diff options
author | Michele Calgaro <michele.calgaro@yahoo.it> | 2021-05-23 20:48:35 +0900 |
---|---|---|
committer | Michele Calgaro <michele.calgaro@yahoo.it> | 2021-05-29 15:16:28 +0900 |
commit | 8b78a8791bc539bcffe7159f9d9714d577cb3d7d (patch) | |
tree | 1328291f966f19a22d7b13657d3f01a588eb1083 /lib/kformula/entities.cpp | |
parent | 95834e2bdc5e01ae1bd21ac0dfa4fa1d2417fae9 (diff) | |
download | koffice-8b78a8791bc539bcffe7159f9d9714d577cb3d7d.tar.gz koffice-8b78a8791bc539bcffe7159f9d9714d577cb3d7d.zip |
Renaming of files in preparation for code style tools.
Signed-off-by: Michele Calgaro <michele.calgaro@yahoo.it>
Diffstat (limited to 'lib/kformula/entities.cpp')
-rw-r--r-- | lib/kformula/entities.cpp | 2037 |
1 files changed, 2037 insertions, 0 deletions
diff --git a/lib/kformula/entities.cpp b/lib/kformula/entities.cpp new file mode 100644 index 00000000..c6696e1f --- /dev/null +++ b/lib/kformula/entities.cpp @@ -0,0 +1,2037 @@ +// +// Created: Tue Aug 29 16:20:33 2006 +// by: bynames.py +// from: byalpha.html +// +// WARNING! All changes made in this file will be lost! + +/* This file is part of the KDE project + Copyright (C) 2006 Alfredo Beaumont Sainz <alfredo.beaumont@gmail.com> + + This library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public + License as published by the Free Software Foundation; either + version 2 of the License, or (at your option) any later version. + + This library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public License + along with this library; see the file COPYING.LIB. If not, write to + the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. +*/ + + +#include "entities.h" + +KFORMULA_NAMESPACE_BEGIN + +const entityMap entities[] = { + {"AElig", 0x000C6} , + {"Aacute", 0x000C1} , + {"Abreve", 0x00102} , + {"Acirc", 0x000C2} , + {"Acy", 0x00410} , + {"Afr", 0x1D504} , + {"Agrave", 0x000C0} , + {"Amacr", 0x00100} , + {"And", 0x02A53} , + {"Aogon", 0x00104} , + {"Aopf", 0x1D538} , + {"ApplyFunction", 0x02061} , + {"Aring", 0x000C5} , + {"Ascr", 0x1D49C} , + {"Assign", 0x02254} , + {"Atilde", 0x000C3} , + {"Auml", 0x000C4} , + {"Backslash", 0x02216} , + {"Barv", 0x02AE7} , + {"Barwed", 0x02306} , + {"Bcy", 0x00411} , + {"Because", 0x02235} , + {"Bernoullis", 0x0212C} , + {"Bfr", 0x1D505} , + {"Bopf", 0x1D539} , + {"Breve", 0x002D8} , + {"Bscr", 0x0212C} , + {"Bumpeq", 0x0224E} , + {"CHcy", 0x00427} , + {"Cacute", 0x00106} , + {"Cap", 0x022D2} , + {"CapitalDifferentialD", 0x02145} , + {"Cayleys", 0x0212D} , + {"Ccaron", 0x0010C} , + {"Ccedil", 0x000C7} , + {"Ccirc", 0x00108} , + {"Cconint", 0x02230} , + {"Cdot", 0x0010A} , + {"Cedilla", 0x000B8} , + {"CenterDot", 0x000B7} , + {"Cfr", 0x0212D} , + {"CircleDot", 0x02299} , + {"CircleMinus", 0x02296} , + {"CirclePlus", 0x02295} , + {"CircleTimes", 0x02297} , + {"ClockwiseContourIntegral", 0x02232} , + {"CloseCurlyDoubleQuote", 0x0201D} , + {"CloseCurlyQuote", 0x02019} , + {"Colon", 0x02237} , + {"Colone", 0x02A74} , + {"Congruent", 0x02261} , + {"Conint", 0x0222F} , + {"ContourIntegral", 0x0222E} , + {"Copf", 0x02102} , + {"Coproduct", 0x02210} , + {"CounterClockwiseContourIntegral", 0x02233} , + {"Cross", 0x02A2F} , + {"Cscr", 0x1D49E} , + {"Cup", 0x022D3} , + {"CupCap", 0x0224D} , + {"DD", 0x02145} , + {"DDotrahd", 0x02911} , + {"DJcy", 0x00402} , + {"DScy", 0x00405} , + {"DZcy", 0x0040F} , + {"Dagger", 0x02021} , + {"Dagger", 0x02021} , + {"Darr", 0x021A1} , + {"Dashv", 0x02AE4} , + {"Dcaron", 0x0010E} , + {"Dcy", 0x00414} , + {"Del", 0x02207} , + {"Delta", 0x00394} , + {"Dfr", 0x1D507} , + {"DiacriticalAcute", 0x000B4} , + {"DiacriticalDot", 0x002D9} , + {"DiacriticalDoubleAcute", 0x002DD} , + {"DiacriticalGrave", 0x00060} , + {"DiacriticalTilde", 0x002DC} , + {"Diamond", 0x022C4} , + {"DifferentialD", 0x02146} , + {"Dopf", 0x1D53B} , + {"Dot", 0x000A8} , + {"DotDot", 0x020DC} , + {"DotEqual", 0x02250} , + {"DoubleContourIntegral", 0x0222F} , + {"DoubleDot", 0x000A8} , + {"DoubleDownArrow", 0x021D3} , + {"DoubleLeftArrow", 0x021D0} , + {"DoubleLeftRightArrow", 0x021D4} , + {"DoubleLeftTee", 0x02AE4} , + {"DoubleLongLeftArrow", 0x027F8} , + {"DoubleLongLeftRightArrow", 0x027FA} , + {"DoubleLongRightArrow", 0x027F9} , + {"DoubleRightArrow", 0x021D2} , + {"DoubleRightTee", 0x022A8} , + {"DoubleUpArrow", 0x021D1} , + {"DoubleUpDownArrow", 0x021D5} , + {"DoubleVerticalBar", 0x02225} , + {"DownArrow", 0x02193} , + {"DownArrowBar", 0x02913} , + {"DownArrowUpArrow", 0x021F5} , + {"DownBreve", 0x00311} , + {"DownLeftRightVector", 0x02950} , + {"DownLeftTeeVector", 0x0295E} , + {"DownLeftVector", 0x021BD} , + {"DownLeftVectorBar", 0x02956} , + {"DownRightTeeVector", 0x0295F} , + {"DownRightVector", 0x021C1} , + {"DownRightVectorBar", 0x02957} , + {"DownTee", 0x022A4} , + {"DownTeeArrow", 0x021A7} , + {"Downarrow", 0x021D3} , + {"Dscr", 0x1D49F} , + {"Dstrok", 0x00110} , + {"ENG", 0x0014A} , + {"ETH", 0x000D0} , + {"Eacute", 0x000C9} , + {"Ecaron", 0x0011A} , + {"Ecirc", 0x000CA} , + {"Ecy", 0x0042D} , + {"Edot", 0x00116} , + {"Efr", 0x1D508} , + {"Egrave", 0x000C8} , + {"Element", 0x02208} , + {"Emacr", 0x00112} , + {"EmptySmallSquare", 0x025FB} , + {"EmptyVerySmallSquare", 0x025AB} , + {"Eogon", 0x00118} , + {"Eopf", 0x1D53C} , + {"Equal", 0x02A75} , + {"EqualTilde", 0x02242} , + {"Equilibrium", 0x021CC} , + {"Escr", 0x02130} , + {"Esim", 0x02A73} , + {"Euml", 0x000CB} , + {"Exists", 0x02203} , + {"ExponentialE", 0x02147} , + {"Fcy", 0x00424} , + {"Ffr", 0x1D509} , + {"FilledSmallSquare", 0x025FC} , + {"FilledVerySmallSquare", 0x025AA} , + {"Fopf", 0x1D53D} , + {"ForAll", 0x02200} , + {"Fouriertrf", 0x02131} , + {"Fscr", 0x02131} , + {"GJcy", 0x00403} , + {"Gamma", 0x00393} , + {"Gammad", 0x003DC} , + {"Gbreve", 0x0011E} , + {"Gcedil", 0x00122} , + {"Gcirc", 0x0011C} , + {"Gcy", 0x00413} , + {"Gdot", 0x00120} , + {"Gfr", 0x1D50A} , + {"Gg", 0x022D9} , + {"Gopf", 0x1D53E} , + {"GreaterEqual", 0x02265} , + {"GreaterEqualLess", 0x022DB} , + {"GreaterFullEqual", 0x02267} , + {"GreaterGreater", 0x02AA2} , + {"GreaterLess", 0x02277} , + {"GreaterSlantEqual", 0x02A7E} , + {"GreaterTilde", 0x02273} , + {"Gscr", 0x1D4A2} , + {"Gt", 0x0226B} , + {"HARDcy", 0x0042A} , + {"Hacek", 0x002C7} , + {"Hat", 0x0005E} , + {"Hcirc", 0x00124} , + {"Hfr", 0x0210C} , + {"HilbertSpace", 0x0210B} , + {"Hopf", 0x0210D} , + {"HorizontalLine", 0x02500} , + {"Hscr", 