summaryrefslogtreecommitdiffstats
path: root/kspread/extensions/statistical.xml
blob: 3b0076b6a1e9d41f1513a75f6d9a4491115577dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
<!DOCTYPE KSpreadFunctions>
<KSpreadFunctions>

  <Group>
    <GroupName>Statistical</GroupName>

    <Function>
      <Name>SKEW</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The SKEW() function returns an estimate for skewness of a distribution</Text>
	<Syntax>SKEW(number; number2; ...)</Syntax>
	<Syntax>SKEW(range)</Syntax>
	<Example>SKEW(11.4; 17.3; 21.3; 25.9; 40.1) returns 0.9768</Example>
        <Related>SKEWP</Related>
      </Help>
    </Function>

    <Function>
      <Name>SKEWP</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The SKEWP() function returns the population skewness of a distribution</Text>
	<Syntax>SKEWP(number; number2; ...)</Syntax>
	<Syntax>SKEWP(range)</Syntax>
	<Example>SKEWP(11.4; 17.3; 21.3; 25.9; 40.1) returns 0.6552</Example>
        <Related>SKEW</Related>
      </Help>
    </Function>

    <Function>
      <Name>MODE</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Float</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The MODE() function returns the most frequently occuring value in the data set.</Text>
	<Syntax>MODE(number; number2; ...)</Syntax>
	<Syntax>MODE(range)</Syntax>
	<Example>MODE(12; 14; 12; 15) returns 12</Example>
      </Help>
    </Function>

    <Function>
      <Name>CORREL</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Cell range of values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Second cell range of values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The CORREL() function calculates the correlation coefficient of two cell ranges.</Text>
	<Syntax>CORREL(range1; range2)</Syntax>
  <Example>CORREL(A1:A3; B1:B3)</Example>
  <Related>PEARSON</Related>
      </Help>
    </Function>

    <Function>
      <Name>PEARSON</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Cell range of values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Second cell range of values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The PEARSON() function calculates the correlation coefficient of two cell ranges. It is the same as the CORREL function.</Text>
	<Syntax>PEARSON(range1; range2)</Syntax>
  <Example>PEARSON(A1:A3; B1:B3)</Example>
  <Related>CORREL</Related>
      </Help>
    </Function>

    <Function>
      <Name>COVAR</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Cell range of values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Second cell range of values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The COVAR() function calculates the covariance of two cell ranges.</Text>
	<Syntax>COVAR(range1; range2)</Syntax>
	<Example>COVAR(A1:A3; B1:B3)</Example>
      </Help>
    </Function>

    <Function>
      <Name>LARGE</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Cell range of values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Position (from the largest)</Comment>
	<Type>Int</Type>
      </Parameter>
      <Help>
	<Text>The LARGE() function returns the k-th largest value from the data set.</Text>
	<Syntax>LARGE(range; k)</Syntax>
	<Example>A1: 3, A2: 1, A3: 5 => LARGE(A1:A3; 2) returns 3</Example>
      </Help>
    </Function>

    <Function>
      <Name>SMALL</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Cell range of values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Position (from the smallest)</Comment>
	<Type>Int</Type>
      </Parameter>
      <Help>
	<Text>The SMALL() function returns the k-th smallest value from the data set.</Text>
	<Syntax>SMALL(range; k)</Syntax>
	<Example>A1: 3, A2: 1, A3: 5 => SMALL(A1:A3; 1) returns 1</Example>
      </Help>
    </Function>

    <Function>
      <Name>STANDARDIZE</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Number to be normalized</Comment>
	<Type>Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Mean of the distribution</Comment>
	<Type>Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Standard deviation</Comment>
	<Type>Double</Type>
      </Parameter>
      <Help>
	<Text>The STANDARDIZE() function calculates a normalized value.</Text>
	<Syntax>STANDARDIZE(x; mean, stdev)</Syntax>
	<Example>STANDARDIZE(4; 3; 7) returns 0.1429</Example>
      </Help>
    </Function>

    <Function>
      <Name>KURT</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The KURT() function calculates an unbiased estimate of the kurtosis of a data set. You have to provide at least 4 values, otherwise an error is returned.</Text>
	<Syntax>KURT(value; value;...)</Syntax>
	<Example>KURT(A1:A5)</Example>
	<Example>KURT(21; 33; 54; 23) returns 1.344239</Example>
        <Related>KURTP</Related>
      </Help>
    </Function>

