1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
|
.TH "GSL-Functions" 3 "17 May 2002" "BEAST-0.4.1" "BEAST-0.4.1"
.SH NAME
GSL-Functions \- GSL Function Reference
.SH SYNOPSIS
\fBgsl_thread_wakeup\fP (\fIthread\fP);
.br
\fBgsl_thread_abort\fP (\fIthread\fP);
.br
\fBgsl_thread_queue_abort\fP (\fIthread\fP);
.br
\fBgsl_thread_aborted\fP ();
.br
\fBgsl_thread_sleep\fP (\fImax_msec\fP);
.br
\fBgsl_thread_awake_after\fP (\fItick_stamp\fP);
.br
\fBgsl_thread_awake_before\fP (\fItick_stamp\fP);
.br
\fBgsl_tick_stamp\fP ();
.br
\fBgsl_data_find_block\fP (\fIhandle\fP, \fIn_values\fP, \fIvalues\fP, \fIepsilon\fP);
.br
\fBgsl_module_tick_stamp\fP (\fImodule\fP);
.br
\fBgsl_job_integrate\fP (\fImodule\fP);
.br
\fBgsl_job_discard\fP (\fImodule\fP);
.br
\fBgsl_job_connect\fP (\fIsrc_module\fP, \fIsrc_ostream\fP, \fIdest_module\fP, \fIdest_istream\fP);
.br
\fBgsl_job_disconnect\fP (\fIdest_module\fP, \fIdest_istream\fP);
.br
\fBGslAccessFunc\fP (\fImodule\fP, \fIdata\fP);
.br
\fBgsl_job_access\fP (\fImodule\fP, \fIaccess_func\fP, \fIdata\fP, \fIfree_func\fP);
.br
\fBgsl_flow_job_access\fP (\fImodule\fP, \fItick_stamp\fP, \fIaccess_func\fP, \fIdata\fP, \fIfree_func\fP);
.br
\fBGslPollFunc\fP (\fIdata\fP, \fIn_values\fP, \fItimeout_p\fP, \fIn_fds\fP, \fIfds\fP, \fIrevents_filled\fP);
.br
\fBgsl_job_add_poll\fP (\fIpoll_func\fP, \fIdata\fP, \fIfree_func\fP, \fIn_fds\fP, \fIfds\fP);
.br
\fBgsl_job_remove_poll\fP (\fIpoll_func\fP, \fIdata\fP);
.br
\fBgsl_job_debug\fP (\fIdebug\fP);
.br
\fBgsl_trans_open\fP ();
.br
\fBgsl_trans_add\fP (\fItrans\fP, \fIjob\fP);
.br
\fBgsl_trans_commit\fP (\fItrans\fP);
.br
\fBgsl_trans_dismiss\fP (\fItrans\fP);
.br
\fBgsl_transact\fP (\fIjob\fP, \fI...\fP);
.br
\fBgsl_engine_init\fP (\fIrun_threaded\fP, \fIblock_size\fP, \fIsample_freq\fP, \fIsub_sample_tqmask\fP);
.br
\fBgsl_engine_wait_on_trans\fP ();
.br
\fBgsl_power2_fftac\fP (\fIn_values\fP, \fIri_values_in\fP, \fIri_values_out\fP);
.br
\fBgsl_power2_fftsc\fP (\fIn_values\fP, \fIri_values_in\fP, \fIri_values_out\fP);
.br
\fBgsl_power2_fftar\fP (\fIn_values\fP, \fIr_values_in\fP, \fIri_values_out\fP);
.br
\fBgsl_power2_fftsr\fP (\fIn_values\fP, \fIri_values_in\fP, \fIr_values_out\fP);
.br
\fBgsl_filter_tscheb2_steepness_db\fP (\fIiorder\fP, \fIc_freq\fP, \fIepsilon\fP, \fIstopband_db\fP);
.br
\fBgsl_filter_tscheb2_steepness\fP (\fIiorder\fP, \fIc_freq\fP, \fIepsilon\fP, \fIresidue\fP);
.br
\fBgsl_filter_butter_lp\fP (\fIiorder\fP, \fIfreq\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_tscheb1_lp\fP (\fIiorder\fP, \fIfreq\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_tscheb2_lp\fP (\fIiorder\fP, \fIfreq\fP, \fIsteepness\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_butter_hp\fP (\fIiorder\fP, \fIfreq\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_tscheb1_hp\fP (\fIiorder\fP, \fIfreq\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_tscheb2_hp\fP (\fIiorder\fP, \fIfreq\fP, \fIsteepness\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_butter_bp\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_tscheb1_bp\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_tscheb2_bp\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIsteepness\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_butter_bs\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_tscheb1_bs\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_tscheb2_bs\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIsteepness\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.br
\fBgsl_filter_fir_approx\fP (\fIiorder\fP, \fIfreq\fP, \fIvalue\fP);
.br
\fBgsl_filter_sine_scan\fP (\fIorder\fP, \fIa\fP, \fIb\fP, \fIfreq\fP, \fIn_values\fP);
.br
\fBgsl_engine_garbage_collect\fP ();
.br
\fBgsl_signal_exp2\fP ();
.br
\fBgsl_approx_exp2\fP (\fIex\fP);
.br
\fBgsl_approx_atan1\fP (\fIx\fP);
.br
\fBgsl_approx_atan1_prescale\fP (\fIboost_amount\fP);
.br
\fBgsl_approx_qcircle1\fP (\fIx\fP);
.br
\fBgsl_approx_qcircle2\fP (\fIx\fP);
.br
\fBgsl_approx_qcircle3\fP (\fIx\fP);
.br
\fBgsl_approx_qcircle4\fP (\fIx\fP);
.br
.SH DESCRIPTION
.SS \fBgsl_thread_wakeup\fP (\fIthread\fP);
.PD 0
.IP \fIGslThread*\ thread\fP 19
thread to wake up
.PD 1
.PP
Wake up a currently sleeping thread. In practice, this function simply causes the next call to \fBgsl_thread_sleep()\fP within \fIthread\fP to last for 0 seconds.
