1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
|
/*******************************************************************************
@file HashMap.d
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for damages
of any kind arising from the use of this software.
Permission is hereby granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and/or
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment within documentation of
said product would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any distribution
of the source.
4. Derivative works are permitted, but they must carry this notice
in full and credit the original source.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Written by Doug Lea with assistance from members of JCP JSR-166
Expert Group and released to the public domain, as explained at
http://creativecommons.org/licenses/publicdomain
@version Initial version, July 2004
@author Doug Lea; ported/modified by Kris
*******************************************************************************/
module mango.cache.HashMap;
/******************************************************************************
******************************************************************************/
extern (C)
{
int memcmp (char *, char *, uint);
}
/**
* A hash table supporting full concurrency of retrievals and
* adjustable expected concurrency for updates. This class obeys the
* same functional specification as {@link java.util.Hashtable}, and
* includes versions of methods corresponding to each method of
* <tt>Hashtable</tt>. However, even though all operations are
* thread-safe, retrieval operations do <em>not</em> entail locking,
* and there is <em>not</em> any support for locking the entire table
* in a way that prevents all access. This class is fully
* interoperable with <tt>Hashtable</tt> in programs that rely on its
* thread safety but not on its synchronization details.
*
* <p> Retrieval operations (including <tt>get</tt>) generally do not
* block, so may overlap with update operations (including
* <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
* of the most recently <em>completed</em> update operations holding
* upon their onset. For aggregate operations such as <tt>putAll</tt>
* and <tt>clear</tt>, concurrent retrievals may reflect insertion or
* removal of only some entries. Similarly, Iterators and
* Enumerations return elements reflecting the state of the hash table
* at some point at or since the creation of the iterator/enumeration.
* They do <em>not</em> throw
* {@link ConcurrentModificationException}. However, iterators are
* designed to be used by only one thread at a time.
*
* <p> The allowed concurrency among update operations is guided by
* the optional <tt>concurrencyLevel</tt> constructor argument
* (default 16), which is used as a hint for internal sizing. The
* table is internally partitioned to try to permit the indicated
* number of concurrent updates without contention. Because placement
* in hash tables is essentially random, the actual concurrency will
* vary. Ideally, you should choose a value to accommodate as many
* threads as will ever concurrently modify the table. Using a
* significantly higher value than you need can waste space and time,
* and a significantly lower value can lead to thread contention. But
* overestimates and underestimates within an order of magnitude do
* not usually have much noticeable impact. A value of one is
* appropriate when it is known that only one thread will modify and
* all others will only read. Also, resizing this or any other kind of
* hash table is a relatively slow operation, so, when possible, it is
* a good idea to provide estimates of expected table sizes in
* constructors.
*
* <p>This class and its views and iterators implement all of the
* <em>optional</em> methods of the {@link Map} and {@link Iterator}
* interfaces.
*
* <p> Like {@link java.util.Hashtable} but unlike {@link
* java.util.HashMap}, this class does NOT allow <tt>null</tt> to be
* used as a key or value.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../guide/collections/index.html">
* Java Collections Framework</a>.
*
* @since 1.5
* @author Doug Lea
* @param <K> the type of keys maintained by this map
* @param <V> the type of mapped values
*/
class HashMap
{
alias void[] K;
alias Object V;
alias jhash hash; // jhash, fnv, or walter
/*
* The basic strategy is to subdivide the table among Segments,
* each of which itself is a concurrently readable hash table.
*/
/* ---------------- Constants -------------- */
/**
* The default initial number of table slots for this table.
* Used when not otherwise specified in constructor.
*/
private const uint DEFAULT_INITIAL_CAPACITY = 16;
/**
* The maximum capacity, used if a higher value is implicitly
* specified by either of the constructors with arguments. MUST
* be a power of two <= 1<<30 to ensure that entries are indexible
* using ints.
*/
private const uint MAXIMUM_CAPACITY = 1 << 30;
/**
* The default load factor for this table. Used when not
* otherwise specified in constructor.
*/
private const float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The default number of concurrency control segments.
**/
private const uint DEFAULT_SEGMENTS = 16;
/**
* The maximum number of segments to allow; used to bound
* constructor arguments.