    <Function>
      <Name>KURTP</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The KURTP() function calculates an population kurtosis of a data set. You have to provide at least 4 values, otherwise an error is returned.</Text>
	<Syntax>KURTP(value; value;...)</Syntax>
	<Example>KURTP(A1:A5)</Example>
	<Example>KURTP(21; 33; 54; 23) returns -1.021</Example>
        <Related>KURT</Related>
      </Help>
    </Function>

    <Function>
      <Name>DEVSQ</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The DEVSQ() function calculates the sum of squares of deviations.</Text>
	<Syntax>DEVSQ(value; value;...)</Syntax>
	<Example>DEVSQ(A1:A5)</Example>
	<Example>DEVSQ(21; 33; 54; 23) returns 684.75</Example>
      </Help>
    </Function>

    <Function>
      <Name>HYPGEOMDIST</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Number of success in the sample</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Number of trials</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Number of success overall</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Population size</Comment>
	<Type>Int</Type>
      </Parameter>
      <Help>
	<Text>The HYPGEOMDIST() function returns the hypergeometric distribution.</Text>
	<Syntax>HYPGEOMDIST(x; n; M; N)</Syntax>
	<Example>HYPGEOMDIST(2; 5; 6; 20) returns 0.3522</Example>
      </Help>
    </Function>

    <Function>
      <Name>GEOMEAN</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The GEOMEAN() function returns the geometric mean of the given arguments. This is equal to the Nth root of the product of the terms.</Text>
	<Syntax>GEOMEAN(value; value;...)</Syntax>
	<Example>GEOMEAN(A1:A5)</Example>
	<Example>GEOMEAN(21; 33; 54; 23) returns 30.45886</Example>
        <Related>HARMEAN</Related>
      </Help>
    </Function>

    <Function>
      <Name>HARMEAN</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Floating point values</Comment>
	<Type range="true">Double</Type>
      </Parameter>
      <Help>
	<Text>The HARMEAN() function returns the harmonic mean of the N data points (N divided by the sum of the inverses of the data points).</Text>
	<Syntax>HARMEAN(value; value;...)</Syntax>
	<Example>HARMEAN(A1:A5)</Example>
	<Example>HARMEAN(21; 33; 54; 23) returns 28.588</Example>
        <Related>GEOMEAN</Related>
      </Help>
    </Function>

    <Function>
      <Name>NEGBINOMDIST</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Number of failures</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Number of successful trials</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Probability of success</Comment>
	<Type>Double</Type>
      </Parameter>
      <Help>
	<Text>The NEGBINOMDIST() function returns the negative binomial distribution.</Text>
	<Syntax>NEGBINOMDIST(failures; success; prob_of_success)</Syntax>
	<Example>NEGBINOMDIST(2;5;0.55) returns 0.152872629</Example>
      </Help>
    </Function>

    <Function>
      <Name>BINO</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Number of trials</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Number of successful trials</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Probability of success</Comment>
	<Type>Double</Type>
      </Parameter>
      <Help>
	<Text>The BINO() function returns the binomial distribution.</Text>
	<Text>The first parameter is the number of trials, the second parameter is the number of successes, and the third is the probability of success. The number of trials should be greater than the number of successes and the probability should be smaller or equal to 1.</Text>
	<Syntax>BINO(trials;success;prob_of_success)</Syntax>
	<Example>BINO(12;9;0.8) returns 0.236223201</Example>
      </Help>
    </Function>

    <Function>
      <Name>SUMPRODUCT</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Value (array)</Comment>
	<Type>Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Value (array)</Comment>
	<Type>Double</Type>
      </Parameter>
      <Help>
	<Text>The SUMPRODUCT() function (SUM(X*Y)) returns the sum of the product of these values. The number of values in the two arrays should be equal. Otherwise this function returns Err.</Text>
	<Syntax>SUMPRODUCT(array1;array2)</Syntax>
	<Example>SUMPRODUCT(A1:A2;B1:B2) with A1=2, A2=5, B1=3 and B2=5, returns 31</Example>
      </Help>
    </Function>

    <Function>
      <Name>SUMX2PY2</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Value (array)</Comment>
	<Type>Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Value (array)</Comment>
	<Type>Double</Type>
      </Parameter>
      <Help>
	<Text>The SUMX2PY2() function (SUM(X^2+Y^2)) returns the sum of the squares of these values. The number of values in the two arrays should be equal. Otherwise this function returns Err.</Text>
	<Syntax>SUMX2PY2(array1;array2)</Syntax>
	<Example>SUMX2PY2(A1:A2;B1:B2) with A1=2, A2=5, B1=3 and B2=5, returns 63</Example>
      </Help>
    </Function>

