summaryrefslogtreecommitdiffstats
path: root/uirdesktop/ssl_calls.c
diff options
context:
space:
mode:
Diffstat (limited to 'uirdesktop/ssl_calls.c')
-rwxr-xr-xuirdesktop/ssl_calls.c1644
1 files changed, 1644 insertions, 0 deletions
diff --git a/uirdesktop/ssl_calls.c b/uirdesktop/ssl_calls.c
new file mode 100755
index 00000000..da05b135
--- /dev/null
+++ b/uirdesktop/ssl_calls.c
@@ -0,0 +1,1644 @@
+/*
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+ xrdp: A Remote Desktop Protocol server.
+ Copyright (C) Jay Sorg 2004-2005
+
+ ssl calls
+
+*/
+
+#include "rdesktop.h"
+
+#define APP_CC
+
+/*****************************************************************************/
+static void * g_malloc(int size, int zero)
+{
+ void * p;
+
+ p = xmalloc(size);
+ if (zero)
+ {
+ memset(p, 0, size);
+ }
+ return p;
+}
+
+/*****************************************************************************/
+static void g_free(void * in)
+{
+ xfree(in);
+}
+
+/*****************************************************************************/
+/*****************************************************************************/
+/* rc4 stuff */
+/* An implementation of the ARC4 algorithm
+ *
+ * Copyright (C) 2001-2003 Christophe Devine
+ */
+struct rc4_state
+{
+ int x;
+ int y;
+ int m[256];
+};
+
+/*****************************************************************************/
+void* APP_CC
+ssl_rc4_info_create(void)
+{
+ return g_malloc(sizeof(struct rc4_state), 1);;
+}
+
+/*****************************************************************************/
+void APP_CC
+ssl_rc4_info_delete(void* rc4_info)
+{
+ g_free(rc4_info);
+}
+
+/*****************************************************************************/
+void APP_CC
+ssl_rc4_set_key(void* rc4_info, char* key, int len)
+{
+ int i;
+ int j;
+ int k;
+ int a;
+ int* m;
+ struct rc4_state* s;
+
+ s = (struct rc4_state*)rc4_info;
+ s->x = 0;
+ s->y = 0;
+ m = s->m;
+ for (i = 0; i < 256; i++)
+ {
+ m[i] = i;
+ }
+ j = 0;
+ k = 0;
+ for (i = 0; i < 256; i++)
+ {
+ a = m[i];
+ j = (unsigned char)(j + a + key[k]);
+ m[i] = m[j];
+ m[j] = a;
+ k++;
+ if (k >= len)
+ {
+ k = 0;
+ }
+ }
+}
+
+/*****************************************************************************/
+void APP_CC
+ssl_rc4_crypt(void* rc4_info, char* in_data, char* out_data, int len)
+{
+ int i;
+ int x;
+ int y;
+ int a;
+ int b;
+ int* m;
+ struct rc4_state* s;
+
+ s = (struct rc4_state*)rc4_info;
+ x = s->x;
+ y = s->y;
+ m = s->m;
+ for (i = 0; i < len; i++)
+ {
+ x = (unsigned char)(x + 1);
+ a = m[x];
+ y = (unsigned char)(y + a);
+ b = m[y];
+ m[x] = b;
+ m[y] = a;
+ out_data[i] = in_data[i] ^ (m[(unsigned char)(a + b)]);
+ }
+ s->x = x;
+ s->y = y;
+}
+
+/*****************************************************************************/
+/*****************************************************************************/
+/* sha1 stuff */
+/* FIPS-180-1 compliant SHA-1 implementation
+ *
+ * Copyright (C) 2001-2003 Christophe Devine
+ */
+struct sha1_context
+{
+ int total[2];
+ int state[5];
+ char buffer[64];
+};
+
+/*****************************************************************************/
+void* APP_CC
+ssl_sha1_info_create(void)
+{
+ return g_malloc(sizeof(struct sha1_context), 1);
+}
+
+/*****************************************************************************/
+void APP_CC
+ssl_sha1_info_delete(void* sha1_info)
+{
+ g_free(sha1_info);
+}
+
+/*****************************************************************************/
+void APP_CC
+ssl_sha1_clear(void* sha1_info)
+{
+ struct sha1_context* ctx;
+
+ ctx = (struct sha1_context*)sha1_info;
+ memset(ctx, 0, sizeof(struct sha1_context));
+ ctx->state[0] = 0x67452301;
+ ctx->state[1] = 0xEFCDAB89;
+ ctx->state[2] = 0x98BADCFE;
+ ctx->state[3] = 0x10325476;
+ ctx->state[4] = 0xC3D2E1F0;
+}
+
+#undef GET_UINT32
+#define GET_UINT32(n, b, i) \
+{ \
+ (n) = ((b)[(i) + 0] << 24) | \
+ ((b)[(i) + 1] << 16) | \
+ ((b)[(i) + 2] << 8) | \
+ ((b)[(i) + 3] << 0); \
+}
+
+#undef PUT_UINT32
+#define PUT_UINT32(n, b, i) \
+{ \
+ (b)[(i) + 0] = ((n) >> 24); \
+ (b)[(i) + 1] = ((n) >> 16); \
+ (b)[(i) + 2] = ((n) >> 8); \
+ (b)[(i) + 3] = ((n) >> 0); \
+}
+
+/*****************************************************************************/
+static void APP_CC
