1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
|
<!DOCTYPE KSpreadFunctions>
<KSpreadFunctions>
<Group>
<GroupName>Financial</GroupName>
<Function>
<Name>RECEIVED</Name>
<Type>Float</Type>
<Parameter>
<Comment>Settlement</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Maturity</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Investment</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Discount rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter optional="true">
<Comment>Basis</Comment>
<Type>Int</Type>
</Parameter>
<Help>
<Text>The RECEIVED function returns the amount received at the maturity date for a invested security. Basis is the type of day counting you want to use: 0: US 30/360 (default), 1: real days, 2: real days/360, 3: real days/365 or 4: European 30/365. The settlement date must be before maturity date.</Text>
<Syntax>RECEIVED(settlement; maturity; investment; discount; basis)</Syntax>
<Example>RECEIVED("2/28/2001"; "8/31/2001"; 1000; 0.05; 0) returns 1,025.787</Example>
</Help>
</Function>
<Function>
<Name>TBILLEQ</Name>
<Type>Float</Type>
<Parameter>
<Comment>Settlement</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Maturity</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Discount rate</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The TBILLEQ functions returns the bond equivalent for a treasury bill. The maturity date must be after the settlement date but within 365 days.</Text>
<Syntax>TBILLEQ(settlement; maturity; discount)</Syntax>
<Example>TBILLEQ("2/28/2001"; "8/31/2001"; 0.1) returns 0.1068</Example>
<Related>TBILLPRICE</Related>
<Related>TBILLYIELD</Related>
</Help>
</Function>
<Function>
<Name>TBILLPRICE</Name>
<Type>Float</Type>
<Parameter>
<Comment>Settlement</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Maturity</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Discount rate</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The TBILLPRICE functions returns the price per $100 value for a treasury bill. The maturity date must be after the settlement date but within 365 days. The discount rate must be positive.</Text>
<Syntax>TBILLPRICE(settlement; maturity; discount)</Syntax>
<Example>TBILLPRICE("2/28/2001"; "8/31/2001"; 0.05) returns 97.4444</Example>
<Related>TBILLEQ</Related>
<Related>TBILLYIELD</Related>
</Help>
</Function>
<Function>
<Name>TBILLYIELD</Name>
<Type>Float</Type>
<Parameter>
<Comment>Settlement</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Maturity</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Price per $100 face value</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The TBILLYIELD functions returns the yield for a treasury bill. The maturity date must be after the settlement date but within 365 days. The price must be positive.</Text>
<Syntax>TBILLYIELD(settlement; maturity; price)</Syntax>
<Example>TBILLYIELD("2/28/2001"; "8/31/2001"; 600) returns -1.63</Example>
<Related>TBILLEQ</Related>
<Related>TBILLPRICE</Related>
</Help>
</Function>
<Function>
<Name>ACCRINT</Name>
<Type>Float</Type>
<Parameter>
<Comment>Issue date</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>First interest</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Settlement</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Annual rate of security</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Par value</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Number of payments per year</Comment>
<Type>Float</Type>
</Parameter>
<Parameter optional="true">
<Comment>Day counting basis</Comment>
<Type>Int</Type>
</Parameter>
<Help>
<Text>The ACCRINT function returns accrued interest for a security which pays periodic interest. Allowed frequencies are 1 - annual, 2 - semi-annual or 4 - quarterly. Basis is the type of day counting you want to use: 0: US 30/360 (default), 1: real days, 2: real days/360, 3: real days/365 or 4: European 30/365.</Text>
<Syntax>ACCRINT(issue; first interest; settlement; rate; par; frequency; basis)</Syntax>
<Example>ACCRINT("2/28/2001"; "8/31/2001"; "5/1/2001"; 0.1; 1000; 2; 0) returns 16,944</Example>
<Related>ACCRINTM</Related>
</Help>
</Function>
<Function>
<Name>ACCRINTM</Name>
<Type>Float</Type>
<Parameter>
<Comment>Issue date</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Settlement</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Annual rate of security</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Par value</Comment>
<Type>Float</Type>
</Parameter>
<Parameter optional="true">
<Comment>Day counting basis</Comment>
<Type>Int</Type>
</Parameter>
<Help>
<Text>The ACCRINTM function returns accrued interest for a security which pays interests at maturity date. Basis is the type of day counting you want to use: 0: US 30/360 (default), 1: real days, 2: real days/360, 3: real days/365 or 4: European 30/365.</Text>
<Syntax>ACCRINTM(issue; settlement; rate; par; basis)</Syntax>
