diff options
Diffstat (limited to 'kopete/plugins/statistics/sqlite/btree.c')
-rw-r--r-- | kopete/plugins/statistics/sqlite/btree.c | 4462 |
1 files changed, 0 insertions, 4462 deletions
diff --git a/kopete/plugins/statistics/sqlite/btree.c b/kopete/plugins/statistics/sqlite/btree.c deleted file mode 100644 index fe8754e0..00000000 --- a/kopete/plugins/statistics/sqlite/btree.c +++ /dev/null @@ -1,4462 +0,0 @@ -/* -** 2004 April 6 -** -** The author disclaims copyright to this source code. In place of -** a legal notice, here is a blessing: -** -** May you do good and not evil. -** May you find forgiveness for yourself and forgive others. -** May you share freely, never taking more than you give. -** -************************************************************************* -** $Id$ -** -** This file implements a external (disk-based) database using BTrees. -** For a detailed discussion of BTrees, refer to -** -** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: -** "Sorting And Searching", pages 473-480. Addison-Wesley -** Publishing Company, Reading, Massachusetts. -** -** The basic idea is that each page of the file contains N database -** entries and N+1 pointers to subpages. -** -** ---------------------------------------------------------------- -** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) | -** ---------------------------------------------------------------- -** -** All of the keys on the page that Ptr(0) points to have values less -** than Key(0). All of the keys on page Ptr(1) and its subpages have -** values greater than Key(0) and less than Key(1). All of the keys -** on Ptr(N+1) and its subpages have values greater than Key(N). And -** so forth. -** -** Finding a particular key requires reading O(log(M)) pages from the -** disk where M is the number of entries in the tree. -** -** In this implementation, a single file can hold one or more separate -** BTrees. Each BTree is identified by the index of its root page. The -** key and data for any entry are combined to form the "payload". A -** fixed amount of payload can be carried directly on the database -** page. If the payload is larger than the preset amount then surplus -** bytes are stored on overflow pages. The payload for an entry -** and the preceding pointer are combined to form a "Cell". Each -** page has a small header which contains the Ptr(N+1) pointer and other -** information such as the size of key and data. -** -** FORMAT DETAILS -** -** The file is divided into pages. The first page is called page 1, -** the second is page 2, and so forth. A page number of zero indicates -** "no such page". The page size can be anything between 512 and 65536. -** Each page can be either a btree page, a freelist page or an overflow -** page. -** -** The first page is always a btree page. The first 100 bytes of the first -** page contain a special header (the "file header") that describes the file. -** The format of the file header is as follows: -** -** OFFSET SIZE DESCRIPTION -** 0 16 Header string: "SQLite format 3\000" -** 16 2 Page size in bytes. -** 18 1 File format write version -** 19 1 File format read version -** 20 1 Bytes of unused space at the end of each page -** 21 1 Max embedded payload fraction -** 22 1 Min embedded payload fraction -** 23 1 Min leaf payload fraction -** 24 4 File change counter -** 28 4 Reserved for future use -** 32 4 First freelist page -** 36 4 Number of freelist pages in the file -** 40 60 15 4-byte meta values passed to higher layers -** -** All of the integer values are big-endian (most significant byte first). -** -** The file change counter is incremented when the database is changed more -** than once within the same second. This counter, together with the -** modification time of the file, allows other processes to know -** when the file has changed and thus when they need to flush their -** cache. -** -** The max embedded payload fraction is the amount of the total usable -** space in a page that can be consumed by a single cell for standard -** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default -** is to limit the maximum cell size so that at least 4 cells will fit -** on one page. Thus the default max embedded payload fraction is 64. -** -** If the payload for a cell is larger than the max payload, then extra -** payload is spilled to overflow pages. Once an overflow page is allocated, -** as many bytes as possible are moved into the overflow pages without letting -** the cell size drop below the min embedded payload fraction. -** -** The min leaf payload fraction is like the min embedded payload fraction -** except that it applies to leaf nodes in a LEAFDATA tree. The maximum -** payload fraction for a LEAFDATA tree is always 100% (or 255) and it -** not specified in the header. -** -** Each btree pages is divided into three sections: The header, the -** cell pointer array, and the cell area area. Page 1 also has a 100-byte -** file header that occurs before the page header. -** -** |----------------| -** | file header | 100 bytes. Page 1 only. -** |----------------| -** | page header | 8 bytes for leaves. 12 bytes for interior nodes -** |----------------| -** | cell pointer | | 2 bytes per cell. Sorted order. -** | array | | Grows downward -** | | v -** |----------------| -** | unallocated | -** | space | -** |----------------| ^ Grows upwards -** | cell content | | Arbitrary order interspersed with freeblocks. -** | area | | and free space fragments. -** |----------------| -** -** The page headers looks like this: -** -** OFFSET SIZE DESCRIPTION -** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf -** 1 2 byte offset to the first freeblock -** 3 2 number of cells on this page -** 5 2 first byte of the cell content area -** 7 1 number of fragmented free bytes -** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves. -** -** The flags define the format of this btree page. The leaf flag means that -** this page has no children. The zerodata flag means that this page carries -** only keys and no data. The intkey flag means that the key is a integer -** which is stored in the key size entry of the cell header rather than in -** the payload area. -** -** The cell pointer array begins on the first byte after the page header. -** The cell pointer array contains zero or more 2-byte numbers which are -** offsets from the beginning of the page to the cell content in the cell -** content area. The cell pointers occur in sorted order. The system strives -** to keep free space after the last cell pointer so that new cells can -** be easily added without having to defragment the page. -** -** Cell content is stored at the very end of the page and grows toward the -** beginning of the page. -** -** Unused space within the cell content area is collected into a linked list of -** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset -** to the first freeblock is given in the header. Freeblocks occur in -** increasing order. Because a freeblock must be at least 4 bytes in size, -** any group of 3 or fewer unused bytes in the cell content area cannot -** exist on the freeblock chain. A group of 3 or fewer free bytes is called -** a fragment. The total number of bytes in all fragments is recorded. -** in the page header at offset 7. -** -** SIZE DESCRIPTION -** 2 Byte offset of the next freeblock -** 2 Bytes in this freeblock -** -** Cells are of variable length. Cells are stored in the cell content area at -** the end of the page. Pointers to the cells are in the cell pointer array -** that immediately follows the page header. Cells is not necessarily -** contiguous or in order, but cell pointers are contiguous and in order. -** -** Cell content makes use of variable length integers. A variable -** length integer is 1 to 9 bytes where the lower 7 bits of each -** byte are used. The integer consists of all bytes that have bit 8 set and -** the first byte with bit 8 clear. The most significant byte of the integer -** appears first. A variable-length integer may not be more than 9 bytes long. -** As a special case, all 8 bytes of the 9th byte are used as data. This -** allows a 64-bit integer to be encoded in 9 bytes. -** -** 0x00 becomes 0x00000000 -** 0x7f becomes 0x0000007f -** 0x81 0x00 becomes 0x00000080 -** 0x82 0x00 becomes 0x00000100 -** 0x80 0x7f becomes 0x0000007f -** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 -** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 -** -** Variable length integers are used for rowids and to hold the number of -** bytes of key and data in a btree cell. -** -** The content of a cell looks like this: -** -** SIZE DESCRIPTION -** 4 Page number of the left child. Omitted if leaf flag is set. -** var Number of bytes of data. Omitted if the zerodata flag is set. -** var Number of bytes of key. Or the key itself if intkey flag is set. -** * Payload -** 4 First page of the overflow chain. Omitted if no overflow -** -** Overflow pages form a linked list. Each page except the last is completely -** filled with data (pagesize - 4 bytes). The last page can have as little -** as 1 byte of data. -** -** SIZE DESCRIPTION -** 4 Page number of next overflow page -** * Data -** -** Freelist pages come in two subtypes: trunk pages and leaf pages. The -** file header points to first in a linked list of trunk page. Each trunk -** page points to multiple leaf pages. The content of a leaf page is -** unspecified. A trunk page looks like this: -** -** SIZE DESCRIPTION -** 4 Page number of next trunk page -** 4 Number of leaf pointers on this page -** * zero or more pages numbers of leaves -*/ -#include "sqliteInt.h" -#include "pager.h" -#include "btree.h" -#include "os.h" -#include <assert.h> - - -/* The following value is the maximum cell size assuming a maximum page -** size give above. -*/ -#define MX_CELL_SIZE(pBt) (pBt->pageSize-8) - -/* The maximum number of cells on a single page of the database. This -** assumes a minimum cell size of 3 bytes. Such small cells will be -** exceedingly rare, but they are possible. -*/ -#define MX_CELL(pBt) ((pBt->pageSize-8)/3) - -/* Forward declarations */ -typedef struct MemPage MemPage; - -/* -** This is a magic string that appears at the beginning of every -** SQLite database in order to identify the file as a real database. -** 123456789 123456 */ -static const char zMagicHeader[] = "SQLite format 3"; - -/* -** Page type flags. An ORed combination of these flags appear as the -** first byte of every BTree page. -*/ -#define PTF_INTKEY 0x01 -#define PTF_ZERODATA 0x02 -#define PTF_LEAFDATA 0x04 -#define PTF_LEAF 0x08 - -/* -** As each page of the file is loaded into memory, an instance of the following -** structure is appended and initialized to zero. This structure stores -** information about the page that is decoded from the raw file page. -** -** The pParent field points back to the parent page. This allows us to -** walk up the BTree from any leaf to the root. Care must be taken to -** unref() the parent page pointer when this page is no longer referenced. -** The pageDestructor() routine handles that chore. -*/ -struct MemPage { - u8 isInit; /* True if previously initialized. MUST BE FIRST! */ - u8 idxShift; /* True if Cell indices have changed */ - u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ - u8 intKey; /* True if intkey flag is set */ - u8 leaf; /* True if leaf flag is set */ - u8 zeroData; /* True if table stores keys only */ - u8 leafData; /* True if tables stores data on leaves only */ - u8 hasData; /* True if this page stores data */ - u8 hdrOffset; /* 100 for page 1. 0 otherwise */ - u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ - u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */ - u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */ - u16 cellOffset; /* Index in aData of first cell pointer */ - u16 idxParent; /* Index in parent of this node */ - u16 nFree; /* Number of free bytes on the page */ - u16 nCell; /* Number of cells on this page, local and ovfl */ - struct _OvflCell { /* Cells that will not fit on aData[] */ - u8 *pCell; /* Pointers to the body of the overflow cell */ - u16 idx; /* Insert this cell before idx-th non-overflow cell */ - } aOvfl[5]; - struct Btree *pBt; /* Pointer back to BTree structure */ - u8 *aData; /* Pointer back to the start of the page */ - Pgno pgno; /* Page number for this page */ - MemPage *pParent; /* The parent of this page. NULL for root */ -}; - -/* -** The in-memory image of a disk page has the auxiliary information appended -** to the end. EXTRA_SIZE is the number of bytes of space needed to hold -** that extra information. -*/ -#define EXTRA_SIZE sizeof(MemPage) - -/* -** Everything we need to know about an open database -*/ -struct Btree { - Pager *pPager; /* The page cache */ - BtCursor *pCursor; /* A list of all open cursors */ - MemPage *pPage1; /* First page of the database */ - u8 inTrans; /* True if a transaction is in progress */ - u8 inStmt; /* True if we are in a statement subtransaction */ - u8 readOnly; /* True if the underlying file is readonly */ - u8 maxEmbedFrac; /* Maximum payload as % of total page size */ - u8 minEmbedFrac; /* Minimum payload as % of total page size */ - u8 minLeafFrac; /* Minimum leaf payload as % of total page size */ - u8 pageSizeFixed; /* True if the page size can no longer be changed */ - u16 pageSize; /* Total number of bytes on a page */ - u16 usableSize; /* Number of usable bytes on each page */ - int maxLocal; /* Maximum local payload in non-LEAFDATA tables */ - int minLocal; /* Minimum local payload in non-LEAFDATA tables */ - int maxLeaf; /* Maximum local payload in a LEAFDATA table */ - int minLeaf; /* Minimum local payload in a LEAFDATA table */ -}; -typedef Btree Bt; - -/* -** Btree.inTrans may take one of the following values. -*/ -#define TRANS_NONE 0 -#define TRANS_READ 1 -#define TRANS_WRITE 2 - -/* -** An instance of the following structure is used to hold information -** about a cell. The parseCellPtr() function fills in this structure -** based on information extract from the raw disk page. -*/ -typedef struct CellInfo CellInfo; -struct CellInfo { - u8 *pCell; /* Pointer to the start of cell content */ - i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ - u32 nData; /* Number of bytes of data */ - u16 nHeader; /* Size of the cell content header in bytes */ - u16 nLocal; /* Amount of payload held locally */ - u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ - u16 nSize; /* Size of the cell content on the main b-tree page */ -}; - -/* -** A cursor is a pointer to a particular entry in the BTree. -** The entry is identified by its MemPage and the index in -** MemPage.aCell[] of the entry. -*/ -struct BtCursor { - Btree *pBt; /* The Btree to which this cursor belongs */ - BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ - int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */ - void *pArg; /* First arg to xCompare() */ - Pgno pgnoRoot; /* The root page of this tree */ - MemPage *pPage; /* Page that contains the entry */ - int idx; /* Index of the entry in pPage->aCell[] */ - CellInfo info; /* A parse of the cell we are pointing at */ - u8 wrFlag; /* True if writable */ - u8 isValid; /* TRUE if points to a valid entry */ - u8 status; /* Set to SQLITE_ABORT if cursors is invalidated */ -}; - -/* -** Forward declaration -*/ -static int checkReadLocks(Btree*,Pgno,BtCursor*); - - -/* -** Read or write a two- and four-byte big-endian integer values. -*/ -static u32 get2byte(unsigned char *p){ - return (p[0]<<8) | p[1]; -} -static u32 get4byte(unsigned char *p){ - return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; -} -static void put2byte(unsigned char *p, u32 v){ - p[0] = v>>8; - p[1] = v; -} -static void put4byte(unsigned char *p, u32 v){ - p[0] = v>>24; - p[1] = v>>16; - p[2] = v>>8; - p[3] = v; -} - -/* -** Routines to read and write variable-length integers. These used to -** be defined locally, but now we use the varint routines in the util.c -** file. -*/ -#define getVarint sqlite3GetVarint -#define getVarint32 sqlite3GetVarint32 -#define putVarint sqlite3PutVarint - -/* -** Given a btree page and a cell index (0 means the first cell on -** the page, 1 means the second cell, and so forth) return a pointer -** to the cell content. -** -** This routine works only for pages that do not contain overflow cells. -*/ -static u8 *findCell(MemPage *pPage, int iCell){ - u8 *data = pPage->aData; - assert( iCell>=0 ); - assert( iCell<get2byte(&data[pPage->hdrOffset+3]) ); - return data + get2byte(&data[pPage->cellOffset+2*iCell]); -} - -/* -** This a more complex version of findCell() that works for -** pages that do contain overflow cells. See insert -*/ -static u8 *findOverflowCell(MemPage *pPage, int iCell){ - int i; - for(i=pPage->nOverflow-1; i>=0; i--){ - int k; - struct _OvflCell *pOvfl; - pOvfl = &pPage->aOvfl[i]; - k = pOvfl->idx; - if( k<=iCell ){ - if( k==iCell ){ - return pOvfl->pCell; - } - iCell--; - } - } - return findCell(pPage, iCell); -} - -/* -** Parse a cell content block and fill in the CellInfo structure. There -** are two versions of this function. parseCell() takes a cell index -** as the second argument