*/
private const uint MAX_SEGMENTS = 1 << 16; // slightly conservative
/* ---------------- Fields -------------- */
/**
* Mask value for indexing into segments. The upper bits of a
* key's hash code are used to choose the segment.
**/
private final int segmentMask;
/**
* Shift value for indexing within segments.
**/
private final int segmentShift;
/**
* The segments, each of which is a specialized hash table
*/
private final Segment[] segments;
/* ---------------- Small Utilities -------------- */
/**
* Returns a hash code for non-null Object x.
* Uses the same hash code spreader as most other java.util hash tables.
* @param x the object serving as a key
* @return the hash code
*/
private static final uint walter(K x)
{
uint h = typeid(char[]).getHash (&x);
h += ~(h << 9);
h ^= (h >>> 14);
h += (h << 4);
h ^= (h >>> 10);
return h;
}
/**
* Returns a hash code for non-null Object x.
* uses the FNV hash function
* @param x the object serving as a key
* @return the hash code
*/
private static final uint fnv(K x)
{
uint hash = 2_166_136_261;
foreach (ubyte c; cast(ubyte[]) x)
{
hash ^= c;
hash *= 16_777_619;
}
return hash;
}
/**
* hash() -- hash a variable-length key into a 32-bit value
* k : the key (the unaligned variable-length array of bytes)
* len : the length of the key, counting by bytes
* level : can be any 4-byte value
* Returns a 32-bit value. Every bit of the key affects every bit of
* the return value. Every 1-bit and 2-bit delta achieves avalanche.
* About 36+6len instructions.
*
* The best hash table sizes are powers of 2. There is no need to do
* mod a prime (mod is sooo slow!). If you need less than 32 bits,
* use a bitmask. For example, if you need only 10 bits, do
* h = (h & hashmask(10));
* In which case, the hash table should have hashsize(10) elements.
*
* If you are hashing n strings (ub1 **)k, do it like this:
* for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
*
* By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
* code any way you wish, private, educational, or commercial. It's free.
*
* See http://burlteburtle.net/bob/hash/evahash.html
* Use for hash table lookup, or anything where one collision in 2^32 is
* acceptable. Do NOT use for cryptographic purposes.
*/
static final uint jhash (K x)
{
ubyte* k;
uint a,
b,
c,
len;
len = x.length;
k = cast(ubyte *) x;
a = b = 0x9e3779b9;
// the previous hash value
c = 0;
// handle most of the key
while (len >= 12)
{
a += *cast(uint *)(k+0);
b += *cast(uint *)(k+4);
c += *cast(uint *)(k+8);
a -= b; a -= c; a ^= (c>>13);
b -= c; b -= a; b ^= (a<<8);
c -= a; c -= b; c ^= (b>>13);
a -= b; a -= c; a ^= (c>>12);
b -= c; b -= a; b ^= (a<<16);
c -= a; c -= b; c ^= (b>>5);
a -= b; a -= c; a ^= (c>>3);
b -= c; b -= a; b ^= (a<<10);
c -= a; c -= b; c ^= (b>>15);
k += 12; len -= 12;
}
// handle the last 11 bytes
c += x.length;
switch (len)
{
case 11: c+=(cast(uint)k[10]<<24);
case 10: c+=(cast(uint)k[9]<<16);
case 9 : c+=(cast(uint)k[8]<<8);
case 8 : b+=(cast(uint)k[7]<<24);
case 7 : b+=(cast(uint)k[6]<<16);
case 6 : b+=(cast(uint)k[5]<<8);
case 5 : b+=k[4];
case 4 : a+=(cast(uint)k[3]<<24);
case 3 : a+=(cast(uint)k[2]<<16);
case 2 : a+=(cast(uint)k[1]<<8);
case 1 : a+=k[0];
default:
}
a -= b; a -= c; a ^= (c>>13);
b -= c; b -= a; b ^= (a<<8);
c -= a; c -= b; c ^= (b>>13);
a -= b; a -= c; a ^= (c>>12);
b -= c; b -= a; b ^= (a<<16);
c -= a; c -= b; c ^= (b>>5);
a -= b; a -= c; a ^= (c>>3);
b -= c; b -= a; b ^= (a<<10);
c -= a; c -= b; c ^= (b>>15);
return c;
}
/**
* Returns the segment that should be used for key with given hash
* @param hash the hash code for the key
* @return the segment
*/
private final Segment segmentFor(uint hash)
{
return segments[(hash >>> segmentShift) & segmentMask];
}
/* ---------------- Inner Classes -------------- */
/**
* ConcurrentHashMap list entry. Note that this is never exported
* out as a user-visible Map.Entry.
