miny = pd->y();
else if ( pd->y() > maxy )
maxy = pd->y();
pd++;
}
return TQRect( TQPoint(minx,miny), TQPoint(maxx,maxy) );
}
static inline int fix_angle( int a )
{
if ( a > 16*360 )
a %= 16*360;
else if ( a < -16*360 ) {
a = -( (-a) % (16*360) );
}
return a;
}
/*!
Sets the points of the array to those describing an arc of an
ellipse with size, width \a w by height \a h, and position (\a x,
\a y), starting from angle \a a1 and spanning by angle \a a2. The
resulting array has sufficient resolution for pixel accuracy (see
the overloaded function which takes an additional TQWMatrix
parameter).
Angles are specified in 16ths of a degree, i.e. a full circle
equals 5760 (16*360). Positive values mean counter-clockwise,
whereas negative values mean the clockwise direction. Zero degrees
is at the 3 o'clock position.
See the \link qcanvasellipse.html#anglediagram angle diagram\endlink.
*/
void TQPointArray::makeArc( int x, int y, int w, int h, int a1, int a2 )
{
#if !defined(QT_OLD_MAKEELLIPSE) && !defined(TQT_NO_TRANSFORMATIONS)
TQWMatrix unit;
makeArc(x,y,w,h,a1,a2,unit);
#else
a1 = fix_angle( a1 );
if ( a1 < 0 )
a1 += 16*360;
a2 = fix_angle( a2 );
int a3 = a2 > 0 ? a2 : -a2; // abs angle
makeEllipse( x, y, w, h );
int npts = a3*size()/(16*360); // # points in arc array
TQPointArray a(npts);
int i = a1*size()/(16*360);
int j = 0;
if ( a2 > 0 ) {
while ( npts-- ) {
if ( i >= (int)size() ) // wrap index
i = 0;
a.TQMemArray<TQPoint>::at( j++ ) = TQMemArray<TQPoint>::at( i++ );
}
} else {
while ( npts-- ) {
if ( i < 0 ) // wrap index
i = (int)size()-1;
a.TQMemArray<TQPoint>::at( j++ ) = TQMemArray<TQPoint>::at( i-- );
}
}
*this = a;
return;
#endif
}
#ifndef TQT_NO_TRANSFORMATIONS
// Based upon:
// parelarc.c from Graphics Gems III
// VanAken / Simar, "A Parametric Elliptical Arc Algorithm"
//
static void
qtr_elips(TQPointArray& a, int off, double dxP, double dyP, double dxQ, double dyQ, double dxK, double dyK, int m)
{
#define PIV2 102944 /* fixed point PI/2 */
#define TWOPI 411775 /* fixed point 2*PI */
#define HALF 32768 /* fixed point 1/2 */
int xP, yP, xQ, yQ, xK, yK;
xP = int(dxP * 65536.0); yP = int(dyP * 65536.0);
xQ = int(dxQ * 65536.0); yQ = int(dyQ * 65536.0);
xK = int(dxK * 65536.0); yK = int(dyK * 65536.0);
int i;
int vx, ux, vy, uy, xJ, yJ;
vx = xK - xQ; /* displacements from center */
ux = xK - xP;
vy = yK - yQ;
uy = yK - yP;
xJ = xP - vx + HALF; /* center of ellipse J */
yJ = yP - vy + HALF;
int r;
ux -= (r = ux >> (2*m + 3)); /* cancel 2nd-order error */
ux -= (r >>= (2*m + 4)); /* cancel 4th-order error */
ux -= r >> (2*m + 3); /* cancel 6th-order error */
ux += vx >> (m + 1); /* cancel 1st-order error */
uy -= (r = uy >> (2*m + 3)); /* cancel 2nd-order error */
uy -= (r >>= (2*m + 4)); /* cancel 4th-order error */
uy -= r >> (2*m + 3); /* cancel 6th-order error */
uy += vy >> (m + 1); /* cancel 1st-order error */
const int qn = a.size()/4;
for (i = 0; i < qn; i++) {
a[off+i] = TQPoint((xJ + vx) >> 16, (yJ + vy) >> 16);
ux -= vx >> m;
vx += ux >> m;
uy -= vy >> m;
vy += uy >> m;
}
#undef PIV2
#undef TWOPI
#undef HALF
}
/*!