0x0210B} , + {"Hstrok", 0x00126} , + {"HumpDownHump", 0x0224E} , + {"HumpEqual", 0x0224F} , + {"IEcy", 0x00415} , + {"IJlig", 0x00132} , + {"IOcy", 0x00401} , + {"Iacute", 0x000CD} , + {"Icirc", 0x000CE} , + {"Icy", 0x00418} , + {"Idot", 0x00130} , + {"Ifr", 0x02111} , + {"Igrave", 0x000CC} , + {"Im", 0x02111} , + {"Imacr", 0x0012A} , + {"ImaginaryI", 0x02148} , + {"Implies", 0x021D2} , + {"Int", 0x0222C} , + {"Integral", 0x0222B} , + {"Intersection", 0x022C2} , + {"InvisibleComma", 0x02063} , + {"InvisibleTimes", 0x02062} , + {"Iogon", 0x0012E} , + {"Iopf", 0x1D540} , + {"Iscr", 0x02110} , + {"Itilde", 0x00128} , + {"Iukcy", 0x00406} , + {"Iuml", 0x000CF} , + {"Jcirc", 0x00134} , + {"Jcy", 0x00419} , + {"Jfr", 0x1D50D} , + {"Jopf", 0x1D541} , + {"Jscr", 0x1D4A5} , + {"Jsercy", 0x00408} , + {"Jukcy", 0x00404} , + {"KHcy", 0x00425} , + {"KJcy", 0x0040C} , + {"Kcedil", 0x00136} , + {"Kcy", 0x0041A} , + {"Kfr", 0x1D50E} , + {"Kopf", 0x1D542} , + {"Kscr", 0x1D4A6} , + {"LJcy", 0x00409} , + {"Lacute", 0x00139} , + {"Lambda", 0x0039B} , + {"Lang", 0x0300A} , + {"Laplacetrf", 0x02112} , + {"Larr", 0x0219E} , + {"Lcaron", 0x0013D} , + {"Lcedil", 0x0013B} , + {"Lcy", 0x0041B} , + {"LeftAngleBracket", 0x02329} , + {"LeftArrow", 0x02190} , + {"LeftArrowBar", 0x021E4} , + {"LeftArrowRightArrow", 0x021C6} , + {"LeftCeiling", 0x02308} , + {"LeftDoubleBracket", 0x0301A} , + {"LeftDownTeeVector", 0x02961} , + {"LeftDownVector", 0x021C3} , + {"LeftDownVectorBar", 0x02959} , + {"LeftFloor", 0x0230A} , + {"LeftRightArrow", 0x02194} , + {"LeftRightVector", 0x0294E} , + {"LeftTee", 0x022A3} , + {"LeftTeeArrow", 0x021A4} , + {"LeftTeeVector", 0x0295A} , + {"LeftTriangle", 0x022B2} , + {"LeftTriangleBar", 0x029CF} , + {"LeftTriangleEqual", 0x022B4} , + {"LeftUpDownVector", 0x02951} , + {"LeftUpTeeVector", 0x02960} , + {"LeftUpVector", 0x021BF} , + {"LeftUpVectorBar", 0x02958} , + {"LeftVector", 0x021BC} , + {"LeftVectorBar", 0x02952} , + {"Leftarrow", 0x021D0} , + {"Leftrightarrow", 0x021D4} , + {"LessEqualGreater", 0x022DA} , + {"LessFullEqual", 0x02266} , + {"LessGreater", 0x02276} , + {"LessLess", 0x02AA1} , + {"LessSlantEqual", 0x02A7D} , + {"LessTilde", 0x02272} , + {"Lfr", 0x1D50F} , + {"Ll", 0x022D8} , + {"Lleftarrow", 0x021DA} , + {"Lmidot", 0x0013F} , + {"LongLeftArrow", 0x027F5} , + {"LongLeftRightArrow", 0x027F7} , + {"LongRightArrow", 0x027F6} , + {"Longleftarrow", 0x027F8} , + {"Longleftrightarrow", 0x027FA} , + {"Longrightarrow", 0x027F9} , + {"Lopf", 0x1D543} , + {"LowerLeftArrow", 0x02199} , + {"LowerRightArrow", 0x02198} , + {"Lscr", 0x02112} , + {"Lsh", 0x021B0} , + {"Lstrok", 0x00141} , + {"Lt", 0x0226A} , + {"Map", 0x02905} , + {"Mcy", 0x0041C} , + {"MediumSpace", 0x0205F} , + {"Mellintrf", 0x02133} , + {"Mfr", 0x1D510} , + {"MinusPlus", 0x02213} , + {"Mopf", 0x1D544} , + {"Mscr", 0x02133} , + {"NJcy", 0x0040A} , + {"Nacute", 0x00143} , + {"Ncaron", 0x00147} , + {"Ncedil", 0x00145} , + {"Ncy", 0x0041D} , + {"NegativeMediumSpace", 0x0200B} , + {"NegativeThickSpace", 0x0200B} , + {"NegativeThinSpace", 0x0200B} , + {"NegativeVeryThinSpace", 0x0200B} , + {"NestedGreaterGreater", 0x0226B} , + {"NestedLessLess", 0x0226A} , + {"NewLine", 0x0000A} , + {"Nfr", 0x1D511} , + {"NoBreak", 0x02060} , + {"NonBreakingSpace", 0x000A0} , + {"Nopf", 0x02115} , + {"Not", 0x02AEC} , + {"NotCongruent", 0x02262} , + {"NotCupCap", 0x0226D} , + {"NotDoubleVerticalBar", 0x02226} , + {"NotElement", 0x02209} , + {"NotEqual", 0x02260} , + {"NotExists", 0x02204} , + {"NotGreater", 0x0226F} , + {"NotGreaterEqual", 0x02271} , + {"NotGreaterLess", 0x02279} , + {"NotGreaterTilde", 0x02275} , + {"NotLeftTriangle", 0x022EA} , + {"NotLeftTriangleEqual", 0x022EC} , + {"NotLess", 0x0226E} , + {"NotLessEqual", 0x02270} , + {"NotLessGreater", 0x02278} , + {"NotLessTilde", 0x02274} , + {"NotPrecedes", 0x02280} , + {"NotPrecedesSlantEqual", 0x022E0} , + {"NotReverseElement", 0x0220C} , + {"NotRightTriangle", 0x022EB} , + {"NotRightTriangleEqual", 0x022ED} , + {"NotSquareSubsetEqual", 0x022E2} , + {"NotSquareSupersetEqual", 0x022E3} , + {"NotSubsetEqual", 0x02288} , + {"NotSucceeds", 0x02281} , + {"NotSucceedsSlantEqual", 0x022E1} , + {"NotSupersetEqual", 0x02289} , + {"NotTilde", 0x02241} , + {"NotTildeEqual", 0x02244} , + {"NotTildeFullEqual", 0x02247} , + {"NotTildeTilde", 0x02249} , + {"NotVerticalBar", 0x02224} , + {"Nscr", 0x1D4A9} , + {"Ntilde", 0x000D1} , + {"OElig", 0x00152} , + {"Oacute", 0x000D3} , + {"Ocirc", 0x000D4} , + {"Ocy", 0x0041E} , + {"Odblac", 0x00150} , + {"Ofr", 0x1D512} , + {"Ograve", 0x000D2} , + {"Omacr", 0x0014C} , + {"Omega", 0x003A9} , + {"Oopf", 0x1D546} , + {"OpenCurlyDoubleQuote", 0x0201C} , + {"OpenCurlyQuote", 0x02018} , + {"Or", 0x02A54} , + {"Oscr", 0x1D4AA} , + {"Oslash", 0x000D8} , + {"Otilde", 0x000D5} , + {"Otimes", 0x02A37} , + {"Ouml", 0x000D6} , + {"OverBar", 0x000AF} , + {"OverBrace", 0x0FE37} , + {"OverBracket", 0x023B4} , + {"OverParenthesis", 0x0FE35} , + {"PartialD", 0x02202} , + {"Pcy", 0x0041F} , + {"Pfr", 0x1D513} , + {"Phi", 0x003A6} , + {"Pi", 0x003A0} , + {"PlusMinus", 0x000B1} , + {"Poincareplane", 0x0210C} , + {"Popf", 0x02119} , + {"Pr", 0x02ABB} , + {"Precedes", 0x0227A} , + {"PrecedesEqual", 0x02AAF} , + {"PrecedesSlantEqual", 0x0227C} , + {"PrecedesTilde", 0x0227E} , + {"Prime", 0x02033} , + {"Product", 0x0220F} , + {"Proportion", 0x02237} , + {"Proportional", 0x0221D} , + {"Pscr", 0x1D4AB} , + {"Psi", 0x003A8} , + {"Qfr", 0x1D514} , + {"Qopf", 0x0211A} , + {"Qscr", 0x1D4AC} , + {"RBarr", 0x02910} , + {"Racute", 0x00154} , + {"Rang", 0x0300B} , + {"Rarr", 0x021A0} , + {"Rarrtl", 0x02916} , + {"Rcaron", 0x00158} , + {"Rcedil", 0x00156} , + {"Rcy", 0x00420} , + {"Re", 0x0211C} , + {"ReverseElement", 0x0220B} , + {"ReverseEquilibrium", 0x021CB} , + {"ReverseUpEquilibrium", 0x0296F} , + {"Rfr", 0x0211C} , + {"RightAngleBracket", 0x0232A} , + {"RightArrow", 0x02192} , + {"RightArrowBar", 0x021E5} , + {"RightArrowLeftArrow", 0x021C4} , + {"RightCeiling", 0x02309} , + {"RightDoubleBracket", 0x0301B} , + {"RightDownTeeVector", 0x0295D} , + {"RightDownVector", 0x021C2} , + {"RightDownVectorBar", 0x02955} , + {"RightFloor", 0x0230B} , + {"RightTee", 0x022A2} , + {"RightTeeArrow", 0x021A6} , + {"RightTeeVector", 0x0295B} , + {"RightTriangle", 0x022B3} , + {"RightTriangleBar", 0x029D0} , + {"RightTriangleEqual", 0x022B5} , + {"RightUpDownVector", 