    <Function>
      <Name>SUMX2MY2</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Value (array)</Comment>
	<Type>Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Value (array)</Comment>
	<Type>Double</Type>
      </Parameter>
      <Help>
	<Text>The SUMX2MY2() function (SUM(X^2-Y^2)) returns the difference of the squares of these values. The number of values in the two arrays should be equal. Otherwise this function returns Err.</Text>
	<Syntax>SUMX2MY2(array1;array2)</Syntax>
	<Example>SUMX2MY2(A1:A2;B1:B2) with A1=2, A2=5, B1=3 and B2=5, returns -5</Example>
      </Help>
    </Function>

    <Function>
      <Name>SUM2XMY</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Value (array)</Comment>
	<Type>Double</Type>
      </Parameter>
      <Parameter>
	<Comment>Value (array)</Comment>
	<Type>Double</Type>
      </Parameter>
      <Help>
	<Text>The SUM2XMY() function (SUM((X-Y)^2)) returns the square of the differences of these values. The number of values in the two arrays should be equal. Otherwise this function returns Err.</Text>
	<Syntax>SUM2XMY(array1;array2)</Syntax>
	<Example>SUM2XMY(A1:A2;B1:B2) with A1=2, A2=5, B1=3 and B2=5, returns 1</Example>
      </Help>
    </Function>


    <Function>
      <Name>INVBINO</Name>
      <Type>Float</Type>
      <Parameter>
	<Comment>Number of trials</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Number of failures</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Probability of failure</Comment>
	<Type>Double</Type>
      </Parameter>
      <Help>
	<Text>The INVBINO() function returns the negative binomial distribution. The first parameter is the number of trials, the second parameter is the number of failures, and the third is the probability of failure. The number of trials should be larger than the number of failures and the probability should be smaller or equal to 1.</Text>
	<Syntax>INVBINO(trials;failure;prob_of_failure)</Syntax>
	<Example>INVBINO(12;3;0.2) returns 0.236223201</Example>
      </Help>
    </Function>

    <Function>
      <Name>COMBIN</Name>
      <Type>Int</Type>
      <Parameter>
	<Comment>Total number of elements</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Number of elements to choose</Comment>
	<Type>Int</Type>
      </Parameter>
      <Help>
	<Text>The COMBIN() function calculates the count of possible combinations. The first parameter is the total count of elements. The second parameter is the count of elements to choose. Both parameters should be positive and the first parameter should not be less than the second. Otherwise the function returns an error.</Text>
	<Syntax>COMBIN(total;chosen)</Syntax>
	<Example>COMBIN(12;5) returns 792</Example>
	<Example>COMBIN(5;5) returns 1</Example>
      </Help>
    </Function>

    <Function>
      <Name>PERMUT</Name>
      <Type>Int</Type>
      <Parameter>
	<Comment>Total number of elements</Comment>
	<Type>Int</Type>
      </Parameter>
      <Parameter>
	<Comment>Number of elements to permutate</Comment>
	<Type>Int</Type>
      </Parameter>
      <Help>
	<Text>The PERMUT() function returns the number of permutations. The first parameter is the number of elements, and the second parameter is the number of elements used in the permutation.</Text>
	<Syntax>PERMUT(total;permutated)</Syntax>
	<Example>PERMUT(8;5) equals 6720</Example>
	<Example>PERMUT(1;1) equals 1</Example>
      </Help>
    </Function>

    <Function>
      <Name>AVERAGE</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The AVERAGE() function calculates the average of all the values given as parameters. You can calculate the average of a range AVERAGE(A1:B5) or a list of values like AVERAGE(12;5;12.5).</Text>
	<Syntax>AVERAGE(value;value;...)</Syntax>
	<Example>AVERAGE(12;5;7) equals 8</Example>
	<Example>AVERAGE(12.5;2) equals 7.25</Example>
      </Help>
    </Function>

    <Function>
      <Name>AVERAGEA</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
	  <Parameter optional="true">
	  <Comment>String values</Comment>
	  <Type>String</Type>
	  </Parameter>
      <Help>
	<Text>The AVERAGEA() calculates the average of the given arguments. Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.</Text>
	<Syntax>AVERAGEA(value;value;...)</Syntax>
	<Example>AVERAGEA(11.4;17.3;"sometext";25.9;40.1) equals 18.94</Example>
      </Help>
    </Function>