\overload
Sets the points of the array to those describing an arc of an
ellipse with width \a w and height \a h and position (\a x, \a y),
starting from angle \a a1, and spanning angle by \a a2, and
transformed by the matrix \a xf. The resulting array has
sufficient resolution for pixel accuracy.
Angles are specified in 16ths of a degree, i.e. a full circle
equals 5760 (16*360). Positive values mean counter-clockwise,
whereas negative values mean the clockwise direction. Zero degrees
is at the 3 o'clock position.
See the \link qcanvasellipse.html#anglediagram angle diagram\endlink.
*/
void TQPointArray::makeArc( int x, int y, int w, int h,
int a1, int a2,
const TQWMatrix& xf )
{
#define PIV2 102944 /* fixed point PI/2 */
if ( --w < 0 || --h < 0 || !a2 ) {
resize( 0 );
return;
}
bool rev = a2 < 0;
if ( rev ) {
a1 += a2;
a2 = -a2;
}
a1 = fix_angle( a1 );
if ( a1 < 0 )
a1 += 16*360;
a2 = fix_angle( a2 );
bool arc = a1 != 0 || a2 != 360*16 || rev;
double xP, yP, xQ, yQ, xK, yK;
xf.map(x+w, y+h/2.0, &xP, &yP);
xf.map(x+w/2.0, y, &xQ, &yQ);
xf.map(x+w, y, &xK, &yK);
int m = 3;
int max;
int q = int(TQMAX(TQABS(xP-xQ),TQABS(yP-yQ)));
if ( arc )
q *= 2;
do {
m++;
max = 4*(1 + (PIV2 >> (16 - m)) );
} while (max < q && m < 16); // 16 limits memory usage on HUGE arcs
double inc = 1.0/(1<<m);
const int qn = (PIV2 >> (16 - m));
resize(qn*4);
qtr_elips(*this, 0, xP, yP, xQ, yQ, xK, yK, m);
xP = xQ; yP = yQ;
xf.map(x, y+h/2.0, &xQ, &yQ);
xf.map(x, y, &xK, &yK);
qtr_elips(*this, qn, xP, yP, xQ, yQ, xK, yK, m);
xP = xQ; yP = yQ;
xf.map(x+w/2.0, y+h, &xQ, &yQ);
xf.map(x, y+h, &xK, &yK);
qtr_elips(*this, qn*2, xP, yP, xQ, yQ, xK, yK, m);
xP = xQ; yP = yQ;
xf.map(x+w, y+h/2.0, &xQ, &yQ);
xf.map(x+w, y+h, &xK, &yK);
qtr_elips(*this, qn*3, xP, yP, xQ, yQ, xK, yK, m);
int n = size();
if ( arc ) {
double da1 = double(a1)*Q_PI / (360*8);
double da3 = double(a2+a1)*Q_PI / (360*8);
int i = int(da1/inc+0.5);
int l = int(da3/inc+0.5);
int k = (l-i)+1;
TQPointArray r(k);
int j = 0;
if ( rev ) {
while ( k-- )
r[j++] = at((i+k)%n);
} else {
while ( j < k ) {
r[j] = at((i+j)%n);
j++;
}
}
*this = r;
}
#undef PIV2
}
#endif // TQT_NO_TRANSFORMATIONS
/*!
Sets the points of the array to those describing an ellipse with
size, width \a w by height \a h, and position (\a x, \a y).
The returned array has sufficient resolution for use as pixels.