*
* Because the value field is volatile, not final, it is legal wrt
* the Java Memory Model for an unsynchronized reader to see null
* instead of initial value when read via a data race. Although a
* reordering leading to this is not likely to ever actually
* occur, the Segment.readValueUnderLock method is used as a
* backup in case a null (pre-initialized) value is ever seen in
* an unsynchronized access method.
*/
private static class HashEntry
{
final K key;
final uint hash;
final V value;
final HashEntry next;
this (K key, uint hash, HashEntry next, V value)
{
this.key = key;
this.hash = hash;
this.next = next;
this.value = value;
}
}
/**
* Segments are specialized versions of hash tables. This
* subclasses from ReentrantLock opportunistically, just to
* simplify some locking and avoid separate construction.
**/
static class Segment
{
/*
* Segments maintain a table of entry lists that are ALWAYS
* kept in a consistent state, so can be read without locking.
* Next fields of nodes are immutable (final). All list
* additions are performed at the front of each bin. This
* makes it easy to check changes, and also fast to traverse.
* When nodes would otherwise be changed, new nodes are
* created to replace them. This works well for hash tables
* since the bin lists tend to be short. (The average length
* is less than two for the default load factor threshold.)
*
* Read operations can thus proceed without locking, but rely
* on selected uses of volatiles to ensure that completed
* write operations performed by other threads are
* noticed. For most purposes, the "count" field, tracking the
* number of elements, serves as that volatile variable
* ensuring visibility. This is convenient because this field
* needs to be read in many read operations anyway:
*
* - All (unsynchronized) read operations must first read the
* "count" field, and should not look at table entries if
* it is 0.
*
* - All (synchronized) write operations should write to
* the "count" field after structurally changing any bin.
* The operations must not take any action that could even
* momentarily cause a concurrent read operation to see
* inconsistent data. This is made easier by the nature of
* the read operations in Map. For example, no operation
* can reveal that the table has grown but the threshold
* has not yet been updated, so there are no atomicity
* requirements for this with respect to reads.
*
* As a guide, all critical volatile reads and writes to the
* count field are marked in code comments.
*/
/**
* The number of elements in this segment's region.
**/
int count;
/**
* The table is rehashed when its size exceeds this threshold.
* (The value of this field is always (int)(capacity *
* loadFactor).)
*/
int threshold;
/**
* The per-segment table. Declared as a raw type, casted
* to HashEntry<K,V> on each use.
*/
HashEntry[] table;
/**
* The load factor for the hash table. Even though this value
* is same for all segments, it is replicated to avoid needing
* links to outer object.
* @serial
*/
final float loadFactor;
this (int initialCapacity, float lf)
{
loadFactor = lf;
setTable (new HashEntry[initialCapacity]);
}
/**
* Set table to new HashEntry array.
* Call only while holding lock or in constructor.