+sha1_process(struct sha1_context* ctx, char* in_data)
+{
+ int temp;
+ int W[16];
+ int A;
+ int B;
+ int C;
+ int D;
+ int E;
+ unsigned char* data;
+
+ data = (unsigned char*)in_data;
+
+ GET_UINT32(W[0], data, 0);
+ GET_UINT32(W[1], data, 4);
+ GET_UINT32(W[2], data, 8);
+ GET_UINT32(W[3], data, 12);
+ GET_UINT32(W[4], data, 16);
+ GET_UINT32(W[5], data, 20);
+ GET_UINT32(W[6], data, 24);
+ GET_UINT32(W[7], data, 28);
+ GET_UINT32(W[8], data, 32);
+ GET_UINT32(W[9], data, 36);
+ GET_UINT32(W[10], data, 40);
+ GET_UINT32(W[11], data, 44);
+ GET_UINT32(W[12], data, 48);
+ GET_UINT32(W[13], data, 52);
+ GET_UINT32(W[14], data, 56);
+ GET_UINT32(W[15], data, 60);
+
+#define S(x, n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
+
+#define R(t) \
+( \
+ temp = W[(t - 3) & 0x0F] ^ \
+ W[(t - 8) & 0x0F] ^ \
+ W[(t - 14) & 0x0F] ^ \
+ W[(t - 0) & 0x0F], \
+ (W[t & 0x0F] = S(temp, 1)) \
+)
+
+#undef P
+#define P(a, b, c, d, e, x) \
+{ \
+ e += S(a, 5) + F(b, c, d) + K + x; \
+ b = S(b, 30); \
+}
+
+ A = ctx->state[0];
+ B = ctx->state[1];
+ C = ctx->state[2];
+ D = ctx->state[3];
+ E = ctx->state[4];
+
+#define F(x, y, z) (z ^ (x & (y ^ z)))
+#define K 0x5A827999
+
+ P(A, B, C, D, E, W[0]);
+ P(E, A, B, C, D, W[1]);
+ P(D, E, A, B, C, W[2]);
+ P(C, D, E, A, B, W[3]);
+ P(B, C, D, E, A, W[4]);
+ P(A, B, C, D, E, W[5]);
+ P(E, A, B, C, D, W[6]);
+ P(D, E, A, B, C, W[7]);
+ P(C, D, E, A, B, W[8]);
+ P(B, C, D, E, A, W[9]);
+ P(A, B, C, D, E, W[10]);
+ P(E, A, B, C, D, W[11]);
+ P(D, E, A, B, C, W[12]);
+ P(C, D, E, A, B, W[13]);
+ P(B, C, D, E, A, W[14]);
+ P(A, B, C, D, E, W[15]);
+ P(E, A, B, C, D, R(16));
+ P(D, E, A, B, C, R(17));
+ P(C, D, E, A, B, R(18));
+ P(B, C, D, E, A, R(19));
+
+#undef K
+#undef F
+
+#define F(x, y, z) (x ^ y ^ z)
+#define K 0x6ED9EBA1
+
+ P(A, B, C, D, E, R(20));
+ P(E, A, B, C, D, R(21));
+ P(D, E, A, B, C, R(22));
+ P(C, D, E, A, B, R(23));
+ P(B, C, D, E, A, R(24));
+ P(A, B, C, D, E, R(25));
+ P(E, A, B, C, D, R(26));
+ P(D, E, A, B, C, R(27));
+ P(C, D, E, A, B, R(28));
+ P(B, C, D, E, A, R(29));
+ P(A, B, C, D, E, R(30));
+ P(E, A, B, C, D, R(31));
+ P(D, E, A, B, C, R(32));
+ P(C, D, E, A, B, R(33));
+ P(B, C, D, E, A, R(34));
+ P(A, B, C, D, E, R(35));
+ P(E, A, B, C, D, R(36));
+ P(D, E, A, B, C, R(37));
+ P(C, D, E, A, B, R(38));
+ P(B, C, D, E, A, R(39));
+
+#undef K
+#undef F
+
+#define F(x, y, z) ((x & y) | (z & (x | y)))
+#define K 0x8F1BBCDC
+
+ P(A, B, C, D, E, R(40));
+ P(E, A, B, C, D, R(41));
+ P(D, E, A, B, C, R(42));
+ P(C, D, E, A, B, R(43));
+ P(B, C, D, E, A, R(44));
+ P(A, B, C, D, E, R(45));
+ P(E, A, B, C, D, R(46));
+ P(D, E, A, B, C, R(47));
+ P(C, D, E, A, B, R(48));
+ P(B, C, D, E, A, R(49));
+ P(A, B, C, D, E, R(50));
+ P(E, A, B, C, D, R(51));
+ P(D, E, A, B, C, R(52));
+ P(C, D, E, A, B, R(53));
+ P(B, C, D, E, A, R(54));
+ P(A, B, C, D, E, R(55));
+ P(E, A, B, C, D, R(56));
+ P(D, E, A, B, C, R(57));
+ P(C, D, E, A, B, R(58));
+ P(B, C, D, E, A, R(59));
+
+#undef K
+#undef F
+
+#define F(x, y, z) (x ^ y ^ z)
+#define K 0xCA62C1D6
+
+ P(A, B, C, D, E, R(60));
+ P(E, A, B, C, D, R(61));
+ P(D, E, A, B, C, R(62));
+ P(C, D, E, A, B, R(63));
+ P(B, C, D, E, A, R(64));
+ P(A, B, C, D, E, R(65));
+ P(E, A, B, C, D, R(66));
+ P(D, E, A, B, C, R(67));
+ P(C, D, E, A, B, R(68));
+ P(B, C, D, E, A, R(69));
+ P(A, B, C, D, E, R(70));
+ P(E, A, B, C, D, R(71));
+ P(D, E, A, B, C, R(72));
+ P(C, D, E, A, B, R(73));
+ P(B, C, D, E, A, R(74));
+ P(A, B, C, D, E, R(75));
+ P(E, A, B, C, D, R(76));
+ P(D, E, A, B, C, R(77));
+ P(C, D, E, A, B, R(78));
+ P(B, C, D, E, A, R(79));
+
+#undef K
+#undef F
+
+ ctx->state[0] += A;
+ ctx->state[1] += B;
+ ctx->state[2] += C;
+ ctx->state[3] += D;
+ ctx->state[4] += E;
+}
+
+/*****************************************************************************/
+void APP_CC
+ssl_sha1_transform(void* sha1_info, char* data, int len)
+{
+ int left;
+ int fill;
+ struct sha1_context* ctx;
+
+ ctx = (struct sha1_context*)sha1_info;
+ if (len == 0)
+ {
+ return;
+ }
+ left = ctx->total[0] & 0x3F;
+ fill = 64 - left;
+ ctx->total[0] += len;
+ ctx->total[0] &= 0xFFFFFFFF;
+ if (ctx->total[0] < len)
+ {
+ ctx->total[1]++;
+ }
+ if (left && (len >= fill))
+ {
+ memcpy(ctx->buffer + left, data, fill);