<Example>ACCRINTM("2/28/2001"; "8/31/2001"; 0.1; 100) returns 5.0278</Example>
<Related>ACCRINT</Related>
</Help>
</Function>
<Function>
<Name>INTRATE</Name>
<Type>Float</Type>
<Parameter>
<Comment>Settlement</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Maturity</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Investment</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Redemption</Comment>
<Type>Float</Type>
</Parameter>
<Parameter optional="true">
<Comment>Day counting basis</Comment>
<Type>Int</Type>
</Parameter>
<Help>
<Text>The INTRATE function returns the interest rate for a fully invested security. Basis is the type of day counting you want to use: 0: US 30/360 (default), 1: real days, 2: real days/360, 3: real days/365 or 4: European 30/365.</Text>
<Syntax>INTRATE(settlement; maturity; investment; redemption; basis)</Syntax>
<Example>INTRATE("2/28/2001"; "8/31/2001"; 1000000; 2000000; 1) returns 1.98</Example>
</Help>
</Function>
<Function>
<Name>DISC</Name>
<Type>Float</Type>
<Parameter>
<Comment>Settlement</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Maturity</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Price per $100 face value</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Redemption</Comment>
<Type>Float</Type>
</Parameter>
<Parameter optional="true">
<Comment>Day counting basis</Comment>
<Type>Int</Type>
</Parameter>
<Help>
<Text>The DISC function returns the discount rate for a security. Basis is the type of day counting you want to use: 0: US 30/360 (default), 1: real days, 2: real days/360, 3: real days/365 or 4: European 30/365.</Text>
<Syntax>DISC(settlement; maturity; par; redemption; basis)</Syntax>
<Example>DISC("2/28/2001"; "8/31/2001"; 12; 14) returns 0.2841</Example>
</Help>
</Function>
<Function>
<Name>DOLLARDE</Name>
<Type>Float</Type>
<Parameter>
<Comment>Fractional Dollar</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Fraction</Comment>
<Type>Int</Type>
</Parameter>
<Help>
<Text>The DOLLARDE() function returns a dollar price expressed as a decimal number. The fractional dollar is the number to be converted and the fraction is the denominator of the fraction</Text>
<Syntax>DOLLARDE(fractional dollar; fraction)</Syntax>
<Example>DOLLARDE(1.02; 16) - stands for 1 and 2/16 - returns 1.125</Example>
<Related>DOLLARDE</Related>
</Help>
</Function>
<Function>
<Name>DOLLARFR</Name>
<Type>Float</Type>
<Parameter>
<Comment>Decimal Dollar</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Fraction</Comment>
<Type>Int</Type>
</Parameter>
<Help>
<Text>The DOLLARFR() function returns a dollar price expressed as a fraction. The decimal dollar is the number to be converted and the fraction is the denominator of the fraction</Text>
<Syntax>DOLLARFR(fractional dollar; fraction)</Syntax>
<Example>DOLLARFR</Example>
<Related>DOLLARFR(1.125; 16) returns 1.02. (1 + 2/16)</Related>
</Help>
</Function>
<Function>
<Name>COUPNUM</Name>
<Type>Float</Type>
<Parameter>
<Comment>Settlement</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Maturity</Comment>
<Type>Date</Type>
</Parameter>
<Parameter>
<Comment>Frequency</Comment>
<Type>Float</Type>
</Parameter>
<Parameter optional="true">
<Comment>Day counting basis</Comment>
<Type>Int</Type>
</Parameter>
<Help>
<Text>The COUPNUM function returns the number of coupons to be paid between the settlement and the maturity. Basis is the type of day counting you want to use: 0: US 30/360 (default), 1: real days, 2: real days/360, 3: real days/365 or 4: European 30/365.</Text>
<Syntax>COUPNUM(settlement; maturity; frequency; basis)</Syntax>
<Example>COUPNUM("2/28/2001"; "8/31/2001"; 2; 0) returns 1</Example>
</Help>
</Function>
<Function>
<Name>FV</Name>
<Type>Float</Type>
<Parameter>
<Comment>Present value</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Periods</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The FV() function returns the future value of an investment, given the yield and the time elapsed. If you have $1000 in a bank account earning 8% interest, after two years you will have FV(1000;0.08;2) or $1166.40.</Text>
<Syntax>FV(present value;yield;periods)</Syntax>
<Example>FV(1000;0.08;2) equals 1166.40</Example>
</Help>
</Function>
<Function>
<Name>DURATION</Name>
<Type>Float</Type>
<Parameter>
<Comment>Rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Present value (PV)</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Future value (FV)</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>Returns the number of periods needed for an investment to retain a desired value.</Text>
<Syntax>DURATION(rate; pv; fv)</Syntax>
<Example>DURATION(0.1; 1000; 2000) returns 7.27</Example>
<Related>FV</Related>
<Related>PV</Related>
</Help>
</Function>
<Function>
<Name>NPER</Name>
<Type>Float</Type>
<Parameter>