0x0294F} , + {"RightUpTeeVector", 0x0295C} , + {"RightUpVector", 0x021BE} , + {"RightUpVectorBar", 0x02954} , + {"RightVector", 0x021C0} , + {"RightVectorBar", 0x02953} , + {"Rightarrow", 0x021D2} , + {"Ropf", 0x0211D} , + {"RoundImplies", 0x02970} , + {"Rrightarrow", 0x021DB} , + {"Rscr", 0x0211B} , + {"Rsh", 0x021B1} , + {"RuleDelayed", 0x029F4} , + {"SHCHcy", 0x00429} , + {"SHcy", 0x00428} , + {"SOFTcy", 0x0042C} , + {"Sacute", 0x0015A} , + {"Sc", 0x02ABC} , + {"Scaron", 0x00160} , + {"Scedil", 0x0015E} , + {"Scirc", 0x0015C} , + {"Scy", 0x00421} , + {"Sfr", 0x1D516} , + {"ShortDownArrow", 0x02193} , + {"ShortLeftArrow", 0x02190} , + {"ShortRightArrow", 0x02192} , + {"ShortUpArrow", 0x02191} , + {"Sigma", 0x003A3} , + {"SmallCircle", 0x02218} , + {"Sopf", 0x1D54A} , + {"Sqrt", 0x0221A} , + {"Square", 0x025A1} , + {"SquareIntersection", 0x02293} , + {"SquareSubset", 0x0228F} , + {"SquareSubsetEqual", 0x02291} , + {"SquareSuperset", 0x02290} , + {"SquareSupersetEqual", 0x02292} , + {"SquareUnion", 0x02294} , + {"Sscr", 0x1D4AE} , + {"Star", 0x022C6} , + {"Sub", 0x022D0} , + {"Subset", 0x022D0} , + {"SubsetEqual", 0x02286} , + {"Succeeds", 0x0227B} , + {"SucceedsEqual", 0x02AB0} , + {"SucceedsSlantEqual", 0x0227D} , + {"SucceedsTilde", 0x0227F} , + {"SuchThat", 0x0220B} , + {"Sum", 0x02211} , + {"Sup", 0x022D1} , + {"Superset", 0x02283} , + {"SupersetEqual", 0x02287} , + {"Supset", 0x022D1} , + {"THORN", 0x000DE} , + {"TSHcy", 0x0040B} , + {"TScy", 0x00426} , + {"Tab", 0x00009} , + {"Tcaron", 0x00164} , + {"Tcedil", 0x00162} , + {"Tcy", 0x00422} , + {"Tfr", 0x1D517} , + {"Therefore", 0x02234} , + {"Theta", 0x00398} , + {"ThinSpace", 0x02009} , + {"Tilde", 0x0223C} , + {"TildeEqual", 0x02243} , + {"TildeFullEqual", 0x02245} , + {"TildeTilde", 0x02248} , + {"Topf", 0x1D54B} , + {"TripleDot", 0x020DB} , + {"Tscr", 0x1D4AF} , + {"Tstrok", 0x00166} , + {"Uacute", 0x000DA} , + {"Uarr", 0x0219F} , + {"Uarrocir", 0x02949} , + {"Ubrcy", 0x0040E} , + {"Ubreve", 0x0016C} , + {"Ucirc", 0x000DB} , + {"Ucy", 0x00423} , + {"Udblac", 0x00170} , + {"Ufr", 0x1D518} , + {"Ugrave", 0x000D9} , + {"Umacr", 0x0016A} , + {"UnderBar", 0x00332} , + {"UnderBrace", 0x0FE38} , + {"UnderBracket", 0x023B5} , + {"UnderParenthesis", 0x0FE36} , + {"Union", 0x022C3} , + {"UnionPlus", 0x0228E} , + {"Uogon", 0x00172} , + {"Uopf", 0x1D54C} , + {"UpArrow", 0x02191} , + {"UpArrowBar", 0x02912} , + {"UpArrowDownArrow", 0x021C5} , + {"UpDownArrow", 0x02195} , + {"UpEquilibrium", 0x0296E} , + {"UpTee", 0x022A5} , + {"UpTeeArrow", 0x021A5} , + {"Uparrow", 0x021D1} , + {"Updownarrow", 0x021D5} , + {"UpperLeftArrow", 0x02196} , + {"UpperRightArrow", 0x02197} , + {"Upsi", 0x003D2} , + {"Upsilon", 0x003A5} , + {"Uring", 0x0016E} , + {"Uscr", 0x1D4B0} , + {"Utilde", 0x00168} , + {"Uuml", 0x000DC} , + {"VDash", 0x022AB} , + {"Vbar", 0x02AEB} , + {"Vcy", 0x00412} , + {"Vdash", 0x022A9} , + {"Vdashl", 0x02AE6} , + {"Vee", 0x022C1} , + {"Verbar", 0x02016} , + {"Vert", 0x02016} , + {"VerticalBar", 0x02223} , + {"VerticalLine", 0x0007C} , + {"VerticalSeparator", 0x02758} , + {"VerticalTilde", 0x02240} , + {"VeryThinSpace", 0x0200A} , + {"Vfr", 0x1D519} , + {"Vopf", 0x1D54D} , + {"Vscr", 0x1D4B1} , + {"Vvdash", 0x022AA} , + {"Wcirc", 0x00174} , + {"Wedge", 0x022C0} , + {"Wfr", 0x1D51A} , + {"Wopf", 0x1D54E} , + {"Wscr", 0x1D4B2} , + {"Xfr", 0x1D51B} , + {"Xi", 0x0039E} , + {"Xopf", 0x1D54F} , + {"Xscr", 0x1D4B3} , + {"YAcy", 0x0042F} , + {"YIcy", 0x00407} , + {"YUcy", 0x0042E} , + {"Yacute", 0x000DD} , + {"Ycirc", 0x00176} , + {"Ycy", 0x0042B} , + {"Yfr", 0x1D51C} , + {"Yopf", 0x1D550} , + {"Yscr", 0x1D4B4} , + {"Yuml", 0x00178} , + {"ZHcy", 0x00416} , + {"Zacute", 0x00179} , + {"Zcaron", 0x0017D} , + {"Zcy", 0x00417} , + {"Zdot", 0x0017B} , + {"ZeroWidthSpace", 0x0200B} , + {"Zfr", 0x02128} , + {"Zopf", 0x02124} , + {"Zscr", 0x1D4B5} , + {"aacute", 0x000E1} , + {"abreve", 0x00103} , + {"ac", 0x0223E} , + {"acd", 0x0223F} , + {"acirc", 0x000E2} , + {"acute", 0x000B4} , + {"acy", 0x00430} , + {"aelig", 0x000E6} , + {"af", 0x02061} , + {"afr", 0x1D51E} , + {"agrave", 0x000E0} , + {"aleph", 0x02135} , + {"alpha", 0x003B1} , + {"amacr", 0x00101} , + {"amalg", 0x02A3F} , + {"amp", 0x00026} , + {"and", 0x02227} , + {"andand", 0x02A55} , + {"andd", 0x02A5C} , + {"andslope", 0x02A58} , + {"andv", 0x02A5A} , + {"ang", 0x02220} , + {"ange", 0x029A4} , + {"angle", 0x02220} , + {"angmsd", 0x02221} , + {"angmsdaa", 0x029A8} , + {"angmsdab", 0x029A9} , + {"angmsdac", 0x029AA} , + {"angmsdad", 0x029AB} , + {"angmsdae", 0x029AC} , + {"angmsdaf", 0x029AD} , + {"angmsdag", 0x029AE} , + {"angmsdah", 0x029AF} , + {"angrt", 0x0221F} , + {"angrtvb", 0x022BE} , + {"angrtvbd", 0x0299D} , + {"angsph", 0x02222} , + {"angst", 0x0212B} , + {"angzarr", 0x0237C} , + {"aogon", 0x00105} , + {"aopf", 0x1D552} , + {"ap", 0x02248} , + {"apE", 0x02A70} , + {"apacir", 0x02A6F} , + {"ape", 0x0224A} , + {"apid", 0x0224B} , + {"apos", 0x00027} , + {"approx", 0x02248} , + {"approxeq", 0x0224A} , + {"aring", 0x000E5} , + {"ascr", 0x1D4B6} , + {"ast", 0x0002A} , + {"asymp", 0x02248} , + {"asympeq", 0x0224D} , + {"atilde", 0x000E3} , + {"auml", 0x000E4} , + {"awconint", 0x02233} , + {"awint", 0x02A11} , + {"bNot", 0x02AED} , + {"backcong", 0x0224C} , + {"backepsilon", 0x003F6} , + {"backprime", 0x02035} , + {"backsim", 0x0223D} , + {"backsimeq", 0x022CD} , + {"barvee", 0x022BD} , + {"barwed", 0x02305} , + {"barwedge", 0x02305} , + {"bbrk", 0x023B5} , + {"bbrktbrk", 0x023B6} , + {"bcong", 0x0224C} , + {"bcy", 0x00431} , + {"becaus", 0x02235} , + {"because", 0x02235} , + {"bemptyv", 0x029B0} , + {"bepsi", 0x003F6} , + {"bernou", 0x0212C} , + {"beta", 0x003B2} , + {"beth", 0x02136} , + {"between", 0x0226C} , + {"bfr", 0x1D51F} , + {"bigcap", 0x022C2} , + {"bigcirc", 0x025EF} , + {"bigcup", 0x022C3} , + {"bigodot", 0x02A00} , + {"bigoplus", 0x02A01} , + {"bigotimes", 0x02A02} , + {"bigsqcup", 0x02A06} , + {"bigstar", 0x02605} , + {"bigtriangledown", 0x025BD} , + {"bigtriangleup", 0x025B3} , + {"biguplus", 0x02A04} , + {"bigvee", 0x022C1} , + {"bigwedge", 0x022C0} , + {"bkarow", 0x0290D} , + {"blacklozenge", 0x029EB} , + {"blacksquare", 0x025AA} , + {"blacktriangle", 0x025B4} , + {"blacktriangledown", 0x025BE} , + {"blacktriangleleft", 0x025C2} , + {"blacktriangleright", 0x025B8} , + {"blank", 0x02423} , + {"blk12", 0x02592} , + {"blk14", 0x02591} , + {"blk34", 