.PD
.SS \fBgsl_thread_abort\fP (\fIthread\fP);
.PD 0
.IP \fIGslThread*\ thread\fP 19
thread to abort
.PD 1
.PP
Abort a currently running thread. This function does not return until the thread in question terminated execution. Note that the thread handle gets invalidated with invocation of \fBgsl_thread_abort()\fP or \fBgsl_thread_queue_abort()\fP.
.PD
.SS \fBgsl_thread_queue_abort\fP (\fIthread\fP);
.PD 0
.IP \fIGslThread*\ thread\fP 19
thread to abort
.PD 1
.PP
Same as \fBgsl_thread_abort()\fP, but returns as soon as possible, even if thread hasn't stopped execution yet. Note that the thread handle gets invalidated with invocation of \fBgsl_thread_abort()\fP or \fBgsl_thread_queue_abort()\fP.
.PD
.SS \fBgsl_thread_aborted\fP ();
.PD 0
.IP \fIRETURNS:\fP 11
\fITRUE\fP if the thread should abort execution
.PD 1
.PP
Find out if the currently running thread should be aborted (the thread is supposed to return from its main thread function).
.PD
.SS \fBgsl_thread_sleep\fP (\fImax_msec\fP);
.PD 0
.IP \fIglong\ \ max_msec\fP 17
maximum amount of milli seconds to sleep (-1 for infinite time)
.IP \fIRETURNS:\fP 17
\fITRUE\fP if the thread should continue execution
.PD 1
.PP
Sleep for the amount of time given. This function may get interrupted by wakeup or abort requests, it returns whether the thread is supposed to continue execution after waking up.
.PD
.SS \fBgsl_thread_awake_after\fP (\fItick_stamp\fP);
.PD 0
.IP \fIguint64\ \ tick_stamp\fP 21
tick stamp update to trigger wakeup
.PD 1
.PP
Wakeup the currently running thread after the global tick stamp (see \fBgsl_tick_stamp()\fP) has been updated to \fItick_stamp\fP. (If the moment of wakeup has already passed by, the thread is woken up at the next global tick stamp update.)
.PD
.SS \fBgsl_thread_awake_before\fP (\fItick_stamp\fP);
.PD 0
.IP \fIguint64\ \ tick_stamp\fP 21
tick stamp update to trigger wakeup
.PD 1
.PP
Wakeup the currently running thread upon the last global tick stamp update (see \fBgsl_tick_stamp()\fP) that happens prior to updating the global tick stamp to \fItick_stamp\fP. (If the moment of wakeup has already passed by, the thread is woken up at the next global tick stamp update.)
.PD
.SS \fBgsl_tick_stamp\fP ();
.PD 0
.IP \fIRETURNS:\fP 11
GSL's execution tick stamp as unsigned 64bit integer
.PD 1
.PP
Retrive the GSL global tick stamp. GSL increments its global tick stamp at certain intervals, by specific amounts (refer to \fBgsl_engine_init()\fP for further details). The tick stamp is a non-wrapping, unsigned 64bit integer greater than 0. Threads can schedule sleep interruptions at certain tick stamps with \fBgsl_thread_awake_after()\fP and \fBgsl_thread_awake_before()\fP. Tick stamp updating occours at GSL engine block processing boundaries, so code that can guarantee to not run across those boundaries (for instance \fBGslProcessFunc()\fP functions) may use the macro \fIGSL_TICK_STAMP\fP to retrive the current tick in a faster manner (not involving mutex locking). See also \fBgsl_module_tick_stamp()\fP.