**/
private final void setTable (HashEntry[] newTable)
{
threshold = cast(int) (newTable.length * loadFactor);
volatile table = newTable;
}
/**
* Return properly casted first entry of bin for given hash
*/
private final HashEntry getFirst (uint hash)
{
HashEntry[] tab;
volatile tab = table;
return tab [hash & (tab.length - 1)];
}
/**
* Return true if the two keys match
*/
private static final bool matchKey (K a, K b)
{
if (a.length == b.length)
return cast(bool) (memcmp (cast(char*) a, cast(char*) b, a.length) == 0);
return false;
}
/* Specialized implementations of map methods */
final V get (K key, uint hash)
{
int c;
// read-volatile
volatile c = count;
if (c)
{
HashEntry e = getFirst (hash);
while (e)
{
if (hash == e.hash && matchKey (key, e.key))
{
V v;
volatile v = e.value;
if (v)
return v;
synchronized (this)
return e.value;
}
e = e.next;
}
}
return null;
}
final bool containsKey (K key, uint hash)
{
int c;
// read-volatile
volatile c = count;
if (c)
{
HashEntry e = getFirst (hash);
while (e)
{
if (e.hash == hash && matchKey (key, e.key))
return true;
e = e.next;
}
}
return false;
}
final synchronized V replace (K key, uint hash, V newValue)
{
HashEntry e = getFirst(hash);
while (e && (e.hash != hash || !matchKey (key, e.key)))
e = e.next;
V oldValue = null;
if (e)
volatile
{
oldValue = e.value;
e.value = newValue;
}
return oldValue;
}
final synchronized V put (K key, uint hash, V value, bool onlyIfAbsent)
{
int c;
volatile c = count;
if (c++ > threshold)
rehash();
HashEntry[] tab;
volatile tab = table;
uint index = hash & (tab.length - 1);
HashEntry first = tab[index];
HashEntry e = first;
while (e && (e.hash != hash || !matchKey (key, e.key)))
e = e.next;
V oldValue;
if (e)
{
volatile oldValue = e.value;
if (!onlyIfAbsent)
volatile e.value = value;
}
else
{
oldValue = null;
tab[index] = new HashEntry (key, hash, first, value);
// write-volatile
volatile count = c;
}
return oldValue;
}
private final void rehash ()
{
HashEntry[] oldTable;
volatile oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity >= MAXIMUM_CAPACITY)
return;
/*
* Reclassify nodes in each list to new Map. Because we are
* using power-of-two expansion, the elements from each bin
* must either stay at same index, or move with a power of two
* offset. We eliminate unnecessary node creation by catching
* cases where old nodes can be reused because their next
* fields won't change. Statistically, at the default
* threshold, only about one-sixth of them need cloning when
* a table doubles. The nodes they replace will be garbage
* collectable as soon as they are no longer referenced by any
* reader thread that may be in the midst of traversing table
* right now.
*/
HashEntry[] newTable = new HashEntry[oldCapacity << 1];
threshold = cast(int) (newTable.length * loadFactor);
int sizeMask = newTable.length - 1;
for (int i = 0; i < oldCapacity ; ++i)
{
// We need to guarantee that any existing reads of old Map can
// proceed. So we cannot yet null out each bin.
HashEntry e = oldTable[i];
if (e)
{
HashEntry next = e.next;
uint idx = e.hash & sizeMask;
// Single node on list
if (next is null)
newTable[idx] = e;
else
{
// Reuse trailing consecutive sequence at same slot
HashEntry lastRun = e;
int lastIdx = idx;
for (HashEntry last=next; last; last = last.next)
{
uint k = last.hash & sizeMask;
if (k != lastIdx)
{
lastIdx = k;
lastRun = last;
}
}
newTable[lastIdx] = lastRun;
// Clone all remaining nodes
for (HashEntry p = e; p !is lastRun; p = p.next)
{
uint k = p.hash & sizeMask;
HashEntry n = newTable[k];
newTable[k] = new HashEntry(p.key, p.hash, n, p.value);
}
}
}
}
volatile table = newTable;
}
/**
* Remove; match on key only if value null, else match both.
*/
final synchronized V remove (K key, uint hash, V value)
{
int c;
HashEntry[] tab;
volatile c = count - 1;
volatile tab = table;
uint index = hash & (tab.length - 1);
HashEntry first = tab[index];
HashEntry e = first;
while (e && (e.hash != hash || !matchKey (key, e.key)))
e = e.next;
V oldValue = null;
if (e)
{
V v;
volatile v = e.value;
if (value is null || value == v)
{
oldValue = v;
// All entries following removed node can stay
// in list, but all preceding ones need to be
// cloned.