0x02593} , + {"block", 0x02588} , + {"bnot", 0x02310} , + {"bopf", 0x1D553} , + {"bot", 0x022A5} , + {"bottom", 0x022A5} , + {"bowtie", 0x022C8} , + {"boxDL", 0x02557} , + {"boxDR", 0x02554} , + {"boxDl", 0x02556} , + {"boxDr", 0x02553} , + {"boxH", 0x02550} , + {"boxHD", 0x02566} , + {"boxHU", 0x02569} , + {"boxHd", 0x02564} , + {"boxHu", 0x02567} , + {"boxUL", 0x0255D} , + {"boxUR", 0x0255A} , + {"boxUl", 0x0255C} , + {"boxUr", 0x02559} , + {"boxV", 0x02551} , + {"boxVH", 0x0256C} , + {"boxVL", 0x02563} , + {"boxVR", 0x02560} , + {"boxVh", 0x0256B} , + {"boxVl", 0x02562} , + {"boxVr", 0x0255F} , + {"boxbox", 0x029C9} , + {"boxdL", 0x02555} , + {"boxdR", 0x02552} , + {"boxdl", 0x02510} , + {"boxdr", 0x0250C} , + {"boxh", 0x02500} , + {"boxhD", 0x02565} , + {"boxhU", 0x02568} , + {"boxhd", 0x0252C} , + {"boxhu", 0x02534} , + {"boxminus", 0x0229F} , + {"boxplus", 0x0229E} , + {"boxtimes", 0x022A0} , + {"boxuL", 0x0255B} , + {"boxuR", 0x02558} , + {"boxul", 0x02518} , + {"boxur", 0x02514} , + {"boxv", 0x02502} , + {"boxvH", 0x0256A} , + {"boxvL", 0x02561} , + {"boxvR", 0x0255E} , + {"boxvh", 0x0253C} , + {"boxvl", 0x02524} , + {"boxvr", 0x0251C} , + {"bprime", 0x02035} , + {"breve", 0x002D8} , + {"brvbar", 0x000A6} , + {"bscr", 0x1D4B7} , + {"bsemi", 0x0204F} , + {"bsim", 0x0223D} , + {"bsime", 0x022CD} , + {"bsol", 0x0005C} , + {"bsolb", 0x029C5} , + {"bull", 0x02022} , + {"bullet", 0x02022} , + {"bump", 0x0224E} , + {"bumpE", 0x02AAE} , + {"bumpe", 0x0224F} , + {"bumpeq", 0x0224F} , + {"cacute", 0x00107} , + {"cap", 0x02229} , + {"capand", 0x02A44} , + {"capbrcup", 0x02A49} , + {"capcap", 0x02A4B} , + {"capcup", 0x02A47} , + {"capdot", 0x02A40} , + {"caret", 0x02041} , + {"caron", 0x002C7} , + {"ccaps", 0x02A4D} , + {"ccaron", 0x0010D} , + {"ccedil", 0x000E7} , + {"ccirc", 0x00109} , + {"ccups", 0x02A4C} , + {"ccupssm", 0x02A50} , + {"cdot", 0x0010B} , + {"cedil", 0x000B8} , + {"cemptyv", 0x029B2} , + {"cent", 0x000A2} , + {"centerdot", 0x000B7} , + {"cfr", 0x1D520} , + {"chcy", 0x00447} , + {"check", 0x02713} , + {"checkmark", 0x02713} , + {"chi", 0x003C7} , + {"cir", 0x025CB} , + {"cirE", 0x029C3} , + {"circ", 0x002C6} , + {"circeq", 0x02257} , + {"circlearrowleft", 0x021BA} , + {"circlearrowright", 0x021BB} , + {"circledR", 0x000AE} , + {"circledS", 0x024C8} , + {"circledast", 0x0229B} , + {"circledcirc", 0x0229A} , + {"circleddash", 0x0229D} , + {"cire", 0x02257} , + {"cirfnint", 0x02A10} , + {"cirmid", 0x02AEF} , + {"cirscir", 0x029C2} , + {"clubs", 0x02663} , + {"clubsuit", 0x02663} , + {"colon", 0x0003A} , + {"colone", 0x02254} , + {"coloneq", 0x02254} , + {"comma", 0x0002C} , + {"commat", 0x00040} , + {"comp", 0x02201} , + {"compfn", 0x02218} , + {"complement", 0x02201} , + {"complexes", 0x02102} , + {"cong", 0x02245} , + {"congdot", 0x02A6D} , + {"conint", 0x0222E} , + {"copf", 0x1D554} , + {"coprod", 0x02210} , + {"copy", 0x000A9} , + {"copysr", 0x02117} , + {"cross", 0x02717} , + {"cscr", 0x1D4B8} , + {"csub", 0x02ACF} , + {"csube", 0x02AD1} , + {"csup", 0x02AD0} , + {"csupe", 0x02AD2} , + {"ctdot", 0x022EF} , + {"cudarrl", 0x02938} , + {"cudarrr", 0x02935} , + {"cuepr", 0x022DE} , + {"cuesc", 0x022DF} , + {"cularr", 0x021B6} , + {"cularrp", 0x0293D} , + {"cup", 0x0222A} , + {"cupbrcap", 0x02A48} , + {"cupcap", 0x02A46} , + {"cupcup", 0x02A4A} , + {"cupdot", 0x0228D} , + {"cupor", 0x02A45} , + {"curarr", 0x021B7} , + {"curarrm", 0x0293C} , + {"curlyeqprec", 0x022DE} , + {"curlyeqsucc", 0x022DF} , + {"curlyvee", 0x022CE} , + {"curlywedge", 0x022CF} , + {"curren", 0x000A4} , + {"curvearrowleft", 0x021B6} , + {"curvearrowright", 0x021B7} , + {"cuvee", 0x022CE} , + {"cuwed", 0x022CF} , + {"cwconint", 0x02232} , + {"cwint", 0x02231} , + {"cylcty", 0x0232D} , + {"dArr", 0x021D3} , + {"dHar", 0x02965} , + {"dagger", 0x02020} , + {"dagger", 0x02020} , + {"daleth", 0x02138} , + {"darr", 0x02193} , + {"dash", 0x02010} , + {"dashv", 0x022A3} , + {"dbkarow", 0x0290F} , + {"dblac", 0x002DD} , + {"dcaron", 0x0010F} , + {"dcy", 0x00434} , + {"dd", 0x02146} , + {"ddagger", 0x02021} , + {"ddarr", 0x021CA} , + {"ddotseq", 0x02A77} , + {"deg", 0x000B0} , + {"delta", 0x003B4} , + {"demptyv", 0x029B1} , + {"dfisht", 0x0297F} , + {"dfr", 0x1D521} , + {"dharl", 0x021C3} , + {"dharr", 0x021C2} , + {"diam", 0x022C4} , + {"diamond", 0x022C4} , + {"diamondsuit", 0x02666} , + {"diams", 0x02666} , + {"die", 0x000A8} , + {"digamma", 0x003DD} , + {"disin", 0x022F2} , + {"div", 0x000F7} , + {"divide", 0x000F7} , + {"divideontimes", 0x022C7} , + {"divonx", 0x022C7} , + {"djcy", 0x00452} , + {"dlcorn", 0x0231E} , + {"dlcrop", 0x0230D} , + {"dollar", 0x00024} , + {"dopf", 0x1D555} , + {"dot", 0x002D9} , + {"doteq", 0x02250} , + {"doteqdot", 0x02251} , + {"dotminus", 0x02238} , + {"dotplus", 0x02214} , + {"dotsquare", 0x022A1} , + {"doublebarwedge", 0x02306} , + {"downarrow", 0x02193} , + {"downdownarrows", 0x021CA} , + {"downharpoonleft", 0x021C3} , + {"downharpoonright", 0x021C2} , + {"drbkarow", 0x02910} , + {"drcorn", 0x0231F} , + {"drcrop", 0x0230C} , + {"dscr", 0x1D4B9} , + {"dscy", 0x00455} , + {"dsol", 0x029F6} , + {"dstrok", 0x00111} , + {"dtdot", 0x022F1} , + {"dtri", 0x025BF} , + {"dtrif", 0x025BE} , + {"duarr", 0x021F5} , + {"duhar", 0x0296F} , + {"dwangle", 0x029A6} , + {"dzcy", 0x0045F} , + {"dzigrarr", 0x027FF} , + {"eDDot", 0x02A77} , + {"eDot", 0x02251} , + {"eacute", 0x000E9} , + {"easter", 0x02A6E} , + {"ecaron", 0x0011B} , + {"ecir", 0x02256} , + {"ecirc", 0x000EA} , + {"ecolon", 0x02255} , + {"ecy", 0x0044D} , + {"edot", 0x00117} , + {"ee", 0x02147} , + {"efDot", 0x02252} , + {"efr", 0x1D522} , + {"eg", 0x02A9A} , + {"egrave", 0x000E8} , + {"egs", 0x02A96} , + {"egsdot", 0x02A98} , + {"el", 0x02A99} , + {"elinters", 0x0FFFD} , + {"ell", 0x02113} , + {"els", 0x02A95} , + {"elsdot", 0x02A97} , + {"emacr", 0x00113} , + {"empty", 0x02205} , + {"emptyset", 0x02205} , + {"emptyv", 0x02205} , + {"emsp", 0x02003} , + {"emsp13", 0x02004} , + {"emsp14", 0x02005} , + {"eng", 0x0014B} , + {"ensp", 0x02002} , + {"eogon", 0x00119} , + {"eopf", 0x1D556} , + {"epar", 0x022D5} , + {"eparsl", 0x029E3} , + {"eplus", 0x02A71} , + {"epsi", 0x003F5} , + {"epsiv", 0x003B5} , + {"eqcirc", 0x02256} , + {"eqcolon", 0x02255} , + {"eqsim", 0x02242} , + {"eqslantgtr", 0x02A96} , + {"eqslantless", 0x02A95} , + {"equals", 0x0003D} , + {"equest", 0x0225F} , + {"equiv", 