+ sha1_process(ctx, ctx->buffer);
+ len -= fill;
+ data += fill;
+ left = 0;
+ }
+ while (len >= 64)
+ {
+ sha1_process(ctx, data);
+ len -= 64;
+ data += 64;
+ }
+ if (len != 0)
+ {
+ memcpy(ctx->buffer + left, data, len);
+ }
+}
+
+static unsigned char sha1_padding[64] =
+{
+ 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+};
+
+/*****************************************************************************/
+void APP_CC
+ssl_sha1_complete(void* sha1_info, char* data)
+{
+ int last;
+ int padn;
+ int high;
+ int low;
+ char msglen[8];
+ struct sha1_context* ctx;
+
+ ctx = (struct sha1_context*)sha1_info;
+ high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);
+ low = (ctx->total[0] << 3);
+ PUT_UINT32(high, msglen, 0);
+ PUT_UINT32(low, msglen, 4);
+ last = ctx->total[0] & 0x3F;
+ padn = (last < 56) ? (56 - last) : (120 - last);
+ ssl_sha1_transform(ctx, sha1_padding, padn);
+ ssl_sha1_transform(ctx, msglen, 8);
+ PUT_UINT32(ctx->state[0], data, 0);
+ PUT_UINT32(ctx->state[1], data, 4);
+ PUT_UINT32(ctx->state[2], data, 8);
+ PUT_UINT32(ctx->state[3], data, 12);
+ PUT_UINT32(ctx->state[4], data, 16);
+}
+
+/*****************************************************************************/
+/*****************************************************************************/
+/* md5 stuff */
+/* RFC 1321 compliant MD5 implementation
+ *
+ * Copyright (C) 2001-2003 Christophe Devine
+ */
+
+struct md5_context
+{
+ int total[2];
+ int state[4];
+ char buffer[64];
+};
+
+/*****************************************************************************/
+void* APP_CC
+ssl_md5_info_create(void)
+{
+ return g_malloc(sizeof(struct md5_context), 1);
+}
+
+/*****************************************************************************/
+void APP_CC
+ssl_md5_info_delete(void* md5_info)
+{
+ g_free(md5_info);
+}
+
+/*****************************************************************************/
+void APP_CC
+ssl_md5_clear(void* md5_info)
+{
+ struct md5_context* ctx;
+
+ ctx = (struct md5_context*)md5_info;
+ memset(ctx, 0, sizeof(struct md5_context));
+ ctx->state[0] = 0x67452301;
+ ctx->state[1] = 0xEFCDAB89;
+ ctx->state[2] = 0x98BADCFE;
+ ctx->state[3] = 0x10325476;
+}
+
+#undef GET_UINT32
+#define GET_UINT32(n, b, i) \
+{ \
+ (n) = ((b)[(i) + 0] << 0) | \
+ ((b)[(i) + 1] << 8) | \
+ ((b)[(i) + 2] << 16) | \
+ ((b)[(i) + 3] << 24); \
+}
+
+#undef PUT_UINT32
+#define PUT_UINT32(n, b, i) \
+{ \
+ (b)[(i) + 0] = ((n) >> 0); \
+ (b)[(i) + 1] = ((n) >> 8); \
+ (b)[(i) + 2] = ((n) >> 16); \
+ (b)[(i) + 3] = ((n) >> 24); \
+}
+
+/*****************************************************************************/
+static void
+md5_process(struct md5_context* ctx, char* in_data)
+{
+ int X[16];
+ int A;
+ int B;
+ int C;
+ int D;
+ unsigned char* data;
+
+ data = (unsigned char*)in_data;
+ GET_UINT32(X[0], data, 0);
+ GET_UINT32(X[1], data, 4);
+ GET_UINT32(X[2], data, 8);
+ GET_UINT32(X[3], data, 12);
+ GET_UINT32(X[4], data, 16);
+ GET_UINT32(X[5], data, 20);
+ GET_UINT32(X[6], data, 24);
+ GET_UINT32(X[7], data, 28);
+ GET_UINT32(X[8], data, 32);
+ GET_UINT32(X[9], data, 36);
+ GET_UINT32(X[10], data, 40);
+ GET_UINT32(X[11], data, 44);
+ GET_UINT32(X[12], data, 48);
+ GET_UINT32(X[13], data, 52);
+ GET_UINT32(X[14], data, 56);
+ GET_UINT32(X[15], data, 60);
+
+#define S(x, n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
+
+#undef P
+#define P(a, b, c, d, k, s, t) \
+{ \
+ a += F(b, c, d) + X[k] + t; \
+ a = S(a, s) + b; \
+}
+
+ A = ctx->state[0];
+ B = ctx->state[1];
+ C = ctx->state[2];
+ D = ctx->state[3];
+
+#define F(x, y, z) (z ^ (x & (y ^ z)))
+
+ P(A, B, C, D, 0, 7, 0xD76AA478);
+ P(D, A, B, C, 1, 12, 0xE8C7B756);
+ P(C, D, A, B, 2, 17, 0x242070DB);
+ P(B, C, D, A, 3, 22, 0xC1BDCEEE);
+ P(A, B, C, D, 4, 7, 0xF57C0FAF);
+ P(D, A, B, C, 5, 12, 0x4787C62A);
+ P(C, D, A, B, 6, 17, 0xA8304613);
+ P(B, C, D, A, 7, 22, 0xFD469501);
+ P(A, B, C, D, 8, 7, 0x698098D8);
+ P(D, A, B, C, 9, 12, 0x8B44F7AF);
+ P(C, D, A, B, 10, 17, 0xFFFF5BB1);
+ P(B, C, D, A, 11, 22, 0x895CD7BE);
+ P(A, B, C, D, 12, 7, 0x6B901122);
+ P(D, A, B, C, 13, 12, 0xFD987193);
+ P(C, D, A, B, 14, 17, 0xA679438E);
+ P(B, C, D, A, 15, 22, 0x49B40821);
+
+#undef F
+
+#define F(x, y, z) (y ^ (z & (x ^ y)))
+
+ P(A, B, C, D, 1, 5, 0xF61E2562);