<Comment>Rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Payment</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Present value (PV)</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Future value (FV - optional)</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Type (optional)</Comment>
<Type>IntType</Type>
</Parameter>
<Help>
<Text>Returns the number of periods of an investment.</Text>
<Syntax>NPER(rate;payment;pv;fv;type)</Syntax>
<Example>NPER(0.1; -100; 1000) equals 11</Example>
<Example>NPER(0.06; 0; -10000; 20000 ;0) returns 11.906</Example>
</Help>
</Function>
<Function>
<Name>PMT</Name>
<Type>Float</Type>
<Parameter>
<Comment>Rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Number of periods (NPer)</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Present value (PV)</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Future value (FV - optional)</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Type (optional)</Comment>
<Type>IntType</Type>
</Parameter>
<Help>
<Text>PMT returns the amount of payment for a loan based on a constant interest rate and constant payments (each payment is equal amount).</Text>
<Syntax>PMT(rate; nper ; pv; fv; type)</Syntax>
<Example>PMT(0.1; 4; 10000) equals -3154.71</Example>
<Related>NPER</Related>
<Related>IPMT</Related>
<Related>PPMT</Related>
<Related>PV</Related>
</Help>
</Function>
<Function>
<Name>PV</Name>
<Type>Float</Type>
<Parameter>
<Comment>Future value</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Periods</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The PV() function returns the present value of an investment -- the value today of a sum of money in the future, given the rate of interest or inflation. For example if you need $1166.40 for your new computer and you want to buy it in two years while earning 8% interest, you need to start with PV(1166.4;0.08;2) or $1000.</Text>
<Syntax>PV(future value;rate;periods)</Syntax>
<Example>PV(1166.4;0.08;2) equals 1000</Example>
</Help>
</Function>
<Function>
<Name>PPMT</Name>
<Type>Float</Type>
<Parameter>
<Comment>Rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Period</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Number of periods</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Present value</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Future value (optional)</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Type (optional)</Comment>
<Type>IntType</Type>
</Parameter>
<Help>
<Text>PPMT calculates the amount of a payment of an annuity going towards principal.</Text>
<Text>Rate is the periodic interest rate.</Text>
<Text>Period is the amortizement period. 1 for the first and NPER for the last period.</Text>
<Text>NPER is the total number of periods during which annuity is paid.</Text>
<Text>PV is the present value in the sequence of payments.</Text>
<Text>FV (optional) is the desired (future) value. default: 0.</Text>
<Text>Type (optional) defines the due date. 1 for payment at the beginning of a period and 0 (default) for payment at the end of a period.</Text>
<Syntax>PPMT(Rate; Period; NPer; PV; FV; Type)</Syntax>
<Example>PPMT(0.0875;1;36;5000;8000;1) equals -18.48</Example>
<Related>IPMT</Related>
<Related>PMT</Related>
<Related>PV</Related>
</Help>
</Function>
<Function>
<Name>ISPMT</Name>
<Type>Float</Type>
<Parameter>
<Comment>Rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Period</Comment>
<Type>IntType</Type>
</Parameter>
<Parameter>
<Comment>Number of periods</Comment>
<Type>IntType</Type>
</Parameter>
<Parameter>
<Comment>Present values (PV)</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>Calculates the interest paid on a given period of an investment.</Text>
<Text>Rate is the periodic interest rate.</Text>
<Text>Period is the amortizement period. 1 for the first and NPer for the last period.</Text>
<Text>NPer is the total number of periods during which annuity is paid.</Text>
<Text>PV is the present value in the sequence of payments.</Text>
<Syntax>ISPMT(Rate; Period; NPer; PV)</Syntax>
<Example>ISPMT(0.1; 1; 3; 8000000) equals -533333</Example>
<Related>PV</Related>
</Help>
</Function>
<Function>
<Name>IPMT</Name>
<Type>Float</Type>
<Parameter>
<Comment>Rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Period</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Number of periods</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Present values</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Future value (optional)</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Type (optional)</Comment>
<Type>IntType</Type>
</Parameter>
<Help>
<Text>IPMT calculates the amount of a payment of an annuity going towards interest.</Text>
<Text>Rate is the periodic interest rate.</Text>
<Text>Period is the amortizement period. 1 for the first and NPER for the last period.</Text>
<Text>NPER is the total number of periods during which annuity is paid.</Text>
<Text>PV is the present value in the sequence of payments.</Text>