.PD
.SS \fBgsl_data_find_block\fP (\fIhandle\fP, \fIn_values\fP, \fIvalues\fP, \fIepsilon\fP);
.PD 0
.IP \fIGslDataHandle*\ handle\fP 25
an open GslDataHandle
.IP \fIguint\ \ \ \ \ \ \ \ \ \ n_values\fP 25
amount of values to look for
.IP \fIconst\ gfloat*\ \ values\fP 25
values to find
.IP \fIgfloat\ \ \ \ \ \ \ \ \ epsilon\fP 25
maximum difference upon comparisions
.IP \fIRETURNS:\fP 25
position of values in data handle or -1
.PD 1
.PP
Find the position of a block of values within a data handle, where all values compare to the reference values with a delta smaller than epsilon.
.PD
.SS \fBgsl_module_tick_stamp\fP (\fImodule\fP);
.PD 0
.IP \fIGslModule*\ module\fP 19
a GSL engine module
.IP \fIRETURNS:\fP 19
the module's tick stamp, indicating its process status
.PD 1
.PP
Any thread may call this function on a valid engine module. The module specific tick stamp is updated to \fBgsl_tick_stamp()\fP + \fIn_values\fP every time its \fBGslProcessFunc()\fP function was called. See also \fBgsl_tick_stamp()\fP.
.PD
.SS \fBgsl_job_integrate\fP (\fImodule\fP);
.PD 0
.IP \fIGslModule*\ module\fP 19
The module to integrate
.IP \fIRETURNS:\fP 19
New job suitable for \fBgsl_trans_add()\fP
.PD 1
.PP
Create a new transaction job to integrate \fImodule\fP into the engine.
.PD
.SS \fBgsl_job_discard\fP (\fImodule\fP);
.PD 0
.IP \fIGslModule*\ module\fP 19
The module to discard
.IP \fIRETURNS:\fP 19
New job suitable for \fBgsl_trans_add()\fP
.PD 1
.PP
Create a new transaction job which removes \fImodule\fP from the engine and destroys it.
.PD
.SS \fBgsl_job_connect\fP (\fIsrc_module\fP, \fIsrc_ostream\fP, \fIdest_module\fP, \fIdest_istream\fP);
.PD 0
.IP \fIGslModule*\ src_module\fP 25
Module with output stream
.IP \fIguint\ \ \ \ \ \ src_ostream\fP 25
Index of output stream of \fIsrc_module\fP
.IP \fIGslModule*\ dest_module\fP 25
Module with unconnected input stream
.IP \fIguint\ \ \ \ \ \ dest_istream\fP 25
Index of input stream of \fIdest_module\fP
.IP \fIRETURNS:\fP 25
New job suitable for \fBgsl_trans_add()\fP
.PD 1
.PP
Create a new transaction job which connects the ouput stream \fIsrc_ostream\fP of module \fIsrc_module\fP to the input stream \fIdest_istream\fP of module \fIdest_module\fP (it is an error if the input stream is already connected by the time the job is executed).
.PD
.SS \fBgsl_job_disconnect\fP (\fIdest_module\fP, \fIdest_istream\fP);
.PD 0
.IP \fIGslModule*\ dest_module\fP 25
Module with connected input stream
.IP \fIguint\ \ \ \ \ \ dest_istream\fP 25
Index of input stream of \fIdest_module\fP
.IP \fIRETURNS:\fP 25
New job suitable for \fBgsl_trans_add()\fP
.PD 1
.PP
Create a new transaction job which causes the input stream \fIdest_istream\fP of \fIdest_module\fP to be disconnected (it is an error if the input stream isn't connected by the time the job is executed).
.PD
.SS \fBGslAccessFunc\fP (\fImodule\fP, \fIdata\fP);
.PD 0
.IP \fI\ module\fP 9
Module to operate on
.IP \fI\ data\fP 9
Accessor data
.PD 1
.PP
The GslAccessFunc is a user supplied callback function which can access a module in times it is not processing. Accessors are usually used to either read out a module's current state, or to modify its state. An accessor may only operate on the \fIdata\fP and the \fImodule\fP passed in to it.
.PD
.SS \fBgsl_job_access\fP (\fImodule\fP, \fIaccess_func\fP, \fIdata\fP, \fIfree_func\fP);
.PD 0
.IP \fIGslModule*\ \ \ \ \ module\fP 28
The module to access
.IP \fIGslAccessFunc\ \ access_func\fP 28
The accessor function
.IP \fIgpointer\ \ \ \ \ \ \ data\fP 28
Data passed in to the accessor
.IP \fIGslFreeFunc\ \ \ \ free_func\fP 28
Function to free \fIdata\fP
.IP \fIRETURNS:\fP 28
New job suitable for \fBgsl_trans_add()\fP
.PD 1
.PP
Create a new transaction job which will invoke \fIaccess_func\fP on \fImodule\fP with \fIdata\fP when the transaction queue is processed to modify the module's state.