*/
void TQPointArray::makeEllipse( int x, int y, int w, int h )
{ // midpoint, 1/4 ellipse
#if !defined(QT_OLD_MAKEELLIPSE) && !defined(TQT_NO_TRANSFORMATIONS)
TQWMatrix unit;
makeArc(x,y,w,h,0,360*16,unit);
return;
#else
if ( w <= 0 || h <= 0 ) {
if ( w == 0 || h == 0 ) {
resize( 0 );
return;
}
if ( w < 0 ) { // negative width
w = -w;
x -= w;
}
if ( h < 0 ) { // negative height
h = -h;
y -= h;
}
}
int s = (w+h+2)/2; // max size of xx,yy array
int *px = new int[s]; // 1/4th of ellipse
int *py = new int[s];
int xx, yy, i=0;
double d1, d2;
double a2=(w/2)*(w/2), b2=(h/2)*(h/2);
xx = 0;
yy = int(h/2);
d1 = b2 - a2*(h/2) + 0.25*a2;
px[i] = xx;
py[i] = yy;
i++;
while ( a2*(yy-0.5) > b2*(xx+0.5) ) { // region 1
if ( d1 < 0 ) {
d1 = d1 + b2*(3.0+2*xx);
xx++;
} else {
d1 = d1 + b2*(3.0+2*xx) + 2.0*a2*(1-yy);
xx++;
yy--;
}
px[i] = xx;
py[i] = yy;
i++;
}
d2 = b2*(xx+0.5)*(xx+0.5) + a2*(yy-1)*(yy-1) - a2*b2;
while ( yy > 0 ) { // region 2
if ( d2 < 0 ) {
d2 = d2 + 2.0*b2*(xx+1) + a2*(3-2*yy);
xx++;
yy--;
} else {
d2 = d2 + a2*(3-2*yy);
yy--;
}
px[i] = xx;
py[i] = yy;
i++;
}
s = i;
resize( 4*s ); // make full point array
x += w/2;
y += h/2;
for ( i=0; i<s; i++ ) { // mirror
xx = px[i];
yy = py[i];
setPoint( s-i-1, x+xx, y-yy );
setPoint( s+i, x-xx, y-yy );
setPoint( 3*s-i-1, x-xx, y+yy );
setPoint( 3*s+i, x+xx, y+yy );
}
delete[] px;
delete[] py;
#endif
}
#ifndef TQT_NO_BEZIER
// Work functions for TQPointArray::cubicBezier()
static
void split(const double *p, double *l, double *r)
{
double tmpx;
double tmpy;
l[0] = p[0];
l[1] = p[1];
r[6] = p[6];
r[7] = p[7];
l[2] = (p[0]+ p[2])/2;
l[3] = (p[1]+ p[3])/2;
tmpx = (p[2]+ p[4])/2;
tmpy = (p[3]+ p[5])/2;
r[4] = (p[4]+ p[6])/2;
r[5] = (p[5]+ p[7])/2;
l[4] = (l[2]+ tmpx)/2;
l[5] = (l[3]+ tmpy)/2;
r[2] = (tmpx + r[4])/2;
r[3] = (tmpy + r[5])/2;
l[6] = (l[4]+ r[2])/2;
l[7] = (l[5]+ r[3])/2;
r[0] = l[6];
r[1] = l[7];
}
// Based on:
//
// A Fast 2D Point-On-Line Test
// by Alan Paeth
// from "Graphics Gems", Academic Press, 1990
static
int pnt_on_line( const int* p, const int* q, const int* t )
{
/*
* given a line through P:(px,py) Q:(qx,qy) and T:(tx,ty)
* return 0 if T is not on the line through <--P--Q-->
* 1 if T is on the open ray ending at P: <--P
* 2 if T is on the closed interior along: P--Q
* 3 if T is on the open ray beginning at Q: Q-->
*
* Example: consider the line P = (3,2), Q = (17,7). A plot
* of the test points T(x,y) (with 0 mapped onto '.') yields:
*
* 8| . . . . . . . . . . . . . . . . . 3 3
* Y 7| . . . . . . . . . . . . . . 2 2 Q 3 3 Q = 2
* 6| . . . . . . . . . . . 2 2 2 2 2 . . .
* a 5| . . . . . . . . 2 2 2 2 2 2 . . . . .
* x 4| . . . . . 2 2 2 2 2 2 . . . . . . . .
* i 3| . . . 2 2 2 2 2 . . . . . . . . . . .
* s 2| 1 1 P 2 2 . . . . . . . . . . . . . . P = 2
* 1| 1 1 . . . . . . . . . . . . . . . . .
* +--------------------------------------
* 1 2 3 4 5 X-axis 10 15 19
*
* Point-Line distance is normalized with the Infinity Norm
* avoiding square-root code and tightening the test vs the
* Manhattan Norm. All math is done on the field of integers.
* The latter replaces the initial ">= MAX(...)" test with
* "> (ABS(qx-px) + ABS(qy-py))" loosening both inequality
* and norm, yielding a broader target line for selection.