HashEntry newFirst = e.next;
for (HashEntry p = first; p !is e; p = p.next)
newFirst = new HashEntry (p.key, p.hash, newFirst, p.value);
tab[index] = newFirst;
// write-volatile
volatile count = c;
}
}
return oldValue;
}
final synchronized void clear()
{
if (count)
{
HashEntry[] tab;
volatile tab = table;
for (int i = 0; i < tab.length ; i++)
tab[i] = null;
// write-volatile
volatile count = 0;
}
}
}
/* ---------------- Public operations -------------- */
/**
* Creates a new, empty map with the specified initial
* capacity and the specified load factor.
*
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements.
* @param loadFactor the load factor threshold, used to control resizing.
* @param concurrencyLevel the estimated number of concurrently
* updating threads. The implementation performs internal sizing
* to try to accommodate this many threads.
* @throws IllegalArgumentException if the initial capacity is
* negative or the load factor or concurrencyLevel are
* nonpositive.
*/
public this (uint initialCapacity, float loadFactor, uint concurrencyLevel)
{
assert (loadFactor > 0);
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
while (ssize < concurrencyLevel)
{
++sshift;
ssize <<= 1;
}
segmentShift = 32 - sshift;
segmentMask = ssize - 1;
this.segments = new Segment[ssize];
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)
++c;
int cap = 1;
while (cap < c)
cap <<= 1;
for (int i = 0; i < this.segments.length; ++i)
this.segments[i] = new Segment (cap, loadFactor);
}
/**
* Creates a new, empty map with the specified initial
* capacity, and with default load factor and concurrencyLevel.
*
* @param initialCapacity The implementation performs internal
* sizing to accommodate this many elements.
* @throws IllegalArgumentException if the initial capacity of
* elements is negative.
*/
public this (uint initialCapacity)
{
this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
}
/**
* Creates a new, empty map with a default initial capacity,
* load factor, and concurrencyLevel.
*/
public this ()
{
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_SEGMENTS);
}
/**
* Returns the value to which the specified key is mapped in this table.
*
* @param key a key in the table.
* @return the value to which the key is mapped in this table;
* <tt>null</tt> if the key is not mapped to any value in
* this table.
* @throws NullPointerException if the key is
* <tt>null</tt>.
*/
public V get (K key)
{
uint hash = hash(key); // throws NullPointerException if key null
return segmentFor(hash).get(key, hash);
}
/**
* Tests if the specified object is a key in this table.
*
* @param key possible key.
* @return <tt>true</tt> if and only if the specified object
* is a key in this table, as determined by the
* <tt>equals</tt> method; <tt>false</tt> otherwise.
* @throws NullPointerException if the key is
* <tt>null</tt>.
*/
public bool containsKey (K key)
{
uint hash = hash(key); // throws NullPointerException if key null
return segmentFor(hash).containsKey(key, hash);
}
/**
* Maps the specified <tt>key</tt> to the specified
* <tt>value</tt> in this table. Neither the key nor the
* value can be <tt>null</tt>.
*
* <p> The value can be retrieved by calling the <tt>get</tt> method
* with a key that is equal to the original key.
*
* @param key the table key.
* @param value the value.
* @return the previous value of the specified key in this table,
* or <tt>null</tt> if it did not have one.
* @throws NullPointerException if the key or value is
* <tt>null</tt>.
*/
public V put (K key, V value)
{
assert (value);
uint hash = hash(key);
return segmentFor(hash).put(key, hash, value, false);
}
/**
* If the specified key is not already associated
* with a value, associate it with the given value.
* This is equivalent to
* <pre>
* if (!map.containsKey(key))
* return map.put(key, value);
* else
* return map.get(key);
* </pre>
* Except that the action is performed atomically.
* @param key key with which the specified value is to be associated.
* @param value value to be associated with the specified key.
* @return previous value associated with specified key, or <tt>null</tt>
* if there was no mapping for key.
* @throws NullPointerException if the specified key or value is
* <tt>null</tt>.
*/
public V putIfAbsent (K key, V value)
{
assert (value);
uint hash = hash(key);
return segmentFor(hash).put(key, hash, value, true);
}
/**
* Removes the key (and its corresponding value) from this
* table. This method does nothing if the key is not in the table.
*
* @param key the key that needs to be removed.
* @return the value to which the key had been mapped in this table,
* or <tt>null</tt> if the key did not have a mapping.
* @throws NullPointerException if the key is
* <tt>null</tt>.