<Text>FV (optional) is the desired (future) value. default: 0.</Text>
<Text>Type (optional) defines the due date. 1 for payment at the beginning of a period and 0 (default) for payment at the end of a period.</Text>
<Text>The example shows the interest to pay in the last year of a three year loan. The interest rate is 10 percent.</Text>
<Syntax>IPMT(Rate; Period; NPer; PV; FV; Type)</Syntax>
<Example>IPMT(0.1;3;3;8000) equals -292.45</Example>
<Related>PPMT</Related>
<Related>PV</Related>
<Related>PMT</Related>
</Help>
</Function>
<Function>
<Name>PV_ANNUITY</Name>
<Type>Float</Type>
<Parameter>
<Comment>Payment per period</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Periods</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The PV_ANNUITY() function returns the present value of an annuity or stream of payments. For example: a "million dollar" lottery ticket that pays $50,000 a year for 20 years, with an interest rate of 5%, is actually worth PV_ANNUITY(50000;0.05;20) or $623,111. This function assumes that payments are made at the end of each period.</Text>
<Syntax>PV_ANNUITY(amount;interest;periods)</Syntax>
<Example>PV_ANNUITY(1000;0.05;5) equals 4329.48</Example>
</Help>
</Function>
<Function>
<Name>FV_ANNUITY</Name>
<Type>Float</Type>
<Parameter>
<Comment>Payment per period</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Periods</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The FV_ANNUITY() function returns the future value of a stream of payments given the amount of the payment, the interest rate and the number of periods. For example: If you receive $500 per year for 20 years, and invest it at 8%, the total after 20 years will be FV_annuity(500;0.08;20) or $22,880.98. This function assumes that payments are made at the end of each period.</Text>
<Syntax>FV_ANNUITY(amount;interest;periods)</Syntax>
<Example>FV_ANNUITY(1000;0.05;5) equals 5525.63</Example>
</Help>
</Function>
<Function>
<Name>COMPOUND</Name>
<Type>Float</Type>
<Parameter>
<Comment>Principal</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Periods per year</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Years</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The COMPOUND() function returns the value of an investment, given the principal, nominal interest rate, compounding frequency and time. For example: $5000 at 12% interest compounded quarterly for 5 years will become COMPOUND(5000;0.12;4;5) or $9030.56.</Text>
<Syntax>COMPOUND(initial;interest;periods;periods_per_year)</Syntax>
<Example>COMPOUND(5000;0.12;4;5) equals 9030.56</Example>
</Help>
</Function>
<Function>
<Name>CONTINUOUS</Name>
<Type>Float</Type>
<Parameter>
<Comment>Principal</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Years</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The CONTINUOUS() function calculates the return on continuously compounded interest, given the principal, nominal rate and time in years. For example: $1000 earning 10% for 1 year becomes CONTINUOUS(1000;.1;1) or $1105.17.</Text>
<Syntax>CONTINOUS(principal;interest;years)</Syntax>
<Example>CONTINUOUS(1000;0.1;1) equals 1105.17</Example>
</Help>
</Function>
<Function>
<Name>EFFECT</Name>
<Type>Float</Type>
<Parameter>
<Comment>Nominal interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Periods</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The EFFECT() function calculates the effective yield for a nominal interest rate (annual rate or APR). For example: 8% interest compounded monthly provides an effective yield of EFFECT(.08;12) or 8.3%.</Text>
<Syntax>EFFECT(nominal;periods)</Syntax>
<Example>EFFECT(0.08;12) equals 0.083</Example>
<Related>EFFECTIVE</Related>
</Help>
</Function>
<Function>
<Name>EFFECTIVE</Name>
<Type>Float</Type>
<Parameter>
<Comment>Nominal interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Periods</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The EFFECTIVE() function calculates the effective yield for a nominal interest rate (annual rate or APR). It is the same as the EFFECT function.</Text>
<Syntax>EFFECTIVE(nominal;periods)</Syntax>
<Related>EFFECT</Related>
</Help>
</Function>
<Function>
<Name>NOMINAL</Name>
<Type>Float</Type>
<Parameter>
<Comment>Effective interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Periods</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The NOMINAL() function calculates the nominal (stated) interest rate for an effective (annualized) interest rate compounded at given intervals. For example: to earn 8% on an account compounded monthly, you need a return of NOMINAL(.08;12) or 7.72%.</Text>
<Syntax>NOMINAL(effective;periods)</Syntax>
<Example>NOMINAL(0.08;12) equals 0.0772</Example>
</Help>
</Function>
<Function>
<Name>ZERO_COUPON</Name>
<Type>Float</Type>
<Parameter>