0x02261} , + {"equivDD", 0x02A78} , + {"eqvparsl", 0x029E5} , + {"erDot", 0x02253} , + {"erarr", 0x02971} , + {"escr", 0x0212F} , + {"esdot", 0x02250} , + {"esim", 0x02242} , + {"eta", 0x003B7} , + {"eth", 0x000F0} , + {"euml", 0x000EB} , + {"excl", 0x00021} , + {"exist", 0x02203} , + {"expectation", 0x02130} , + {"exponentiale", 0x02147} , + {"fallingdotseq", 0x02252} , + {"fcy", 0x00444} , + {"female", 0x02640} , + {"ffilig", 0x0FB03} , + {"fflig", 0x0FB00} , + {"ffllig", 0x0FB04} , + {"ffr", 0x1D523} , + {"filig", 0x0FB01} , + {"flat", 0x0266D} , + {"fllig", 0x0FB02} , + {"fltns", 0x025B1} , + {"fnof", 0x00192} , + {"fopf", 0x1D557} , + {"forall", 0x02200} , + {"fork", 0x022D4} , + {"forkv", 0x02AD9} , + {"fpartint", 0x02A0D} , + {"frac12", 0x000BD} , + {"frac13", 0x02153} , + {"frac14", 0x000BC} , + {"frac15", 0x02155} , + {"frac16", 0x02159} , + {"frac18", 0x0215B} , + {"frac23", 0x02154} , + {"frac25", 0x02156} , + {"frac34", 0x000BE} , + {"frac35", 0x02157} , + {"frac38", 0x0215C} , + {"frac45", 0x02158} , + {"frac56", 0x0215A} , + {"frac58", 0x0215D} , + {"frac78", 0x0215E} , + {"frown", 0x02322} , + {"fscr", 0x1D4BB} , + {"gE", 0x02267} , + {"gEl", 0x02A8C} , + {"gacute", 0x001F5} , + {"gamma", 0x003B3} , + {"gammad", 0x003DD} , + {"gap", 0x02A86} , + {"gbreve", 0x0011F} , + {"gcirc", 0x0011D} , + {"gcy", 0x00433} , + {"gdot", 0x00121} , + {"ge", 0x02265} , + {"gel", 0x022DB} , + {"geq", 0x02265} , + {"geqq", 0x02267} , + {"geqslant", 0x02A7E} , + {"ges", 0x02A7E} , + {"gescc", 0x02AA9} , + {"gesdot", 0x02A80} , + {"gesdoto", 0x02A82} , + {"gesdotol", 0x02A84} , + {"gesles", 0x02A94} , + {"gfr", 0x1D524} , + {"gg", 0x0226B} , + {"ggg", 0x022D9} , + {"gimel", 0x02137} , + {"gjcy", 0x00453} , + {"gl", 0x02277} , + {"glE", 0x02A92} , + {"gla", 0x02AA5} , + {"glj", 0x02AA4} , + {"gnE", 0x02269} , + {"gnap", 0x02A8A} , + {"gnapprox", 0x02A8A} , + {"gne", 0x02A88} , + {"gneq", 0x02A88} , + {"gneqq", 0x02269} , + {"gnsim", 0x022E7} , + {"gopf", 0x1D558} , + {"grave", 0x00060} , + {"gscr", 0x0210A} , + {"gsim", 0x02273} , + {"gsime", 0x02A8E} , + {"gsiml", 0x02A90} , + {"gt", 0x0003E} , + {"gtcc", 0x02AA7} , + {"gtcir", 0x02A7A} , + {"gtdot", 0x022D7} , + {"gtlPar", 0x02995} , + {"gtquest", 0x02A7C} , + {"gtrapprox", 0x02A86} , + {"gtrarr", 0x02978} , + {"gtrdot", 0x022D7} , + {"gtreqless", 0x022DB} , + {"gtreqqless", 0x02A8C} , + {"gtrless", 0x02277} , + {"gtrsim", 0x02273} , + {"hArr", 0x021D4} , + {"hairsp", 0x0200A} , + {"half", 0x000BD} , + {"hamilt", 0x0210B} , + {"hardcy", 0x0044A} , + {"harr", 0x02194} , + {"harrcir", 0x02948} , + {"harrw", 0x021AD} , + {"hbar", 0x0210F} , + {"hcirc", 0x00125} , + {"hearts", 0x02665} , + {"heartsuit", 0x02665} , + {"hellip", 0x02026} , + {"hercon", 0x022B9} , + {"hfr", 0x1D525} , + {"hksearow", 0x02925} , + {"hkswarow", 0x02926} , + {"hoarr", 0x021FF} , + {"homtht", 0x0223B} , + {"hookleftarrow", 0x021A9} , + {"hookrightarrow", 0x021AA} , + {"hopf", 0x1D559} , + {"horbar", 0x02015} , + {"hscr", 0x1D4BD} , + {"hslash", 0x0210F} , + {"hstrok", 0x00127} , + {"hybull", 0x02043} , + {"hyphen", 0x02010} , + {"iacute", 0x000ED} , + {"ic", 0x02063} , + {"icirc", 0x000EE} , + {"icy", 0x00438} , + {"iecy", 0x00435} , + {"iexcl", 0x000A1} , + {"iff", 0x021D4} , + {"ifr", 0x1D526} , + {"igrave", 0x000EC} , + {"ii", 0x02148} , + {"iiiint", 0x02A0C} , + {"iiint", 0x0222D} , + {"iinfin", 0x029DC} , + {"iiota", 0x02129} , + {"ijlig", 0x00133} , + {"imacr", 0x0012B} , + {"image", 0x02111} , + {"imagline", 0x02110} , + {"imagpart", 0x02111} , + {"imath", 0x00131} , + {"imof", 0x022B7} , + {"imped", 0x001B5} , + {"in", 0x02208} , + {"incare", 0x02105} , + {"infin", 0x0221E} , + {"infintie", 0x029DD} , + {"inodot", 0x00131} , + {"int", 0x0222B} , + {"intcal", 0x022BA} , + {"integers", 0x02124} , + {"intercal", 0x022BA} , + {"intlarhk", 0x02A17} , + {"intprod", 0x02A3C} , + {"iocy", 0x00451} , + {"iogon", 0x0012F} , + {"iopf", 0x1D55A} , + {"iota", 0x003B9} , + {"iprod", 0x02A3C} , + {"iquest", 0x000BF} , + {"iscr", 0x1D4BE} , + {"isin", 0x02208} , + {"isinE", 0x022F9} , + {"isindot", 0x022F5} , + {"isins", 0x022F4} , + {"isinsv", 0x022F3} , + {"isinv", 0x02208} , + {"it", 0x02062} , + {"itilde", 0x00129} , + {"iukcy", 0x00456} , + {"iuml", 0x000EF} , + {"jcirc", 0x00135} , + {"jcy", 0x00439} , + {"jfr", 0x1D527} , + {"jmath", 0x0006A} , + {"jopf", 0x1D55B} , + {"jscr", 0x1D4BF} , + {"jsercy", 0x00458} , + {"jukcy", 0x00454} , + {"kappa", 0x003BA} , + {"kappav", 0x003F0} , + {"kcedil", 0x00137} , + {"kcy", 0x0043A} , + {"kfr", 0x1D528} , + {"kgreen", 0x00138} , + {"khcy", 0x00445} , + {"kjcy", 0x0045C} , + {"kopf", 0x1D55C} , + {"kscr", 0x1D4C0} , + {"lAarr", 0x021DA} , + {"lArr", 0x021D0} , + {"lAtail", 0x0291B} , + {"lBarr", 0x0290E} , + {"lE", 0x02266} , + {"lEg", 0x02A8B} , + {"lHar", 0x02962} , + {"lacute", 0x0013A} , + {"laemptyv", 0x029B4} , + {"lagran", 0x02112} , + {"lambda", 0x003BB} , + {"lang", 0x02329} , + {"langd", 0x02991} , + {"langle", 0x02329} , + {"lap", 0x02A85} , + {"laquo", 0x000AB} , + {"larr", 0x02190} , + {"larrb", 0x021E4} , + {"larrbfs", 0x0291F} , + {"larrfs", 0x0291D} , + {"larrhk", 0x021A9} , + {"larrlp", 0x021AB} , + {"larrpl", 0x02939} , + {"larrsim", 0x02973} , + {"larrtl", 0x021A2} , + {"lat", 0x02AAB} , + {"latail", 0x02919} , + {"late", 0x02AAD} , + {"lbarr", 0x0290C} , + {"lbbrk", 0x03014} , + {"lbrace", 0x0007B} , + {"lbrack", 0x0005B} , + {"lbrke", 0x0298B} , + {"lbrksld", 0x0298F} , + {"lbrkslu", 0x0298D} , + {"lcaron", 0x0013E} , + {"lcedil", 0x0013C} , + {"lceil", 0x02308} , + {"lcub", 0x0007B} , + {"lcy", 0x0043B} , + {"ldca", 0x02936} , + {"ldquo", 0x0201C} , + {"ldquor", 0x0201E} , + {"ldrdhar", 0x02967} , + {"ldrushar", 0x0294B} , + {"ldsh", 0x021B2} , + {"le", 0x02264} , + {"leftarrow", 0x02190} , + {"leftarrowtail", 0x021A2} , + {"leftharpoondown", 0x021BD} , + {"leftharpoonup", 0x021BC} , + {"leftleftarrows", 0x021C7} , + {"leftrightarrow", 0x02194} , + {"leftrightarrows", 0x021C6} , + {"leftrightharpoons", 0x021CB} , + {"leftrightsquigarrow", 0x021AD} , + {"leftthreetimes", 0x022CB} , + {"leg", 0x022DA} , + {"leq", 0x02264} , + {"leqq", 0x02266} , + {"leqslant", 0x02A7D} , + {"les", 0x02A7D} , + {"lescc", 0x02AA8} , + {"lesdot", 0x02A7F} , + {"lesdoto", 0x02A81} , + {"lesdotor", 0x02A83} , + {"lesges", 0x02A93} , + {"lessapprox", 0x02A85} , + {"lessdot", 0x022D6} , + {"lesseqgtr", 