*/
public V remove (K key)
{
uint hash = hash(key);
return segmentFor(hash).remove(key, hash, null);
}
/**
* Remove entry for key only if currently mapped to given value.
* Acts as
* <pre>
* if (map.get(key).equals(value)) {
* map.remove(key);
* return true;
* } else return false;
* </pre>
* except that the action is performed atomically.
* @param key key with which the specified value is associated.
* @param value value associated with the specified key.
* @return true if the value was removed
* @throws NullPointerException if the specified key is
* <tt>null</tt>.
*/
public bool remove (K key, V value)
{
uint hash = hash(key);
return cast(bool) (segmentFor(hash).remove(key, hash, value) !is null);
}
/**
* Replace entry for key only if currently mapped to some value.
* Acts as
* <pre>
* if ((map.containsKey(key)) {
* return map.put(key, value);
* } else return null;
* </pre>
* except that the action is performed atomically.
* @param key key with which the specified value is associated.
* @param value value to be associated with the specified key.
* @return previous value associated with specified key, or <tt>null</tt>
* if there was no mapping for key.
* @throws NullPointerException if the specified key or value is
* <tt>null</tt>.
*/
public V replace (K key, V value)
{
assert (value);
uint hash = hash(key);
return segmentFor(hash).replace(key, hash, value);
}
/**
* Removes all mappings from this map.
*/
public void clear ()
{
for (int i = 0; i < segments.length; ++i)
segments[i].clear();
}
/**
* Returns an enumeration of the keys in this table.
*
* @return an enumeration of the keys in this table.
* @see #keySet
*/
public KeyIterator keys ()
{
return new KeyIterator (this);
}
/**
* Returns an enumeration of the values in this table.
*
* @return an enumeration of the values in this table.
* @see #values
*/
public ValueIterator elements ()
{
return new ValueIterator (this);
}
/**********************************************************************
Iterate over all keys in hashmap
**********************************************************************/
int opApply (int delegate(inout char[]) dg)
{
int result = 0;
KeyIterator iterator = keys ();
while (iterator.hasNext)
{
char[] ca = cast(char[]) iterator.next;
if ((result = dg (ca)) != 0)
break;
}
return result;
}
/**********************************************************************
Iterate over all keys in hashmap
**********************************************************************/
int opApply (int delegate(inout char[], inout Object) dg)
{
int result = 0;
KeyIterator iterator = keys ();
while (iterator.hasNext)
{
HashEntry he = iterator.nextElement;
char[] ca = cast(char[]) he.key;
if ((result = dg (ca, he.value)) != 0)
break;
}
return result;
}
/* ---------------- Iterator Support -------------- */
abstract static class HashIterator
{
int nextSegmentIndex;
int nextTableIndex;
HashEntry[] currentTable;
HashEntry nextEntry;
HashEntry lastReturned;
HashMap map;
this (HashMap map)
{
this.map = map;
nextSegmentIndex = map.segments.length - 1;
nextTableIndex = -1;
advance();
}
final void advance ()
{
if (nextEntry !is null && (nextEntry = nextEntry.next) !is null)
return;
while (nextTableIndex >= 0)
{
if ( (nextEntry = currentTable[nextTableIndex--]) !is null)
return;
}
while (nextSegmentIndex >= 0)
{
Segment seg = map.segments[nextSegmentIndex--];
volatile if (seg.count)
{
currentTable = seg.table;
for (int j = currentTable.length - 1; j >= 0; --j)
{
if ((nextEntry = currentTable[j]) !is null)
{
nextTableIndex = j - 1;
return;
}
}
}
}
}
public bool hasNext ()
{
return cast(bool) (nextEntry !is null);
}
HashEntry nextElement ()
{
if (nextEntry is null)
throw new Exception ("no such element in HashMap");
lastReturned = nextEntry;
advance ();
return lastReturned;
}
}
static class KeyIterator : HashIterator
{
this (HashMap map) {super (map);}
public K next() { return super.nextElement().key; }
}
static class ValueIterator : HashIterator
{
this (HashMap map) {super (map);}
public V next() { volatile return super.nextElement().value; }
}
}
|