* The tightest test is employed here for best discrimination
* in merging collinear (to grid coordinates) vertex chains
* into a larger, spanning vectors within the Lemming editor.
*/
// if all points are coincident, return condition 2 (on line)
if(q[0]==p[0] && q[1]==p[1] && q[0]==t[0] && q[1]==t[1]) {
return 2;
}
if ( TQABS((q[1]-p[1])*(t[0]-p[0])-(t[1]-p[1])*(q[0]-p[0])) >=
(TQMAX(TQABS(q[0]-p[0]), TQABS(q[1]-p[1])))) return 0;
if (((q[0]<p[0])&&(p[0]<t[0])) || ((q[1]<p[1])&&(p[1]<t[1])))
return 1 ;
if (((t[0]<p[0])&&(p[0]<q[0])) || ((t[1]<p[1])&&(p[1]<q[1])))
return 1 ;
if (((p[0]<q[0])&&(q[0]<t[0])) || ((p[1]<q[1])&&(q[1]<t[1])))
return 3 ;
if (((t[0]<q[0])&&(q[0]<p[0])) || ((t[1]<q[1])&&(q[1]<p[1])))
return 3 ;
return 2 ;
}
static
void polygonizeTQBezier( double* acc, int& accsize, const double ctrl[],
int maxsize )
{
if ( accsize > maxsize / 2 )
{
// This never happens in practice.
if ( accsize >= maxsize-4 )
return;
// Running out of space - approximate by a line.
acc[accsize++] = ctrl[0];
acc[accsize++] = ctrl[1];
acc[accsize++] = ctrl[6];
acc[accsize++] = ctrl[7];
return;
}
//intersects:
double l[8];
double r[8];
split( ctrl, l, r);
// convert to integers for line condition check
int c0[2]; c0[0] = int(ctrl[0]); c0[1] = int(ctrl[1]);
int c1[2]; c1[0] = int(ctrl[2]); c1[1] = int(ctrl[3]);
int c2[2]; c2[0] = int(ctrl[4]); c2[1] = int(ctrl[5]);
int c3[2]; c3[0] = int(ctrl[6]); c3[1] = int(ctrl[7]);
// #### Duplication needed?
if ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1
&& TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1
&& TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 )
{
// Approximate by one line.
// Dont need to write last pt as it is the same as first pt
// on the next segment
acc[accsize++] = l[0];
acc[accsize++] = l[1];
return;
}
if ( ( pnt_on_line( c0, c3, c1 ) == 2 && pnt_on_line( c0, c3, c2 ) == 2 )
|| ( TQABS(c1[0]-c0[0]) <= 1 && TQABS(c1[1]-c0[1]) <= 1
&& TQABS(c2[0]-c0[0]) <= 1 && TQABS(c2[1]-c0[1]) <= 1
&& TQABS(c3[0]-c1[0]) <= 1 && TQABS(c3[1]-c0[1]) <= 1 ) )
{
// Approximate by one line.
// Dont need to write last pt as it is the same as first pt
// on the next segment
acc[accsize++] = l[0];
acc[accsize++] = l[1];
return;
}
// Too big and too curved - recusively subdivide.
polygonizeTQBezier( acc, accsize, l, maxsize );
polygonizeTQBezier( acc, accsize, r, maxsize );
}
/*!
Returns the Bezier points for the four control points in this
array.