+ P(D, A, B, C, 6, 9, 0xC040B340);
+ P(C, D, A, B, 11, 14, 0x265E5A51);
+ P(B, C, D, A, 0, 20, 0xE9B6C7AA);
+ P(A, B, C, D, 5, 5, 0xD62F105D);
+ P(D, A, B, C, 10, 9, 0x02441453);
+ P(C, D, A, B, 15, 14, 0xD8A1E681);
+ P(B, C, D, A, 4, 20, 0xE7D3FBC8);
+ P(A, B, C, D, 9, 5, 0x21E1CDE6);
+ P(D, A, B, C, 14, 9, 0xC33707D6);
+ P(C, D, A, B, 3, 14, 0xF4D50D87);
+ P(B, C, D, A, 8, 20, 0x455A14ED);
+ P(A, B, C, D, 13, 5, 0xA9E3E905);
+ P(D, A, B, C, 2, 9, 0xFCEFA3F8);
+ P(C, D, A, B, 7, 14, 0x676F02D9);
+ P(B, C, D, A, 12, 20, 0x8D2A4C8A);
+
+#undef F
+
+#define F(x, y, z) (x ^ y ^ z)
+
+ P(A, B, C, D, 5, 4, 0xFFFA3942);
+ P(D, A, B, C, 8, 11, 0x8771F681);
+ P(C, D, A, B, 11, 16, 0x6D9D6122);
+ P(B, C, D, A, 14, 23, 0xFDE5380C);
+ P(A, B, C, D, 1, 4, 0xA4BEEA44);
+ P(D, A, B, C, 4, 11, 0x4BDECFA9);
+ P(C, D, A, B, 7, 16, 0xF6BB4B60);
+ P(B, C, D, A, 10, 23, 0xBEBFBC70);
+ P(A, B, C, D, 13, 4, 0x289B7EC6);
+ P(D, A, B, C, 0, 11, 0xEAA127FA);
+ P(C, D, A, B, 3, 16, 0xD4EF3085);
+ P(B, C, D, A, 6, 23, 0x04881D05);
+ P(A, B, C, D, 9, 4, 0xD9D4D039);
+ P(D, A, B, C, 12, 11, 0xE6DB99E5);
+ P(C, D, A, B, 15, 16, 0x1FA27CF8);
+ P(B, C, D, A, 2, 23, 0xC4AC5665);
+
+#undef F
+
+#define F(x, y, z) (y ^ (x | ~z))
+
+ P(A, B, C, D, 0, 6, 0xF4292244);
+ P(D, A, B, C, 7, 10, 0x432AFF97);
+ P(C, D, A, B, 14, 15, 0xAB9423A7);
+ P(B, C, D, A, 5, 21, 0xFC93A039);
+ P(A, B, C, D, 12, 6, 0x655B59C3);
+ P(D, A, B, C, 3, 10, 0x8F0CCC92);
+ P(C, D, A, B, 10, 15, 0xFFEFF47D);
+ P(B, C, D, A, 1, 21, 0x85845DD1);
+ P(A, B, C, D, 8, 6, 0x6FA87E4F);
+ P(D, A, B, C, 15, 10, 0xFE2CE6E0);
+ P(C, D, A, B, 6, 15, 0xA3014314);
+ P(B, C, D, A, 13, 21, 0x4E0811A1);
+ P(A, B, C, D, 4, 6, 0xF7537E82);
+ P(D, A, B, C, 11, 10, 0xBD3AF235);
+ P(C, D, A, B, 2, 15, 0x2AD7D2BB);
+ P(B, C, D, A, 9, 21, 0xEB86D391);
+
+#undef F
+
+ ctx->state[0] += A;
+ ctx->state[1] += B;
+ ctx->state[2] += C;
+ ctx->state[3] += D;
+}
+
+/*****************************************************************************/
+void APP_CC
+ssl_md5_transform(void* md5_info, char* data, int len)
+{
+ int left;
+ int fill;
+ struct md5_context* ctx;
+
+ ctx = (struct md5_context*)md5_info;
+ if (len == 0)
+ {
+ return;
+ }
+ left = ctx->total[0] & 0x3F;
+ fill = 64 - left;
+ ctx->total[0] += len;
+ ctx->total[0] &= 0xFFFFFFFF;
+ if (ctx->total[0] < len)
+ {
+ ctx->total[1]++;
+ }
+ if (left && (len >= fill))
+ {
+ memcpy(ctx->buffer + left, data, fill);
+ md5_process(ctx, ctx->buffer);
+ len -= fill;
+ data += fill;
+ left = 0;
+ }
+ while (len >= 64)
+ {
+ md5_process(ctx, data);
+ len -= 64;
+ data += 64;
+ }
+ if (len != 0)
+ {
+ memcpy(ctx->buffer + left, data, len);
+ }
+}
+
+static unsigned char md5_padding[64] =
+{
+ 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+};
+
+/*****************************************************************************/
+void APP_CC
+ssl_md5_complete(void* md5_info, char* data)
+{
+ int last;
+ int padn;
+ int high;
+ int low;
+ char msglen[8];
+ struct md5_context* ctx;
+
+ ctx = (struct md5_context*)md5_info;
+ high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);
+ low = (ctx->total[0] << 3);
+ PUT_UINT32(low, msglen, 0);
+ PUT_UINT32(high, msglen, 4);
+ last = ctx->total[0] & 0x3F;
+ padn = (last < 56) ? (56 - last) : (120 - last);
+ ssl_md5_transform(ctx, md5_padding, padn);
+ ssl_md5_transform(ctx, msglen, 8);
+ PUT_UINT32(ctx->state[0], data, 0);
+ PUT_UINT32(ctx->state[1], data, 4);
+ PUT_UINT32(ctx->state[2], data, 8);
+ PUT_UINT32(ctx->state[3], data, 12);
+}
+
+/*****************************************************************************/
+/*****************************************************************************/
+/* big number stuff */
+/******************* SHORT COPYRIGHT NOTICE*************************
+This source code is part of the BigDigits multiple-precision
+arithmetic library Version 1.0 originally written by David Ireland,
+copyright (c) 2001 D.I. Management Services Pty Limited, all rights
+reserved. It is provided "as is" with no warranties. You may use
+this software under the terms of the full copyright notice
+"bigdigitsCopyright.txt" that should have been included with
+this library. To obtain a copy send an email to
+<code@di-mgt.com.au> or visit <www.di-mgt.com.au/crypto.html>.