0x022DA} , + {"lesseqqgtr", 0x02A8B} , + {"lessgtr", 0x02276} , + {"lesssim", 0x02272} , + {"lfisht", 0x0297C} , + {"lfloor", 0x0230A} , + {"lfr", 0x1D529} , + {"lg", 0x02276} , + {"lgE", 0x02A91} , + {"lhard", 0x021BD} , + {"lharu", 0x021BC} , + {"lharul", 0x0296A} , + {"lhblk", 0x02584} , + {"ljcy", 0x00459} , + {"ll", 0x0226A} , + {"llarr", 0x021C7} , + {"llcorner", 0x0231E} , + {"llhard", 0x0296B} , + {"lltri", 0x025FA} , + {"lmidot", 0x00140} , + {"lmoust", 0x023B0} , + {"lmoustache", 0x023B0} , + {"lnE", 0x02268} , + {"lnap", 0x02A89} , + {"lnapprox", 0x02A89} , + {"lne", 0x02A87} , + {"lneq", 0x02A87} , + {"lneqq", 0x02268} , + {"lnsim", 0x022E6} , + {"loang", 0x03018} , + {"loarr", 0x021FD} , + {"lobrk", 0x0301A} , + {"longleftarrow", 0x027F5} , + {"longleftrightarrow", 0x027F7} , + {"longmapsto", 0x027FC} , + {"longrightarrow", 0x027F6} , + {"looparrowleft", 0x021AB} , + {"looparrowright", 0x021AC} , + {"lopar", 0x02985} , + {"lopf", 0x1D55D} , + {"loplus", 0x02A2D} , + {"lotimes", 0x02A34} , + {"lowast", 0x02217} , + {"lowbar", 0x0005F} , + {"loz", 0x025CA} , + {"lozenge", 0x025CA} , + {"lozf", 0x029EB} , + {"lpar", 0x00028} , + {"lparlt", 0x02993} , + {"lrarr", 0x021C6} , + {"lrcorner", 0x0231F} , + {"lrhar", 0x021CB} , + {"lrhard", 0x0296D} , + {"lrtri", 0x022BF} , + {"lscr", 0x1D4C1} , + {"lsh", 0x021B0} , + {"lsim", 0x02272} , + {"lsime", 0x02A8D} , + {"lsimg", 0x02A8F} , + {"lsqb", 0x0005B} , + {"lsquo", 0x02018} , + {"lsquor", 0x0201A} , + {"lstrok", 0x00142} , + {"lt", 0x0003C} , + {"ltcc", 0x02AA6} , + {"ltcir", 0x02A79} , + {"ltdot", 0x022D6} , + {"lthree", 0x022CB} , + {"ltimes", 0x022C9} , + {"ltlarr", 0x02976} , + {"ltquest", 0x02A7B} , + {"ltrPar", 0x02996} , + {"ltri", 0x025C3} , + {"ltrie", 0x022B4} , + {"ltrif", 0x025C2} , + {"lurdshar", 0x0294A} , + {"luruhar", 0x02966} , + {"mDDot", 0x0223A} , + {"macr", 0x000AF} , + {"male", 0x02642} , + {"malt", 0x02720} , + {"maltese", 0x02720} , + {"map", 0x021A6} , + {"mapsto", 0x021A6} , + {"mapstodown", 0x021A7} , + {"mapstoleft", 0x021A4} , + {"mapstoup", 0x021A5} , + {"marker", 0x025AE} , + {"mcomma", 0x02A29} , + {"mcy", 0x0043C} , + {"mdash", 0x02014} , + {"measuredangle", 0x02221} , + {"mfr", 0x1D52A} , + {"mho", 0x02127} , + {"micro", 0x000B5} , + {"mid", 0x02223} , + {"midast", 0x0002A} , + {"midcir", 0x02AF0} , + {"middot", 0x000B7} , + {"minus", 0x02212} , + {"minusb", 0x0229F} , + {"minusd", 0x02238} , + {"minusdu", 0x02A2A} , + {"mlcp", 0x02ADB} , + {"mldr", 0x02026} , + {"mnplus", 0x02213} , + {"models", 0x022A7} , + {"mopf", 0x1D55E} , + {"mp", 0x02213} , + {"mscr", 0x1D4C2} , + {"mstpos", 0x0223E} , + {"mu", 0x003BC} , + {"multimap", 0x022B8} , + {"mumap", 0x022B8} , + {"nLeftarrow", 0x021CD} , + {"nLeftrightarrow", 0x021CE} , + {"nRightarrow", 0x021CF} , + {"nVDash", 0x022AF} , + {"nVdash", 0x022AE} , + {"nabla", 0x02207} , + {"nacute", 0x00144} , + {"nap", 0x02249} , + {"napos", 0x00149} , + {"napprox", 0x02249} , + {"natur", 0x0266E} , + {"natural", 0x0266E} , + {"naturals", 0x02115} , + {"nbsp", 0x000A0} , + {"ncap", 0x02A43} , + {"ncaron", 0x00148} , + {"ncedil", 0x00146} , + {"ncong", 0x02247} , + {"ncup", 0x02A42} , + {"ncy", 0x0043D} , + {"ndash", 0x02013} , + {"ne", 0x02260} , + {"neArr", 0x021D7} , + {"nearhk", 0x02924} , + {"nearr", 0x02197} , + {"nearrow", 0x02197} , + {"nequiv", 0x02262} , + {"nesear", 0x02928} , + {"nexist", 0x02204} , + {"nexists", 0x02204} , + {"nfr", 0x1D52B} , + {"nge", 0x02271} , + {"ngeq", 0x02271} , + {"ngsim", 0x02275} , + {"ngt", 0x0226F} , + {"ngtr", 0x0226F} , + {"nhArr", 0x021CE} , + {"nharr", 0x021AE} , + {"nhpar", 0x02AF2} , + {"ni", 0x0220B} , + {"nis", 0x022FC} , + {"nisd", 0x022FA} , + {"niv", 0x0220B} , + {"njcy", 0x0045A} , + {"nlArr", 0x021CD} , + {"nlarr", 0x0219A} , + {"nldr", 0x02025} , + {"nle", 0x02270} , + {"nleftarrow", 0x0219A} , + {"nleftrightarrow", 0x021AE} , + {"nleq", 0x02270} , + {"nless", 0x0226E} , + {"nlsim", 0x02274} , + {"nlt", 0x0226E} , + {"nltri", 0x022EA} , + {"nltrie", 0x022EC} , + {"nmid", 0x02224} , + {"nopf", 0x1D55F} , + {"not", 0x000AC} , + {"notin", 0x02209} , + {"notinva", 0x02209} , + {"notinvb", 0x022F7} , + {"notinvc", 0x022F6} , + {"notni", 0x0220C} , + {"notniva", 0x0220C} , + {"notnivb", 0x022FE} , + {"notnivc", 0x022FD} , + {"npar", 0x02226} , + {"nparallel", 0x02226} , + {"npolint", 0x02A14} , + {"npr", 0x02280} , + {"nprcue", 0x022E0} , + {"nprec", 0x02280} , + {"nrArr", 0x021CF} , + {"nrarr", 0x0219B} , + {"nrightarrow", 0x0219B} , + {"nrtri", 0x022EB} , + {"nrtrie", 0x022ED} , + {"nsc", 0x02281} , + {"nsccue", 0x022E1} , + {"nscr", 0x1D4C3} , + {"nshortmid", 0x02224} , + {"nshortparallel", 0x02226} , + {"nsim", 0x02241} , + {"nsime", 0x02244} , + {"nsimeq", 0x02244} , + {"nsmid", 0x02224} , + {"nspar", 0x02226} , + {"nsqsube", 0x022E2} , + {"nsqsupe", 0x022E3} , + {"nsub", 0x02284} , + {"nsube", 0x02288} , + {"nsubseteq", 0x02288} , + {"nsucc", 0x02281} , + {"nsup", 0x02285} , + {"nsupe", 0x02289} , + {"nsupseteq", 0x02289} , + {"ntgl", 0x02279} , + {"ntilde", 0x000F1} , + {"ntlg", 0x02278} , + {"ntriangleleft", 0x022EA} , + {"ntrianglelefteq", 0x022EC} , + {"ntriangleright", 0x022EB} , + {"ntrianglerighteq", 0x022ED} , + {"nu", 0x003BD} , + {"num", 0x00023} , + {"numero", 0x02116} , + {"numsp", 0x02007} , + {"nvDash", 0x022AD} , + {"nvHarr", 0x02904} , + {"nvdash", 0x022AC} , + {"nvinfin", 0x029DE} , + {"nvlArr", 0x02902} , + {"nvrArr", 0x02903} , + {"nwArr", 0x021D6} , + {"nwarhk", 0x02923} , + {"nwarr", 0x02196} , + {"nwarrow", 0x02196} , + {"nwnear", 0x02927} , + {"oS", 0x024C8} , + {"oacute", 0x000F3} , + {"oast", 0x0229B} , + {"ocir", 0x0229A} , + {"ocirc", 0x000F4} , + {"ocy", 0x0043E} , + {"odash", 0x0229D} , + {"odblac", 0x00151} , + {"odiv", 0x02A38} , + {"odot", 0x02299} , + {"odsold", 0x029BC} , + {"oelig", 0x00153} , + {"ofcir", 0x029BF} , + {"ofr", 0x1D52C} , + {"ogon", 0x002DB} , + {"ograve", 0x000F2} , + {"ogt", 0x029C1} , + {"ohbar", 0x029B5} , + {"ohm", 0x02126} , + {"oint", 0x0222E} , + {"olarr", 0x021BA} , + {"olcir", 0x029BE} , + {"olcross", 0x029BB} , + {"olt", 0x029C0} , + {"omacr", 0x0014D} , + {"omega", 0x003C9} , + {"omid", 0x029B6} , + {"ominus", 0x02296} , + {"oopf", 0x1D560} , + {"opar", 0x029B7} , + {"operp", 0x029B9} , + {"oplus", 0x02295} , + {"or", 0x02228} , + {"orarr", 0x021BB} , + {"ord", 0x02A5D} , + {"order", 0x02134} , + {"orderof", 