summaryrefslogtreecommitdiffstats
path: root/kig/misc/common.cpp
diff options
context:
space:
mode:
authortoma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2009-11-25 17:56:58 +0000
committertoma <toma@283d02a7-25f6-0310-bc7c-ecb5cbfe19da>2009-11-25 17:56:58 +0000
commitce599e4f9f94b4eb00c1b5edb85bce5431ab3df2 (patch)
treed3bb9f5d25a2dc09ca81adecf39621d871534297 /kig/misc/common.cpp
downloadtdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.tar.gz
tdeedu-ce599e4f9f94b4eb00c1b5edb85bce5431ab3df2.zip
Copy the KDE 3.5 branch to branches/trinity for new KDE 3.5 features.
BUG:215923 git-svn-id: svn://anonsvn.kde.org/home/kde/branches/trinity/kdeedu@1054174 283d02a7-25f6-0310-bc7c-ecb5cbfe19da
Diffstat (limited to 'kig/misc/common.cpp')
-rw-r--r--kig/misc/common.cpp520
1 files changed, 520 insertions, 0 deletions
diff --git a/kig/misc/common.cpp b/kig/misc/common.cpp
new file mode 100644
index 00000000..fccd384f
--- /dev/null
+++ b/kig/misc/common.cpp
@@ -0,0 +1,520 @@
+/**
+ This file is part of Kig, a KDE program for Interactive Geometry...
+ Copyright (C) 2002 Dominique Devriese <devriese@kde.org>
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
+ USA
+**/
+
+#include "common.h"
+
+#include "../kig/kig_view.h"
+#include "../objects/object_imp.h"
+
+#include <cmath>
+
+#include <kdebug.h>
+#include <knumvalidator.h>
+#include <klocale.h>
+#if KDE_IS_VERSION( 3, 1, 90 )
+#include <kinputdialog.h>
+#else
+#include <klineeditdlg.h>
+#endif
+
+Coordinate calcPointOnPerpend( const LineData& l, const Coordinate& t )
+{
+ return calcPointOnPerpend( l.b - l.a, t );
+}
+
+Coordinate calcPointOnPerpend( const Coordinate& dir, const Coordinate& t )
+{
+ return t + ( dir ).orthogonal();
+}
+
+Coordinate calcPointOnParallel( const LineData& l, const Coordinate& t )
+{
+ return calcPointOnParallel( l.b - l.a, t );
+}
+
+Coordinate calcPointOnParallel( const Coordinate& dir, const Coordinate& t )
+{
+ return t + dir*5;
+}
+
+Coordinate calcIntersectionPoint( const LineData& l1, const LineData& l2 )
+{
+ const Coordinate& pa = l1.a;
+ const Coordinate& pb = l1.b;
+ const Coordinate& pc = l2.a;
+ const Coordinate& pd = l2.b;
+
+ double
+ xab = pb.x - pa.x,
+ xdc = pd.x - pc.x,
+ xac = pc.x - pa.x,
+ yab = pb.y - pa.y,
+ ydc = pd.y - pc.y,
+ yac = pc.y - pa.y;
+
+ double det = xab*ydc - xdc*yab;
+ double detn = xac*ydc - xdc*yac;
+
+ // test for parallelism
+ if ( fabs (det) < 1e-6 ) return Coordinate::invalidCoord();
+ double t = detn/det;
+
+ return pa + t*(pb - pa);
+}
+
+void calcBorderPoints( Coordinate& p1, Coordinate& p2, const Rect& r )
+{
+ calcBorderPoints( p1.x, p1.y, p2.x, p2.y, r );
+}
+
+const LineData calcBorderPoints( const LineData& l, const Rect& r )
+{
+ LineData ret( l );
+ calcBorderPoints( ret.a.x, ret.a.y, ret.b.x, ret.b.y, r );
+ return ret;
+}
+
+void calcBorderPoints( double& xa, double& ya, double& xb, double& yb, const Rect& r )
+{
+ // we calc where the line through a(xa,ya) and b(xb,yb) intersects with r:
+ double left = (r.left()-xa)*(yb-ya)/(xb-xa)+ya;
+ double right = (r.right()-xa)*(yb-ya)/(xb-xa)+ya;
+ double top = (r.top()-ya)*(xb-xa)/(yb-ya)+xa;
+ double bottom = (r.bottom()-ya)*(xb-xa)/(yb-ya)+xa;
+
+ // now we go looking for valid points
+ int novp = 0; // number of valid points we have already found
+
+ if (!(top < r.left() || top > r.right())) {
+ // the line intersects with the top side of the rect.