	<Function>
	<Name>AVEDEV</Name>
	<Type>Float</Type>
	<Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
	</Parameter>
	<Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
	</Parameter>
	<Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
	</Parameter>
	<Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
	</Parameter>
	<Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
	</Parameter>
	<Help>
	<Text>The AVEDEV() function calculates the average of the absolute deviations of a data set from their mean.</Text>
	<Syntax>AVEDEV(value;value;...)</Syntax>
	<Example>AVEDEV(11.4;17.3;21.3;25.9;40.1) returns 7.84</Example>
	<Example>AVEDEV(A1:A5) ...</Example>
	</Help>
	</Function>

    <Function>
      <Name>MEDIAN</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point value or range of values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values or range of values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values or range of values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values or range of values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values or range of values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The MEDIAN() function calculates the median of all the values given as parameters. You can calculate the median of a range like MEDIAN(A1:B5) or a list of values like MEDIAN(12; 5; 12.5). Blank cells will be considered as a zero, and cells with text will be ignored.</Text>
	<Syntax>MEDIAN(value;value;...)</Syntax>
	<Example>MEDIAN(12; 5; 5.5) equals 5.5</Example>
	<Example>MEDIAN(12; 7; 8;2) equals 7.5</Example>
      </Help>
    </Function>

    <Function>
      <Name>VAR</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The VAR() function calculates the estimates variance based on a sample.</Text>
	<Syntax>VAR(value;value;...)</Syntax>
	<Example>VAR(12;5;7) equals 13</Example>
	<Example>VAR(15;80;3) equals 1716.333...</Example>
	<Example>VAR(6;7;8) equals 1</Example>
  <Related>VARIANCE</Related>
  <Related>VARA</Related>
  <Related>VARP</Related>
  <Related>VARPA</Related>
      </Help>
    </Function>

    <Function>
      <Name>VARIANCE</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The VARIANCE() function calculates the estimates variance based on a sample. It's the same as the VAR function.</Text>
	<Syntax>VARIANCE(value;value;...)</Syntax>
	<Example>VARIANCE(12;5;7) equals 13</Example>
	<Example>VARIANCE(15;80;3) equals 1716.333...</Example>
	<Example>VARIANCE(6;7;8) equals 1</Example>
	<Related>VAR</Related>
	<Related>VARA</Related>
  <Related>VARP</Related>
	<Related>VARPA</Related>
      </Help>
    </Function>
    <Function>
      <Name>VARA</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The VARA() function calculates the variance based on a sample.</Text>
	<Syntax>VARA(value;value;...)</Syntax>
	<Example>VARA(12;5;7) equals 13</Example>
	<Example>VARA(15;80;3) equals 1716.333...</Example>
	<Example>VARA(6;7;8) equals 1</Example>
	<Related>VAR</Related>
	<Related>VARP</Related>
	<Related>VARPA</Related>
      </Help>
    </Function>

    <Function>
      <Name>VARP</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The VARP() function calculates the variance based on an entire population.</Text>
	<Syntax>VARP(value;value;...)</Syntax>
	<Example>VARP(12;5;7) equals 8.666...</Example>
	<Example>VARP(15;80;3) equals 1144.22...</Example>
	<Example>VARP(6;7;8) equals 0.6666667...</Example>
	<Related>VAR</Related>
	<Related>VARA</Related>
	<Related>VARPA</Related>
      </Help>
    </Function>

    <Function>
      <Name>VARPA</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The VARPA() function calculates the variance based on an entire population. Text and boolean values that evaluate to FALSE are counted as 0, boolean value that evaluate to TRUE are counted as 1.</Text>
	<Syntax>VARPA(value;value;...)</Syntax>
	<Example>VARPA(12;5;7) equals 8.666...</Example>
	<Example>VARPA(15;80;3) equals 1144.22...</Example>
	<Example>VARPA(6;7;8) equals 0.6666667...</Example>
	<Related>VAR</Related>
	<Related>VARA</Related>
	<Related>VARP</Related>
      </Help>
    </Function>

    <Function>
      <Name>STDEV</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The STDEV() function returns the estimate standard deviation based on a sample. The standard deviation is a measure of how widely values are dispersed from the average value.</Text>
	<Syntax>STDEV(value;value;...)</Syntax>
	<Example>STDEV(6;7;8) equals 1</Example>
	<Related>STDEVP</Related>
      </Help>
    </Function>