0x02134} , + {"ordf", 0x000AA} , + {"ordm", 0x000BA} , + {"origof", 0x022B6} , + {"oror", 0x02A56} , + {"orslope", 0x02A57} , + {"orv", 0x02A5B} , + {"oscr", 0x02134} , + {"oslash", 0x000F8} , + {"osol", 0x02298} , + {"otilde", 0x000F5} , + {"otimes", 0x02297} , + {"otimesas", 0x02A36} , + {"ouml", 0x000F6} , + {"ovbar", 0x0233D} , + {"par", 0x02225} , + {"para", 0x000B6} , + {"parallel", 0x02225} , + {"parsim", 0x02AF3} , + {"parsl", 0x02AFD} , + {"part", 0x02202} , + {"pcy", 0x0043F} , + {"percnt", 0x00025} , + {"period", 0x0002E} , + {"permil", 0x02030} , + {"perp", 0x022A5} , + {"pertenk", 0x02031} , + {"pfr", 0x1D52D} , + {"phi", 0x003D5} , + {"phiv", 0x003C6} , + {"phmmat", 0x02133} , + {"phone", 0x0260E} , + {"pi", 0x003C0} , + {"pitchfork", 0x022D4} , + {"piv", 0x003D6} , + {"planck", 0x0210F} , + {"planckh", 0x0210E} , + {"plankv", 0x0210F} , + {"plus", 0x0002B} , + {"plusacir", 0x02A23} , + {"plusb", 0x0229E} , + {"pluscir", 0x02A22} , + {"plusdo", 0x02214} , + {"plusdu", 0x02A25} , + {"pluse", 0x02A72} , + {"plusmn", 0x000B1} , + {"plussim", 0x02A26} , + {"plustwo", 0x02A27} , + {"pm", 0x000B1} , + {"pointint", 0x02A15} , + {"popf", 0x1D561} , + {"pound", 0x000A3} , + {"pr", 0x0227A} , + {"prE", 0x02AB3} , + {"prap", 0x02AB7} , + {"prcue", 0x0227C} , + {"pre", 0x02AAF} , + {"prec", 0x0227A} , + {"precapprox", 0x02AB7} , + {"preccurlyeq", 0x0227C} , + {"preceq", 0x02AAF} , + {"precnapprox", 0x02AB9} , + {"precneqq", 0x02AB5} , + {"precnsim", 0x022E8} , + {"precsim", 0x0227E} , + {"prime", 0x02032} , + {"primes", 0x02119} , + {"prnE", 0x02AB5} , + {"prnap", 0x02AB9} , + {"prnsim", 0x022E8} , + {"prod", 0x0220F} , + {"profalar", 0x0232E} , + {"profline", 0x02312} , + {"profsurf", 0x02313} , + {"prop", 0x0221D} , + {"propto", 0x0221D} , + {"prsim", 0x0227E} , + {"prurel", 0x022B0} , + {"pscr", 0x1D4C5} , + {"psi", 0x003C8} , + {"puncsp", 0x02008} , + {"qfr", 0x1D52E} , + {"qint", 0x02A0C} , + {"qopf", 0x1D562} , + {"qprime", 0x02057} , + {"qscr", 0x1D4C6} , + {"quaternions", 0x0210D} , + {"quatint", 0x02A16} , + {"quest", 0x0003F} , + {"questeq", 0x0225F} , + {"quot", 0x00022} , + {"rAarr", 0x021DB} , + {"rArr", 0x021D2} , + {"rAtail", 0x0291C} , + {"rBarr", 0x0290F} , + {"rHar", 0x02964} , + {"race", 0x029DA} , + {"racute", 0x00155} , + {"radic", 0x0221A} , + {"raemptyv", 0x029B3} , + {"rang", 0x0232A} , + {"rangd", 0x02992} , + {"range", 0x029A5} , + {"rangle", 0x0232A} , + {"raquo", 0x000BB} , + {"rarr", 0x02192} , + {"rarrap", 0x02975} , + {"rarrb", 0x021E5} , + {"rarrbfs", 0x02920} , + {"rarrc", 0x02933} , + {"rarrfs", 0x0291E} , + {"rarrhk", 0x021AA} , + {"rarrlp", 0x021AC} , + {"rarrpl", 0x02945} , + {"rarrsim", 0x02974} , + {"rarrtl", 0x021A3} , + {"rarrw", 0x0219D} , + {"ratail", 0x0291A} , + {"ratio", 0x02236} , + {"rationals", 0x0211A} , + {"rbarr", 0x0290D} , + {"rbbrk", 0x03015} , + {"rbrace", 0x0007D} , + {"rbrack", 0x0005D} , + {"rbrke", 0x0298C} , + {"rbrksld", 0x0298E} , + {"rbrkslu", 0x02990} , + {"rcaron", 0x00159} , + {"rcedil", 0x00157} , + {"rceil", 0x02309} , + {"rcub", 0x0007D} , + {"rcy", 0x00440} , + {"rdca", 0x02937} , + {"rdldhar", 0x02969} , + {"rdquo", 0x0201D} , + {"rdquor", 0x0201D} , + {"rdsh", 0x021B3} , + {"real", 0x0211C} , + {"realine", 0x0211B} , + {"realpart", 0x0211C} , + {"reals", 0x0211D} , + {"rect", 0x025AD} , + {"reg", 0x000AE} , + {"rfisht", 0x0297D} , + {"rfloor", 0x0230B} , + {"rfr", 0x1D52F} , + {"rhard", 0x021C1} , + {"rharu", 0x021C0} , + {"rharul", 0x0296C} , + {"rho", 0x003C1} , + {"rhov", 0x003F1} , + {"rightarrow", 0x02192} , + {"rightarrowtail", 0x021A3} , + {"rightharpoondown", 0x021C1} , + {"rightharpoonup", 0x021C0} , + {"rightleftarrows", 0x021C4} , + {"rightleftharpoons", 0x021CC} , + {"rightrightarrows", 0x021C9} , + {"rightsquigarrow", 0x0219D} , + {"rightthreetimes", 0x022CC} , + {"ring", 0x002DA} , + {"risingdotseq", 0x02253} , + {"rlarr", 0x021C4} , + {"rlhar", 0x021CC} , + {"rmoust", 0x023B1} , + {"rmoustache", 0x023B1} , + {"rnmid", 0x02AEE} , + {"roang", 0x03019} , + {"roarr", 0x021FE} , + {"robrk", 0x0301B} , + {"ropar", 0x02986} , + {"ropf", 0x1D563} , + {"roplus", 0x02A2E} , + {"rotimes", 0x02A35} , + {"rpar", 0x00029} , + {"rpargt", 0x02994} , + {"rppolint", 0x02A12} , + {"rrarr", 0x021C9} , + {"rscr", 0x1D4C7} , + {"rsh", 0x021B1} , + {"rsqb", 0x0005D} , + {"rsquo", 0x02019} , + {"rsquor", 0x02019} , + {"rthree", 0x022CC} , + {"rtimes", 0x022CA} , + {"rtri", 0x025B9} , + {"rtrie", 0x022B5} , + {"rtrif", 0x025B8} , + {"rtriltri", 0x029CE} , + {"ruluhar", 0x02968} , + {"rx", 0x0211E} , + {"sacute", 0x0015B} , + {"sc", 0x0227B} , + {"scE", 0x02AB4} , + {"scap", 0x02AB8} , + {"scaron", 0x00161} , + {"sccue", 0x0227D} , + {"sce", 0x02AB0} , + {"scedil", 0x0015F} , + {"scirc", 0x0015D} , + {"scnE", 0x02AB6} , + {"scnap", 0x02ABA} , + {"scnsim", 0x022E9} , + {"scpolint", 0x02A13} , + {"scsim", 0x0227F} , + {"scy", 0x00441} , + {"sdot", 0x022C5} , + {"sdotb", 0x022A1} , + {"sdote", 0x02A66} , + {"seArr", 0x021D8} , + {"searhk", 0x02925} , + {"searr", 0x02198} , + {"searrow", 0x02198} , + {"sect", 0x000A7} , + {"semi", 0x0003B} , + {"seswar", 0x02929} , + {"setminus", 0x02216} , + {"setmn", 0x02216} , + {"sext", 0x02736} , + {"sfr", 0x1D530} , + {"sfrown", 0x02322} , + {"sharp", 0x0266F} , + {"shchcy", 0x00449} , + {"shcy", 0x00448} , + {"shortmid", 0x02223} , + {"shortparallel", 0x02225} , + {"shy", 0x000AD} , + {"sigma", 0x003C3} , + {"sigmav", 0x003C2} , + {"sim", 0x0223C} , + {"simdot", 0x02A6A} , + {"sime", 0x02243} , + {"simeq", 0x02243} , + {"simg", 0x02A9E} , + {"simgE", 0x02AA0} , + {"siml", 0x02A9D} , + {"simlE", 0x02A9F} , + {"simne", 0x02246} , + {"simplus", 0x02A24} , + {"simrarr", 0x02972} , + {"slarr", 0x02190} , + {"smallsetminus", 0x02216} , + {"smashp", 0x02A33} , + {"smeparsl", 0x029E4} , + {"smid", 0x02223} , + {"smile", 0x02323} , + {"smt", 0x02AAA} , + {"smte", 0x02AAC} , + {"softcy", 0x0044C} , + {"sol", 0x0002F} , + {"solb", 0x029C4} , + {"solbar", 0x0233F} , + {"sopf", 0x1D564} , + {"spades", 0x02660} , + {"spadesuit", 0x02660} , + {"spar", 0x02225} , + {"sqcap", 0x02293} , + {"sqcup", 0x02294} , + {"sqsub", 0x0228F} , + {"sqsube", 0x02291} , + {"sqsubset", 0x0228F} , + {"sqsubseteq", 0x02291} , + {"sqsup", 0x02290} , + {"sqsupe", 0x02292} , + {"sqsupset", 0x02290} , + {"sqsupseteq", 0x02292} , + {"squ", 0x025A1} , + {"square", 0x025A1} , + {"squarf", 