+This notice must be retained in any copy.
+****************** END OF COPYRIGHT NOTICE*************************/
+/************************* COPYRIGHT NOTICE*************************
+This source code is part of the BigDigits multiple-precision
+arithmetic library Version 1.0 originally written by David Ireland,
+copyright (c) 2001 D.I. Management Services Pty Limited, all rights
+reserved. You are permitted to use compiled versions of this code as
+part of your own executable files and to distribute unlimited copies
+of such executable files for any purposes including commercial ones
+provided you keep the copyright notices intact in the source code
+and that you ensure that the following characters remain in any
+object or executable files you distribute:
+
+"Contains multiple-precision arithmetic code originally written
+by David Ireland, copyright (c) 2001 by D.I. Management Services
+Pty Limited <www.di-mgt.com.au>, and is used with permission."
+
+David Ireland and DI Management Services Pty Limited make no
+representations concerning either the merchantability of this
+software or the suitability of this software for any particular
+purpose. It is provided "as is" without express or implied warranty
+of any kind.
+
+Please forward any comments and bug reports to <code@di-mgt.com.au>.
+The latest version of the source code can be downloaded from
+www.di-mgt.com.au/crypto.html.
+****************** END OF COPYRIGHT NOTICE*************************/
+
+typedef unsigned int DIGIT_T;
+#define HIBITMASK 0x80000000
+#define MAX_DIG_LEN 51
+#define MAX_DIGIT 0xffffffff
+#define BITS_PER_DIGIT 32
+#define MAX_HALF_DIGIT 0xffff
+#define B_J (MAX_HALF_DIGIT + 1)
+#define LOHALF(x) ((DIGIT_T)((x) & 0xffff))
+#define HIHALF(x) ((DIGIT_T)((x) >> 16 & 0xffff))
+#define TOHIGH(x) ((DIGIT_T)((x) << 16))
+
+#define mpNEXTBITMASK(mask, n) \
+{ \
+ if (mask == 1) \
+ { \
+ mask = HIBITMASK; \
+ n--; \
+ } \
+ else \
+ { \
+ mask >>= 1; \
+ } \
+}
+
+/*****************************************************************************/
+static DIGIT_T APP_CC
+mpAdd(DIGIT_T* w, DIGIT_T* u, DIGIT_T* v, unsigned int ndigits)
+{
+ /* Calculates w = u + v
+ where w, u, v are multiprecision integers of ndigits each
+ Returns carry if overflow. Carry = 0 or 1.
+
+ Ref: Knuth Vol 2 Ch 4.3.1 p 266 Algorithm A. */
+ DIGIT_T k;
+ unsigned int j;
+
+ /* Step A1. Initialise */
+ k = 0;
+ for (j = 0; j < ndigits; j++)
+ {
+ /* Step A2. Add digits w_j = (u_j + v_j + k)
+ Set k = 1 if carry (overflow) occurs */
+ w[j] = u[j] + k;
+ if (w[j] < k)
+ {
+ k = 1;
+ }
+ else
+ {
+ k = 0;
+ }
+ w[j] += v[j];
+ if (w[j] < v[j])
+ {
+ k++;
+ }
+ } /* Step A3. Loop on j */
+ return k; /* w_n = k */
+}
+
+/*****************************************************************************/
+static void APP_CC
+mpSetDigit(DIGIT_T* a, DIGIT_T d, unsigned int ndigits)
+{ /* Sets a = d where d is a single digit */
+ unsigned int i;
+
+ for (i = 1; i < ndigits; i++)
+ {
+ a[i] = 0;
+ }
+ a[0] = d;
+}
+
+/*****************************************************************************/
+static int APP_CC
+mpCompare(DIGIT_T* a, DIGIT_T* b, unsigned int ndigits)
+{
+ /* Returns sign of (a - b) */
+ if (ndigits == 0)
+ {
+ return 0;
+ }
+ while (ndigits--)
+ {
+ if (a[ndigits] > b[ndigits])
+ {
+ return 1; /* GT */
+ }
+ if (a[ndigits] < b[ndigits])
+ {
+ return -1; /* LT */
+ }
+ }
+ return 0; /* EQ */
+}
+
+/*****************************************************************************/
+static void APP_CC
+mpSetZero(DIGIT_T* a, unsigned int ndigits)
+{ /* Sets a = 0 */
+ unsigned int i;
+
+ for (i = 0; i < ndigits; i++)
+ {
+ a[i] = 0;
+ }
+}
+
+/*****************************************************************************/
+static void APP_CC
+mpSetEqual(DIGIT_T* a, DIGIT_T* b, unsigned int ndigits)
+{ /* Sets a = b */
+ unsigned int i;
+
+ for (i = 0; i < ndigits; i++)
+ {
+ a[i] = b[i];
+ }
+}
+
+/*****************************************************************************/
+static unsigned int APP_CC
+mpSizeof(DIGIT_T* a, unsigned int ndigits)
+{ /* Returns size of significant digits in a */