    <Function>
      <Name>STDEVA</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The STDEVA() function returns the estimate standard deviation based on a sample. The standard deviation is a measure of how widely values are dispersed from the average value. If a referenced cell contains text or contains the boolean value FALSE, it is counted as 0. If the boolean value is TRUE it is counted as 1.</Text>
	<Syntax>STDEVA(value;value;...)</Syntax>
	<Example>STDEVA(6; 7; A1; 8) equals 1, if A1 is empty</Example>
	<Example>STDEVA(6; 7; A1; 8) equals 3.109, if A1 is TRUE</Example>
	<Related>STDEV</Related>
	<Related>STDEVP</Related> 
      </Help>
    </Function>

    <Function>
      <Name>STDEVP</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The STDEVP() function returns the standard deviation based on an entire population</Text>
	<Syntax>STDEVP(value;value;...)</Syntax>
	<Example>STDEVP(6;7;8) equals 0.816497...</Example>
	<Related>STDEV</Related> 
      </Help>
    </Function>
    
    <Function>
      <Name>STDEVPA</Name>
      <Type>Float</Type>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Parameter optional="true">
	<Comment>Floating point values</Comment>
	<Type range="true">Float</Type>
      </Parameter>
      <Help>
	<Text>The STDEVPA() function returns standard deviation based on an entire population. If a referenced cell contains text or contains the boolean value FALSE, it is counted as 0. If the boolean value is TRUE it is counted as 1.</Text>
	<Syntax>STDEVPA(value;value;...)</Syntax>
	<Example>STDEVPA(6; 7; A1; 8) equals 0.816497..., if A1 is empty</Example>
	<Example>STDEVPA(6; 7; A1; 8) equals 2.69..., if A1 is TRUE</Example>
	<Example>STDEVPA(6; 7; A1; 8) equals 3.11..., if A1 is FALSE</Example>
	<Related>STDEV</Related> 
	<Related>STDEVP</Related> 
      </Help>
    </Function>

    <Function>
      <Name>GAUSS</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>The number for which the integral value of standard normal distribution is to be calculated</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The GAUSS() function returns the integral values for the standard normal cumulative distribution.</Text>
        <Syntax>GAUSS(value)</Syntax>
        <Example>GAUSS(0.25) equals 0.098706</Example>
      </Help>
    </Function>

    <Function>
      <Name>PHI</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>The number for which the standard normal distribution is to be calculated</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The PHI() function returns value of the distribution function for a standard normal distribution.</Text>
        <Syntax>PHI(value)</Syntax>
        <Example>PHI(0.25) equals 0.386668</Example>
      </Help>
    </Function>

    <Function>
      <Name>GAMMADIST</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Alpha parameter</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Beta parameter</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Cumulated flag</Comment>
        <Type>Int</Type>
      </Parameter>
      <Help>
        <Text>The GAMMADIST() function returns the gamma distribution.</Text>
        <Text>If the last parameter (cumulated) is 0, it calculates the density function; if it's 1, the distribution is returned.</Text>
        <Text>The first three parameters must be positive.</Text>
        <Syntax>GAMMADIST(number;alpha;beta;cumulated)</Syntax>
        <Example>GAMMADIST(0.758;0.1;0.35;1) equals 0.995450</Example>
        <Example>GAMMADIST(0.758;0.1;0.35;0) equals 0.017179</Example>
      </Help>
    </Function>

    <Function>
      <Name>BETADIST</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Alpha parameter</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Beta parameter</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter optional="true">
        <Comment>Start</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter optional="true">
        <Comment>End</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The BETADIST() function returns the cumulative beta probability density function.</Text>
        <Text>The last two parameters are optional. They set the lower and upper bounds, otherwise defaulting to 0.0 and 1.0 respectively.</Text>
        <Syntax>BETADIST(number;alpha;beta;start;end)</Syntax>
        <Example>BETADIST(0.2859;0.2606;0.8105) equals 0.675444</Example>
        <Example>BETADIST(0.2859;0.2606;0.8105;0.2;0.9) equals 0.537856</Example>
      </Help>
    </Function>