.PD
.SS \fBgsl_flow_job_access\fP (\fImodule\fP, \fItick_stamp\fP, \fIaccess_func\fP, \fIdata\fP, \fIfree_func\fP);
.PD 0
.IP \fIGslModule*\ \ \ \ \ module\fP 28
.IP \fIguint64\ \ \ \ \ \ \ \ tick_stamp\fP 28
.IP \fIGslAccessFunc\ \ access_func\fP 28
.IP \fIgpointer\ \ \ \ \ \ \ data\fP 28
.IP \fIGslFreeFunc\ \ \ \ free_func\fP 28
.PD 1
.PP
.PD
.SS \fBGslPollFunc\fP (\fIdata\fP, \fIn_values\fP, \fItimeout_p\fP, \fIn_fds\fP, \fIfds\fP, \fIrevents_filled\fP);
.PD 0
.IP \fI\ data\fP 17
Data of poll function
.IP \fI\ n_values\fP 17
Minimum number of values the engine wants to process
.IP \fI\ timeout_p\fP 17
Location of timeout value
.IP \fI\ n_fds\fP 17
Number of file descriptors used for polling
.IP \fI\ fds\fP 17
File descriptors to be used for polling
.IP \fI\ revents_filled\fP 17
Indicates whether \fIfds\fP actually have their ->revents field filled with valid data.
.IP \fIRETURNS:\fP 17
A boolean value indicating whether the engine should process data right now
.PD 1
.PP
The GslPollFunc is a user supplied callback function which can be hooked into the GSL engine. The engine uses the poll functions to determine whether processing of \fIn_values\fP in its module network is necessary. In order for the poll functions to react to extern events, such as device driver status changes, the engine will \fBpoll(2)\fP the \fIfds\fP of the poll function and invoke the callback with \fIrevents_filled\fP==\fITRUE\fP if any of its \fIfds\fP changed state. The callback may also be invoked at other random times with \fIrevents_filled\fP=\fIFALSE\fP. It is supposed to return \fITRUE\fP if network processing is currently necessary, and \fIFALSE\fP if not. If \fIFALSE\fP is returned, \fItimeout_p\fP may be filled with the number of milliseconds the engine should use for polling at maximum.
.PD
.SS \fBgsl_job_add_poll\fP (\fIpoll_func\fP, \fIdata\fP, \fIfree_func\fP, \fIn_fds\fP, \fIfds\fP);
.PD 0
.IP \fIGslPollFunc\ \ \ \ \ \ poll_func\fP 28
Poll function to add
.IP \fIgpointer\ \ \ \ \ \ \ \ \ data\fP 28
Data of poll function
.IP \fIGslFreeFunc\ \ \ \ \ \ free_func\fP 28
Function to free \fIdata\fP
.IP \fIguint\ \ \ \ \ \ \ \ \ \ \ \ n_fds\fP 28
Number of poll file descriptors
.IP \fIconst\ GslPollFD*\ fds\fP 28
File descriptors to \fBselect(2)\fP or \fBpoll(2)\fP on
.IP \fIRETURNS:\fP 28
New job suitable for \fBgsl_trans_add()\fP
.PD 1
.PP
Create a new transaction job which adds a poll function to the engine. The poll function is used by the engine to determine whether processing is currently necessary.
.PD
.SS \fBgsl_job_remove_poll\fP (\fIpoll_func\fP, \fIdata\fP);
.PD 0
.IP \fIGslPollFunc\ \ poll_func\fP 24
Poll function to remove
.IP \fIgpointer\ \ \ \ \ data\fP 24
Data of poll function
.IP \fIRETURNS:\fP 24
New job suitable for \fBgsl_trans_add()\fP
.PD 1
.PP
Create a new transaction job which removes a previously inserted poll function from the engine.
.PD
.SS \fBgsl_job_debug\fP (\fIdebug\fP);
.PD 0
.IP \fIconst\ gchar*\ debug\fP 20
Debug message
.IP \fIRETURNS:\fP 20
New job suitable for \fBgsl_trans_add()\fP
.PD 1
.PP
Create a new transaction job which issues \fIdebug\fP message when the job is executed. This function is meant for debugging purposes during development phase only and shouldn't be used in production code.
.PD
.SS \fBgsl_trans_open\fP ();
.PD 0
.IP \fIRETURNS:\fP 11
Newly opened empty transaction
.PD 1
.PP
Open up a new transaction to commit jobs to the GSL engine. This function may cause garbage collection (see \fBgsl_engine_garbage_collect()\fP).
.PD
.SS \fBgsl_trans_add\fP (\fItrans\fP, \fIjob\fP);
.PD 0
.IP \fIGslTrans*\ trans\fP 17
Opened transaction
.IP \fIGslJob*\ \ \ job\fP 17
Job to add
.PD 1
.PP
Append a job to an opened transaction.