+ while (ndigits--)
+ {
+ if (a[ndigits] != 0)
+ {
+ return (++ndigits);
+ }
+ }
+ return 0;
+}
+
+/*****************************************************************************/
+static DIGIT_T APP_CC
+mpShiftLeft(DIGIT_T* a, DIGIT_T* b, unsigned int x, unsigned int ndigits)
+{ /* Computes a = b << x */
+ unsigned int i;
+ unsigned int y;
+ DIGIT_T mask;
+ DIGIT_T carry;
+ DIGIT_T nextcarry;
+
+ /* Check input - NB unspecified result */
+ if (x >= BITS_PER_DIGIT)
+ {
+ return 0;
+ }
+ /* Construct mask */
+ mask = HIBITMASK;
+ for (i = 1; i < x; i++)
+ {
+ mask = (mask >> 1) | mask;
+ }
+ if (x == 0)
+ {
+ mask = 0x0;
+ }
+ y = BITS_PER_DIGIT - x;
+ carry = 0;
+ for (i = 0; i < ndigits; i++)
+ {
+ nextcarry = (b[i] & mask) >> y;
+ a[i] = b[i] << x | carry;
+ carry = nextcarry;
+ }
+ return carry;
+}
+
+/*****************************************************************************/
+static DIGIT_T APP_CC
+mpShiftRight(DIGIT_T* a, DIGIT_T* b, unsigned int x, unsigned int ndigits)
+{ /* Computes a = b >> x */
+ unsigned int i;
+ unsigned int y;
+ DIGIT_T mask;
+ DIGIT_T carry;
+ DIGIT_T nextcarry;
+
+ /* Check input - NB unspecified result */
+ if (x >= BITS_PER_DIGIT)
+ {
+ return 0;
+ }
+ /* Construct mask */
+ mask = 0x1;
+ for (i = 1; i < x; i++)
+ {
+ mask = (mask << 1) | mask;
+ }
+ if (x == 0)
+ {
+ mask = 0x0;
+ }
+ y = BITS_PER_DIGIT - x;
+ carry = 0;
+ i = ndigits;
+ while (i--)
+ {
+ nextcarry = (b[i] & mask) << y;
+ a[i] = b[i] >> x | carry;
+ carry = nextcarry;
+ }
+ return carry;
+}
+
+/*****************************************************************************/
+static void APP_CC
+spMultSub(DIGIT_T* uu, DIGIT_T qhat, DIGIT_T v1, DIGIT_T v0)
+{
+ /* Compute uu = uu - q(v1v0)
+ where uu = u3u2u1u0, u3 = 0
+ and u_n, v_n are all half-digits
+ even though v1, v2 are passed as full digits. */
+ DIGIT_T p0;
+ DIGIT_T p1;
+ DIGIT_T t;
+
+ p0 = qhat * v0;
+ p1 = qhat * v1;
+ t = p0 + TOHIGH(LOHALF(p1));
+ uu[0] -= t;
+ if (uu[0] > MAX_DIGIT - t)
+ {
+ uu[1]--; /* Borrow */
+ }
+ uu[1] -= HIHALF(p1);
+}
+
+/*****************************************************************************/
+static int APP_CC
+spMultiply(DIGIT_T* p, DIGIT_T x, DIGIT_T y)
+{ /* Computes p = x * y */
+ /* Ref: Arbitrary Precision Computation
+ http://numbers.computation.free.fr/Constants/constants.html
+
+ high p1 p0 low
+ +--------+--------+--------+--------+
+ | x1*y1 | x0*y0 |
+ +--------+--------+--------+--------+
+ +-+--------+--------+
+ |1| (x0*y1 + x1*y1) |
+ +-+--------+--------+
+ ^carry from adding (x0*y1+x1*y1) together
+ +-+
+ |1|< carry from adding LOHALF t
+ +-+ to high half of p0 */
+ DIGIT_T x0;
+ DIGIT_T y0;
+ DIGIT_T x1;
+ DIGIT_T y1;
+ DIGIT_T t;
+ DIGIT_T u;
+ DIGIT_T carry;
+
+ /* Split each x,y into two halves
+ x = x0 + B * x1
+ y = y0 + B * y1
+ where B = 2^16, half the digit size
+ Product is
+ xy = x0y0 + B(x0y1 + x1y0) + B^2(x1y1) */
+
+ x0 = LOHALF(x);
+ x1 = HIHALF(x);
+ y0 = LOHALF(y);
+ y1 = HIHALF(y);
+
+ /* Calc low part - no carry */
+ p[0] = x0 * y0;
+
+ /* Calc middle part */
+ t = x0 * y1;
+ u = x1 * y0;
+ t += u;
+ if (t < u)
+ {
+ carry = 1;
+ }
+ else
+ {
+ carry = 0;
+ }
+ /* This carry will go to high half of p[1]
+ + high half of t into low half of p[1] */
+ carry = TOHIGH(carry) + HIHALF(t);
+
+ /* Add low half of t to high half of p[0] */
+ t = TOHIGH(t);
+ p[0] += t;
+ if (p[0] < t)
+ {
+ carry++;
+ }
+
+ p[1] = x1 * y1;
+ p[1] += carry;
+
+ return 0;
+}
+
+/*****************************************************************************/
+static DIGIT_T APP_CC
+spDivide(DIGIT_T* q, DIGIT_T* r, DIGIT_T* u, DIGIT_T v)
+{ /* Computes quotient q = u / v, remainder r = u mod v
+ where u is a double digit
+ and q, v, r are single precision digits.
+ Returns high digit of quotient (max value is 1)
+ Assumes normalised such that v1 >= b/2
+ where b is size of HALF_DIGIT
+ i.e. the most significant bit of v should be one
+
+ In terms of half-digits in Knuth notation:
+ (q2q1q0) = (u4u3u2u1u0) / (v1v0)
+ (r1r0) = (u4u3u2u1u0) mod (v1v0)
+ for m = 2, n = 2 where u4 = 0
+ q2 is either 0 or 1.