    <Function>
      <Name>FISHER</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The FISHER() function returns the Fisher transformation for x and creates a function close to a normal distribution.</Text>
        <Syntax>FISHER(number)</Syntax>
        <Example>FISHER(0.2859) equals 0.294096</Example>
        <Example>FISHER(0.8105) equals 1.128485</Example>
      </Help>
    </Function>

    <Function>
      <Name>FISHERINV</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The FISHERINV() function returns the inverse of the Fisher transformation for x and creates a function close to a normal distribution.</Text>
        <Syntax>FISHERINV(number)</Syntax>
        <Example>FISHERINV(0.2859) equals 0.278357</Example>
        <Example>FISHERINV(0.8105) equals 0.669866</Example>
      </Help>
    </Function>

    <Function>
      <Name>NORMDIST</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Linear middle of the distribution</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Standard deviation of the distribution</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>0 = density, 1 = distribution</Comment>
        <Type>Int</Type>
      </Parameter>
      <Help>
        <Text>The NORMDIST() function returns the normal cumulative distribution.</Text>
        <Text>Number is the value of the distribution based on which the normal distribution is to be calculated.</Text>
        <Text>MV is the linear middle of the distribution.</Text>
        <Text>STD is the standard deviation of the distribution.</Text>
        <Text>K = 0 calculates the density function; K = 1 calculates the distribution.</Text>
        <Syntax>NORMDIST(Number;MV;STD;K)</Syntax>
        <Example>NORMDIST(0.859;0.6;0.258;0) equals 0.934236</Example>
        <Example>NORMDIST(0.859;0.6;0.258;1) equals 0.842281</Example>
      </Help>
    </Function>

    <Function>
      <Name>LOGNORMDIST</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Probability value for which the standard logarithmic distribution is to be calculated</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Mean value of the standard logarithmic distribution</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Standard deviation of the standard logarithmic distribution</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The LOGNORMDIST() function returns the cumulative lognormal distribution.</Text>
        <Syntax>LOGNORMDIST(Number;MV;STD)</Syntax>
        <Example>LOGNORMDIST(0.1;0;1) equals 0.01</Example>
      </Help>
    </Function>

    <Function>
      <Name>LOGINV</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Probability</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Mean value of the standard logarithmic distribution</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Standard deviation of the standard logarithmic distribution</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The LOGINV() function returns the inverse of the lognormal cumulative distribution.</Text>
        <Syntax>LOGINV(p; mean; stdev)</Syntax>
        <Example>LOGINV(0.1;0;1) equals 0.2776</Example>
      </Help>
    </Function>

    <Function>
      <Name>NORMSDIST</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Value to which the standard normal distribution is calculated</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The NORMSDIST() function returns the standard normal distribution.</Text>
        <Syntax>NORMSDIST(Number)</Syntax>
        <Example>NORMSDIST(1) equals 0.84</Example>
      </Help>
    </Function>

    <Function>
      <Name>EXPONDIST</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Lambda parameter</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>0 = density, 1 = distribution</Comment>
        <Type>Int</Type>
      </Parameter>
      <Help>
        <Text>The EXPONDIST() function returns the exponential distribution.</Text>
        <Text>The lambda parameter must be positive.</Text>
        <Text>Cumulative = 0 calculates the density function; cumulative = 1 calculates the distribution.</Text>
        <Syntax>EXPONDIST(number;lambda;cumulative)</Syntax>
        <Example>EXPONDIST(3;0.5;0) equals 0.111565</Example>
        <Example>EXPONDIST(3;0.5;1) equals 0.776870</Example>
      </Help>
    </Function>

    <Function>
      <Name>WEIBULL</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Alpha parameter</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Beta parameter</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>0 = density, 1 = distribution</Comment>
        <Type>Int</Type>
      </Parameter>
      <Help>
        <Text>The WEIBULL() function returns the Weibull distribution.</Text>
        <Text>The alpha and beta parameters must be positive, the number (first parameter) must be non-negative.</Text>
        <Text>Cumulative = 0 calculates the density function; cumulative = 1 calculates the distribution.</Text>
        <Syntax>WEIBULL(number;alpha;beta;cumulative)</Syntax>
        <Example>WEIBULL(2;1;1;0) equals 0.135335</Example>
        <Example>WEIBULL(2;1;1;1) equals 0.864665</Example>
      </Help>
    </Function>

    <Function>
      <Name>NORMSINV</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The NORMSINV() function returns the inverse of the standard normal cumulative distribution. The number must be between 0 and 1 (non-inclusive).</Text>
        <Syntax>NORMSINV(Number)</Syntax>
        <Example>NORMSINV(0.908789) returns 1.3333</Example>
      </Help>
    </Function>