.PD
.SS \fBgsl_trans_commit\fP (\fItrans\fP);
.PD 0
.IP \fIGslTrans*\ trans\fP 17
Opened transaction
.PD 1
.PP
Close the transaction and commit it to the engine. The engine will execute the jobs contained in this transaction as soon as it has completed its current processing cycle. The jobs will be executed in the exact order they were added to the transaction.
.PD
.SS \fBgsl_trans_dismiss\fP (\fItrans\fP);
.PD 0
.IP \fIGslTrans*\ trans\fP 17
Opened transaction
.PD 1
.PP
Close and discard the transaction, destroy all jobs currently contained in it and do not execute them. This function may cause garbage collection (see \fBgsl_engine_garbage_collect()\fP).
.PD
.SS \fBgsl_transact\fP (\fIjob\fP, \fI...\fP);
.PD 0
.IP \fI\ job\fP 6
First job
.IP \fI\ ...\fP 6
\fINULL\fP terminated job list
.PD 1
.PP
Convenience function which openes up a new transaction, collects the \fINULL\fP terminated job list passed to the function, and commits the transaction.
.PD
.SS \fBgsl_engine_init\fP (\fIrun_threaded\fP, \fIblock_size\fP, \fIsample_freq\fP, \fIsub_sample_tqmask\fP);
.PD 0
.IP \fIgboolean\ \ run_threaded\fP 27
.IP \fIguint\ \ \ \ \ block_size\fP 27
number of values to process block wise
.IP \fIguint\ \ \ \ \ sample_freq\fP 27
.IP \fIguint\ \ \ \ \ sub_sample_tqmask\fP 27
.PD 1
.PP
Initialize the GSL engine, this function must be called prior to any other engine related function and can only be invoked once. The \fIblock_size\fP determines the amount by which the global tick stamp (see \fBgsl_tick_stamp()\fP) is updated everytime the whole module network completed processing \fIblock_size\fP values.
.PD
.SS \fBgsl_engine_wait_on_trans\fP ();
.PD 0
.PD 1
.PP
Wait until all pending transactions have been processed by the GSL Engine. This function may cause garbage collection (see \fBgsl_engine_garbage_collect()\fP).
.PD
.SS \fBgsl_power2_fftac\fP (\fIn_values\fP, \fIri_values_in\fP, \fIri_values_out\fP);
.PD 0
.IP \fI\ n_values\fP 16
Number of complex values
.IP \fI\ ri_values_in\fP 16
Complex sample values [0..n_values*2-1]
.IP \fI\ ri_values_out\fP 16
Complex frequency values [0..n_values*2-1]
.PD 1
.PP
This function performs a decimation in time fourier transformation in forward direction, where the input values are equidistant sampled data, and the output values contain the frequency proportions of the input. The input and output arrays are complex values with real and imaginery portions interleaved, adressable in the range [0..2*n_values-1], where n_values must be a power of two. Frequencies are stored in-order, the K-th output corresponds to the frequency K/n_values. (If you want to interpret negative frequencies, note that the frequencies -K/n_values and (n_values-K)/n_values are equivalent). Note that the transformation is performed out of place, the input array is not modified, and may not overlap with the output array.
.PD
.SS \fBgsl_power2_fftsc\fP (\fIn_values\fP, \fIri_values_in\fP, \fIri_values_out\fP);
.PD 0
.IP \fI\ n_values\fP 16
Number of complex values
.IP \fI\ ri_values_in\fP 16
Complex frequency values [0..n_values*2-1]
.IP \fI\ ri_values_out\fP 16
Complex sample values [0..n_values*2-1]
.PD 1
.PP
This function performs a decimation in time fourier transformation in backwards direction with normalization. As such, this function represents the counterpart to \fBgsl_power2_fftac()\fP, that is, a value array which is transformed into the frequency domain with \fBgsl_power2_fftac()\fP can be reconstructed by issuing \fBgsl_power2_fftsc()\fP on the transform. Note that the transformation is performed out of place, the input array is not modified, and may not overlap with the output array.
.PD
.SS \fBgsl_power2_fftar\fP (\fIn_values\fP, \fIr_values_in\fP, \fIri_values_out\fP);
.PD 0
.IP \fI\ n_values\fP 16
Number of complex values
.IP \fI\ r_values_in\fP 16
Real sample values [0..n_values-1]
.IP \fI\ ri_values_out\fP 16
Complex frequency values [0..n_values-1]
.PD 1
.PP
Real valued variant of \fBgsl_power2_fftac()\fP, the input array tqcontains real valued equidistant sampled data [0..n_values-1], and the output array tqcontains the positive frequency half of the complex valued fourier transform. Note, that the complex valued fourier transform H of a purely real valued set of data, satisfies \fBH(-f)\fP = Conj(\fBH(f)\fP), where \fBConj()\fP denotes the complex conjugate, so that just the positive frequency half suffices to describe the entire frequency spectrum. Even so, the resulting n_values/2 complex frequencies are one value off in storage size, but the resulting frequencies \fBH(0)\fP and \fBH(n_values/2)\fP are both real valued, so the real portion of \fBH(n_values/2)\fP is stored in ri_values_out[1] (the imaginery part of \fBH(0)\fP), so that both r_values_in and ri_values_out can be of size n_values. Note that the transformation is performed out of place, the input array is not modified, and may not overlap with the output array.