+ We set q = (q1q0) and return q2 as "overflow' */
+ DIGIT_T qhat;
+ DIGIT_T rhat;
+ DIGIT_T t;
+ DIGIT_T v0;
+ DIGIT_T v1;
+ DIGIT_T u0;
+ DIGIT_T u1;
+ DIGIT_T u2;
+ DIGIT_T u3;
+ DIGIT_T uu[2];
+ DIGIT_T q2;
+
+ /* Check for normalisation */
+ if (!(v & HIBITMASK))
+ {
+ *q = *r = 0;
+ return MAX_DIGIT;
+ }
+
+ /* Split up into half-digits */
+ v0 = LOHALF(v);
+ v1 = HIHALF(v);
+ u0 = LOHALF(u[0]);
+ u1 = HIHALF(u[0]);
+ u2 = LOHALF(u[1]);
+ u3 = HIHALF(u[1]);
+
+ /* Do three rounds of Knuth Algorithm D Vol 2 p272 */
+
+ /* ROUND 1. Set j = 2 and calculate q2 */
+ /* Estimate qhat = (u4u3)/v1 = 0 or 1
+ then set (u4u3u2) -= qhat(v1v0)
+ where u4 = 0. */
+ qhat = u3 / v1;
+ if (qhat > 0)
+ {
+ rhat = u3 - qhat * v1;
+ t = TOHIGH(rhat) | u2;
+ if (qhat * v0 > t)
+ {
+ qhat--;
+ }
+ }
+ uu[1] = 0; /* (u4) */
+ uu[0] = u[1]; /* (u3u2) */
+ if (qhat > 0)
+ {
+ /* (u4u3u2) -= qhat(v1v0) where u4 = 0 */
+ spMultSub(uu, qhat, v1, v0);
+ if (HIHALF(uu[1]) != 0)
+ { /* Add back */
+ qhat--;
+ uu[0] += v;
+ uu[1] = 0;
+ }
+ }
+ q2 = qhat;
+ /* ROUND 2. Set j = 1 and calculate q1 */
+ /* Estimate qhat = (u3u2) / v1
+ then set (u3u2u1) -= qhat(v1v0) */
+ t = uu[0];
+ qhat = t / v1;
+ rhat = t - qhat * v1;
+ /* Test on v0 */
+ t = TOHIGH(rhat) | u1;
+ if ((qhat == B_J) || (qhat * v0 > t))
+ {
+ qhat--;
+ rhat += v1;
+ t = TOHIGH(rhat) | u1;
+ if ((rhat < B_J) && (qhat * v0 > t))
+ {
+ qhat--;
+ }
+ }
+ /* Multiply and subtract
+ (u3u2u1)' = (u3u2u1) - qhat(v1v0) */
+ uu[1] = HIHALF(uu[0]); /* (0u3) */
+ uu[0] = TOHIGH(LOHALF(uu[0])) | u1; /* (u2u1) */
+ spMultSub(uu, qhat, v1, v0);
+ if (HIHALF(uu[1]) != 0)
+ { /* Add back */
+ qhat--;
+ uu[0] += v;
+ uu[1] = 0;
+ }
+ /* q1 = qhat */
+ *q = TOHIGH(qhat);
+ /* ROUND 3. Set j = 0 and calculate q0 */
+ /* Estimate qhat = (u2u1) / v1
+ then set (u2u1u0) -= qhat(v1v0) */
+ t = uu[0];
+ qhat = t / v1;
+ rhat = t - qhat * v1;
+ /* Test on v0 */
+ t = TOHIGH(rhat) | u0;
+ if ((qhat == B_J) || (qhat * v0 > t))
+ {
+ qhat--;
+ rhat += v1;
+ t = TOHIGH(rhat) | u0;
+ if ((rhat < B_J) && (qhat * v0 > t))
+ {
+ qhat--;
+ }
+ }
+ /* Multiply and subtract
+ (u2u1u0)" = (u2u1u0)' - qhat(v1v0) */
+ uu[1] = HIHALF(uu[0]); /* (0u2) */
+ uu[0] = TOHIGH(LOHALF(uu[0])) | u0; /* (u1u0) */
+ spMultSub(uu, qhat, v1, v0);
+ if (HIHALF(uu[1]) != 0)
+ { /* Add back */
+ qhat--;
+ uu[0] += v;
+ uu[1] = 0;
+ }
+ /* q0 = qhat */
+ *q |= LOHALF(qhat);
+ /* Remainder is in (u1u0) i.e. uu[0] */
+ *r = uu[0];
+ return q2;
+}
+
+/*****************************************************************************/
+static int APP_CC
+QhatTooBig(DIGIT_T qhat, DIGIT_T rhat, DIGIT_T vn2, DIGIT_T ujn2)
+{ /* Returns true if Qhat is too big
+ i.e. if (Qhat * Vn-2) > (b.Rhat + Uj+n-2) */
+ DIGIT_T t[2];
+
+ spMultiply(t, qhat, vn2);
+ if (t[1] < rhat)
+ {
+ return 0;
+ }
+ else if (t[1] > rhat)
+ {
+ return 1;
+ }
+ else if (t[0] > ujn2)
+ {
+ return 1;
+ }
+ return 0;
+}
+
+/*****************************************************************************/
+static DIGIT_T APP_CC
+mpShortDiv(DIGIT_T* q, DIGIT_T* u, DIGIT_T v, unsigned int ndigits)
+{
+ /* Calculates quotient q = u div v
+ Returns remainder r = u mod v
+ where q, u are multiprecision integers of ndigits each
+ and d, v are single precision digits.
+
+ Makes no assumptions about normalisation.