+ ++novp;
+ xa = top; ya = r.top();
+ };
+ if (!(left < r.bottom() || left > r.top())) {
+ // the line intersects with the left side of the rect.
+ if (novp++) { xb = r.left(); yb=left; }
+ else { xa = r.left(); ya=left; };
+ };
+ if (!(right < r.bottom() || right > r.top())) {
+ // the line intersects with the right side of the rect.
+ if (novp++) { xb = r.right(); yb=right; }
+ else { xa = r.right(); ya=right; };
+ };
+ if (!(bottom < r.left() || bottom > r.right())) {
+ // the line intersects with the bottom side of the rect.
+ ++novp;
+ xb = bottom; yb = r.bottom();
+ };
+ if (novp < 2) {
+ // line is completely outside of the window...
+ xa = ya = xb = yb = 0;
+ };
+}
+
+void calcRayBorderPoints( const Coordinate& a, Coordinate& b, const Rect& r )
+{
+ calcRayBorderPoints( a.x, a.y, b.x, b.y, r );
+}
+
+void calcRayBorderPoints( const double xa, const double ya, double& xb,
+ double& yb, const Rect& r )
+{
+ // we calc where the line through a(xa,ya) and b(xb,yb) intersects with r:
+ double left = (r.left()-xa)*(yb-ya)/(xb-xa)+ya;
+ double right = (r.right()-xa)*(yb-ya)/(xb-xa)+ya;
+ double top = (r.top()-ya)*(xb-xa)/(yb-ya)+xa;
+ double bottom = (r.bottom()-ya)*(xb-xa)/(yb-ya)+xa;
+
+ // now we see which we can use...
+ if(
+ // the ray intersects with the top side of the rect..
+ top >= r.left() && top <= r.right()
+ // and b is above a
+ && yb > ya )
+ {
+ xb = top;
+ yb = r.top();
+ return;
+ };
+ if(
+ // the ray intersects with the left side of the rect...
+ left >= r.bottom() && left <= r.top()
+ // and b is on the left of a..
+ && xb < xa )
+ {
+ xb = r.left();
+ yb=left;
+ return;
+ };
+ if (
+ // the ray intersects with the right side of the rect...
+ right >= r.bottom() && right <= r.top()
+ // and b is to the right of a..
+ && xb > xa )
+ {
+ xb = r.right();
+ yb=right;
+ return;
+ };
+ if(
+ // the ray intersects with the bottom side of the rect...
+ bottom >= r.left() && bottom <= r.right()
+ // and b is under a..