.PD
.SS \fBgsl_power2_fftsr\fP (\fIn_values\fP, \fIri_values_in\fP, \fIr_values_out\fP);
.PD 0
.IP \fI\ n_values\fP 15
Number of complex values
.IP \fI\ ri_values_in\fP 15
Complex frequency values [0..n_values-1]
.IP \fI\ r_values_out\fP 15
Real sample values [0..n_values-1]
.PD 1
.PP
Real valued variant of \fBgsl_power2_fftsc()\fP, counterpart to \fBgsl_power2_fftar()\fP, using the same frequency storage format. A real valued data set transformed into the frequency domain with \fBgsl_power2_fftar()\fP can be reconstructed using this function. Note that the transformation is performed out of place, the input array is not modified, and may not overlap with the output array.
.PD
.SS \fBgsl_filter_tscheb2_steepness_db\fP (\fIiorder\fP, \fIc_freq\fP, \fIepsilon\fP, \fIstopband_db\fP);
.PD 0
.IP \fIunsigned\ int\ \ iorder\fP 27
filter order
.IP \fIdouble\ \ \ \ \ \ \ \ c_freq\fP 27
passband cutoff frequency (0..pi)
.IP \fIdouble\ \ \ \ \ \ \ \ epsilon\fP 27
fall off at passband frequency (0..1)
.IP \fIdouble\ \ \ \ \ \ \ \ stopband_db\fP 27
reduction in stopband in dB (>= 0)
.PD 1
.PP
Calculates the steepness parameter for Tschebyscheff type 2 lowpass filter, based on the ripple residue in the stop band.
.PD
.SS \fBgsl_filter_tscheb2_steepness\fP (\fIiorder\fP, \fIc_freq\fP, \fIepsilon\fP, \fIresidue\fP);
.PD 0
.IP \fIunsigned\ int\ \ iorder\fP 23
filter order
.IP \fIdouble\ \ \ \ \ \ \ \ c_freq\fP 23
passband cutoff frequency (0..pi)
.IP \fIdouble\ \ \ \ \ \ \ \ epsilon\fP 23
fall off at passband frequency (0..1)
.IP \fIdouble\ \ \ \ \ \ \ \ residue\fP 23
maximum of transfer function in stopband (0..1)
.PD 1
.PP
Calculates the steepness parameter for Tschebyscheff type 2 lowpass filter, based on ripple residue in the stop band.
.PD
.SS \fBgsl_filter_butter_lp\fP (\fIiorder\fP, \fIfreq\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 10
filter order
.IP \fI\ freq\fP 10
cutoff frequency (0..pi)
.IP \fI\ epsilon\fP 10
fall off at cutoff frequency (0..1)
.IP \fI\ a\fP 10
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 10
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Butterworth lowpass filter.
.PD
.SS \fBgsl_filter_tscheb1_lp\fP (\fIiorder\fP, \fIfreq\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 10
filter order
.IP \fI\ freq\fP 10
cutoff frequency (0..pi)
.IP \fI\ epsilon\fP 10
fall off at cutoff frequency (0..1)
.IP \fI\ a\fP 10
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 10
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Tschebyscheff type 1 lowpass filter.
.PD
.SS \fBgsl_filter_tscheb2_lp\fP (\fIiorder\fP, \fIfreq\fP, \fIsteepness\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 12
filter order
.IP \fI\ freq\fP 12
passband cutoff frequency (0..pi)
.IP \fI\ steepness\fP 12
frequency steepness (c_freq * steepness < pi)
.IP \fI\ epsilon\fP 12
fall off at passband frequency (0..1)
.IP \fI\ a\fP 12
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 12
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Tschebyscheff type 2 lowpass filter. To gain a transition band between freq1 and freq2, pass arguements \fIfreq\fP=freq1 and \fIsteepness\fP=freq2/freq1. To specify the transition band width in fractions of octaves, pass \fIsteepness\fP=2^octave_fraction.
.PD
.SS \fBgsl_filter_butter_hp\fP (\fIiorder\fP, \fIfreq\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 10
filter order
.IP \fI\ freq\fP 10
passband frequency (0..pi)
.IP \fI\ epsilon\fP 10
fall off at passband frequency (0..1)
.IP \fI\ a\fP 10
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 10
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Butterworth highpass filter.
.PD
.SS \fBgsl_filter_tscheb1_hp\fP (\fIiorder\fP, \fIfreq\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 10
filter order
.IP \fI\ freq\fP 10
passband frequency (0..pi)
.IP \fI\ epsilon\fP 10
fall off at passband frequency (0..1)
.IP \fI\ a\fP 10
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 10
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Tschebyscheff type 1 highpass filter.