and parseCellPtr() takes a pointer to the -** body of the cell as its second argument. -*/ -static void parseCellPtr( - MemPage *pPage, /* Page containing the cell */ - u8 *pCell, /* Pointer to the cell text. */ - CellInfo *pInfo /* Fill in this structure */ -){ - int n; /* Number bytes in cell content header */ - u32 nPayload; /* Number of bytes of cell payload */ - - pInfo->pCell = pCell; - assert( pPage->leaf==0 || pPage->leaf==1 ); - n = pPage->childPtrSize; - assert( n==4-4*pPage->leaf ); - if( pPage->hasData ){ - n += getVarint32(&pCell[n], &nPayload); - }else{ - nPayload = 0; - } - n += getVarint(&pCell[n], (u64 *)&pInfo->nKey); - pInfo->nHeader = n; - pInfo->nData = nPayload; - if( !pPage->intKey ){ - nPayload += pInfo->nKey; - } - if( nPayload<=pPage->maxLocal ){ - /* This is the (easy) common case where the entire payload fits - ** on the local page. No overflow is required. - */ - int nSize; /* Total size of cell content in bytes */ - pInfo->nLocal = nPayload; - pInfo->iOverflow = 0; - nSize = nPayload + n; - if( nSize<4 ){ - nSize = 4; /* Minimum cell size is 4 */ - } - pInfo->nSize = nSize; - }else{ - /* If the payload will not fit completely on the local page, we have - ** to decide how much to store locally and how much to spill onto - ** overflow pages. The strategy is to minimize the amount of unused - ** space on overflow pages while keeping the amount of local storage - ** in between minLocal and maxLocal. - ** - ** Warning: changing the way overflow payload is distributed in any - ** way will result in an incompatible file format. - */ - int minLocal; /* Minimum amount of payload held locally */ - int maxLocal; /* Maximum amount of payload held locally */ - int surplus; /* Overflow payload available for local storage */ - - minLocal = pPage->minLocal; - maxLocal = pPage->maxLocal; - surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); - if( surplus <= maxLocal ){ - pInfo->nLocal = surplus; - }else{ - pInfo->nLocal = minLocal; - } - pInfo->iOverflow = pInfo->nLocal + n; - pInfo->nSize = pInfo->iOverflow + 4; - } -} -static void parseCell( - MemPage *pPage, /* Page containing the cell */ - int iCell, /* The cell index. First cell is 0 */ - CellInfo *pInfo /* Fill in this structure */ -){ - parseCellPtr(pPage, findCell(pPage, iCell), pInfo); -} - -/* -** Compute the total number of bytes that a Cell needs in the cell -** data area of the btree-page. The return number includes the cell -** data header and the local payload, but not any overflow page or -** the space used by the cell pointer. -*/ -#ifndef NDEBUG -static int cellSize(MemPage *pPage, int iCell){ - CellInfo info; - parseCell(pPage, iCell, &info); - return info.nSize; -} -#endif -static int cellSizePtr(MemPage *pPage, u8 *pCell){ - CellInfo info; - parseCellPtr(pPage, pCell, &info); - return info.nSize; -} - -/* -** Do sanity checking on a page. Throw an exception if anything is -** not right. -** -** This routine is used for internal error checking only. It is omitted -** from most builds. -*/ -#if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0 -static void _pageIntegrity(MemPage *pPage){ - int usableSize; - u8 *data; - int i, j, idx, c, pc, hdr, nFree; - int cellOffset; - int nCell, cellLimit; - u8 *used; - - used = sqliteMallocRaw( pPage->pBt->pageSize ); - if( used==0 ) return; - usableSize = pPage->pBt->usableSize; - assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] ); - hdr = pPage->hdrOffset; - assert( hdr==(pPage->pgno==1 ? 100 : 0) ); - assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); - c = pPage->aData[hdr]; - if( pPage->isInit ){ - assert( pPage->leaf == ((c & PTF_LEAF)!=0) ); - assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) ); - assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) ); - assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) ); - assert( pPage->hasData == - !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) ); - assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf ); - assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) ); - } - data = pPage->aData; - memset(used, 0, usableSize); - for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1; - nFree = 0; - pc = get2byte(&data[hdr+1]); - while( pc ){ - int size; - assert( pc>0 && pc<usableSize-4 ); - size = get2byte(&data[pc+2]); - assert( pc+size<=usableSize ); - nFree += size; - for(i=pc; i<pc+size; i++){ - assert( used[i]==0 ); - used[i] = 1; - } - pc = get2byte(&data[pc]); - } - idx = 0; - nCell = get2byte(&data[hdr+3]); - cellLimit = get2byte(&data[hdr+5]); - assert( pPage->isInit==0 - || pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) ); - cellOffset = pPage->cellOffset; - for(i=0; i<nCell; i++){ - int size; - pc = get2byte(&data[cellOffset+2*i]); - assert( pc>0 && pc<usableSize-4 ); - size = cellSize(pPage, &data[pc]); - assert( pc+size<=usableSize ); - for(j=pc; j<pc+size; j++){ - assert( used[j]==0 ); - used[j] = 1; - } - } - for(i=cellOffset+2*nCell; i<cellimit; i++){ - assert( used[i]==0 ); - used[i] = 1; - } - nFree = 0; - for(i=0; i<usableSize; i++){ - assert( used[i]<=1 ); - if( used[i]==0 ) nFree++; - } - assert( nFree==data[hdr+7] ); - sqliteFree(used); -} -#define pageIntegrity(X) _pageIntegrity(X) -#else -# define pageIntegrity(X) -#endif - -/* -** Defragment the page given. All Cells are moved to the -** beginning of the page and all free space is collected -** into one big FreeBlk at the end of the page. -*/ -static int defragmentPage(MemPage *pPage){ - int i; /* Loop counter */ - int pc; /* Address of a i-th cell */ - int addr; /* Offset of first byte after cell pointer array */ - int hdr; /* Offset to the page header */ - int size; /* Size of a cell */ - int usableSize; /* Number of usable bytes on a page */ - int cellOffset; /* Offset to the cell pointer array */ - int brk; /* Offset to the cell content area */ - int nCell; /* Number of cells on the page */ - unsigned char *data; /* The page data */ - unsigned char *temp; /* Temp area for cell content */ - - assert( sqlite3pager_iswriteable(pPage->aData) ); - assert( pPage->pBt!=0 ); - assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); - assert( pPage->nOverflow==0 ); - temp = sqliteMalloc( pPage->pBt->pageSize ); - if( temp==0 ) return SQLITE_NOMEM; - data = pPage->aData; - hdr = pPage->hdrOffset; - cellOffset = pPage->cellOffset; - nCell = pPage->nCell; - assert( nCell==get2byte(&data[hdr+3]) ); - usableSize = pPage->pBt->usableSize; - brk = get2byte(&data[hdr+5]); - memcpy(&temp[brk], &data[brk], usableSize - brk); - brk = usableSize; - for(i=0; i<nCell; i++){ - u8 *pAddr; /* The i-th cell pointer */ - pAddr = &data[cellOffset + i*2]; - pc = get2byte(pAddr); - assert( pc<pPage->pBt->usableSize ); - size = cellSizePtr(pPage, &temp[pc]); - brk -= size; - memcpy(&data[brk], &temp[pc], size); - put2byte(pAddr, brk); - } - assert( brk>=cellOffset+2*nCell ); - put2byte(&data[hdr+5], brk); - data[hdr+1] = 0; - data[hdr+2] = 0; - data[hdr+7] = 0; - addr = cellOffset+2*nCell; - memset(&data[addr], 0, brk-addr); - sqliteFree(temp); - return SQLITE_OK; -} - -/* -** Allocate nByte bytes of space on a page. -** -** Return the index into pPage->aData[] of the first byte of -** the new allocation. Or return 0 if there is not enough free -** space on the page to satisfy the allocation request. -** -** If the page contains nBytes of free space but does not contain -** nBytes of contiguous free space, then this routine automatically -** calls defragementPage() to consolidate all free space before -** allocating the new chunk. -*/ -static int allocateSpace(MemPage *pPage, int nByte){ - int addr, pc, hdr; - int size; - int nFrag; - int top; - int nCell; - int cellOffset; - unsigned char *data; - - data = pPage->aData; - assert( sqlite3pager_iswriteable(data) ); - assert( pPage->pBt ); - if( nByte<4 ) nByte = 4; - if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0; - pPage->nFree -= nByte; - hdr = pPage->hdrOffset; - - nFrag = data[hdr+7]; - if( nFrag<60 ){ - /* Search the freelist looking for a slot big enough to satisfy the - ** space request. */ - addr = hdr+1; - while( (pc = get2byte(&data[addr]))>0 ){ - size = get2byte(&data[pc+2]); - if( size>=nByte ){ - if( size<nByte+4 ){ - memcpy(&data[addr], &data[pc], 2); - data[hdr+7] = nFrag + size - nByte; - return pc; - }else{ - put2byte(&data[pc+2], size-nByte); - return pc + size - nByte; - } - } - addr = pc; - } - } - - /* Allocate memory from the gap in between the cell pointer array - ** and the cell content area. - */ - top = get2byte(&data[hdr+5]); - nCell = get2byte(&data[hdr+3]); - cellOffset = pPage->cellOffset; - if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){ - if( defragmentPage(pPage) ) return 0; - top = get2byte(&data[hdr+5]); - } - top -= nByte; - assert( cellOffset + 2*nCell <= top ); - put2byte(&data[hdr+5], top); - return top; -} - -/* -** Return a section of the pPage->aData to the freelist. -** The first byte of the new free block is pPage->aDisk[start] -** and the size of the block is "size" bytes. -** -** Most of the effort here is involved in coalesing adjacent -** free blocks into a single big free block. -*/ -static void freeSpace(MemPage *pPage, int start, int size){ - int addr, pbegin, hdr; - unsigned char *data = pPage->aData; - - assert( pPage->pBt!=0 ); - assert( sqlite3pager_iswriteable(data) ); - assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) ); - assert( (start + size)<=pPage->pBt->usableSize ); - if( size<4 ) size = 4; - - /* Add the space back into the linked list of freeblocks */ - hdr = pPage->hdrOffset; - addr = hdr + 1; - while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){ - assert( pbegin<=pPage->pBt->usableSize-4 ); - assert( pbegin>addr ); - addr = pbegin; - } - assert( pbegin<=pPage->pBt->usableSize-4 ); - assert( pbegin>addr || pbegin==0 ); - put2byte(&data[addr], start); - put2byte(&data[start], pbegin); - put2byte(&data[start+2], size); - pPage->nFree += size; - - /* Coalesce adjacent free blocks */ - addr = pPage->hdrOffset + 1; - while( (pbegin = get2byte(&data[addr]))>0 ){ - int pnext, psize; - assert( pbegin>addr ); - assert( pbegin<=pPage->pBt->usableSize-4 ); - pnext = get2byte(&data[pbegin]); - psize = get2byte(&data[pbegin+2]); - if( pbegin + psize + 3 >= pnext && pnext>0 ){ - int frag = pnext - (pbegin+psize); - assert( frag<=data[pPage->hdrOffset+7] ); - data[pPage->hdrOffset+7] -= frag; - put2byte(&data[pbegin], get2byte(&data[pnext])); - put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin); - }else{ - addr = pbegin; - } - } - - /* If the cell content area begins with a freeblock, remove it. */ - if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ - int top; - pbegin = get2byte(&data[hdr+1]); - memcpy(&data[hdr+1], &data[pbegin], 2); - top = get2byte(&data[hdr+5]); - put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2])); - } -} - -/* -** Decode the flags byte (the first byte of the header) for a page -** and initialize fields of the MemPage structure accordingly. -*/ -static void decodeFlags(MemPage *pPage, int flagByte){ - Btree *pBt; /* A copy of pPage->pBt */ - - assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); - pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0; - pPage->zeroData = (flagByte & PTF_ZERODATA)!=0; - pPage->leaf = (flagByte & PTF_LEAF)!=0; - pPage->childPtrSize = 4*(pPage->leaf==0); - pBt = pPage->pBt; - if( flagByte & PTF_LEAFDATA ){ - pPage->leafData = 1; - pPage->maxLocal = pBt->maxLeaf; - pPage->minLocal = pBt->minLeaf; - }else{ - pPage->leafData = 0; - pPage->maxLocal = pBt->maxLocal; - pPage->minLocal = pBt->minLocal; - } - pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); -} - -/* -** Initialize the auxiliary information for a disk block. -** -** The pParent parameter must be a pointer to the MemPage which -** is the parent of the page being initialized. The root of a -** BTree has no parent and so for that page, pParent==NULL. -** -** Return SQLITE_OK on success. If we see that the page does -** not contain a well-formed database page, then return -** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not -** guarantee that the page is well-formed. It only shows that -** we failed to detect any corruption. -*/ -static int initPage( - MemPage *pPage, /* The page to be initialized */ - MemPage *pParent /* The parent. Might be NULL */ -){ - int pc; /* Address of a freeblock within pPage->aData[] */ - int i; /* Loop counter */ - int hdr; /* Offset to beginning of page header */ - u8 *data; /* Equal to pPage->aData */ - Btree *pBt; /* The main btree structure */ - int usableSize; /* Amount of usable space on each page */ - int cellOffset; /* Offset from start of page to first cell pointer */ - int nFree; /* Number of unused bytes on the page */ - int top; /* First byte of the cell content area */ - - pBt = pPage->pBt; - assert( pBt!=0 ); - assert( pParent==0 || pParent->pBt==pBt ); - assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) ); - assert( pPage->aData == &((unsigned char*)pPage)[-pBt->pageSize] ); - if( pPage->pParent!=pParent && (pPage->pParent!=0 || pPage->isInit) ){ - /* The parent page should never change unless the file is corrupt */ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - if( pPage->isInit ) return SQLITE_OK; - if( pPage->pParent==0 && pParent!=0 ){ - pPage->pParent = pParent; - sqlite3pager_ref(pParent->aData); - } - hdr = pPage->hdrOffset; - data = pPage->aData; - decodeFlags(pPage, data[hdr]); - pPage->nOverflow = 0; - pPage->idxShift = 0; - usableSize = pBt->usableSize; - pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; - top = get2byte(&data[hdr+5]); - pPage->nCell = get2byte(&data[hdr+3]); - if( pPage->nCell>MX_CELL(pBt) ){ - /* To many cells for a single page. The page must be corrupt */ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - if( pPage->nCell==0 && pParent!=0 && pParent->pgno!=1 ){ - /* All pages must have at least one cell, except for root pages */ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - - /* Compute the total free space on the page */ - pc = get2byte(&data[hdr+1]); - nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell); - i = 0; - while( pc>0 ){ - int next, size; - if( pc>usableSize-4 ){ - /* Free block is off the page */ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - if( i++>SQLITE_MAX_PAGE_SIZE/4 ){ - /* The free block list forms an infinite loop */ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - next = get2byte(&data[pc]); - size = get2byte(&data[pc+2]); - if( next>0 && next<=pc+size+3 ){ - /* Free blocks must be in accending order */ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - nFree += size; - pc = next; - } - pPage->nFree = nFree; - if( nFree>=usableSize ){ - /* Free space cannot exceed total page size */ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - - pPage->isInit = 1; - pageIntegrity(pPage); - return SQLITE_OK; -} - -/* -** Set up a raw page so that it looks like a database page holding -** no entries. -*/ -static void zeroPage(MemPage *pPage, int flags){ - unsigned char *data = pPage->aData; - Btree *pBt = pPage->pBt; - int hdr = pPage->hdrOffset; - int first; - - assert( sqlite3pager_pagenumber(data)==pPage->pgno ); - assert( &data[pBt->pageSize] == (unsigned char*)pPage ); - assert( sqlite3pager_iswriteable(data) ); - memset(&data[hdr], 0, pBt->usableSize - hdr); - data[hdr] = flags; - first = hdr + 8 + 4*((flags&PTF_LEAF)==0); - memset(&data[hdr+1], 0, 4); - data[hdr+7] = 0; - put2byte(&data[hdr+5], pBt->usableSize); - pPage->nFree = pBt->usableSize - first; - decodeFlags(pPage, flags); - pPage->hdrOffset = hdr; - pPage->cellOffset = first; - pPage->nOverflow = 0; - pPage->idxShift = 0; - pPage->nCell = 0; - pPage->isInit = 1; - pageIntegrity(pPage); -} - -/* -** Get a page from the pager. Initialize the MemPage.pBt and -** MemPage.aData elements if needed. -*/ -static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){ - int rc; - unsigned char *aData; - MemPage *pPage; - rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData); - if( rc ) return rc; - pPage = (MemPage*)&aData[pBt->pageSize]; - pPage->aData = aData; - pPage->pBt = pBt; - pPage->pgno = pgno; - pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; - *ppPage = pPage; - return SQLITE_OK; -} - -/* -** Get a page from the pager and initialize it. This routine -** is just a convenience wrapper around separate calls to -** getPage() and initPage(). -*/ -static int getAndInitPage( - Btree *pBt, /* The database file */ - Pgno pgno, /* Number of the page to get */ - MemPage **ppPage, /* Write the page pointer here */ - MemPage *pParent /* Parent of the page */ -){ - int rc; - if( pgno==0 ){ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - rc = getPage(pBt, pgno, ppPage); - if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){ - rc = initPage(*ppPage, pParent); - } - return rc; -} - -/* -** Release a MemPage. This should be called once for each prior -** call to getPage. -*/ -static void releasePage(MemPage *pPage){ - if( pPage ){ - assert( pPage->aData ); - assert( pPage->pBt ); - assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage ); - sqlite3pager_unref(pPage->aData); - } -} - -/* -** This routine is called when the reference count for a page -** reaches zero. We need to unref the pParent pointer when that -** happens. -*/ -static void pageDestructor(void *pData, int pageSize){ - MemPage *pPage = (MemPage*)&((char*)pData)[pageSize]; - if( pPage->pParent ){ - MemPage *pParent = pPage->pParent; - pPage->pParent = 0; - releasePage(pParent); - } - pPage->isInit = 0; -} - -/* -** During a rollback, when the pager reloads information into the cache -** so that the cache is restored to its original state at the start of -** the transaction, for each page restored this routine is called. -** -** This routine needs to reset the extra data section at the end of the -** page to agree with the restored data. -*/ -static void pageReinit(void *pData, int pageSize){ - MemPage *pPage = (MemPage*)&((char*)pData)[pageSize]; - if( pPage->isInit ){ - pPage->isInit = 0; - initPage(pPage, pPage->pParent); - } -} - -/* -** Open a database file. -** -** zFilename is the name of the database file. If zFilename is NULL -** a new database with a random name is created. This randomly named -** database file will be deleted when sqlite3BtreeClose() is called. -*/ -int sqlite3BtreeOpen( - const char *zFilename, /* Name of the file containing the BTree database */ - Btree **ppBtree, /* Pointer to new Btree object written here */ - int flags /* Options */ -){ - Btree *pBt; - int rc; - int nReserve; - unsigned char zDbHeader[100]; - - /* - ** The following asserts make sure that structures used by the btree are - ** the right size. This is to guard against size changes that result - ** when compiling on a different architecture. - */ - assert( sizeof(i64)==8 ); - assert( sizeof(u64)==8 ); - assert( sizeof(u32)==4 ); - assert( sizeof(u16)==2 ); - assert( sizeof(Pgno)==4 ); - assert( sizeof(ptr)==sizeof(char*) ); - assert( sizeof(uptr)==sizeof(ptr) ); - - pBt = sqliteMalloc( sizeof(*pBt) ); - if( pBt==0 ){ - *ppBtree = 0; - return SQLITE_NOMEM; - } - rc = sqlite3pager_open(&pBt->pPager, zFilename, EXTRA_SIZE, - (flags & BTREE_OMIT_JOURNAL)==0); - if( rc!