+ && yb < ya ) {
+ xb = bottom;
+ yb = r.bottom();
+ return;
+ };
+ kdError() << k_funcinfo << "damn" << endl;
+}
+
+bool isOnLine( const Coordinate& o, const Coordinate& a,
+ const Coordinate& b, const double fault )
+{
+ double x1 = a.x;
+ double y1 = a.y;
+ double x2 = b.x;
+ double y2 = b.y;
+
+ // check your math theory ( homogeneous coördinates ) for this
+ double tmp = fabs( o.x * (y1-y2) + o.y*(x2-x1) + (x1*y2-y1*x2) );
+ return tmp < ( fault * (b-a).length());
+ // if o is on the line ( if the determinant of the matrix
+ // |---|---|---|
+ // | x | y | z |
+ // |---|---|---|
+ // | x1| y1| z1|
+ // |---|---|---|
+ // | x2| y2| z2|
+ // |---|---|---|
+ // equals 0, then p(x,y,z) is on the line containing points
+ // p1(x1,y1,z1) and p2 here, we're working with normal coords, no
+ // homogeneous ones, so all z's equal 1
+}
+
+bool isOnSegment( const Coordinate& o, const Coordinate& a,
+ const Coordinate& b, const double fault )
+{
+ return isOnLine( o, a, b, fault )
+ // not too far to the right
+ && (o.x - kigMax(a.x,b.x) < fault )
+ // not too far to the left
+ && ( kigMin (a.x, b.x) - o.x < fault )
+ // not too high
+ && ( kigMin (a.y, b.y) - o.y < fault )
+ // not too low
+ && ( o.y - kigMax (a.y, b.y) < fault );
+}
+
+bool isOnRay( const Coordinate& o, const Coordinate& a,
+ const Coordinate& b, const double fault )
+{
+ return isOnLine( o, a, b, fault )
+ // not too far in front of a horizontally..
+// && ( a.x - b.x < fault ) == ( a.x - o.x < fault )
+ && ( ( a.x < b.x ) ? ( a.x - o.x < fault ) : ( a.x - o.x > -fault ) )
+ // not too far in front of a vertically..
+// && ( a.y - b.y < fault ) == ( a.y - o.y < fault );
+ && ( ( a.y < b.y ) ? ( a.y - o.y < fault ) : ( a.y - o.y > -fault ) );
+}
+
+bool isOnArc( const Coordinate& o, const Coordinate& c, const double r,
+ const double sa, const double a, const double fault )
+{
+ if ( fabs( ( c - o ).length() - r ) > fault )
+ return false;
+ Coordinate d = o - c;
+ double angle = atan2( d.y, d.x );
+
+ if ( angle < sa ) angle += 2 * M_PI;
+ return angle - sa - a < 1e-4;
+}
+
+const Coordinate calcMirrorPoint( const LineData& l,
+ const Coordinate& p )
+{
+ Coordinate m =
+ calcIntersectionPoint( l,
+ LineData( p,
+ calcPointOnPerpend( l, p )
+ )
+ );
+ return 2*m - p;
+}
+
+const Coordinate calcCircleLineIntersect( const Coordinate& c,
+ const double sqr,
+ const LineData& l,
+ int side )
+{
+ Coordinate proj = calcPointProjection( c, l );
+ Coordinate hvec = proj - c;
+ Coordinate lvec = -l.dir();
+
+ double sqdist = hvec.squareLength();
+ double sql = sqr - sqdist;
+ if ( sql < 0.0 )
+ return Coordinate::invalidCoord();
+ else
+ {
+ double l = sqrt( sql );
+ lvec = lvec.normalize( l );
+ lvec *= side;
+
+ return proj + lvec;
+ };
+}
+
+const Coordinate calcArcLineIntersect( const Coordinate& c, const double sqr,
+ const double sa, const double angle,
+ const LineData& l, int side )
+{
+ const Coordinate possiblepoint = calcCircleLineIntersect( c, sqr, l, side );
+ if ( isOnArc( possiblepoint, c, sqrt( sqr ), sa, angle, test_threshold ) )
+ return possiblepoint;
+ else return Coordinate::invalidCoord();
+}
+
+const Coordinate calcPointProjection( const Coordinate& p,
+ const LineData& l )
+{
+ Coordinate orth = l.dir().orthogonal();
+ return p + orth.normalize( calcDistancePointLine( p, l ) );
+}
+
+double calcDistancePointLine( const Coordinate& p,
+ const LineData& l )
+{
+ double xa = l.a.x;
+ double ya = l.a.y;
+ double xb = l.b.x;
+ double yb = l.b.y;
+ double x = p.x;
+ double y = p.y;
+ double norm = l.dir().length();
+ return ( yb * x - ya * x - xb * y + xa * y + xb * ya - yb * xa ) / norm;
+}
+
+Coordinate calcRotatedPoint( const Coordinate& a, const Coordinate& c, const double arc )
+{
+ // we take a point p on a line through c and parallel with the
+ // X-axis..