.PD
.SS \fBgsl_filter_tscheb2_hp\fP (\fIiorder\fP, \fIfreq\fP, \fIsteepness\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 12
filter order
.IP \fI\ freq\fP 12
stopband frequency (0..pi)
.IP \fI\ steepness\fP 12
frequency steepness
.IP \fI\ epsilon\fP 12
fall off at passband frequency (0..1)
.IP \fI\ a\fP 12
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 12
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Tschebyscheff type 2 highpass filter.
.PD
.SS \fBgsl_filter_butter_bp\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 10
filter order (must be even)
.IP \fI\ freq1\fP 10
stopband end frequency (0..pi)
.IP \fI\ freq2\fP 10
passband end frequency (0..pi)
.IP \fI\ epsilon\fP 10
fall off at passband frequency (0..1)
.IP \fI\ a\fP 10
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 10
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Butterworth bandpass filter.
.PD
.SS \fBgsl_filter_tscheb1_bp\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 10
filter order (must be even)
.IP \fI\ freq1\fP 10
stopband end frequency (0..pi)
.IP \fI\ freq2\fP 10
passband end frequency (0..pi)
.IP \fI\ epsilon\fP 10
fall off at passband frequency (0..1)
.IP \fI\ a\fP 10
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 10
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Tschebyscheff type 1 bandpass filter.
.PD
.SS \fBgsl_filter_tscheb2_bp\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIsteepness\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 12
filter order (must be even)
.IP \fI\ freq1\fP 12
stopband end frequency (0..pi)
.IP \fI\ freq2\fP 12
passband end frequency (0..pi)
.IP \fI\ steepness\fP 12
frequency steepness factor
.IP \fI\ epsilon\fP 12
fall off at passband frequency (0..1)
.IP \fI\ a\fP 12
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 12
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Tschebyscheff type 2 bandpass filter.
.PD
.SS \fBgsl_filter_butter_bs\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 10
filter order (must be even)
.IP \fI\ freq1\fP 10
passband end frequency (0..pi)
.IP \fI\ freq2\fP 10
stopband end frequency (0..pi)
.IP \fI\ epsilon\fP 10
fall off at passband frequency (0..1)
.IP \fI\ a\fP 10
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 10
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Butterworth bandstop filter.
.PD
.SS \fBgsl_filter_tscheb1_bs\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 10
filter order (must be even)
.IP \fI\ freq1\fP 10
passband end frequency (0..pi)
.IP \fI\ freq2\fP 10
stopband end frequency (0..pi)
.IP \fI\ epsilon\fP 10
fall off at passband frequency (0..1)
.IP \fI\ a\fP 10
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 10
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Tschebyscheff type 1 bandstop filter.
.PD
.SS \fBgsl_filter_tscheb2_bs\fP (\fIiorder\fP, \fIfreq1\fP, \fIfreq2\fP, \fIsteepness\fP, \fIepsilon\fP, \fIa\fP, \fIb\fP);
.PD 0
.IP \fI\ iorder\fP 12
filter order (must be even)
.IP \fI\ freq1\fP 12
passband end frequency (0..pi)
.IP \fI\ freq2\fP 12
stopband end frequency (0..pi)
.IP \fI\ steepness\fP 12
frequency steepness factor
.IP \fI\ epsilon\fP 12
fall off at passband frequency (0..1)
.IP \fI\ a\fP 12
root polynomial coefficients a[0..iorder]
.IP \fI\ b\fP 12
pole polynomial coefficients b[0..iorder]
.PD 1
.PP
Tschebyscheff type 2 bandstop filter.
.PD
.SS \fBgsl_filter_fir_approx\fP (\fIiorder\fP, \fIfreq\fP, \fIvalue\fP);
.PD 0
.IP \fI\ iorder\fP 9
order of the filter (must be oven, >= 2)
.IP \fI\ freq\fP 9
the frequencies of the transfer function
.IP \fI\ value\fP 9
the desired value of the transfer function
.PD 1
.PP
Approximates a given transfer function with an iorder-coefficient FIR filter. It is recommended to provide enough frequency values, so that \fIn_points\fP >= \fIiorder\fP.
.PD
.SS \fBgsl_filter_sine_scan\fP (\fIorder\fP, \fIa\fP, \fIb\fP, \fIfreq\fP, \fIn_values\fP);
.PD 0
.IP \fIguint\ \ \ \ \ \ \ \ \ \ order\fP 25
order of the iir filter
.IP \fIconst\ gdouble*\ a\fP 25
root polynomial coefficients of the filter a[0..order]
.IP \fIconst\ gdouble*\ b\fP 25
pole polynomial coefficients of the filter b[0..order]
.IP \fIgdouble\ \ \ \ \ \ \ \ freq\fP 25
frequency to test
.IP \fIguint\ \ \ \ \ \ \ \ \ \ n_values\fP 25
number of samples
.PD 1
.PP
This function sends a sine signal of the desired frequency through an IIR filter, to test the value of the transfer function at a given point. It uses gsl_iir_filter_eval to do so. Compared to a "mathematical approach" of finding the transfer function, this function makes it possible to see the effects of finite arithmetic during filter evaluation. The first half of the output signal is not considered, since a lot of IIR filters have a transient phase where also overshoot is possible. For n_values, you should specify a reasonable large value. It should be a lot larger than the filter order, and large enough to let the input signal become (close to) 1.0 multiple times.