<Comment>Face value</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Years</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The ZERO_COUPON() function calculates the value of a zero-coupon (pure discount) bond. For example: if the interest rate is 10%, a $1000 bond that matures in 20 years is worth ZERO_COUPON(1000;.1;20) or $148.64.</Text>
<Syntax>ZERO_COUPON(face value;rate;years)</Syntax>
<Example>ZERO_COUPON(1000;.1;20) equals 148.64</Example>
</Help>
</Function>
<Function>
<Name>LEVEL_COUPON</Name>
<Type>Float</Type>
<Parameter>
<Comment>Face value</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Coupon rate</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Coupons per year</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Years</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Market interest rate</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The LEVEL_COUPON() function calculates the value of a level-coupon bond. For example: if the interest rate is 10%, a $1000 bond with semi-annual coupons at a rate of 13% that matures in 4 years is worth LEVEL_COUPON(1000;.13;2;4;.1) or $1096.95.</Text>
<Syntax>LEVEL_COUPON(face value;rate;years)</Syntax>
<Example>LEVEL_COUPON(1000;.13;2;4;.1) equals 1096.95</Example>
</Help>
</Function>
<Function>
<Name>SLN</Name>
<Type>Float</Type>
<Parameter>
<Comment>Cost</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Salvage</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Life</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The SLN() function will determine the straight line depreciation of an asset for a single period. Cost is the amount you paid for the asset. Salvage is the value of the asset at the end of the period. Life is the number of periods over which the asset is depreciated. SLN divides the cost evenly over the life of an asset.</Text>
<Syntax>SLN(cost; salvage value; life)</Syntax>
<Example>SLN(10000;700;10) equals 930</Example>
<Related>SYD</Related>
</Help>
</Function>
<Function>
<Name>SYD</Name>
<Type>Float</Type>
<Parameter>
<Comment>Cost</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Salvage</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Life</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Period</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The SYD() function will calculate the sum-of-years digits depreciation for an asset based on its cost, salvage value, anticipated life, and a particular period. This method accelerates the rate of the depreciation, so that more depreciation expense occurs in earlier periods than in later ones. The depreciable cost is the actual cost minus the salvage value. The useful life is the number of periods (typically years) over which the asset is depreciated.</Text>
<Syntax>SYD(cost; salvage value; life; period)</Syntax>
<Example>SYD(5000; 200; 5; 2) equals 1280</Example>
<Related>SLN</Related>
</Help>
</Function>
<Function>
<Name>DDB</Name>
<Type>Float</Type>
<Parameter>
<Comment>Cost</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Salvage</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Life</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Period</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Factor</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The DDB() function calculates the depreciation of an asset for a given period using the arithmetic-declining method. The factor is optional, if omitted it is assumed to be 2. All the parameter must be greater than zero.</Text>
<Syntax>DDB(cost; salvage value; life; period [;factor])</Syntax>
<Example>DDB(75000;1;60;12;2) returns 1721.81</Example>
</Help>
</Function>
<Function>
<Name>DB</Name>
<Type>Float</Type>
<Parameter>
<Comment>Cost</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Salvage</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Life</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Period</Comment>
<Type>Float</Type>
</Parameter>
<Parameter>
<Comment>Month</Comment>
<Type>Float</Type>
</Parameter>
<Help>
<Text>The DB() function will calculate the depreciation of an asset for a given period using the fixed-declining balance method. Month is optional, if omitted it is assumed to be 12.</Text>
<Syntax>DB(cost; salvage value; life; period [;month])</Syntax>
<Example>DB(8000;400;6;3) equals 1158.40</Example>
<Example>DB(8000;400;6;3;2) equals 1783.41</Example>
</Help>
</Function>
<Function>
<Name>EURO</Name>
<Type>Float</Type>
<Parameter>
<Comment>Currency</Comment>
<Type>String</Type>
</Parameter>
<Help>
<Text>The EURO() function converts one Euro to a given national currency in the European monetary union. Currency is one of the following: ATS (Austria), BEF (Belgium), DEM (Germany), ESP (Spain), FIM (Finland), FRF (France), GRD (Greece), IEP (Ireland), ITL (Italy), LUF (Luxembourg), NLG (Netherlands), or PTE (Portugal).</Text>
<Syntax>EURO(currency)</Syntax>
<Example>EURO("DEM") equals 1.95583</Example>
</Help>
</Function>
</Group>
</KSpreadFunctions>
|