+ Coordinate p( c.x + 5, c.y );
+ // we then calc the arc that ac forms with cp...
+ Coordinate d = a - c;
+ d = d.normalize();
+ double aarc = std::acos( d.x );
+ if ( d.y < 0 ) aarc = 2*M_PI - aarc;
+
+ // we now take the sum of the two arcs to find the arc between
+ // pc and ca
+ double asum = aarc + arc;
+
+ Coordinate ret( std::cos( asum ), std::sin( asum ) );
+ ret = ret.normalize( ( a -c ).length() );
+ return ret + c;
+}
+
+Coordinate calcCircleRadicalStartPoint( const Coordinate& ca, const Coordinate& cb,
+ double sqra, double sqrb )
+{
+ Coordinate direc = cb - ca;
+ Coordinate m = (ca + cb)/2;
+
+ double dsq = direc.squareLength();
+ double lambda = dsq == 0.0 ? 0.0
+ : (sqra - sqrb) / (2*dsq);
+
+ direc *= lambda;
+ return m + direc;
+}
+
+double getDoubleFromUser( const QString& caption, const QString& label, double value,
+ QWidget* parent, bool* ok, double min, double max, int decimals )
+{
+#ifdef KIG_USE_KDOUBLEVALIDATOR
+ KDoubleValidator vtor( min, max, decimals, 0, 0 );
+#else
+ KFloatValidator vtor( min, max, (QWidget*) 0, 0 );
+#endif
+#if KDE_IS_VERSION( 3, 1, 90 )
+ QString input = KInputDialog::getText(
+ caption, label, KGlobal::locale()->formatNumber( value, decimals ),
+ ok, parent, "getDoubleFromUserDialog", &vtor );
+#else
+ QString input =
+ KLineEditDlg::getText( caption, label,
+ KGlobal::locale()->formatNumber( value, decimals ),
+ ok, parent, &vtor );
+#endif
+
+ bool myok = true;
+ double ret = KGlobal::locale()->readNumber( input, &myok );
+ if ( ! myok )
+ ret = input.toDouble( & myok );
+ if ( ok ) *ok = myok;
+ return ret;
+}
+
+const Coordinate calcCenter(
+ const Coordinate& a, const Coordinate& b, const Coordinate& c )
+{
+ // this algorithm is written by my brother, Christophe Devriese
+ // <oelewapperke@ulyssis.org> ...
+ // I don't get it myself :)
+
+ double xdo = b.x-a.x;
+ double ydo = b.y-a.y;
+
+ double xao = c.x-a.x;
+ double yao = c.y-a.y;
+
+ double a2 = xdo*xdo + ydo*ydo;
+ double b2 = xao*xao + yao*yao;
+
+ double numerator = (xdo * yao - xao * ydo);
+ if ( numerator == 0 )
+ {
+ // problem: xdo * yao == xao * ydo <=> xdo/ydo == xao / yao
+ // this means that the lines ac and ab have the same direction,
+ // which means they're the same line..
+ // FIXME: i would normally throw an error here, but KDE doesn't
+ // use exceptions, so i'm returning a bogus point :(
+ return a.invalidCoord();
+ /* return (a+c)/2; */
+ };
+ double denominator = 0.5 / numerator;
+
+ double centerx = a.x - (ydo * b2 - yao * a2) * denominator;
+ double centery = a.y + (xdo * b2 - xao * a2) * denominator;
+
+ return Coordinate(centerx, centery);
+}
+
+bool lineInRect( const Rect& r, const Coordinate& a, const Coordinate& b,
+ const int width, const ObjectImp* imp, const KigWidget& w )
+{
+ double miss = w.screenInfo().normalMiss( width );
+
+//mp: the following test didn't work for vertical segments;
+// fortunately the ieee floating point standard allows us to avoid
+// the test altogether, since it would produce an infinity value that
+// makes the final r.contains to fail
+// in any case the corresponding test for a.y - b.y was missing.