    <Function>
      <Name>NORMINV</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Probability value for which the standard logarithmic distribution is to be calculated</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Middle value in the normal distribution</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Standard deviation of the normal distribution</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The NORMINV() function returns the inverse of the normal cumulative distribution. The number must be between 0 and 1 (non-inclusive) and STD must be positive.</Text>
        <Syntax>NORMINV(number;MV;STD)</Syntax>
        <Example>NORMINV(0.9;63;5) equals 69.41</Example>
      </Help>
    </Function>

    <Function>
      <Name>GAMMALN</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Help>
        <Text>The GAMMALN() function returns the natural logarithm of the gamma function: G(x). The number parameter must be positive.</Text>
        <Syntax>GAMMALN(Number)</Syntax>
        <Example>GAMMALN(2) returns 0</Example>
      </Help>
    </Function>

    <Function>
      <Name>POISSON</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Lambda parameter (the middle value)</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>0 = density, 1 = distribution</Comment>
        <Type>Int</Type>
      </Parameter>
      <Help>
        <Text>The POISSON() function returns the Poisson distribution.</Text>
        <Text>The lambda and number parameters must be positive.</Text>
        <Text>Cumulative = 0 calculates the density function; cumulative = 1 calculates the distribution.</Text>
        <Syntax>POISSON(number;lambda;cumulative)</Syntax>
        <Example>POISSON(60;50;0) equals 0.020105</Example>
        <Example>POISSON(60;50;1) equals 0.927840</Example>
      </Help>
    </Function>

    <Function>
      <Name>CONFIDENCE</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Level of the confidence interval</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Standard deviation for the total population</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Size of the total population</Comment>
        <Type>Int</Type>
      </Parameter>
      <Help>
        <Text>The CONFIDENCE() function returns the confidence interval for a population mean.</Text>
        <Text>The alpha parameter must be between 0 and 1 (non-inclusive), stddev must be positive and size must be greater or equal to 1.</Text>
        <Syntax>CONFIDENCE(alpha;stddev;size)</Syntax>
        <Example>CONFIDENCE(0.05;1.5;100) equals 0.294059</Example>
      </Help>
    </Function>

    <Function>
      <Name>TDIST</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Degrees of freedom for the t-distribution</Comment>
        <Type>Int</Type>
      </Parameter>
      <Parameter>
        <Comment>Mode (1 or 2)</Comment>
        <Type>Int</Type>
      </Parameter>
      <Help>
        <Text>The TDIST() function returns the t-distribution.</Text>
        <Text>Mode = 1 returns the one-tailed test, Mode = 2 returns the two-tailed test.</Text>
        <Syntax>TDIST(number;degrees_freedom;mode)</Syntax>
        <Example>TDIST(12;5;1) returns 0.000035</Example>
      </Help>
    </Function>

    <Function>
      <Name>FDIST</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Degrees of freedom 1</Comment>
        <Type>Int</Type>
      </Parameter>
      <Parameter>
        <Comment>Degrees of freedom 2</Comment>
        <Type>Int</Type>
      </Parameter>
      <Help>
        <Text>The FDIST() function returns the f-distribution.</Text>
        <Syntax>FDIST(number;degrees_freedom_1;degrees_freedom_2)</Syntax>
        <Example>FDIST(0.8;8;12) yields 0.61</Example>
      </Help>
    </Function>
    
    <Function>
      <Name>CHIDIST</Name>
      <Type>Float</Type>
      <Parameter>
        <Comment>Number</Comment>
        <Type>Float</Type>
      </Parameter>
      <Parameter>
        <Comment>Degrees of freedom</Comment>
        <Type>Int</Type>
      </Parameter>
      <Help>
        <Text>The CHIDIST() function returns the probability value from the indicated Chi square that a hypothesis is confirmed.</Text>
        <Text>CHIDIST compares the Chi square value to be given for a random sample that is calculated from the sum of (observed value-expected value)^2/expected value for all values with the theoretical Chi square distribution and determines from this the probability of error for the hypothesis to be tested.</Text>
        <Syntax>CHIDIST(number;degrees_freedom)</Syntax>
        <Example>CHIDIST(13.27;5) returns 0.021</Example>
      </Help>
    </Function>

  </Group>

</KSpreadFunctions>