=SQLITE_OK ){ - if( pBt->pPager ) sqlite3pager_close(pBt->pPager); - sqliteFree(pBt); - *ppBtree = 0; - return rc; - } - sqlite3pager_set_destructor(pBt->pPager, pageDestructor); - sqlite3pager_set_reiniter(pBt->pPager, pageReinit); - pBt->pCursor = 0; - pBt->pPage1 = 0; - pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager); - sqlite3pager_read_fileheader(pBt->pPager, sizeof(zDbHeader), zDbHeader); - pBt->pageSize = get2byte(&zDbHeader[16]); - if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE ){ - pBt->pageSize = SQLITE_DEFAULT_PAGE_SIZE; - pBt->maxEmbedFrac = 64; /* 25% */ - pBt->minEmbedFrac = 32; /* 12.5% */ - pBt->minLeafFrac = 32; /* 12.5% */ - nReserve = 0; - }else{ - nReserve = zDbHeader[20]; - pBt->maxEmbedFrac = zDbHeader[21]; - pBt->minEmbedFrac = zDbHeader[22]; - pBt->minLeafFrac = zDbHeader[23]; - pBt->pageSizeFixed = 1; - } - pBt->usableSize = pBt->pageSize - nReserve; - sqlite3pager_set_pagesize(pBt->pPager, pBt->pageSize); - *ppBtree = pBt; - return SQLITE_OK; -} - -/* -** Close an open database and invalidate all cursors. -*/ -int sqlite3BtreeClose(Btree *pBt){ - while( pBt->pCursor ){ - sqlite3BtreeCloseCursor(pBt->pCursor); - } - sqlite3pager_close(pBt->pPager); - sqliteFree(pBt); - return SQLITE_OK; -} - -/* -** Change the busy handler callback function. -*/ -int sqlite3BtreeSetBusyHandler(Btree *pBt, BusyHandler *pHandler){ - sqlite3pager_set_busyhandler(pBt->pPager, pHandler); - return SQLITE_OK; -} - -/* -** Change the limit on the number of pages allowed in the cache. -** -** The maximum number of cache pages is set to the absolute -** value of mxPage. If mxPage is negative, the pager will -** operate asynchronously - it will not stop to do fsync()s -** to insure data is written to the disk surface before -** continuing. Transactions still work if synchronous is off, -** and the database cannot be corrupted if this program -** crashes. But if the operating system crashes or there is -** an abrupt power failure when synchronous is off, the database -** could be left in an inconsistent and unrecoverable state. -** Synchronous is on by default so database corruption is not -** normally a worry. -*/ -int sqlite3BtreeSetCacheSize(Btree *pBt, int mxPage){ - sqlite3pager_set_cachesize(pBt->pPager, mxPage); - return SQLITE_OK; -} - -/* -** Change the way data is synced to disk in order to increase or decrease -** how well the database resists damage due to OS crashes and power -** failures. Level 1 is the same as asynchronous (no syncs() occur and -** there is a high probability of damage) Level 2 is the default. There -** is a very low but non-zero probability of damage. Level 3 reduces the -** probability of damage to near zero but with a write performance reduction. -*/ -int sqlite3BtreeSetSafetyLevel(Btree *pBt, int level){ - sqlite3pager_set_safety_level(pBt->pPager, level); - return SQLITE_OK; -} - -/* -** Change the default pages size and the number of reserved bytes per page. -*/ -int sqlite3BtreeSetPageSize(Btree *pBt, int pageSize, int nReserve){ - if( pBt->pageSizeFixed ){ - return SQLITE_READONLY; - } - if( nReserve<0 ){ - nReserve = pBt->pageSize - pBt->usableSize; - } - if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE ){ - pBt->pageSize = pageSize; - sqlite3pager_set_pagesize(pBt->pPager, pageSize); - } - pBt->usableSize = pBt->pageSize - nReserve; - return SQLITE_OK; -} - -/* -** Return the currently defined page size -*/ -int sqlite3BtreeGetPageSize(Btree *pBt){ - return pBt->pageSize; -} -int sqlite3BtreeGetReserve(Btree *pBt){ - return pBt->pageSize - pBt->usableSize; -} - -/* -** Get a reference to pPage1 of the database file. This will -** also acquire a readlock on that file. -** -** SQLITE_OK is returned on success. If the file is not a -** well-formed database file, then SQLITE_CORRUPT is returned. -** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM -** is returned if we run out of memory. SQLITE_PROTOCOL is returned -** if there is a locking protocol violation. -*/ -static int lockBtree(Btree *pBt){ - int rc; - MemPage *pPage1; - if( pBt->pPage1 ) return SQLITE_OK; - rc = getPage(pBt, 1, &pPage1); - if( rc!=SQLITE_OK ) return rc; - - - /* Do some checking to help insure the file we opened really is - ** a valid database file. - */ - rc = SQLITE_NOTADB; - if( sqlite3pager_pagecount(pBt->pPager)>0 ){ - u8 *page1 = pPage1->aData; - if( memcmp(page1, zMagicHeader, 16)!=0 ){ - goto page1_init_failed; - } - if( page1[18]>1 || page1[19]>1 ){ - goto page1_init_failed; - } - pBt->pageSize = get2byte(&page1[16]); - pBt->usableSize = pBt->pageSize - page1[20]; - if( pBt->usableSize<500 ){ - goto page1_init_failed; - } - pBt->maxEmbedFrac = page1[21]; - pBt->minEmbedFrac = page1[22]; - pBt->minLeafFrac = page1[23]; - } - - /* maxLocal is the maximum amount of payload to store locally for - ** a cell. Make sure it is small enough so that at least minFanout - ** cells can will fit on one page. We assume a 10-byte page header. - ** Besides the payload, the cell must store: - ** 2-byte pointer to the cell - ** 4-byte child pointer - ** 9-byte nKey value - ** 4-byte nData value - ** 4-byte overflow page pointer - ** So a cell consists of a 2-byte poiner, a header which is as much as - ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow - ** page pointer. - */ - pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23; - pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23; - pBt->maxLeaf = pBt->usableSize - 35; - pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23; - if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){ - goto page1_init_failed; - } - assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); - pBt->pPage1 = pPage1; - return SQLITE_OK; - -page1_init_failed: - releasePage(pPage1); - pBt->pPage1 = 0; - return rc; -} - -/* -** If there are no outstanding cursors and we are not in the middle -** of a transaction but there is a read lock on the database, then -** this routine unrefs the first page of the database file which -** has the effect of releasing the read lock. -** -** If there are any outstanding cursors, this routine is a no-op. -** -** If there is a transaction in progress, this routine is a no-op. -*/ -static void unlockBtreeIfUnused(Btree *pBt){ - if( pBt->inTrans==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){ - if( pBt->pPage1->aData==0 ){ - MemPage *pPage = pBt->pPage1; - pPage->aData = &((char*)pPage)[-pBt->pageSize]; - pPage->pBt = pBt; - pPage->pgno = 1; - } - releasePage(pBt->pPage1); - pBt->pPage1 = 0; - pBt->inStmt = 0; - } -} - -/* -** Create a new database by initializing the first page of the -** file. -*/ -static int newDatabase(Btree *pBt){ - MemPage *pP1; - unsigned char *data; - int rc; - if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK; - pP1 = pBt->pPage1; - assert( pP1!=0 ); - data = pP1->aData; - rc = sqlite3pager_write(data); - if( rc ) return rc; - memcpy(data, zMagicHeader, sizeof(zMagicHeader)); - assert( sizeof(zMagicHeader)==16 ); - put2byte(&data[16], pBt->pageSize); - data[18] = 1; - data[19] = 1; - data[20] = pBt->pageSize - pBt->usableSize; - data[21] = pBt->maxEmbedFrac; - data[22] = pBt->minEmbedFrac; - data[23] = pBt->minLeafFrac; - memset(&data[24], 0, 100-24); - zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); - pBt->pageSizeFixed = 1; - return SQLITE_OK; -} - -/* -** Attempt to start a new transaction. A write-transaction -** is started if the second argument is nonzero, otherwise a read- -** transaction. If the second argument is 2 or more and exclusive -** transaction is started, meaning that no other process is allowed -** to access the database. A preexisting transaction may not be -** upgrade to exclusive by calling this routine a second time - the -** exclusivity flag only works for a new transaction. -** -** A write-transaction must be started before attempting any -** changes to the database. None of the following routines -** will work unless a transaction is started first: -** -** sqlite3BtreeCreateTable() -** sqlite3BtreeCreateIndex() -** sqlite3BtreeClearTable() -** sqlite3BtreeDropTable() -** sqlite3BtreeInsert() -** sqlite3BtreeDelete() -** sqlite3BtreeUpdateMeta() -** -** If wrflag is true, then nMaster specifies the maximum length of -** a master journal file name supplied later via sqlite3BtreeSync(). -** This is so that appropriate space can be allocated in the journal file -** when it is created.. -*/ -int sqlite3BtreeBeginTrans(Btree *pBt, int wrflag){ - int rc = SQLITE_OK; - - /* If the btree is already in a write-transaction, or it - ** is already in a read-transaction and a read-transaction - ** is requested, this is a no-op. - */ - if( pBt->inTrans==TRANS_WRITE || - (pBt->inTrans==TRANS_READ && !wrflag) ){ - return SQLITE_OK; - } - if( pBt->readOnly && wrflag ){ - return SQLITE_READONLY; - } - - if( pBt->pPage1==0 ){ - rc = lockBtree(pBt); - } - - if( rc==SQLITE_OK && wrflag ){ - rc = sqlite3pager_begin(pBt->pPage1->aData, wrflag>1); - if( rc==SQLITE_OK ){ - rc = newDatabase(pBt); - } - } - - if( rc==SQLITE_OK ){ - pBt->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); - if( wrflag ) pBt->inStmt = 0; - }else{ - unlockBtreeIfUnused(pBt); - } - return rc; -} - -/* -** Commit the transaction currently in progress. -** -** This will release the write lock on the database file. If there -** are no active cursors, it also releases the read lock. -*/ -int sqlite3BtreeCommit(Btree *pBt){ - int rc = SQLITE_OK; - if( pBt->inTrans==TRANS_WRITE ){ - rc = sqlite3pager_commit(pBt->pPager); - } - pBt->inTrans = TRANS_NONE; - pBt->inStmt = 0; - unlockBtreeIfUnused(pBt); - return rc; -} - -#ifndef NDEBUG -/* -** Return the number of write-cursors open on this handle. This is for use -** in assert() expressions, so it is only compiled if NDEBUG is not -** defined. -*/ -static int countWriteCursors(Btree *pBt){ - BtCursor *pCur; - int r = 0; - for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ - if( pCur->wrFlag ) r++; - } - return r; -} -#endif - -#if 0 -/* -** Invalidate all cursors -*/ -static void invalidateCursors(Btree *pBt){ - BtCursor *pCur; - for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ - MemPage *pPage = pCur->pPage; - if( pPage /* && !pPage->isInit */ ){ - pageIntegrity(pPage); - releasePage(pPage); - pCur->pPage = 0; - pCur->isValid = 0; - pCur->status = SQLITE_ABORT; - } - } -} -#endif - -#ifdef SQLITE_TEST -/* -** Print debugging information about all cursors to standard output. -*/ -void sqlite3BtreeCursorList(Btree *pBt){ - BtCursor *pCur; - for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ - MemPage *pPage = pCur->pPage; - char *zMode = pCur->wrFlag ? "rw" : "ro"; - sqlite3DebugPrintf("CURSOR %p rooted at %4d(%s) currently at %d.%d%s\n", - pCur, pCur->pgnoRoot, zMode, - pPage ? pPage->pgno : 0, pCur->idx, - pCur->isValid ? "" : " eof" - ); - } -} -#endif - -/* -** Rollback the transaction in progress. All cursors will be -** invalided by this operation. Any attempt to use a cursor -** that was open at the beginning of this operation will result -** in an error. -** -** This will release the write lock on the database file. If there -** are no active cursors, it also releases the read lock. -*/ -int sqlite3BtreeRollback(Btree *pBt){ - int rc = SQLITE_OK; - MemPage *pPage1; - if( pBt->inTrans==TRANS_WRITE ){ - rc = sqlite3pager_rollback(pBt->pPager); - /* The rollback may have destroyed the pPage1->aData value. So - ** call getPage() on page 1 again to make sure pPage1->aData is - ** set correctly. */ - if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){ - releasePage(pPage1); - } - assert( countWriteCursors(pBt)==0 ); - } - pBt->inTrans = TRANS_NONE; - pBt->inStmt = 0; - unlockBtreeIfUnused(pBt); - return rc; -} - -/* -** Start a statement subtransaction. The subtransaction can -** can be rolled back independently of the main transaction. -** You must start a transaction before starting a subtransaction. -** The subtransaction is ended automatically if the main transaction -** commits or rolls back. -** -** Only one subtransaction may be active at a time. It is an error to try -** to start a new subtransaction if another subtransaction is already active. -** -** Statement subtransactions are used around individual SQL statements -** that are contained within a BEGIN...COMMIT block. If a constraint -** error occurs within the statement, the effect of that one statement -** can be rolled back without having to rollback the entire transaction. -*/ -int sqlite3BtreeBeginStmt(Btree *pBt){ - int rc; - if( (pBt->inTrans!=TRANS_WRITE) || pBt->inStmt ){ - return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; - } - rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager); - pBt->inStmt = 1; - return rc; -} - - -/* -** Commit the statment subtransaction currently in progress. If no -** subtransaction is active, this is a no-op. -*/ -int sqlite3BtreeCommitStmt(Btree *pBt){ - int rc; - if( pBt->inStmt && !pBt->readOnly ){ - rc = sqlite3pager_stmt_commit(pBt->pPager); - }else{ - rc = SQLITE_OK; - } - pBt->inStmt = 0; - return rc; -} - -/* -** Rollback the active statement subtransaction. If no subtransaction -** is active this routine is a no-op. -** -** All cursors will be invalidated by this operation. Any attempt -** to use a cursor that was open at the beginning of this operation -** will result in an error. -*/ -int sqlite3BtreeRollbackStmt(Btree *pBt){ - int rc; - if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK; - rc = sqlite3pager_stmt_rollback(pBt->pPager); - assert( countWriteCursors(pBt)==0 ); - pBt->inStmt = 0; - return rc; -} - -/* -** Default key comparison function to be used if no comparison function -** is specified on the sqlite3BtreeCursor() call. -*/ -static int dfltCompare( - void *NotUsed, /* User data is not used */ - int n1, const void *p1, /* First key to compare */ - int n2, const void *p2 /* Second key to compare */ -){ - int c; - c = memcmp(p1, p2, n1<n2 ? n1 : n2); - if( c==0 ){ - c = n1 - n2; - } - return c; -} - -/* -** Create a new cursor for the BTree whose root is on the page -** iTable. The act of acquiring a cursor gets a read lock on -** the database file. -** -** If wrFlag==0, then the cursor can only be used for reading. -** If wrFlag==1, then the cursor can be used for reading or for -** writing if other conditions for writing are also met. These -** are the conditions that must be met in order for writing to -** be allowed: -** -** 1: The cursor must have been opened with wrFlag==1 -** -** 2: No other cursors may be open with wrFlag==0 on the same table -** -** 3: The database must be writable (not on read-only media) -** -** 4: There must be an active transaction. -** -** Condition 2 warrants further discussion. If any cursor is opened -** on a table with wrFlag==0, that prevents all other cursors from -** writing to that table. This is a kind of "read-lock". When a cursor -** is opened with wrFlag==0 it is guaranteed that the table will not -** change as long as the cursor is open. This allows the cursor to -** do a sequential scan of the table without having to worry about -** entries being inserted or deleted during the scan. Cursors should -** be opened with wrFlag==0 only if this read-lock property is needed. -** That is to say, cursors should be opened with wrFlag==0 only if they -** intend to use the sqlite3BtreeNext() system call. All other cursors -** should be opened with wrFlag==1 even if they never really intend -** to write. -** -** No checking is done to make sure that page iTable really is the -** root page of a b-tree. If it is not, then the cursor acquired -** will not work correctly. -** -** The comparison function must be logically the same for every cursor -** on a particular table. Changing the comparison function will result -** in incorrect operations. If the comparison function is NULL, a -** default comparison function is used. The comparison function is -** always ignored for INTKEY tables. -*/ -int sqlite3BtreeCursor( - Btree *pBt, /* The btree */ - int iTable, /* Root page of table to open */ - int wrFlag, /* 1 to write. 