*/
TQPointArray TQPointArray::cubicBezier() const
{
#ifdef USE_SIMPLE_QBEZIER_CODE
if ( size() != 4 ) {
#if defined(QT_CHECK_RANGE)
tqWarning( "TQPointArray::bezier: The array must have 4 control points" );
#endif
TQPointArray p;
return p;
}
int v;
float xvec[4];
float yvec[4];
for ( v=0; v<4; v++ ) { // store all x,y in xvec,yvec
int x, y;
point( v, &x, &y );
xvec[v] = (float)x;
yvec[v] = (float)y;
}
TQRect r = boundingRect();
int m = TQMAX(r.width(),r.height())/2;
m = TQMIN(m,30); // m = number of result points
if ( m < 2 ) // at least two points
m = 2;
TQPointArray p( m ); // p = Bezier point array
TQPointData *pd = p.data();
float x0 = xvec[0], y0 = yvec[0];
float dt = 1.0F/m;
float cx = 3.0F * (xvec[1] - x0);
float bx = 3.0F * (xvec[2] - xvec[1]) - cx;
float ax = xvec[3] - (x0 + cx + bx);
float cy = 3.0F * (yvec[1] - y0);
float by = 3.0F * (yvec[2] - yvec[1]) - cy;
float ay = yvec[3] - (y0 + cy + by);
float t = dt;
pd->rx() = (TQCOORD)xvec[0];
pd->ry() = (TQCOORD)yvec[0];
pd++;
m -= 2;
while ( m-- ) {
pd->rx() = (TQCOORD)tqRound( ((ax * t + bx) * t + cx) * t + x0 );
pd->ry() = (TQCOORD)tqRound( ((ay * t + by) * t + cy) * t + y0 );
pd++;
t += dt;
}
pd->rx() = (TQCOORD)xvec[3];
pd->ry() = (TQCOORD)yvec[3];
return p;
#else
if ( size() != 4 ) {
#if defined(QT_CHECK_RANGE)
tqWarning( "TQPointArray::bezier: The array must have 4 control points" );
#endif
TQPointArray pa;
return pa;
} else {
TQRect r = boundingRect();
int m = 4+2*TQMAX(r.width(),r.height());
double *p = new double[m];
double ctrl[8];
int i;
for (i=0; i<4; i++) {
ctrl[i*2] = at(i).x();
ctrl[i*2+1] = at(i).y();
}
int len=0;
polygonizeTQBezier( p, len, ctrl, m );
TQPointArray pa((len/2)+1); // one extra point for last point on line
int j=0;
for (i=0; j<len; i++) {
int x = tqRound(p[j++]);
int y = tqRound(p[j++]);
pa[i] = TQPoint(x,y);
}
// add last pt on the line, which will be at the last control pt
pa[(int)pa.size()-1] = at(3);
delete[] p;
return pa;
}
#endif
}
#endif //TQT_NO_BEZIER
/*****************************************************************************
TQPointArray stream functions
*****************************************************************************/
#ifndef TQT_NO_DATASTREAM
/*!
\relates TQPointArray
Writes the point array, \a a to the stream \a s and returns a
reference to the stream.
\sa \link datastreamformat.html Format of the TQDataStream operators \endlink
*/
TQDataStream &operator<<( TQDataStream &s, const TQPointArray &a )
{
uint i;
uint len = a.size();
s << len; // write size of array
for ( i=0; i<len; i++ ) // write each point
s << a.point( i );
return s;
}
/*!
\relates TQPointArray
Reads a point array, \a a from the stream \a s and returns a
reference to the stream.
\sa \link datastreamformat.html Format of the TQDataStream operators \endlink
*/
TQDataStream &operator>>( TQDataStream &s, TQPointArray &a )
{
uint i;
uint len;
s >> len; // read size of array
if ( !a.resize( len ) ) // no memory
return s;
TQPoint p;
for ( i=0; i<len; i++ ) { // read each point
s >> p;
a.setPoint( i, p );
}
return s;
}
#endif //TQT_NO_DATASTREAM
struct TQShortPoint { // Binary compatible with XPoint
short x, y;
};
uint TQPointArray::splen = 0;
void* TQPointArray::sp = 0; // Really a TQShortPoint*
/*!
\internal
Converts the point coords to short (16bit) size, compatible with
X11's XPoint structure. The pointer returned points to a static
array, so its contents will be overwritten the next time this
function is called.
*/
void* TQPointArray::shortPoints( int index, int nPoints ) const
{
if ( isNull() || !nPoints )
return 0;
TQPoint* p = data();
p += index;
uint i = nPoints < 0 ? size() : nPoints;
if ( splen < i ) {
if ( sp )
delete[] ((TQShortPoint*)sp);
sp = new TQShortPoint[i];
splen = i;
}
TQShortPoint* ps = (TQShortPoint*)sp;
while ( i-- ) {
ps->x = (short)p->x();
ps->y = (short)p->y();
p++;
ps++;
}
return sp;
}
/*!
\internal
Deallocates the internal buffer used by shortPoints().
*/
void TQPointArray::cleanBuffers()
{
if ( sp )
delete[] ((TQShortPoint*)sp);
sp = 0;
splen = 0;
}
|