0x025AA} , + {"squf", 0x025AA} , + {"srarr", 0x02192} , + {"sscr", 0x1D4C8} , + {"ssetmn", 0x02216} , + {"ssmile", 0x02323} , + {"sstarf", 0x022C6} , + {"star", 0x02606} , + {"starf", 0x02605} , + {"straightepsilon", 0x003F5} , + {"straightphi", 0x003D5} , + {"strns", 0x000AF} , + {"sub", 0x02282} , + {"subE", 0x02AC5} , + {"subdot", 0x02ABD} , + {"sube", 0x02286} , + {"subedot", 0x02AC3} , + {"submult", 0x02AC1} , + {"subnE", 0x02ACB} , + {"subne", 0x0228A} , + {"subplus", 0x02ABF} , + {"subrarr", 0x02979} , + {"subset", 0x02282} , + {"subseteq", 0x02286} , + {"subseteqq", 0x02AC5} , + {"subsetneq", 0x0228A} , + {"subsetneqq", 0x02ACB} , + {"subsim", 0x02AC7} , + {"subsub", 0x02AD5} , + {"subsup", 0x02AD3} , + {"succ", 0x0227B} , + {"succapprox", 0x02AB8} , + {"succcurlyeq", 0x0227D} , + {"succeq", 0x02AB0} , + {"succnapprox", 0x02ABA} , + {"succneqq", 0x02AB6} , + {"succnsim", 0x022E9} , + {"succsim", 0x0227F} , + {"sum", 0x02211} , + {"sung", 0x0266A} , + {"sup", 0x02283} , + {"sup1", 0x000B9} , + {"sup2", 0x000B2} , + {"sup3", 0x000B3} , + {"supE", 0x02AC6} , + {"supdot", 0x02ABE} , + {"supdsub", 0x02AD8} , + {"supe", 0x02287} , + {"supedot", 0x02AC4} , + {"suphsub", 0x02AD7} , + {"suplarr", 0x0297B} , + {"supmult", 0x02AC2} , + {"supnE", 0x02ACC} , + {"supne", 0x0228B} , + {"supplus", 0x02AC0} , + {"supset", 0x02283} , + {"supseteq", 0x02287} , + {"supseteqq", 0x02AC6} , + {"supsetneq", 0x0228B} , + {"supsetneqq", 0x02ACC} , + {"supsim", 0x02AC8} , + {"supsub", 0x02AD4} , + {"supsup", 0x02AD6} , + {"swArr", 0x021D9} , + {"swarhk", 0x02926} , + {"swarr", 0x02199} , + {"swarrow", 0x02199} , + {"swnwar", 0x0292A} , + {"szlig", 0x000DF} , + {"target", 0x02316} , + {"tau", 0x003C4} , + {"tbrk", 0x023B4} , + {"tcaron", 0x00165} , + {"tcedil", 0x00163} , + {"tcy", 0x00442} , + {"tdot", 0x020DB} , + {"telrec", 0x02315} , + {"tfr", 0x1D531} , + {"there4", 0x02234} , + {"therefore", 0x02234} , + {"theta", 0x003B8} , + {"thetav", 0x003D1} , + {"thickapprox", 0x02248} , + {"thicksim", 0x0223C} , + {"thinsp", 0x02009} , + {"thkap", 0x02248} , + {"thksim", 0x0223C} , + {"thorn", 0x000FE} , + {"tilde", 0x002DC} , + {"times", 0x000D7} , + {"timesb", 0x022A0} , + {"timesbar", 0x02A31} , + {"timesd", 0x02A30} , + {"tint", 0x0222D} , + {"toea", 0x02928} , + {"top", 0x022A4} , + {"topbot", 0x02336} , + {"topcir", 0x02AF1} , + {"topf", 0x1D565} , + {"topfork", 0x02ADA} , + {"tosa", 0x02929} , + {"tprime", 0x02034} , + {"trade", 0x02122} , + {"triangle", 0x025B5} , + {"triangledown", 0x025BF} , + {"triangleleft", 0x025C3} , + {"trianglelefteq", 0x022B4} , + {"triangleq", 0x0225C} , + {"triangleright", 0x025B9} , + {"trianglerighteq", 0x022B5} , + {"tridot", 0x025EC} , + {"trie", 0x0225C} , + {"triminus", 0x02A3A} , + {"triplus", 0x02A39} , + {"trisb", 0x029CD} , + {"tritime", 0x02A3B} , + {"trpezium", 0x0FFFD} , + {"tscr", 0x1D4C9} , + {"tscy", 0x00446} , + {"tshcy", 0x0045B} , + {"tstrok", 0x00167} , + {"twixt", 0x0226C} , + {"twoheadleftarrow", 0x0219E} , + {"twoheadrightarrow", 0x021A0} , + {"uArr", 0x021D1} , + {"uHar", 0x02963} , + {"uacute", 0x000FA} , + {"uarr", 0x02191} , + {"ubrcy", 0x0045E} , + {"ubreve", 0x0016D} , + {"ucirc", 0x000FB} , + {"ucy", 0x00443} , + {"udarr", 0x021C5} , + {"udblac", 0x00171} , + {"udhar", 0x0296E} , + {"ufisht", 0x0297E} , + {"ufr", 0x1D532} , + {"ugrave", 0x000F9} , + {"uharl", 0x021BF} , + {"uharr", 0x021BE} , + {"uhblk", 0x02580} , + {"ulcorn", 0x0231C} , + {"ulcorner", 0x0231C} , + {"ulcrop", 0x0230F} , + {"ultri", 0x025F8} , + {"umacr", 0x0016B} , + {"uml", 0x000A8} , + {"uogon", 0x00173} , + {"uopf", 0x1D566} , + {"uparrow", 0x02191} , + {"updownarrow", 0x02195} , + {"upharpoonleft", 0x021BF} , + {"upharpoonright", 0x021BE} , + {"uplus", 0x0228E} , + {"upsi", 0x003C5} , + {"upsilon", 0x003C5} , + {"upuparrows", 0x021C8} , + {"urcorn", 0x0231D} , + {"urcorner", 0x0231D} , + {"urcrop", 0x0230E} , + {"uring", 0x0016F} , + {"urtri", 0x025F9} , + {"uscr", 0x1D4CA} , + {"utdot", 0x022F0} , + {"utilde", 0x00169} , + {"utri", 0x025B5} , + {"utrif", 0x025B4} , + {"uuarr", 0x021C8} , + {"uuml", 0x000FC} , + {"uwangle", 0x029A7} , + {"vArr", 0x021D5} , + {"vBar", 0x02AE8} , + {"vBarv", 0x02AE9} , + {"vDash", 0x022A8} , + {"vangrt", 0x0299C} , + {"varepsilon", 0x003B5} , + {"varkappa", 0x003F0} , + {"varnothing", 0x02205} , + {"varphi", 0x003C6} , + {"varpi", 0x003D6} , + {"varpropto", 0x0221D} , + {"varr", 0x02195} , + {"varrho", 0x003F1} , + {"varsigma", 0x003C2} , + {"vartheta", 0x003D1} , + {"vartriangleleft", 0x022B2} , + {"vartriangleright", 0x022B3} , + {"vcy", 0x00432} , + {"vdash", 0x022A2} , + {"vee", 0x02228} , + {"veebar", 0x022BB} , + {"veeeq", 0x0225A} , + {"vellip", 0x022EE} , + {"verbar", 0x0007C} , + {"vert", 0x0007C} , + {"vfr", 0x1D533} , + {"vltri", 0x022B2} , + {"vopf", 0x1D567} , + {"vprop", 0x0221D} , + {"vrtri", 0x022B3} , + {"vscr", 0x1D4CB} , + {"vzigzag", 0x0299A} , + {"wcirc", 0x00175} , + {"wedbar", 0x02A5F} , + {"wedge", 0x02227} , + {"wedgeq", 0x02259} , + {"weierp", 0x02118} , + {"wfr", 0x1D534} , + {"wopf", 0x1D568} , + {"wp", 0x02118} , + {"wr", 0x02240} , + {"wreath", 0x02240} , + {"wscr", 0x1D4CC} , + {"xcap", 0x022C2} , + {"xcirc", 0x025EF} , + {"xcup", 0x022C3} , + {"xdtri", 0x025BD} , + {"xfr", 0x1D535} , + {"xhArr", 0x027FA} , + {"xharr", 0x027F7} , + {"xi", 0x003BE} , + {"xlArr", 0x027F8} , + {"xlarr", 0x027F5} , + {"xmap", 0x027FC} , + {"xnis", 0x022FB} , + {"xodot", 0x02A00} , + {"xopf", 0x1D569} , + {"xoplus", 0x02A01} , + {"xotime", 0x02A02} , + {"xrArr", 0x027F9} , + {"xrarr", 0x027F6} , + {"xscr", 0x1D4CD} , + {"xsqcup", 0x02A06} , + {"xuplus", 0x02A04} , + {"xutri", 0x025B3} , + {"xvee", 0x022C1} , + {"xwedge", 0x022C0} , + {"yacute", 0x000FD} , + {"yacy", 0x0044F} , + {"ycirc", 0x00177} , + {"ycy", 0x0044B} , + {"yen", 0x000A5} , + {"yfr", 0x1D536} , + {"yicy", 0x00457} , + {"yopf", 0x1D56A} , + {"yscr", 0x1D4CE} , + {"yucy", 0x0044E} , + {"yuml", 0x000FF} , + {"zacute", 0x0017A} , + {"zcaron", 0x0017E} , + {"zcy", 0x00437} , + {"zdot", 0x0017C} , + {"zeetrf", 0x02128} , + {"zeta", 0x003B6} , + {"zfr", 0x1D537} , + {"zhcy", 0x00436} , + {"zigrarr", 0x021DD} , + {"zopf", 0x1D56B} , + {"zscr", 0x1D4CF} +}; + +// Needed since sizeof is a macro and we cannot be used until size is known +int entityMap::size() +{ + return sizeof( entities ) / sizeof( entityMap ); +} + +KFORMULA_NAMESPACE_END + |