0 read-only */ - int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */ - void *pArg, /* First arg to xCompare() */ - BtCursor **ppCur /* Write new cursor here */ -){ - int rc; - BtCursor *pCur; - - *ppCur = 0; - if( wrFlag ){ - if( pBt->readOnly ){ - return SQLITE_READONLY; - } - if( checkReadLocks(pBt, iTable, 0) ){ - return SQLITE_LOCKED; - } - } - if( pBt->pPage1==0 ){ - rc = lockBtree(pBt); - if( rc!=SQLITE_OK ){ - return rc; - } - } - pCur = sqliteMallocRaw( sizeof(*pCur) ); - if( pCur==0 ){ - rc = SQLITE_NOMEM; - goto create_cursor_exception; - } - pCur->pgnoRoot = (Pgno)iTable; - if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){ - rc = SQLITE_EMPTY; - pCur->pPage = 0; - goto create_cursor_exception; - } - pCur->pPage = 0; /* For exit-handler, in case getAndInitPage() fails. */ - rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0); - if( rc!=SQLITE_OK ){ - goto create_cursor_exception; - } - pCur->xCompare = xCmp ? xCmp : dfltCompare; - pCur->pArg = pArg; - pCur->pBt = pBt; - pCur->wrFlag = wrFlag; - pCur->idx = 0; - memset(&pCur->info, 0, sizeof(pCur->info)); - pCur->pNext = pBt->pCursor; - if( pCur->pNext ){ - pCur->pNext->pPrev = pCur; - } - pCur->pPrev = 0; - pBt->pCursor = pCur; - pCur->isValid = 0; - pCur->status = SQLITE_OK; - *ppCur = pCur; - return SQLITE_OK; - -create_cursor_exception: - if( pCur ){ - releasePage(pCur->pPage); - sqliteFree(pCur); - } - unlockBtreeIfUnused(pBt); - return rc; -} - -#if 0 /* Not Used */ -/* -** Change the value of the comparison function used by a cursor. -*/ -void sqlite3BtreeSetCompare( - BtCursor *pCur, /* The cursor to whose comparison function is changed */ - int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */ - void *pArg /* First argument to xCmp() */ -){ - pCur->xCompare = xCmp ? xCmp : dfltCompare; - pCur->pArg = pArg; -} -#endif - -/* -** Close a cursor. The read lock on the database file is released -** when the last cursor is closed. -*/ -int sqlite3BtreeCloseCursor(BtCursor *pCur){ - Btree *pBt = pCur->pBt; - if( pCur->pPrev ){ - pCur->pPrev->pNext = pCur->pNext; - }else{ - pBt->pCursor = pCur->pNext; - } - if( pCur->pNext ){ - pCur->pNext->pPrev = pCur->pPrev; - } - releasePage(pCur->pPage); - unlockBtreeIfUnused(pBt); - sqliteFree(pCur); - return SQLITE_OK; -} - -/* -** Make a temporary cursor by filling in the fields of pTempCur. -** The temporary cursor is not on the cursor list for the Btree. -*/ -static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){ - memcpy(pTempCur, pCur, sizeof(*pCur)); - pTempCur->pNext = 0; - pTempCur->pPrev = 0; - if( pTempCur->pPage ){ - sqlite3pager_ref(pTempCur->pPage->aData); - } -} - -/* -** Delete a temporary cursor such as was made by the CreateTemporaryCursor() -** function above. -*/ -static void releaseTempCursor(BtCursor *pCur){ - if( pCur->pPage ){ - sqlite3pager_unref(pCur->pPage->aData); - } -} - -/* -** Make sure the BtCursor.info field of the given cursor is valid. -** If it is not already valid, call parseCell() to fill it in. -** -** BtCursor.info is a cache of the information in the current cell. -** Using this cache reduces the number of calls to parseCell(). -*/ -static void getCellInfo(BtCursor *pCur){ - if( pCur->info.nSize==0 ){ - parseCell(pCur->pPage, pCur->idx, &pCur->info); - }else{ -#ifndef NDEBUG - CellInfo info; - memset(&info, 0, sizeof(info)); - parseCell(pCur->pPage, pCur->idx, &info); - assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); -#endif - } -} - -/* -** Set *pSize to the size of the buffer needed to hold the value of -** the key for the current entry. If the cursor is not pointing -** to a valid entry, *pSize is set to 0. -** -** For a table with the INTKEY flag set, this routine returns the key -** itself, not the number of bytes in the key. -*/ -int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ - if( !pCur->isValid ){ - *pSize = 0; - }else{ - getCellInfo(pCur); - *pSize = pCur->info.nKey; - } - return SQLITE_OK; -} - -/* -** Set *pSize to the number of bytes of data in the entry the -** cursor currently points to. Always return SQLITE_OK. -** Failure is not possible. If the cursor is not currently -** pointing to an entry (which can happen, for example, if -** the database is empty) then *pSize is set to 0. -*/ -int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ - if( !pCur->isValid ){ - /* Not pointing at a valid entry - set *pSize to 0. */ - *pSize = 0; - }else{ - getCellInfo(pCur); - *pSize = pCur->info.nData; - } - return SQLITE_OK; -} - -/* -** Read payload information from the entry that the pCur cursor is -** pointing to. Begin reading the payload at "offset" and read -** a total of "amt" bytes. Put the result in zBuf. -** -** This routine does not make a distinction between key and data. -** It just reads bytes from the payload area. Data might appear -** on the main page or be scattered out on multiple overflow pages. -*/ -static int getPayload( - BtCursor *pCur, /* Cursor pointing to entry to read from */ - int offset, /* Begin reading this far into payload */ - int amt, /* Read this many bytes */ - unsigned char *pBuf, /* Write the bytes into this buffer */ - int skipKey /* offset begins at data if this is true */ -){ - unsigned char *aPayload; - Pgno nextPage; - int rc; - MemPage *pPage; - Btree *pBt; - int ovflSize; - u32 nKey; - - assert( pCur!=0 && pCur->pPage!=0 ); - assert( pCur->isValid ); - pBt = pCur->pBt; - pPage = pCur->pPage; - pageIntegrity(pPage); - assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); - getCellInfo(pCur); - aPayload = pCur->info.pCell; - aPayload += pCur->info.nHeader; - if( pPage->intKey ){ - nKey = 0; - }else{ - nKey = pCur->info.nKey; - } - assert( offset>=0 ); - if( skipKey ){ - offset += nKey; - } - if( offset+amt > nKey+pCur->info.nData ){ - return SQLITE_ERROR; - } - if( offset<pCur->info.nLocal ){ - int a = amt; - if( a+offset>pCur->info.nLocal ){ - a = pCur->info.nLocal - offset; - } - memcpy(pBuf, &aPayload[offset], a); - if( a==amt ){ - return SQLITE_OK; - } - offset = 0; - pBuf += a; - amt -= a; - }else{ - offset -= pCur->info.nLocal; - } - ovflSize = pBt->usableSize - 4; - if( amt>0 ){ - nextPage = get4byte(&aPayload[pCur->info.nLocal]); - while( amt>0 && nextPage ){ - rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload); - if( rc!=0 ){ - return rc; - } - nextPage = get4byte(aPayload); - if( offset<ovflSize ){ - int a = amt; - if( a + offset > ovflSize ){ - a = ovflSize - offset; - } - memcpy(pBuf, &aPayload[offset+4], a); - offset = 0; - amt -= a; - pBuf += a; - }else{ - offset -= ovflSize; - } - sqlite3pager_unref(aPayload); - } - } - - if( amt>0 ){ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - return SQLITE_OK; -} - -/* -** Read part of the key associated with cursor pCur. Exactly -** "amt" bytes will be transfered into pBuf[]. The transfer -** begins at "offset". -** -** Return SQLITE_OK on success or an error code if anything goes -** wrong. An error is returned if "offset+amt" is larger than -** the available payload. -*/ -int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ - if( pCur->isValid==0 ){ - return pCur->status; - } - assert( pCur->pPage!=0 ); - assert( pCur->pPage->intKey==0 ); - assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); - return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); -} - -/* -** Read part of the data associated with cursor pCur. Exactly -** "amt" bytes will be transfered into pBuf[]. The transfer -** begins at "offset". -** -** Return SQLITE_OK on success or an error code if anything goes -** wrong. An error is returned if "offset+amt" is larger than -** the available payload. -*/ -int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ - if( !pCur->isValid ){ - return pCur->status ? pCur->status : SQLITE_INTERNAL; - } - assert( pCur->pPage!=0 ); - assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); - return getPayload(pCur, offset, amt, pBuf, 1); -} - -/* -** Return a pointer to payload information from the entry that the -** pCur cursor is pointing to. The pointer is to the beginning of -** the key if skipKey==0 and it points to the beginning of data if -** skipKey==1. The number of bytes of available key/data is written -** into *pAmt. If *pAmt==0, then the value returned will not be -** a valid pointer. -** -** This routine is an optimization. It is common for the entire key -** and data to fit on the local page and for there to be no overflow -** pages. When that is so, this routine can be used to access the -** key and data without making a copy. If the key and/or data spills -** onto overflow pages, then getPayload() must be used to reassembly -** the key/data and copy it into a preallocated buffer. -** -** The pointer returned by this routine looks directly into the cached -** page of the database. The data might change or move the next time -** any btree routine is called. -*/ -static const unsigned char *fetchPayload( - BtCursor *pCur, /* Cursor pointing to entry to read from */ - int *pAmt, /* Write the number of available bytes here */ - int skipKey /* read beginning at data if this is true */ -){ - unsigned char *aPayload; - MemPage *pPage; - Btree *pBt; - u32 nKey; - int nLocal; - - assert( pCur!=0 && pCur->pPage!=0 ); - assert( pCur->isValid ); - pBt = pCur->pBt; - pPage = pCur->pPage; - pageIntegrity(pPage); - assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); - getCellInfo(pCur); - aPayload = pCur->info.pCell; - aPayload += pCur->info.nHeader; - if( pPage->intKey ){ - nKey = 0; - }else{ - nKey = pCur->info.nKey; - } - if( skipKey ){ - aPayload += nKey; - nLocal = pCur->info.nLocal - nKey; - }else{ - nLocal = pCur->info.nLocal; - if( nLocal>nKey ){ - nLocal = nKey; - } - } - *pAmt = nLocal; - return aPayload; -} - - -/* -** For the entry that cursor pCur is point to, return as -** many bytes of the key or data as are available on the local -** b-tree page. Write the number of available bytes into *pAmt. -** -** The pointer returned is ephemeral. The key/data may move -** or be destroyed on the next call to any Btree routine. -** -** These routines is used to get quick access to key and data -** in the common case where no overflow pages are used. -*/ -const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ - return (const void*)fetchPayload(pCur, pAmt, 0); -} -const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ - return (const void*)fetchPayload(pCur, pAmt, 1); -} - - -/* -** Move the cursor down to a new child page. The newPgno argument is the -** page number of the child page to move to. -*/ -static int moveToChild(BtCursor *pCur, u32 newPgno){ - int rc; - MemPage *pNewPage; - MemPage *pOldPage; - Btree *pBt = pCur->pBt; - - assert( pCur->isValid ); - rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage); - if( rc ) return rc; - pageIntegrity(pNewPage); - pNewPage->idxParent = pCur->idx; - pOldPage = pCur->pPage; - pOldPage->idxShift = 0; - releasePage(pOldPage); - pCur->pPage = pNewPage; - pCur->idx = 0; - pCur->info.nSize = 0; - if( pNewPage->nCell<1 ){ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - return SQLITE_OK; -} - -/* -** Return true if the page is the virtual root of its table. -** -** The virtual root page is the root page for most tables. But -** for the table rooted on page 1, sometime the real root page -** is empty except for the right-pointer. In such cases the -** virtual root page is the page that the right-pointer of page -** 1 is pointing to. -*/ -static int isRootPage(MemPage *pPage){ - MemPage *pParent = pPage->pParent; - if( pParent==0 ) return 1; - if( pParent->pgno>1 ) return 0; - if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1; - return 0; -} - -/* -** Move the cursor up to the parent page. -** -** pCur->idx is set to the cell index that contains the pointer -** to the page we are coming from. If we are coming from the -** right-most child page then pCur->idx is set to one more than -** the largest cell index. -*/ -static void moveToParent(BtCursor *pCur){ - Pgno oldPgno; - MemPage *pParent; - MemPage *pPage; - int idxParent; - - assert( pCur->isValid ); - pPage = pCur->pPage; - assert( pPage!=0 ); - assert( !isRootPage(pPage) ); - pageIntegrity(pPage); - pParent = pPage->pParent; - assert( pParent!=0 ); - pageIntegrity(pParent); - idxParent = pPage->idxParent; - sqlite3pager_ref(pParent->aData); - oldPgno = pPage->pgno; - releasePage(pPage); - pCur->pPage = pParent; - pCur->info.nSize = 0; - assert( pParent->idxShift==0 ); - pCur->idx = idxParent; -} - -/* -** Move the cursor to the root page -*/ -static int moveToRoot(BtCursor *pCur){ - MemPage *pRoot; - int rc; - Btree *pBt = pCur->pBt; - - rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0); - if( rc ){ - pCur->isValid = 0; - return rc; - } - releasePage(pCur->pPage); - pageIntegrity(pRoot); - pCur->pPage = pRoot; - pCur->idx = 0; - pCur->info.nSize = 0; - if( pRoot->nCell==0 && !pRoot->leaf ){ - Pgno subpage; - assert( pRoot->pgno==1 ); - subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); - assert( subpage>0 ); - pCur->isValid = 1; - rc = moveToChild(pCur, subpage); - } - pCur->isValid = pCur->pPage->nCell>0; - return rc; -} - -/* -** Move the cursor down to the left-most leaf entry beneath the -** entry to which it is currently pointing. -*/ -static int moveToLeftmost(BtCursor *pCur){ - Pgno pgno; - int rc; - MemPage *pPage; - - assert( pCur->isValid ); - while( !(pPage = pCur->pPage)->leaf ){ - assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); - pgno = get4byte(findCell(pPage, pCur->idx)); - rc = moveToChild(pCur, pgno); - if( rc ) return rc; - } - return SQLITE_OK; -} - -/* -** Move the cursor down to the right-most leaf entry beneath the -** page to which it is currently pointing. Notice the difference -** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() -** finds the left-most entry beneath the *entry* whereas moveToRightmost() -** finds the right-most entry beneath the *page*. -*/ -static int moveToRightmost(BtCursor *pCur){ - Pgno pgno; - int rc; - MemPage *pPage; - - assert( pCur->isValid ); - while( !(pPage = pCur->pPage)->leaf ){ - pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); - pCur->idx = pPage->nCell; - rc = moveToChild(pCur, pgno); - if( rc ) return rc; - } - pCur->idx = pPage->nCell - 1; - pCur->info.nSize = 0; - return SQLITE_OK; -} - -/* Move the cursor to the first entry in the table. Return SQLITE_OK -** on success. Set *pRes to 0 if the cursor actually points to something -** or set *pRes to 1 if the table is empty. -*/ -int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ - int rc; - if( pCur->status ){ - return pCur->status; - } - rc = moveToRoot(pCur); - if( rc ) return rc; - if( pCur->isValid==0 ){ - assert( pCur->pPage->nCell==0 ); - *pRes = 1; - return SQLITE_OK; - } - assert( pCur->pPage->nCell>0 ); - *pRes = 0; - rc = moveToLeftmost(pCur); - return rc; -} - -/* Move the cursor to the last entry in the table. Return SQLITE_OK -** on success. Set *pRes to 0 if the cursor actually points to something -** or set *pRes to 1 if the table is empty. -*/ -int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ - int rc; - if( pCur->status ){ - return pCur->status; - } - rc = moveToRoot(pCur); - if( rc ) return rc; - if( pCur->isValid==0 ){ - assert( pCur->pPage->nCell==0 ); - *pRes = 1; - return SQLITE_OK; - } - assert( pCur->isValid ); - *pRes = 0; - rc = moveToRightmost(pCur); - return rc; -} - -/* Move the cursor so that it points to an entry near pKey/nKey. -** Return a success code. -** -** For INTKEY tables, only the nKey parameter is used. pKey is -** ignored. For other tables, nKey is the number of bytes of data -** in nKey. The comparison function specified when the cursor was -** created is used to compare keys. -** -** If an exact match is not found, then the cursor is always -** left pointing at a leaf page which would hold the entry if it -** were present. The cursor might point to an entry that comes -** before or after the key. -** -** The result of comparing the key with the entry to which the -** cursor is written to *pRes if pRes!