.PD
.SS \fBgsl_engine_garbage_collect\fP ();
.PD 0
.PD 1
.PP
GSL Engine user thread function. Collects processed jobs and transactions from the engine and frees them, this involves callback invocation of \fBGslFreeFunc()\fP functions, e.g. from \fBgsl_job_access()\fP or \fBgsl_flow_job_access()\fP jobs. This function may only be called from the user thread, as \fBGslFreeFunc()\fP functions are guranteed to be executed in the user thread.
.PD
.SS \fBgsl_signal_exp2\fP ();
.PD 0
.PD 1
.PP
Deprecated in favour of \fBgsl_approx_exp2()\fP.
.PD
.SS \fBgsl_approx_exp2\fP (\fIex\fP);
.PD 0
.IP \fIfloat\ \ ex\fP 11
exponent within [-127..127]
.IP \fIRETURNS:\fP 11
y approximating 2^x
.PD 1
.PP
Fast approximation of 2 raised to the power of x. Multiplicative error stays below 8e-6 and aproaches zero for integer values of x (i.e. x - floor (x) = 0).
.PD
.SS \fBgsl_approx_atan1\fP (\fIx\fP);
.PD 0
.IP \fIregister\ double\ \ x\fP 20
.PD 1
.PP
Fast \fBatan(x)\fP/(PI/2) approximation, with maximum error < 0.01 and \fBgsl_approx_atan1(0)\fP==0, according to the formula: n1 = -0.41156875521951602506487246309908; n2 = -1.0091272542790025586079663559158; d1 = 0.81901156857081841441890603235599; d2 = 1.0091272542790025586079663559158; \fBpositive_atan1(x)\fP = 1 + (n1 * x + n2) / ((1 + d1 * x) * x + d2);
.PD
.SS \fBgsl_approx_atan1_prescale\fP (\fIboost_amount\fP);
.PD 0
.IP \fI\ boost_amount\fP 15
boost amount between [0..1]
.IP \fIRETURNS:\fP 15
prescale factor for \fBgsl_approx_atan1()\fP
.PD 1
.PP
Calculate the prescale factor for \fBgsl_approx_atan1(x*prescale)\fP from a linear boost factor, where 0.5 amounts to prescale=1.0, 1.0 results in maximum boost and 0.0 results in maximum attenuation.
.PD
.SS \fBgsl_approx_qcircle1\fP (\fIx\fP);
.PD 0
.IP \fIregister\ double\ \ x\fP 20
x within [0..1]
.IP \fIRETURNS:\fP 20
y for circle approximation within [0..1]
.PD 1
.PP
Fast approximation of the upper right quadrant of a circle. Errors at x=0 and x=1 are zero, for the rest of the curve, the error wasn't minimized, but distributed to best fit the curverture of a quarter circle. The maximum error is below 0.092.
.PD
.SS \fBgsl_approx_qcircle2\fP (\fIx\fP);
.PD 0
.IP \fIregister\ double\ \ x\fP 20
x within [0..1]
.IP \fIRETURNS:\fP 20
y for circle approximation within [0..1]
.PD 1
.PP
Fast approximation of the upper left quadrant of a circle. Errors at x=0 and x=1 are zero, for the rest of the curve, the error wasn't minimized, but distributed to best fit the curverture of a quarter circle. The maximum error is below 0.092.
.PD
.SS \fBgsl_approx_qcircle3\fP (\fIx\fP);
.PD 0
.IP \fIregister\ double\ \ x\fP 20
x within [0..1]
.IP \fIRETURNS:\fP 20
y for circle approximation within [0..1]
.PD 1
.PP
Fast approximation of the lower left quadrant of a circle. Errors at x=0 and x=1 are zero, for the rest of the curve, the error wasn't minimized, but distributed to best fit the curverture of a quarter circle. The maximum error is below 0.092.
.PD
.SS \fBgsl_approx_qcircle4\fP (\fIx\fP);
.PD 0
.IP \fIregister\ double\ \ x\fP 20
x within [0..1]
.IP \fIRETURNS:\fP 20
y for circle approximation within [0..1]
.PD 1
.PP
Fast approximation of the lower right quadrant of a circle. Errors at x=0 and x=1 are zero, for the rest of the curve, the error wasn't minimized, but distributed to best fit the curverture of a quarter circle. The maximum error is below 0.092.
.PD
|