+
+// if ( fabs( a.x - b.x ) <= 1e-7 )
+// {
+// // too small to be useful..
+// return r.contains( Coordinate( a.x, r.center().y ), miss );
+// }
+
+// in case we have a segment we need also to check for the case when
+// the segment is entirely contained in the rect, in which case the
+// final tests all fail.
+// it is ok to just check for the midpoint in the rect since:
+// - if we have a segment completely contained in the rect this is true
+// - if the midpoint is in the rect than returning true is safe (also
+// in the cases where we have a ray or a line)
+
+ if ( r.contains( 0.5*( a + b ), miss ) ) return true;
+
+ Coordinate dir = b - a;
+ double m = dir.y / dir.x;
+ double lefty = a.y + m * ( r.left() - a.x );
+ double righty = a.y + m * ( r.right() - a.x );
+ double minv = dir.x / dir.y;
+ double bottomx = a.x + minv * ( r.bottom() - a.y );
+ double topx = a.x + minv * ( r.top() - a.y );
+
+ // these are the intersections between the line, and the lines
+ // defined by the sides of the rectangle.
+ Coordinate leftint( r.left(), lefty );
+ Coordinate rightint( r.right(), righty );
+ Coordinate bottomint( bottomx, r.bottom() );
+ Coordinate topint( topx, r.top() );
+
+ // For each intersection, we now check if we contain the
+ // intersection ( this might not be the case for a segment, when the
+ // intersection is not between the begin and end point.. ) and if
+ // the rect contains the intersection.. If it does, we have a winner..
+ return
+ ( imp->contains( leftint, width, w ) && r.contains( leftint, miss ) ) ||
+ ( imp->contains( rightint, width, w ) && r.contains( rightint, miss ) ) ||
+ ( imp->contains( bottomint, width, w ) && r.contains( bottomint, miss ) ) ||
+ ( imp->contains( topint, width, w ) && r.contains( topint, miss ) );
+}
+
+bool operator==( const LineData& l, const LineData& r )
+{
+ return l.a == r.a && l.b == r.b;
+}
+
+bool LineData::isParallelTo( const LineData& l ) const
+{
+ const Coordinate& p1 = a;
+ const Coordinate& p2 = b;
+ const Coordinate& p3 = l.a;
+ const Coordinate& p4 = l.b;
+
+ double dx1 = p2.x - p1.x;
+ double dy1 = p2.y - p1.y;
+ double dx2 = p4.x - p3.x;
+ double dy2 = p4.y - p3.y;
+
+ return isSingular( dx1, dy1, dx2, dy2 );
+}
+
+bool LineData::isOrthogonalTo( const LineData& l ) const
+{
+ const Coordinate& p1 = a;
+ const Coordinate& p2 = b;
+ const Coordinate& p3 = l.a;
+ const Coordinate& p4 = l.b;
+
+ double dx1 = p2.x - p1.x;
+ double dy1 = p2.y - p1.y;
+ double dx2 = p4.x - p3.x;
+ double dy2 = p4.y - p3.y;
+
+ return isSingular( dx1, dy1, -dy2, dx2 );
+}
+
+bool areCollinear( const Coordinate& p1,
+ const Coordinate& p2, const Coordinate& p3 )
+{
+ return isSingular( p2.x - p1.x, p2.y - p1.y, p3.x - p1.x, p3.y - p1.y );
+}
+
+bool isSingular( const double& a, const double& b,
+ const double& c, const double& d )
+{
+ double det = a*d - b*c;
+ double norm1 = std::fabs(a) + std::fabs(b);
+ double norm2 = std::fabs(c) + std::fabs(d);
+
+/*
+ * test must be done relative to the magnitude of the two
+ * row (or column) vectors!
+ */
+ return ( std::fabs(det) < test_threshold*norm1*norm2 );
+}
+
+const double double_inf = HUGE_VAL;
+const double test_threshold = 1e-6;