=NULL. The meaning of -** this value is as follows: -** -** *pRes<0 The cursor is left pointing at an entry that -** is smaller than pKey or if the table is empty -** and the cursor is therefore left point to nothing. -** -** *pRes==0 The cursor is left pointing at an entry that -** exactly matches pKey. -** -** *pRes>0 The cursor is left pointing at an entry that -** is larger than pKey. -*/ -int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){ - int rc; - - if( pCur->status ){ - return pCur->status; - } - rc = moveToRoot(pCur); - if( rc ) return rc; - assert( pCur->pPage ); - assert( pCur->pPage->isInit ); - if( pCur->isValid==0 ){ - *pRes = -1; - assert( pCur->pPage->nCell==0 ); - return SQLITE_OK; - } - for(;;){ - int lwr, upr; - Pgno chldPg; - MemPage *pPage = pCur->pPage; - int c = -1; /* pRes return if table is empty must be -1 */ - lwr = 0; - upr = pPage->nCell-1; - pageIntegrity(pPage); - while( lwr<=upr ){ - void *pCellKey; - i64 nCellKey; - pCur->idx = (lwr+upr)/2; - pCur->info.nSize = 0; - sqlite3BtreeKeySize(pCur, &nCellKey); - if( pPage->intKey ){ - if( nCellKey<nKey ){ - c = -1; - }else if( nCellKey>nKey ){ - c = +1; - }else{ - c = 0; - } - }else{ - int available; - pCellKey = (void *)fetchPayload(pCur, &available, 0); - if( available>=nCellKey ){ - c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); - }else{ - pCellKey = sqliteMallocRaw( nCellKey ); - if( pCellKey==0 ) return SQLITE_NOMEM; - rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey); - c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey); - sqliteFree(pCellKey); - if( rc ) return rc; - } - } - if( c==0 ){ - if( pPage->leafData && !pPage->leaf ){ - lwr = pCur->idx; - upr = lwr - 1; - break; - }else{ - if( pRes ) *pRes = 0; - return SQLITE_OK; - } - } - if( c<0 ){ - lwr = pCur->idx+1; - }else{ - upr = pCur->idx-1; - } - } - assert( lwr==upr+1 ); - assert( pPage->isInit ); - if( pPage->leaf ){ - chldPg = 0; - }else if( lwr>=pPage->nCell ){ - chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); - }else{ - chldPg = get4byte(findCell(pPage, lwr)); - } - if( chldPg==0 ){ - assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell ); - if( pRes ) *pRes = c; - return SQLITE_OK; - } - pCur->idx = lwr; - pCur->info.nSize = 0; - rc = moveToChild(pCur, chldPg); - if( rc ){ - return rc; - } - } - /* NOT REACHED */ -} - -/* -** Return TRUE if the cursor is not pointing at an entry of the table. -** -** TRUE will be returned after a call to sqlite3BtreeNext() moves -** past the last entry in the table or sqlite3BtreePrev() moves past -** the first entry. TRUE is also returned if the table is empty. -*/ -int sqlite3BtreeEof(BtCursor *pCur){ - return pCur->isValid==0; -} - -/* -** Advance the cursor to the next entry in the database. If -** successful then set *pRes=0. If the cursor -** was already pointing to the last entry in the database before -** this routine was called, then set *pRes=1. -*/ -int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ - int rc; - MemPage *pPage = pCur->pPage; - - assert( pRes!=0 ); - if( pCur->isValid==0 ){ - *pRes = 1; - return SQLITE_OK; - } - assert( pPage->isInit ); - assert( pCur->idx<pPage->nCell ); - pCur->idx++; - pCur->info.nSize = 0; - if( pCur->idx>=pPage->nCell ){ - if( !pPage->leaf ){ - rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); - if( rc ) return rc; - rc = moveToLeftmost(pCur); - *pRes = 0; - return rc; - } - do{ - if( isRootPage(pPage) ){ - *pRes = 1; - pCur->isValid = 0; - return SQLITE_OK; - } - moveToParent(pCur); - pPage = pCur->pPage; - }while( pCur->idx>=pPage->nCell ); - *pRes = 0; - if( pPage->leafData ){ - rc = sqlite3BtreeNext(pCur, pRes); - }else{ - rc = SQLITE_OK; - } - return rc; - } - *pRes = 0; - if( pPage->leaf ){ - return SQLITE_OK; - } - rc = moveToLeftmost(pCur); - return rc; -} - -/* -** Step the cursor to the back to the previous entry in the database. If -** successful then set *pRes=0. If the cursor -** was already pointing to the first entry in the database before -** this routine was called, then set *pRes=1. -*/ -int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ - int rc; - Pgno pgno; - MemPage *pPage; - if( pCur->isValid==0 ){ - *pRes = 1; - return SQLITE_OK; - } - pPage = pCur->pPage; - assert( pPage->isInit ); - assert( pCur->idx>=0 ); - if( !pPage->leaf ){ - pgno = get4byte( findCell(pPage, pCur->idx) ); - rc = moveToChild(pCur, pgno); - if( rc ) return rc; - rc = moveToRightmost(pCur); - }else{ - while( pCur->idx==0 ){ - if( isRootPage(pPage) ){ - pCur->isValid = 0; - *pRes = 1; - return SQLITE_OK; - } - moveToParent(pCur); - pPage = pCur->pPage; - } - pCur->idx--; - pCur->info.nSize = 0; - if( pPage->leafData ){ - rc = sqlite3BtreePrevious(pCur, pRes); - }else{ - rc = SQLITE_OK; - } - } - *pRes = 0; - return rc; -} - -/* -** The TRACE macro will print high-level status information about the -** btree operation when the global variable sqlite3_btree_trace is -** enabled. -*/ -#if SQLITE_TEST -# define TRACE(X) if( sqlite3_btree_trace )\ - { sqlite3DebugPrintf X; fflush(stdout); } -#else -# define TRACE(X) -#endif -int sqlite3_btree_trace=0; /* True to enable tracing */ - -/* -** Allocate a new page from the database file. -** -** The new page is marked as dirty. (In other words, sqlite3pager_write() -** has already been called on the new page.) The new page has also -** been referenced and the calling routine is responsible for calling -** sqlite3pager_unref() on the new page when it is done. -** -** SQLITE_OK is returned on success. Any other return value indicates -** an error. *ppPage and *pPgno are undefined in the event of an error. -** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned. -** -** If the "nearby" parameter is not 0, then a (feeble) effort is made to -** locate a page close to the page number "nearby". This can be used in an -** attempt to keep related pages close to each other in the database file, -** which in turn can make database access faster. -*/ -static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){ - MemPage *pPage1; - int rc; - int n; /* Number of pages on the freelist */ - int k; /* Number of leaves on the trunk of the freelist */ - - pPage1 = pBt->pPage1; - n = get4byte(&pPage1->aData[36]); - if( n>0 ){ - /* There are pages on the freelist. Reuse one of those pages. */ - MemPage *pTrunk; - rc = sqlite3pager_write(pPage1->aData); - if( rc ) return rc; - put4byte(&pPage1->aData[36], n-1); - rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk); - if( rc ) return rc; - rc = sqlite3pager_write(pTrunk->aData); - if( rc ){ - releasePage(pTrunk); - return rc; - } - k = get4byte(&pTrunk->aData[4]); - if( k==0 ){ - /* The trunk has no leaves. So extract the trunk page itself and - ** use it as the newly allocated page */ - *pPgno = get4byte(&pPage1->aData[32]); - memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); - *ppPage = pTrunk; - TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); - }else if( k>pBt->usableSize/4 - 8 ){ - /* Value of k is out of range. Database corruption */ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - }else{ - /* Extract a leaf from the trunk */ - int closest; - unsigned char *aData = pTrunk->aData; - if( nearby>0 ){ - int i, dist; - closest = 0; - dist = get4byte(&aData[8]) - nearby; - if( dist<0 ) dist = -dist; - for(i=1; i<k; i++){ - int d2 = get4byte(&aData[8+i*4]) - nearby; - if( d2<0 ) d2 = -d2; - if( d2<dist ) closest = i; - } - }else{ - closest = 0; - } - *pPgno = get4byte(&aData[8+closest*4]); - if( *pPgno>sqlite3pager_pagecount(pBt->pPager) ){ - /* Free page off the end of the file */ - return SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d: %d more free pages\n", - *pPgno, closest+1, k, pTrunk->pgno, n-1)); - if( closest<k-1 ){ - memcpy(&aData[8+closest*4], &aData[4+k*4], 4); - } - put4byte(&aData[4], k-1); - rc = getPage(pBt, *pPgno, ppPage); - releasePage(pTrunk); - if( rc==SQLITE_OK ){ - sqlite3pager_dont_rollback((*ppPage)->aData); - rc = sqlite3pager_write((*ppPage)->aData); - } - } - }else{ - /* There are no pages on the freelist, so create a new page at the - ** end of the file */ - *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1; - rc = getPage(pBt, *pPgno, ppPage); - if( rc ) return rc; - rc = sqlite3pager_write((*ppPage)->aData); - TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); - } - return rc; -} - -/* -** Add a page of the database file to the freelist. -** -** sqlite3pager_unref() is NOT called for pPage. -*/ -static int freePage(MemPage *pPage){ - Btree *pBt = pPage->pBt; - MemPage *pPage1 = pBt->pPage1; - int rc, n, k; - - /* Prepare the page for freeing */ - assert( pPage->pgno>1 ); - pPage->isInit = 0; - releasePage(pPage->pParent); - pPage->pParent = 0; - - /* Increment the free page count on pPage1 */ - rc = sqlite3pager_write(pPage1->aData); - if( rc ) return rc; - n = get4byte(&pPage1->aData[36]); - put4byte(&pPage1->aData[36], n+1); - - if( n==0 ){ - /* This is the first free page */ - rc = sqlite3pager_write(pPage->aData); - if( rc ) return rc; - memset(pPage->aData, 0, 8); - put4byte(&pPage1->aData[32], pPage->pgno); - TRACE(("FREE-PAGE: %d first\n", pPage->pgno)); - }else{ - /* Other free pages already exist. Retrive the first trunk page - ** of the freelist and find out how many leaves it has. */ - MemPage *pTrunk; - rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk); - if( rc ) return rc; - k = get4byte(&pTrunk->aData[4]); - if( k>=pBt->usableSize/4 - 8 ){ - /* The trunk is full. Turn the page being freed into a new - ** trunk page with no leaves. */ - rc = sqlite3pager_write(pPage->aData); - if( rc ) return rc; - put4byte(pPage->aData, pTrunk->pgno); - put4byte(&pPage->aData[4], 0); - put4byte(&pPage1->aData[32], pPage->pgno); - TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", - pPage->pgno, pTrunk->pgno)); - }else{ - /* Add the newly freed page as a leaf on the current trunk */ - rc = sqlite3pager_write(pTrunk->aData); - if( rc ) return rc; - put4byte(&pTrunk->aData[4], k+1); - put4byte(&pTrunk->aData[8+k*4], pPage->pgno); - sqlite3pager_dont_write(pBt->pPager, pPage->pgno); - TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); - } - releasePage(pTrunk); - } - return rc; -} - -/* -** Free any overflow pages associated with the given Cell. -*/ -static int clearCell(MemPage *pPage, unsigned char *pCell){ - Btree *pBt = pPage->pBt; - CellInfo info; - Pgno ovflPgno; - int rc; - - parseCellPtr(pPage, pCell, &info); - if( info.iOverflow==0 ){ - return SQLITE_OK; /* No overflow pages. Return without doing anything */ - } - ovflPgno = get4byte(&pCell[info.iOverflow]); - while( ovflPgno!=0 ){ - MemPage *pOvfl; - rc = getPage(pBt, ovflPgno, &pOvfl); - if( rc ) return rc; - ovflPgno = get4byte(pOvfl->aData); - rc = freePage(pOvfl); - if( rc ) return rc; - sqlite3pager_unref(pOvfl->aData); - } - return SQLITE_OK; -} - -/* -** Create the byte sequence used to represent a cell on page pPage -** and write that byte sequence into pCell[]. Overflow pages are -** allocated and filled in as necessary. The calling procedure -** is responsible for making sure sufficient space has been allocated -** for pCell[]. -** -** Note that pCell does not necessary need to point to the pPage->aData -** area. pCell might point to some temporary storage. The cell will -** be constructed in this temporary area then copied into pPage->aData -** later. -*/ -static int fillInCell( - MemPage *pPage, /* The page that contains the cell */ - unsigned char *pCell, /* Complete text of the cell */ - const void *pKey, i64 nKey, /* The key */ - const void *pData,int nData, /* The data */ - int *pnSize /* Write cell size here */ -){ - int nPayload; - const u8 *pSrc; - int nSrc, n, rc; - int spaceLeft; - MemPage *pOvfl = 0; - MemPage *pToRelease = 0; - unsigned char *pPrior; - unsigned char *pPayload; - Btree *pBt = pPage->pBt; - Pgno pgnoOvfl = 0; - int nHeader; - CellInfo info; - - /* Fill in the header. */ - nHeader = 0; - if( !pPage->leaf ){ - nHeader += 4; - } - if( pPage->hasData ){ - nHeader += putVarint(&pCell[nHeader], nData); - }else{ - nData = 0; - } - nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); - parseCellPtr(pPage, pCell, &info); - assert( info.nHeader==nHeader ); - assert( info.nKey==nKey ); - assert( info.nData==nData ); - - /* Fill in the payload */ - nPayload = nData; - if( pPage->intKey ){ - pSrc = pData; - nSrc = nData; - nData = 0; - }else{ - nPayload += nKey; - pSrc = pKey; - nSrc = nKey; - } - *pnSize = info.nSize; - spaceLeft = info.nLocal; - pPayload = &pCell[nHeader]; - pPrior = &pCell[info.iOverflow]; - - while( nPayload>0 ){ - if( spaceLeft==0 ){ - rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl); - if( rc ){ - releasePage(pToRelease); - clearCell(pPage, pCell); - return rc; - } - put4byte(pPrior, pgnoOvfl); - releasePage(pToRelease); - pToRelease = pOvfl; - pPrior = pOvfl->aData; - put4byte(pPrior, 0); - pPayload = &pOvfl->aData[4]; - spaceLeft = pBt->usableSize - 4; - } - n = nPayload; - if( n>spaceLeft ) n = spaceLeft; - if( n>nSrc ) n = nSrc; - memcpy(pPayload, pSrc, n); - nPayload -= n; - pPayload += n; - pSrc += n; - nSrc -= n; - spaceLeft -= n; - if( nSrc==0 ){ - nSrc = nData; - pSrc = pData; - } - } - releasePage(pToRelease); - return SQLITE_OK; -} - -/* -** Change the MemPage.pParent pointer on the page whose number is -** given in the second argument so that MemPage.pParent holds the -** pointer in the third argument. -*/ -static void reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){ - MemPage *pThis; - unsigned char *aData; - - if( pgno==0 ) return; - assert( pBt->pPager!=0 ); - aData = sqlite3pager_lookup(pBt->pPager, pgno); - if( aData ){ - pThis = (MemPage*)&aData[pBt->pageSize]; - assert( pThis->aData==aData ); - if( pThis->isInit ){ - if( pThis->pParent!=pNewParent ){ - if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData); - pThis->pParent = pNewParent; - if( pNewParent ) sqlite3pager_ref(pNewParent->aData); - } - pThis->idxParent = idx; - } - sqlite3pager_unref(aData); - } -} - -/* -** Change the pParent pointer of all children of pPage to point back -** to pPage. -** -** In other words, for every child of pPage, invoke reparentPage() -** to make sure that each child knows that pPage is its parent. -** -** This routine gets called after you memcpy() one page into -** another. -*/ -static void reparentChildPages(MemPage *pPage){ - int i; - Btree *pBt; - - if( pPage->leaf ) return; - pBt = pPage->pBt; - for(i=0; i<pPage->nCell; i++){ - reparentPage(pBt, get4byte(findCell(pPage,i)), pPage, i); - } - reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), pPage, i); - pPage->idxShift = 0; -} - -/* -** Remove the i-th cell from pPage. This routine effects pPage only. -** The cell content is not freed or deallocated. It is assumed that -** the cell content has been copied someplace else. This routine just -** removes the reference to the cell from pPage. -** -** "sz" must be the number of bytes in the cell. -*/ -static void dropCell(MemPage *pPage, int idx, int sz){ - int i; /* Loop counter */ - int pc; /* Offset to cell content of cell being deleted */ - u8 *data; /* pPage->aData */ - u8 *ptr; /* Used to move bytes around within data[] */ - - assert( idx>=0 && idx<pPage->nCell ); - assert( sz==cellSize(pPage, idx) ); - assert( sqlite3pager_iswriteable(pPage->aData) ); - data = pPage->aData; - ptr = &data[pPage->cellOffset + 2*idx]; - pc = get2byte(ptr); - assert( pc>10 && pc+sz<=pPage->pBt->usableSize ); - freeSpace(pPage, pc, sz); - for(i=idx+1; i<pPage->nCell; i++, ptr+=2){ - ptr[0] = ptr[2]; - ptr[1] = ptr[3]; - } - pPage->nCell--; - put2byte(&data[pPage->hdrOffset+3], pPage->nCell); - pPage->nFree += 2; - pPage->idxShift = 1; -} - -/* -** Insert a new cell on pPage at cell index "i". pCell points to the -** content of the cell. -** -** If the cell content will fit on the page, then put it there. If it -** will not fit, then make a copy of the cell content into pTemp if -** pTemp is not null. Regardless of pTemp, allocate a new entry -** in pPage->aOvfl[] and make it point to the cell content (either -** in pTemp or the original pCell) and also record its index. -** Allocating a new entry in pPage->aCell[] implies that -** pPage->nOverflow is incremented. -*/ -static void insertCell( - MemPage *pPage, /* Page into which we are copying */ - int i, /* New cell becomes the i-th cell of the page */ - u8 *pCell, /* Content of the new cell */ - int sz, /* Bytes of content in pCell */ - u8 *pTemp /* Temp storage space for pCell, if needed */ -){ - int idx; /* Where to write new cell content in data[] */ - int j; /* Loop counter */ - int top; /* First byte of content for any cell in data[] */ - int end; /* First byte past the last cell pointer in data[] */ - int ins; /* Index in data[] where new cell pointer is inserted */ - int hdr; /* Offset into data[] of the page header */ - int cellOffset; /* Address of first cell pointer in data[] */ - u8 *data; /* The content of the whole page */ - u8 *ptr; /* Used for moving information around in data[] */ - - assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); - assert( sz==cellSizePtr(pPage, pCell) ); - assert( sqlite3pager_iswriteable(pPage->aData) ); - if( pPage->nOverflow || sz+2>pPage->nFree ){ - if( pTemp ){ - memcpy(pTemp, pCell, sz); - pCell = pTemp; - } - j = pPage->nOverflow++; - assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) ); - pPage->aOvfl[j].pCell = pCell; - pPage->aOvfl[j].idx = i; - pPage->nFree = 0; - }else{ - data = pPage->aData; - hdr = pPage->hdrOffset; - top = get2byte(&data[hdr+5]); - cellOffset = pPage->cellOffset; - end = cellOffset + 2*pPage->nCell + 2; - ins = cellOffset + 2*i; - if( end > top - sz ){ - defragmentPage(pPage); - top = get2byte(&data[hdr+5]); - assert( end + sz <= top ); - } - idx = allocateSpace(pPage, sz); - assert( idx>0 ); - assert( end <= get2byte(&data[hdr+5]) ); - pPage->nCell++; - pPage->nFree -= 2; - memcpy(&data[idx], pCell, sz); - for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){ - ptr[0] = ptr[-2]; - ptr[1] = ptr[-1]; - } - put2byte(&data[ins], idx); - put2byte(&data[hdr+3], pPage->nCell); - pPage->idxShift = 1; - pageIntegrity(pPage); - } -} - -/* -** Add a list of cells to a page. The page should be initially empty. -** The cells are guaranteed to fit on the page. -*/ -static void assemblePage( - MemPage *pPage, /* The page to be assemblied */ - int nCell, /* The number of cells to add to this page */ - u8 **apCell, /* Pointers to cell bodies */ - int *aSize /* Sizes of the cells */ -){ - int i; /* Loop counter */ - int totalSize; /* Total size of all cells */ - int hdr; /* Index of page header */ - int cellptr; /* Address of next cell pointer */ - int cellbody; /* Address of next cell body */ - u8 *data; /* Data for the page */ - - assert( pPage->nOverflow==0 ); - totalSize = 0; - for(i=0; i<nCell; i++){ - totalSize += aSize[i]; - } - assert( totalSize+2*nCell<=pPage->nFree ); - assert( pPage->nCell==0 ); - cellptr = pPage->cellOffset; - data = pPage->aData; - hdr = pPage->hdrOffset; - put2byte(&data[hdr+3], nCell); - cellbody = allocateSpace(pPage, totalSize); - assert( cellbody>0 ); - assert( pPage->nFree >= 2*nCell ); - pPage->nFree -= 2*nCell; - for(i=0; i<nCell; i++){ - put2byte(&data[cellptr], cellbody); - memcpy(&data[cellbody], apCell[i], aSize[i]); - cellptr += 2; - cellbody += aSize[i]; - } - assert( cellbody==pPage->pBt->usableSize ); - pPage->nCell = nCell; -} - -/* -** GCC does not define the offsetof() macro so we'll have to do it -** ourselves. -*/ -#ifndef offsetof -#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) -#endif - -/* -** The following parameters determine how many adjacent pages get involved -** in a balancing operation. NN is the number of neighbors on either side -** of the page that participate in the balancing operation. NB is the -** total number of pages that participate, including the target page and -** NN neighbors on either side. -** -** The minimum value of NN is 1 (of course). Increasing NN above 1 -** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance -** in exchange for a larger degradation in INSERT and UPDATE performance. -** The value of NN appears to give the best results overall. -*/ -#define NN 1 /* Number of neighbors on either side of pPage */ -#define NB (NN*2+1) /* Total pages involved in the balance */ - -/* Forward reference */ -static int balance(MemPage*); - -/* -** This routine redistributes Cells on pPage and up to NN*2 siblings -** of pPage so that all pages have about the same amount of free space. -** Usually NN siblings on either side of pPage is used in the balancing, -** though more siblings might come from one side if pPage is the first -** or last child of its parent. If pPage has fewer than 2*NN siblings -** (something which can only happen if pPage is the root page or a -** child of root) then all available siblings participate in the balancing. -** -** The number of siblings of pPage might be increased or decreased by one or -** two in an effort to keep pages nearly full but not over full. The root page -** is special and is allowed to be nearly empty. If pPage is -** the root page, then the depth of the tree might be increased -** or decreased by one, as necessary, to keep the root page from being -** overfull or completely empty. -** -** Note that when this routine is called, some of the Cells on pPage -** might not actually be stored in pPage->aData[]. This can happen -** if the page is overfull. Part of the job of this routine is to -** make sure all Cells for pPage once again fit in pPage->aData[]. -** -** In the course of balancing the siblings of pPage, the parent of pPage -** might become overfull or underfull. If that happens, then this routine -** is called recursively on the parent. -** -** If this routine fails for any reason, it might leave the database -** in a corrupted state. So if this routine fails, the database should -** be rolled back. -*/ -static int balance_nonroot(MemPage *pPage){ - MemPage *pParent; /* The parent of pPage */ - Btree *pBt; /* The whole database */ - int nCell = 0; /* Number of cells in aCell[] */ - int nOld; /* Number of pages in apOld[] */ - int nNew; /* Number of pages in apNew[] */ - int nDiv; /* Number of cells in apDiv[] */ - int i, j, k; /* Loop counters */ - int idx; /* Index of pPage in pParent->aCell[] */ - int nxDiv; /* Next divider slot in pParent->aCell[] */ - int rc; /* The return code */ - int leafCorrection; /* 4 if pPage is a leaf. 0 if not */ - int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ - int usableSpace; /* Bytes in pPage beyond the header */ - int pageFlags; /* Value of pPage->aData[0] */ - int subtotal; /* Subtotal of bytes in cells on one page */ - int iSpace = 0; /* First unused byte of aSpace[] */ - int mxCellPerPage; /* Maximum number of cells in one page */ - MemPage *apOld[NB]; /* pPage and up to two siblings */ - Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ - MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ - MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ - Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */ - int idxDiv[NB]; /* Indices of divider cells in pParent */ - u8 *apDiv[NB]; /* Divider cells in pParent */ - int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ - int szNew[NB+2]; /* Combined size of cells place on i-th page */ - u8 **apCell; /* All cells begin balanced */ - int *szCell; /* Local size of all cells in apCell[] */ - u8 *aCopy[NB]; /* Space for holding data of apCopy[] */ - u8 *aSpace; /* Space to hold copies of dividers cells */ - - /* - ** Find the parent page. - */ - assert( pPage->isInit ); - assert( sqlite3pager_iswriteable(pPage->aData) ); - pBt = pPage->pBt; - pParent = pPage->pParent; - sqlite3pager_write(pParent->aData); - assert( pParent ); - TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); - - /* - ** Allocate space for memory structures - */ - mxCellPerPage = MX_CELL(pBt); - apCell = sqliteMallocRaw( - (mxCellPerPage+2)*NB*(sizeof(u8*)+sizeof(int)) - + sizeof(MemPage)*NB - + pBt->pageSize*(5+NB) - ); - if( apCell==0 ){ - return SQLITE_NOMEM; - } - szCell = (int*)&apCell[(mxCellPerPage+2)*NB]; - aCopy[0] = (u8*)&szCell[(mxCellPerPage+2)*NB]; - for(i=1; i<NB; i++){ - aCopy[i] = &aCopy[i-1][pBt->pageSize+sizeof(MemPage)]; - } - aSpace = &aCopy[NB-1][pBt->pageSize+sizeof(MemPage)]; - - /* - ** Find the cell in the parent page whose left child points back - ** to pPage. The "idx" variable is the index of that cell. If pPage - ** is the rightmost child of pParent then set idx to pParent->nCell - */ - if( pParent->idxShift ){ - Pgno pgno; - pgno = pPage->pgno; - assert( pgno==sqlite3pager_pagenumber(pPage->aData) ); - for(idx=0; idx<pParent->nCell; idx++){ - if( get4byte(findCell(pParent, idx))==pgno ){ - break; - } - } - assert( idx<pParent->nCell - || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno ); - }else{ - idx = pPage->idxParent; - } - - /* - ** Initialize variables so that it will be safe to jump - ** directly to balance_cleanup at any moment. - */ - nOld = nNew = 0; - sqlite3pager_ref(pParent->aData); - - /* - ** Find sibling pages to pPage and the cells in pParent that divide - ** the siblings. An attempt is made to find NN siblings on either - ** side of pPage. More siblings are taken from one side, however, if - ** pPage there are fewer than NN siblings on the other side. If pParent - ** has NB or fewer children then all children of pParent are taken. - */ - nxDiv = idx - NN; - if( nxDiv + NB > pParent->nCell ){ - nxDiv = pParent->nCell - NB + 1; - } - if( nxDiv<0 ){ - nxDiv = 0; - } - nDiv = 0; - for(i=0, k=nxDiv; i<NB; i++, k++){ - if( k<pParent->nCell ){ - idxDiv[i] = k; - apDiv[i] = findCell(pParent, k); - nDiv++; - assert( !pParent->leaf ); - pgnoOld[i] = get4byte(apDiv[i]); - }else if( k==pParent->nCell ){ - pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]); - }else{ - break; - } - rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent); - if( rc ) goto balance_cleanup; - apOld[i]->idxParent = k; - apCopy[i] = 0; - assert( i==nOld ); - nOld++; - } - - /* - ** Make copies of the content of pPage and its siblings into aOld[]. - ** The rest of this function will use data from the copies rather - ** that the original pages since the original pages will be in the - ** process of being overwritten. - */ - for(i=0; i<nOld; i++){ - MemPage *p = apCopy[i] = (MemPage*)&aCopy[i][pBt->pageSize]; - p->aData = &((u8*)p)[-pBt->pageSize]; - memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage)); - p->aData = &((u8*)p)[-pBt->pageSize]; - } - - /* - ** Load pointers to all cells on sibling pages and the divider cells - ** into the local apCell[] array. Make copies of the divider cells - ** into space obtained form aSpace[] and remove the the divider Cells - ** from pParent. - ** - ** If the siblings are on leaf pages, then the child pointers of the - ** divider cells are stripped from the cells before they are copied - ** into aSpace[]. In this way, all cells in apCell[] are without - ** child pointers. If siblings are not leaves, then all cell in - ** apCell[] include child pointers. Either way, all cells in apCell[] - ** are alike. - ** - ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. - ** leafData: 1 if pPage holds key+data and pParent holds only keys. - */ - nCell = 0; - leafCorrection = pPage->leaf*4; - leafData = pPage->leafData && pPage->leaf; - for(i=0; i<nOld; i++){ - MemPage *pOld = apCopy[i]; - int limit = pOld->nCell+pOld->nOverflow; - for(j=0; j<limit; j++){ - apCell[nCell] = findOverflowCell(pOld, j); - szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); - nCell++; - } - if( i<nOld-1 ){ - int sz = cellSizePtr(pParent, apDiv[i]); - if( leafData ){ - /* With the LEAFDATA flag, pParent cells hold only INTKEYs that - ** are duplicates of keys on the child pages. We need to remove - ** the divider cells from pParent, but the dividers cells are not - ** added to apCell[] because they are duplicates of child cells. - */ - dropCell(pParent, nxDiv, sz); - }else{ - u8 *pTemp; - szCell[nCell] = sz; - pTemp = &aSpace[iSpace]; - iSpace += sz; - assert( iSpace<=pBt->pageSize*5 ); - memcpy(pTemp, apDiv[i], sz); - apCell[nCell] = pTemp+leafCorrection; - dropCell(pParent, nxDiv, sz); - szCell[nCell] -= leafCorrection; - assert( get4byte(pTemp)==pgnoOld[i] ); - if( !pOld->leaf ){ - assert( leafCorrection==0 ); - /* The right pointer of the child page pOld becomes the left - ** pointer of the divider cell */ - memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4); - }else{ - assert( leafCorrection==4 ); - } - nCell++; - } - } - } - - /* - ** Figure out the number of pages needed to hold all nCell cells. - ** Store this number in "k". Also compute szNew[] which is the total - ** size of all cells on the i-th page and cntNew[] which is the index - ** in apCell[] of the cell that divides page i from page i+1. - ** cntNew[k] should equal nCell. - ** - ** Values computed by this block: - ** - ** k: The total number of sibling pages - ** szNew[i]: Spaced used on the i-th sibling page. - ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to - ** the right of the i-th sibling page. - ** usableSpace: Number of bytes of space available on each sibling. - ** - */ - usableSpace = pBt->usableSize - 12 + leafCorrection; - for(subtotal=k=i=0; i<nCell; i++){ - subtotal += szCell[i] + 2; - if( subtotal > usableSpace ){ - szNew[k] = subtotal - szCell[i]; - cntNew[k] = i; - if( leafData ){ i--; } - subtotal = 0; - k++; - } - } - szNew[k] = subtotal; - cntNew[k] = nCell; - k++; - - /* - ** The packing computed by the previous block is biased toward the siblings - ** on the left side. The left siblings are always nearly full, while the - ** right-most sibling might be nearly empty. This block of code attempts - ** to adjust the packing of siblings to get a better balance. - ** - ** This adjustment is more than an optimization. The packing above might - ** be so out of balance as to be illegal. For example, the right-most - ** sibling might be completely empty. This adjustment is not optional. - */ - for(i=k-1; i>0; i--){ - int szRight = szNew[i]; /* Size of sibling on the right */ - int szLeft = szNew[i-1]; /* Size of sibling on the left */ - int r; /* Index of right-most cell in left sibling */ - int d; /* Index of first cell to the left of right sibling */ - - r = cntNew[i-1] - 1; - d = r + 1 - leafData; - while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){ - szRight += szCell[d] + 2; - szLeft -= szCell[r] + 2; - cntNew[i-1]--; - r = cntNew[i-1] - 1; - d = r + 1 - leafData; - } - szNew[i] = szRight; - szNew[i-1] = szLeft; - } - assert( cntNew[0]>0 ); - - /* - ** Allocate k new pages. Reuse old pages where possible. - */ - assert( pPage->pgno>1 ); - pageFlags = pPage->aData[0]; - for(i=0; i<k; i++){ - MemPage *pNew; - if( i<nOld ){ - pNew = apNew[i] = apOld[i]; - pgnoNew[i] = pgnoOld[i]; - apOld[i] = 0; - sqlite3pager_write(pNew->aData); - }else{ - rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1]); - if( rc ) goto balance_cleanup; - apNew[i] = pNew; - } - nNew++; - zeroPage(pNew, pageFlags); - } - - /* Free any old pages that were not reused as new pages. - */ - while( i<nOld ){ - rc = freePage(apOld[i]); - if( rc ) goto balance_cleanup; - releasePage(apOld[i]); - apOld[i] = 0; - i++; - } - - /* - ** Put the new pages in accending order. This helps to - ** keep entries in the disk file in order so that a scan - ** of the table is a linear scan through the file. That - ** in turn helps the operating system to deliver pages - ** from the disk more rapidly. - ** - ** An O(n^2) insertion sort algorithm is used, but since - ** n is never more than NB (a small constant), that should - ** not be a problem. - ** - ** When NB==3, this one optimization makes the database - ** about 25% faster for large insertions and deletions. - */ - for(i=0; i<k-1; i++){ - int minV = pgnoNew[i]; - int minI = i; - for(j=i+1; j<k; j++){ - if( pgnoNew[j]<(unsigned)minV ){ - minI = j; - minV = pgnoNew[j]; - } - } - if( minI>i ){ - int t; - MemPage *pT; - t = pgnoNew[i]; - pT = apNew[i]; - pgnoNew[i] = pgnoNew[minI]; - apNew[i] = apNew[minI]; - pgnoNew[minI] = t; - apNew[minI] = pT; - } - } - TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", - pgnoOld[0], - nOld>=2 ? pgnoOld[1] : 0, - nOld>=3 ? pgnoOld[2] : 0, - pgnoNew[0], szNew[0], - nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0, - nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0, - nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0, - nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0)); - - - /* - ** Evenly distribute the data in apCell[] across the new pages. - ** Insert divider cells into pParent as necessary. - */ - j = 0; - for(i=0; i<nNew; i++){ - MemPage *pNew = apNew[i]; - assert( pNew->pgno==pgnoNew[i] ); - assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); - j = cntNew[i]; - assert( pNew->nCell>0 ); - assert( pNew->nOverflow==0 ); - if( i<nNew-1 && j<nCell ){ - u8 *pCell; - u8 *pTemp; - int sz; - pCell = apCell[j]; - sz = szCell[j] + leafCorrection; - if( !pNew->leaf ){ - memcpy(&pNew->aData[8], pCell, 4); - pTemp = 0; - }else if( leafData ){ - CellInfo info; - j--; - parseCellPtr(pNew, apCell[j], &info); - pCell = &aSpace[iSpace]; - fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz); - iSpace += sz; - assert( iSpace<=pBt->pageSize*5 ); - pTemp = 0; - }else{ - pCell -= 4; - pTemp = &aSpace[iSpace]; - iSpace += sz; - assert( iSpace<=pBt->pageSize*5 ); - } - insertCell(pParent, nxDiv, pCell, sz, pTemp); - put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno); - j++; - nxDiv++; - } - } - assert( j==nCell ); - if( (pageFlags & PTF_LEAF)==0 ){ - memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4); - } - if( nxDiv==pParent->nCell+pParent->nOverflow ){ - /* Right-most sibling is the right-most child of pParent */ - put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]); - }else{ - /* Right-most sibling is the left child of the first entry in pParent - ** past the right-most divider entry */ - put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]); - } - - /* - ** Reparent children of all cells. - */ - for(i=0; i<nNew; i++){ - reparentChildPages(apNew[i]); - } - reparentChildPages(pParent); - - /* - ** Balance the parent page. Note that the current page (pPage) might - ** have been added to the freelist is it might no longer be initialized. - ** But the parent page will always be initialized. - */ - assert( pParent->isInit ); - /* assert( pPage->isInit ); // No! pPage might have been added to freelist */ - /* pageIntegrity(pPage); // No! pPage might have been added to freelist */ - rc = balance(pParent); - - /* - ** Cleanup before returning. - */ -balance_cleanup: - sqliteFree(apCell); - for(i=0; i<nOld; i++){ - releasePage(apOld[i]); - } - for(i=0; i<nNew; i++){ - releasePage(apNew[i]); - } - releasePage(pParent); - TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n", - pPage->pgno, nOld, nNew, nCell)); - return rc; -} - -/* -** This routine is called for the root page of a btree when the root -** page contains no cells. This is an opportunity to make the tree -** shallower by one level. -*/ -static int balance_shallower(MemPage *pPage){ - MemPage *pChild; /* The only child page of pPage */ - Pgno pgnoChild; /* Page number for pChild */ - int rc = SQLITE_OK; /* Return code from subprocedures */ - Btree *pBt; /* The main BTree structure */ - int mxCellPerPage; /* Maximum number of cells per page */ - u8 **apCell; /* All cells from pages being balanced */ - int *szCell; /* Local size of all cells */ - - assert( pPage->pParent==0 ); - assert( pPage->nCell==0 ); - pBt = pPage->pBt; - mxCellPerPage = MX_CELL(pBt); - apCell = sqliteMallocRaw( mxCellPerPage*(sizeof(u8*)+sizeof(int)) ); - if( apCell==0 ) return SQLITE_NOMEM; - szCell = (int*)&apCell[mxCellPerPage]; - if( pPage->leaf ){ - /* The table is completely empty */ - TRACE(("BALANCE: empty table %d\n", pPage->pgno)); - }else{ - /* The root page is empty but has one child. Transfer the - ** information from that one child into the root page if it - ** will fit. This reduces the depth of the tree by one. - ** - ** If the root page is page 1, it has less space available than - ** its child (due to the 100 byte header that occurs at the beginning - ** of the database fle), so it might not be able to hold all of the - ** information currently contained in the child. If this is the - ** case, then do not do the transfer. Leave page 1 empty except - ** for the right-pointer to the child page. The child page becomes - ** the virtual root of the tree. - */ - pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]); - assert( pgnoChild>0 ); - assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) ); - rc = getPage(pPage->pBt, pgnoChild, &pChild); - if( rc ) goto end_shallow_balance; - if( pPage->pgno==1 ){ - rc = initPage(pChild, pPage); - if( rc ) goto end_shallow_balance; - assert( pChild->nOverflow==0 ); - if( pChild->nFree>=100 ){ - /* The child information will fit on the root page, so do the - ** copy */ - int i; - zeroPage(pPage, pChild->aData[0]); - for(i=0; i<pChild->nCell; i++){ - apCell[i] = findCell(pChild,i); - szCell[i] = cellSizePtr(pChild, apCell[i]); - } - assemblePage(pPage, pChild->nCell, apCell, szCell); - freePage(pChild); - TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno)); - }else{ - /* The child has more information that will fit on the root. - ** The tree is already balanced. Do nothing. */ - TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno)); - } - }else{ - memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize); - pPage->isInit = 0; - pPage->pParent = 0; - rc = initPage(pPage, 0); - assert( rc==SQLITE_OK ); - freePage(pChild); - TRACE(("BALANCE: transfer child %d into root %d\n", - pChild->pgno, pPage->pgno)); - } - reparentChildPages(pPage); - releasePage(pChild); - } -end_shallow_balance: - sqliteFree(apCell); - return rc; -} - - -/* -** The root page is overfull -** -** When this happens, Create a new child page and copy the -** contents of the root into the child. Then make the root -** page an empty page with rightChild pointing to the new -** child. Finally, call balance_internal() on the new child -** to cause it to split. -*/ -static int balance_deeper(MemPage *pPage){ - int rc; /* Return value from subprocedures */ - MemPage *pChild; /* Pointer to a new child page */ - Pgno pgnoChild; /* Page number of the new child page */ - Btree *pBt; /* The BTree */ - int usableSize; /* Total usable size of a page */ - u8 *data; /* Content of the parent page */ - u8 *cdata; /* Content of the child page */ - int hdr; /* Offset to page header in parent */ - int brk; /* Offset to content of first cell in parent */ - - assert( pPage->pParent==0 ); - assert( pPage->nOverflow>0 ); - pBt = pPage->pBt; - rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno); - if( rc ) return rc; - assert( sqlite3pager_iswriteable(pChild->aData) ); - usableSize = pBt->usableSize; - data = pPage->aData; - hdr = pPage->hdrOffset; - brk = get2byte(&data[hdr+5]); - cdata = pChild->aData; - memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr); - memcpy(&cdata[brk], &data[brk], usableSize-brk); - rc = initPage(pChild, pPage); - if( rc ) return rc; - memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0])); - pChild->nOverflow = pPage->nOverflow; - if( pChild->nOverflow ){ - pChild->nFree = 0; - } - assert( pChild->nCell==pPage->nCell ); - zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF); - put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild); - TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno)); - rc = balance_nonroot(pChild); - releasePage(pChild); - return rc; -} - -/* -** Decide if the page pPage needs to be balanced. If balancing is -** required, call the appropriate balancing routine. -*/ -static int balance(MemPage *pPage){ - int rc = SQLITE_OK; - if( pPage->pParent==0 ){ - if( pPage->nOverflow>0 ){ - rc = balance_deeper(pPage); - } - if( pPage->nCell==0 ){ - rc = balance_shallower(pPage); - } - }else{ - if( pPage->nOverflow>0 || pPage->nFree>pPage->pBt->usableSize*2/3 ){ - rc = balance_nonroot(pPage); - } - } - return rc; -} - -/* -** This routine checks all cursors that point to table pgnoRoot. -** If any of those cursors other than pExclude were opened with -** wrFlag==0 then this routine returns SQLITE_LOCKED. If all -** cursors that point to pgnoRoot were opened with wrFlag==1 -** then this routine returns SQLITE_OK. -** -** In addition to checking for read-locks (where a read-lock -** means a cursor opened with wrFlag==0) this routine also moves -** all cursors other than pExclude so that they are pointing to the -** first Cell on root page. This is necessary because an insert -** or delete might change the number of cells on a page or delete -** a page entirely and we do not want to leave any cursors -** pointing to non-existant pages or cells. -*/ -static int checkReadLocks(Btree *pBt, Pgno pgnoRoot, BtCursor *pExclude){ - BtCursor *p; - for(p=pBt->pCursor; p; p=p->pNext){ - if( p->pgnoRoot!=pgnoRoot || p==pExclude ) continue; - if( p->wrFlag==0 ) return SQLITE_LOCKED; - if( p->pPage->pgno!=p->pgnoRoot ){ - moveToRoot(p); - } - } - return SQLITE_OK; -} - -/* -** Insert a new record into the BTree. The key is given by (pKey,nKey) -** and the data is given by (pData,nData). The cursor is used only to -** define what table the record should be inserted into. The cursor -** is left pointing at a random location. -** -** For an INTKEY table, only the nKey value of the key is used. pKey is -** ignored. For a ZERODATA table, the pData and nData are both ignored. -*/ -int sqlite3BtreeInsert( - BtCursor *pCur, /* Insert data into the table of this cursor */ - const void *pKey, i64 nKey, /* The key of the new record */ - const void *pData, int nData /* The data of the new record */ -){ - int rc; - int loc; - int szNew; - MemPage *pPage; - Btree *pBt = pCur->pBt; - unsigned char *oldCell; - unsigned char *newCell = 0; - - if( pCur->status ){ - return pCur->status; /* A rollback destroyed this cursor */ - } - if( pBt->inTrans!=TRANS_WRITE ){ - /* Must start a transaction before doing an insert */ - return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; - } - assert( !pBt->readOnly ); - if( !pCur->wrFlag ){ - return SQLITE_PERM; /* Cursor not open for writing */ - } - if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ - return SQLITE_LOCKED; /* The table pCur points to has a read lock */ - } - rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc); - if( rc ) return rc; - pPage = pCur->pPage; - assert( pPage->intKey || nKey>=0 ); - assert( pPage->leaf || !pPage->leafData ); - TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", - pCur->pgnoRoot, nKey, nData, pPage->pgno, - loc==0 ? "overwrite" : "new entry")); - assert( pPage->isInit ); - rc = sqlite3pager_write(pPage->aData); - if( rc ) return rc; - newCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); - if( newCell==0 ) return SQLITE_NOMEM; - rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew); - if( rc ) goto end_insert; - assert( szNew==cellSizePtr(pPage, newCell) ); - assert( szNew<=MX_CELL_SIZE(pBt) ); - if( loc==0 && pCur->isValid ){ - int szOld; - assert( pCur->idx>=0 && pCur->idx<pPage->nCell ); - oldCell = findCell(pPage, pCur->idx); - if( !pPage->leaf ){ - memcpy(newCell, oldCell, 4); - } - szOld = cellSizePtr(pPage, oldCell); - rc = clearCell(pPage, oldCell); - if( rc ) goto end_insert; - dropCell(pPage, pCur->idx, szOld); - }else if( loc<0 && pPage->nCell>0 ){ - assert( pPage->leaf ); - pCur->idx++; - pCur->info.nSize = 0; - }else{ - assert( pPage->leaf ); - } - insertCell(pPage, pCur->idx, newCell, szNew, 0); - rc = balance(pPage); - /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */ - /* fflush(stdout); */ - moveToRoot(pCur); -end_insert: - sqliteFree(newCell); - return rc; -} - -/* -** Delete the entry that the cursor is pointing to. The cursor -** is left pointing at a random location. -*/ -int sqlite3BtreeDelete(BtCursor *pCur){ - MemPage *pPage = pCur->pPage; - unsigned char *pCell; - int rc; - Pgno pgnoChild = 0; - Btree *pBt = pCur->pBt; - - assert( pPage->isInit ); - if( pCur->status ){ - return pCur->status; /* A rollback destroyed this cursor */ - } - if( pBt->inTrans!=TRANS_WRITE ){ - /* Must start a transaction before doing a delete */ - return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; - } - assert( !pBt->readOnly ); - if( pCur->idx >= pPage->nCell ){ - return SQLITE_ERROR; /* The cursor is not pointing to anything */ - } - if( !pCur->wrFlag ){ - return SQLITE_PERM; /* Did not open this cursor for writing */ - } - if( checkReadLocks(pBt, pCur->pgnoRoot, pCur) ){ - return SQLITE_LOCKED; /* The table pCur points to has a read lock */ - } - rc = sqlite3pager_write(pPage->aData); - if( rc ) return rc; - pCell = findCell(pPage, pCur->idx); - if( !pPage->leaf ){ - pgnoChild = get4byte(pCell); - } - clearCell(pPage, pCell); - if( !pPage->leaf ){ - /* - ** The entry we are about to delete is not a leaf so if we do not - ** do something we will leave a hole on an internal page. - ** We have to fill the hole by moving in a cell from a leaf. The - ** next Cell after the one to be deleted is guaranteed to exist and - ** to be a leaf so we can use it. - */ - BtCursor leafCur; - unsigned char *pNext; - int szNext; - int notUsed; - unsigned char *tempCell; - assert( !pPage->leafData ); - getTempCursor(pCur, &leafCur); - rc = sqlite3BtreeNext(&leafCur, ¬Used); - if( rc!=SQLITE_OK ){ - if( rc!=SQLITE_NOMEM ){ - rc = SQLITE_CORRUPT; /* bkpt-CORRUPT */ - } - return rc; - } - rc = sqlite3pager_write(leafCur.pPage->aData); - if( rc ) return rc; - TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n", - pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno)); - dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); - pNext = findCell(leafCur.pPage, leafCur.idx); - szNext = cellSizePtr(leafCur.pPage, pNext); - assert( MX_CELL_SIZE(pBt)>=szNext+4 ); - tempCell = sqliteMallocRaw( MX_CELL_SIZE(pBt) ); - if( tempCell==0 ) return SQLITE_NOMEM; - insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell); - put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild); - rc = balance(pPage); - sqliteFree(tempCell); - if( rc ) return rc; - dropCell(leafCur.pPage, leafCur.idx, szNext); - rc = balance(leafCur.pPage); - releaseTempCursor(&leafCur); - }else{ - TRACE(("DELETE: table=%d delete from leaf %d\n", - pCur->pgnoRoot, pPage->pgno)); - dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell)); - rc = balance(pPage); - } - moveToRoot(pCur); - return rc; -} - -/* -** Create a new BTree table. Write into *piTable the page -** number for the root page of the new table. -** -** The type of type is determined by the flags parameter. Only the -** following values of flags are currently in use. Other values for -** flags might not work: -** -** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys -** BTREE_ZERODATA Used for SQL indices -*/ -int sqlite3BtreeCreateTable(Btree *pBt, int *piTable, int flags){ - MemPage *pRoot; - Pgno pgnoRoot; - int rc; - if( pBt->inTrans!=TRANS_WRITE ){ - /* Must start a transaction first */ - return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; - } - if( pBt->readOnly ){ - return SQLITE_READONLY; - } - rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1); - if( rc ) return rc; - assert( sqlite3pager_iswriteable(pRoot->aData) ); - zeroPage(pRoot, flags | PTF_LEAF); - sqlite3pager_unref(pRoot->aData); - *piTable = (int)pgnoRoot; - return SQLITE_OK; -} - -/* -** Erase the given database page and all its children. Return -** the page to the freelist. -*/ -static int clearDatabasePage( - Btree *pBt, /* The BTree that contains the table */ - Pgno pgno, /* Page number to clear */ - MemPage *pParent, /* Parent page. NULL for the root */ - int freePageFlag /* Deallocate page if true */ -){ - MemPage *pPage; - int rc; - unsigned char *pCell; - int i; - - rc = getAndInitPage(pBt, pgno, &pPage, pParent); - if( rc ) return rc; - rc = sqlite3pager_write(pPage->aData); - if( rc ) return rc; - for(i=0; i<pPage->nCell; i++){ - pCell = findCell(pPage, i); - if( !pPage->leaf ){ - rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1); - if( rc ) return rc; - } - rc = clearCell(pPage, pCell); - if( rc ) return rc; - } - if( !pPage->leaf ){ - rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1); - if( rc ) return rc; - } - if( freePageFlag ){ - rc = freePage(pPage); - }else{ - zeroPage(pPage, pPage->aData[0] | PTF_LEAF); - } - releasePage(pPage); - return rc; -} - -/* -** Delete all information from a single table in the database. iTable is -** the page number of the root of the table. After this routine returns, -** the root page is empty, but still exists. -** -** This routine will fail with SQLITE_LOCKED if there are any open -** read cursors on the table. Open write cursors are moved to the -** root of the table. -*/ -int sqlite3BtreeClearTable(Btree *pBt, int iTable){ - int rc; - BtCursor *pCur; - if( pBt->inTrans!=TRANS_WRITE ){ - return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; - } - for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ - if( pCur->pgnoRoot==(Pgno)iTable ){ - if( pCur->wrFlag==0 ) return SQLITE_LOCKED; - moveToRoot(pCur); - } - } - rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0); - if( rc ){ - sqlite3BtreeRollback(pBt); - } - return rc; -} - -/* -** Erase all information in a table and add the root of the table to -** the freelist. Except, the root of the principle table (the one on -** page 1) is never added to the freelist. -** -** This routine will fail with SQLITE_LOCKED if there are any open -** cursors on the table. -*/ -int sqlite3BtreeDropTable(Btree *pBt, int iTable){ - int rc; - MemPage *pPage; - BtCursor *pCur; - if( pBt->inTrans!=TRANS_WRITE ){ - return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; - } - for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ - if( pCur->pgnoRoot==(Pgno)iTable ){ - return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */ - } - } - rc = getPage(pBt, (Pgno)iTable, &pPage); - if( rc ) return rc; - rc = sqlite3BtreeClearTable(pBt, iTable); - if( rc ) return rc; - if( iTable>1 ){ - rc = freePage(pPage); - }else{ - zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); - } - releasePage(pPage); - return rc; -} - - -/* -** Read the meta-information out of a database file. Meta[0] -** is the number of free pages currently in the database. Meta[1] -** through meta[15] are available for use by higher layers. Meta[0] -** is read-only, the others are read/write. -** -** The schema layer numbers meta values differently. At the schema -** layer (and the SetCookie and ReadCookie opcodes) the number of -** free pages is not visible. So Cookie[0] is the same as Meta[1]. -*/ -int sqlite3BtreeGetMeta(Btree *pBt, int idx, u32 *pMeta){ - int rc; - unsigned char *pP1; - - assert( idx>=0 && idx<=15 ); - rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1); - if( rc ) return rc; - *pMeta = get4byte(&pP1[36 + idx*4]); - sqlite3pager_unref(pP1); - - /* The current implementation is unable to handle writes to an autovacuumed - ** database. So make such a database readonly. */ - if( idx==4 && *pMeta>0 ) pBt->readOnly = 1; - - return SQLITE_OK; -} - -/* -** Write meta-information back into the database. Meta[0] is -** read-only and may not be written. -*/ -int sqlite3BtreeUpdateMeta(Btree *pBt, int idx, u32 iMeta){ - unsigned char *pP1; - int rc; - assert( idx>=1 && idx<=15 ); - if( pBt->inTrans!=TRANS_WRITE ){ - return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; - } - assert( pBt->pPage1!=0 ); - pP1 = pBt->pPage1->aData; - rc = sqlite3pager_write(pP1); - if( rc ) return rc; - put4byte(&pP1[36 + idx*4], iMeta); - return SQLITE_OK; -} - -/* -** Return the flag byte at the beginning of the page that the cursor -** is currently pointing to. -*/ -int sqlite3BtreeFlags(BtCursor *pCur){ - MemPage *pPage = pCur->pPage; - return pPage ? pPage->aData[pPage->hdrOffset] : 0; -} - -/* -** Print a disassembly of the given page on standard output. This routine -** is used for debugging and testing only. -*/ -#ifdef SQLITE_TEST -int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){ - int rc; - MemPage *pPage; - int i, j, c; - int nFree; - u16 idx; - int hdr; - int nCell; - int isInit; - unsigned char *data; - char range[20]; - unsigned char payload[20]; - - rc = getPage(pBt, (Pgno)pgno, &pPage); - isInit = pPage->isInit; - if( pPage->isInit==0 ){ - initPage(pPage, 0); - } - if( rc ){ - return rc; - } - hdr = pPage->hdrOffset; - data = pPage->aData; - c = data[hdr]; - pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0; - pPage->zeroData = (c & PTF_ZERODATA)!=0; - pPage->leafData = (c & PTF_LEAFDATA)!=0; - pPage->leaf = (c & PTF_LEAF)!=0; - pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData)); - nCell = get2byte(&data[hdr+3]); - sqlite3DebugPrintf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno, - data[hdr], data[hdr+7], - (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0); - assert( hdr == (pgno==1 ? 100 : 0) ); - idx = hdr + 12 - pPage->leaf*4; - for(i=0; i<nCell; i++){ - CellInfo info; - Pgno child; - unsigned char *pCell; - int sz; - int addr; - - addr = get2byte(&data[idx + 2*i]); - pCell = &data[addr]; - parseCellPtr(pPage, pCell, &info); - sz = info.nSize; - sprintf(range,"%d..%d", addr, addr+sz-1); - if( pPage->leaf ){ - child = 0; - }else{ - child = get4byte(pCell); - } - sz = info.nData; - if( !pPage->intKey ) sz += info.nKey; - if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1; - memcpy(payload, &pCell[info.nHeader], sz); - for(j=0; j<sz; j++){ - if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.'; - } - payload[sz] = 0; - sqlite3DebugPrintf( - "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n", - i, range, child, info.nKey, info.nData, payload - ); - } - if( !pPage->leaf ){ - sqlite3DebugPrintf("right_child: %d\n", get4byte(&data[hdr+8])); - } - nFree = 0; - i = 0; - idx = get2byte(&data[hdr+1]); - while( idx>0 && idx<pPage->pBt->usableSize ){ - int sz = get2byte(&data[idx+2]); - sprintf(range,"%d..%d", idx, idx+sz-1); - nFree += sz; - sqlite3DebugPrintf("freeblock %2d: i=%-10s size=%-4d total=%d\n", - i, range, sz, nFree); - idx = get2byte(&data[idx]); - i++; - } - if( idx!=0 ){ - sqlite3DebugPrintf("ERROR: next freeblock index out of range: %d\n", idx); - } - if( recursive && !pPage->leaf ){ - for(i=0; i<nCell; i++){ - unsigned char *pCell = findCell(pPage, i); - sqlite3BtreePageDump(pBt, get4byte(pCell), 1); - idx = get2byte(pCell); - } - sqlite3BtreePageDump(pBt, get4byte(&data[hdr+8]), 1); - } - pPage->isInit = isInit; - sqlite3pager_unref(data); - fflush(stdout); - return SQLITE_OK; -} -#endif - -#ifdef SQLITE_TEST -/* -** Fill aResult[] with information about the entry and page that the -** cursor is pointing to. -** -** aResult[0] = The page number -** aResult[1] = The entry number -** aResult[2] = Total number of entries on this page -** aResult[3] = Cell size (local payload + header) -** aResult[4] = Number of free bytes on this page -** aResult[5] = Number of free blocks on the page -** aResult[6] = Total payload size (local + overflow) -** aResult[7] = Header size in bytes -** aResult[8] = Local payload size -** aResult[9] = Parent page number -** -** This routine is used for testing and debugging only. -*/ -int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult, int upCnt){ - int cnt, idx; - MemPage *pPage = pCur->pPage; - BtCursor tmpCur; - - pageIntegrity(pPage); - assert( pPage->isInit ); - getTempCursor(pCur, &tmpCur); - while( upCnt-- ){ - moveToParent(&tmpCur); - } - pPage = tmpCur.pPage; - pageIntegrity(pPage); - aResult[0] = sqlite3pager_pagenumber(pPage->aData); - assert( aResult[0]==pPage->pgno ); - aResult[1] = tmpCur.idx; - aResult[2] = pPage->nCell; - if( tmpCur.idx>=0 && tmpCur.idx<pPage->nCell ){ - getCellInfo(&tmpCur); - aResult[3] = tmpCur.info.nSize; - aResult[6] = tmpCur.info.nData; - aResult[7] = tmpCur.info.nHeader; - aResult[8] = tmpCur.info.nLocal; - }else{ - aResult[3] = 0; - aResult[6] = 0; - aResult[7] = 0; - aResult[8] = 0; - } - aResult[4] = pPage->nFree; - cnt = 0; - idx = get2byte(&pPage->aData[pPage->hdrOffset+1]); - while( idx>0 && idx<pPage->pBt->usableSize ){ - cnt++; - idx = get2byte(&pPage->aData[idx]); - } - aResult[5] = cnt; - if( pPage->pParent==0 || isRootPage(pPage) ){ - aResult[9] = 0; - }else{ - aResult[9] = pPage->pParent->pgno; - } - releaseTempCursor(&tmpCur); - return SQLITE_OK; -} -#endif - -/* -** Return the pager associated with a BTree. This routine is used for -** testing and debugging only. -*/ -Pager *sqlite3BtreePager(Btree *pBt){ - return pBt->pPager; -} - -/* -** This structure is passed around through all the sanity checking routines -** in order to keep track of some global state information. -*/ -typedef struct IntegrityCk IntegrityCk; -struct IntegrityCk { - Btree *pBt; /* The tree being checked out */ - Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ - int nPage; /* Number of pages in the database */ - int *anRef; /* Number of times each page is referenced */ - char *zErrMsg; /* An error message. NULL of no errors seen. */ -}; - -/* -** Append a message to the error message string. -*/ -static void checkAppendMsg( - IntegrityCk *pCheck, - char *zMsg1, - const char *zFormat, - ... -){ - va_list ap; - char *zMsg2; - va_start(ap, zFormat); - zMsg2 = sqlite3VMPrintf(zFormat, ap); - va_end(ap); - if( zMsg1==0 ) zMsg1 = ""; - if( pCheck->zErrMsg ){ - char *zOld = pCheck->zErrMsg; - pCheck->zErrMsg = 0; - sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0); - sqliteFree(zOld); - }else{ - sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0); - } - sqliteFree(zMsg2); -} - -/* -** Add 1 to the reference count for page iPage. If this is the second -** reference to the page, add an error message to pCheck->zErrMsg. -** Return 1 if there are 2 ore more references to the page and 0 if -** if this is the first reference to the page. -** -** Also check that the page number is in bounds. -*/ -static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){ - if( iPage==0 ) return 1; - if( iPage>pCheck->nPage || iPage<0 ){ - checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); - return 1; - } - if( pCheck->anRef[iPage]==1 ){ - checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); - return 1; - } - return (pCheck->anRef[iPage]++)>1; -} - -/* -** Check the integrity of the freelist or of an overflow page list. -** Verify that the number of pages on the list is N. -*/ -static void checkList( - IntegrityCk *pCheck, /* Integrity checking context */ - int isFreeList, /* True for a freelist. False for overflow page list */ - int iPage, /* Page number for first page in the list */ - int N, /* Expected number of pages in the list */ - char *zContext /* Context for error messages */ -){ - int i; - int expected = N; - int iFirst = iPage; - while( N-- > 0 ){ - unsigned char *pOvfl; - if( iPage<1 ){ - checkAppendMsg(pCheck, zContext, - "%d of %d pages missing from overflow list starting at %d", - N+1, expected, iFirst); - break; - } - if( checkRef(pCheck, iPage, zContext) ) break; - if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){ - checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); - break; - } - if( isFreeList ){ - int n = get4byte(&pOvfl[4]); - if( n>pCheck->pBt->usableSize/4-8 ){ - checkAppendMsg(pCheck, zContext, - "freelist leaf count too big on page %d", iPage); - N--; - }else{ - for(i=0; i<n; i++){ - checkRef(pCheck, get4byte(&pOvfl[8+i*4]), zContext); - } - N -= n; - } - } - iPage = get4byte(pOvfl); - sqlite3pager_unref(pOvfl); - } -} - -/* -** Do various sanity checks on a single page of a tree. Return -** the tree depth. Root pages return 0. Parents of root pages -** return 1, and so forth. -** -** These checks are done: -** -** 1. Make sure that cells and freeblocks do not overlap -** but combine to completely cover the page. -** NO 2. Make sure cell keys are in order. -** NO 3. Make sure no key is less than or equal to zLowerBound. -** NO 4. Make sure no key is greater than or equal to zUpperBound. -** 5. Check the integrity of overflow pages. -** 6. Recursively call checkTreePage on all children. -** 7. Verify that the depth of all children is the same. -** 8. Make sure this page is at least 33% full or else it is -** the root of the tree. -*/ -static int checkTreePage( - IntegrityCk *pCheck, /* Context for the sanity check */ - int iPage, /* Page number of the page to check */ - MemPage *pParent, /* Parent page */ - char *zParentContext, /* Parent context */ - char *zLowerBound, /* All keys should be greater than this, if not NULL */ - int nLower, /* Number of characters in zLowerBound */ - char *zUpperBound, /* All keys should be less than this, if not NULL */ - int nUpper /* Number of characters in zUpperBound */ -){ - MemPage *pPage; - int i, rc, depth, d2, pgno, cnt; - int hdr, cellStart; - int nCell; - u8 *data; - BtCursor cur; - Btree *pBt; - int maxLocal, usableSize; - char zContext[100]; - char *hit; - - /* Check that the page exists - */ - cur.pBt = pBt = pCheck->pBt; - usableSize = pBt->usableSize; - if( iPage==0 ) return 0; - if( checkRef(pCheck, iPage, zParentContext) ) return 0; - if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){ - checkAppendMsg(pCheck, zContext, - "unable to get the page. error code=%d", rc); - return 0; - } - maxLocal = pPage->leafData ? pBt->maxLeaf : pBt->maxLocal; - if( (rc = initPage(pPage, pParent))!=0 ){ - checkAppendMsg(pCheck, zContext, "initPage() returns error code %d", rc); - releasePage(pPage); - return 0; - } - - /* Check out all the cells. - */ - depth = 0; - cur.pPage = pPage; - for(i=0; i<pPage->nCell; i++){ - u8 *pCell; - int sz; - CellInfo info; - - /* Check payload overflow pages - */ - sprintf(zContext, "On tree page %d cell %d: ", iPage, i); - pCell = findCell(pPage,i); - parseCellPtr(pPage, pCell, &info); - sz = info.nData; - if( !pPage->intKey ) sz += info.nKey; - if( sz>info.nLocal ){ - int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); - checkList(pCheck, 0, get4byte(&pCell[info.iOverflow]),nPage,zContext); - } - - /* Check sanity of left child page. - */ - if( !pPage->leaf ){ - pgno = get4byte(pCell); - d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0); - if( i>0 && d2!=depth ){ - checkAppendMsg(pCheck, zContext, "Child page depth differs"); - } - depth = d2; - } - } - if( !pPage->leaf ){ - pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); - sprintf(zContext, "On page %d at right child: ", iPage); - checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0); - } - - /* Check for complete coverage of the page - */ - data = pPage->aData; - hdr = pPage->hdrOffset; - hit = sqliteMalloc( usableSize ); - if( hit ){ - memset(hit, 1, get2byte(&data[hdr+5])); - nCell = get2byte(&data[hdr+3]); - cellStart = hdr + 12 - 4*pPage->leaf; - for(i=0; i<nCell; i++){ - int pc = get2byte(&data[cellStart+i*2]); - int size = cellSizePtr(pPage, &data[pc]); - int j; - for(j=pc+size-1; j>=pc; j--) hit[j]++; - } - for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; - cnt++){ - int size = get2byte(&data[i+2]); - int j; - for(j=i+size-1; j>=i; j--) hit[j]++; - i = get2byte(&data[i]); - } - for(i=cnt=0; i<usableSize; i++){ - if( hit[i]==0 ){ - cnt++; - }else if( hit[i]>1 ){ - checkAppendMsg(pCheck, 0, - "Multiple uses for byte %d of page %d", i, iPage); - break; - } - } - if( cnt!=data[hdr+7] ){ - checkAppendMsg(pCheck, 0, - "Fragmented space is %d byte reported as %d on page %d", - cnt, data[hdr+7], iPage); - } - } - sqliteFree(hit); - - releasePage(pPage); - return depth+1; -} - -/* -** This routine does a complete check of the given BTree file. aRoot[] is -** an array of pages numbers were each page number is the root page of -** a table. nRoot is the number of entries in aRoot. -** -** If everything checks out, this routine returns NULL. If something is -** amiss, an error message is written into memory obtained from malloc() -** and a pointer to that error message is returned. The calling function -** is responsible for freeing the error message when it is done. -*/ -char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){ - int i; - int nRef; - IntegrityCk sCheck; - - nRef = *sqlite3pager_stats(pBt->pPager); - if( lockBtree(pBt)!=SQLITE_OK ){ - return sqliteStrDup("Unable to acquire a read lock on the database"); - } - sCheck.pBt = pBt; - sCheck.pPager = pBt->pPager; - sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager); - if( sCheck.nPage==0 ){ - unlockBtreeIfUnused(pBt); - return 0; - } - sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); - for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } - i = PENDING_BYTE/pBt->pageSize + 1; - if( i<=sCheck.nPage ){ - sCheck.anRef[i] = 1; - } - sCheck.zErrMsg = 0; - - /* Check the integrity of the freelist - */ - checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), - get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); - - /* Check all the tables. - */ - for(i=0; i<nRoot; i++){ - if( aRoot[i]==0 ) continue; - checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0); - } - - /* Make sure every page in the file is referenced - */ - for(i=1; i<=sCheck.nPage; i++){ - if( sCheck.anRef[i]==0 ){ - checkAppendMsg(&sCheck, 0, "Page %d is never used", i); - } - } - - /* Make sure this analysis did not leave any unref() pages - */ - unlockBtreeIfUnused(pBt); - if( nRef != *sqlite3pager_stats(pBt->pPager) ){ - checkAppendMsg(&sCheck, 0, - "Outstanding page count goes from %d to %d during this analysis", - nRef, *sqlite3pager_stats(pBt->pPager) - ); - } - - /* Clean up and report errors. - */ - sqliteFree(sCheck.anRef); - return sCheck.zErrMsg; -} - -/* -** Return the full pathname of the underlying database file. -*/ -const char *sqlite3BtreeGetFilename(Btree *pBt){ - assert( pBt->pPager!=0 ); - return sqlite3pager_filename(pBt->pPager); -} - -/* -** Return the pathname of the directory that contains the database file. -*/ -const char *sqlite3BtreeGetDirname(Btree *pBt){ - assert( pBt->pPager!=0 ); - return sqlite3pager_dirname(pBt->pPager); -} - -/* -** Return the pathname of the journal file for this database. The return -** value of this routine is the same regardless of whether the journal file -** has been created or not. -*/ -const char *sqlite3BtreeGetJournalname(Btree *pBt){ - assert( pBt->pPager!=0 ); - return sqlite3pager_journalname(pBt->pPager); -} - -/* -** Copy the complete content of pBtFrom into pBtTo. A transaction -** must be active for both files. -** -** The size of file pBtFrom may be reduced by this operation. -** If anything goes wrong, the transaction on pBtFrom is rolled back. -*/ -int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){ - int rc = SQLITE_OK; - Pgno i, nPage, nToPage; - - if( pBtTo->inTrans!=TRANS_WRITE || pBtFrom->inTrans!=TRANS_WRITE ){ - return SQLITE_ERROR; - } - if( pBtTo->pCursor ) return SQLITE_BUSY; - nToPage = sqlite3pager_pagecount(pBtTo->pPager); - nPage = sqlite3pager_pagecount(pBtFrom->pPager); - for(i=1; rc==SQLITE_OK && i<=nPage; i++){ - void *pPage; - rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage); - if( rc ) break; - rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage); - if( rc ) break; - sqlite3pager_unref(pPage); - } - for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){ - void *pPage; - rc = sqlite3pager_get(pBtTo->pPager, i, &pPage); - if( rc ) break; - rc = sqlite3pager_write(pPage); - sqlite3pager_unref(pPage); - sqlite3pager_dont_write(pBtTo->pPager, i); - } - if( !rc && nPage<nToPage ){ - rc = sqlite3pager_truncate(pBtTo->pPager, nPage); - } - if( rc ){ - sqlite3BtreeRollback(pBtTo); - } - return rc; -} - -/* -** Return non-zero if a transaction is active. -*/ -int sqlite3BtreeIsInTrans(Btree *pBt){ - return (pBt && (pBt->inTrans==TRANS_WRITE)); -} - -/* -** Return non-zero if a statement transaction is active. -*/ -int sqlite3BtreeIsInStmt(Btree *pBt){ - return (pBt && pBt->inStmt); -} - -/* -** This call is a no-op if no write-transaction is currently active on pBt. -** -** Otherwise, sync the database file for the btree pBt. zMaster points to -** the name of a master journal file that should be written into the -** individual journal file, or is NULL, indicating no master journal file -** (single database transaction). -** -** When this is called, the master journal should already have been -** created, populated with this journal pointer and synced to disk. -** -** Once this is routine has returned, the only thing required to commit -** the write-transaction for this database file is to delete the journal. -*/ -int sqlite3BtreeSync(Btree *pBt, const char *zMaster){ - if( pBt->inTrans==TRANS_WRITE ){ - return sqlite3pager_sync(pBt->pPager, zMaster); - } - return SQLITE_OK; -} |