+
+ Ref: Knuth Vol 2 Ch 4.3.1 Exercise 16 p625 */
+ unsigned int j;
+ unsigned int shift;
+ DIGIT_T t[2];
+ DIGIT_T r;
+ DIGIT_T bitmask;
+ DIGIT_T overflow;
+ DIGIT_T* uu;
+
+ if (ndigits == 0)
+ {
+ return 0;
+ }
+ if (v == 0)
+ {
+ return 0; /* Divide by zero error */
+ }
+ /* Normalise first */
+ /* Requires high bit of V
+ to be set, so find most signif. bit then shift left,
+ i.e. d = 2^shift, u' = u * d, v' = v * d. */
+ bitmask = HIBITMASK;
+ for (shift = 0; shift < BITS_PER_DIGIT; shift++)
+ {
+ if (v & bitmask)
+ {
+ break;
+ }
+ bitmask >>= 1;
+ }
+ v <<= shift;
+ overflow = mpShiftLeft(q, u, shift, ndigits);
+ uu = q;
+ /* Step S1 - modified for extra digit. */
+ r = overflow; /* New digit Un */
+ j = ndigits;
+ while (j--)
+ {
+ /* Step S2. */
+ t[1] = r;
+ t[0] = uu[j];
+ overflow = spDivide(&q[j], &r, t, v);
+ }
+ /* Unnormalise */
+ r >>= shift;
+ return r;
+}
+
+/*****************************************************************************/
+static DIGIT_T APP_CC
+mpMultSub(DIGIT_T wn, DIGIT_T* w, DIGIT_T* v, DIGIT_T q, unsigned int n)
+{ /* Compute w = w - qv
+ where w = (WnW[n-1]...W[0])
+ return modified Wn. */
+ DIGIT_T k;
+ DIGIT_T t[2];
+ unsigned int i;
+
+ if (q == 0) /* No change */
+ {
+ return wn;
+ }
+ k = 0;
+ for (i = 0; i < n; i++)
+ {
+ spMultiply(t, q, v[i]);
+ w[i] -= k;
+ if (w[i] > MAX_DIGIT - k)
+ {
+ k = 1;
+ }
+ else
+ {
+ k = 0;
+ }
+ w[i] -= t[0];
+ if (w[i] > MAX_DIGIT - t[0])
+ {
+ k++;
+ }
+ k += t[1];
+ }
+ /* Cope with Wn not stored in array w[0..n-1] */
+ wn -= k;
+ return wn;
+}
+
+/*****************************************************************************/
+static int APP_CC
+mpDivide(DIGIT_T* q, DIGIT_T* r, DIGIT_T* u, unsigned int udigits,
+ DIGIT_T* v, unsigned int vdigits)
+{ /* Computes quotient q = u / v and remainder r = u mod v
+ where q, r, u are multiple precision digits
+ all of udigits and the divisor v is vdigits.
+
+ Ref: Knuth Vol 2 Ch 4.3.1 p 272 Algorithm D.
+
+ Do without extra storage space, i.e. use r[] for
+ normalised u[], unnormalise v[] at end, and cope with
+ extra digit Uj+n added to u after normalisation.
+
+ WARNING: this trashes q and r first, so cannot do
+ u = u / v or v = u mod v. */
+ unsigned int shift;
+ int n;
+ int m;
+ int j;
+ int qhatOK;
+ int cmp;
+ DIGIT_T bitmask;
+ DIGIT_T overflow;
+ DIGIT_T qhat;
+ DIGIT_T rhat;
+ DIGIT_T t[2];
+ DIGIT_T* uu;
+ DIGIT_T* ww;
+
+ /* Clear q and r */
+ mpSetZero(q, udigits);
+ mpSetZero(r, udigits);
+ /* Work out exact sizes of u and v */
+ n = (int)mpSizeof(v, vdigits);
+ m = (int)mpSizeof(u, udigits);
+ m -= n;
+ /* Catch special cases */
+ if (n == 0)
+ {
+ return -1; /* Error: divide by zero */
+ }
+ if (n == 1)
+ { /* Use short division instead */
+ r[0] = mpShortDiv(q, u, v[0], udigits);
+ return 0;
+ }
+ if (m < 0)
+ { /* v > u, so just set q = 0 and r = u */
+ mpSetEqual(r, u, udigits);
+ return 0;
+ }
+ if (m == 0)
+ { /* u and v are the same length */
+ cmp = mpCompare(u, v, (unsigned int)n);
+ if (cmp < 0)
+ { /* v > u, as above */
+ mpSetEqual(r, u, udigits);
+ return 0;
+ }
+ else if (cmp == 0)
+ { /* v == u, so set q = 1 and r = 0 */
+ mpSetDigit(q, 1, udigits);
+ return 0;
+ }
+ }
+ /* In Knuth notation, we have:
+ Given
+ u = (Um+n-1 ... U1U0)
+ v = (Vn-1 ... V1V0)
+ Compute
+ q = u/v = (QmQm-1 ... Q0)
+ r = u mod v = (Rn-1 ... R1R0) */
+ /* Step D1. Normalise */
+ /* Requires high bit of Vn-1
+ to be set, so find most signif. bit then shift left,
+ i.e. d = 2^shift, u' = u * d, v' = v * d. */
+ bitmask = HIBITMASK;
+ for (shift = 0; shift < BITS_PER_DIGIT; shift++)
+ {
+ if (v[n - 1] & bitmask)
+ {
+ break;
+ }
+ bitmask >>= 1;
+ }
+ /* Normalise v in situ - NB only shift non-zero digits */
+ overflow = mpShiftLeft(v, v, shift, n);
+ /* Copy normalised dividend u*d into r */
+ overflow = mpShiftLeft(r, u, shift, n + m);
+ uu = r; /* Use ptr to keep notation constant */
+ t[0] = overflow; /* New digit Um+n */
+ /* Step D2. Initialise j. Set j = m */
+ for (j = m; j >= 0; j--)
+ {
+ /* Step D3. Calculate Qhat = (b.Uj+n + Uj+n-1)/Vn-1 */
+ qhatOK = 0;
+ t[1] = t[0]; /* This is Uj+n */
+ t[0] = uu[j+n-1];
+ overflow = spDivide(&qhat, &rhat, t, v[n - 1]);
+ /* Test Qhat */
+ if (overflow)
+ { /* Qhat = b */
+ qhat = MAX_DIGIT;
+ rhat = uu[j + n - 1];
+ rhat += v[n - 1];
+ if (rhat < v[n - 1]) /* Overflow */
+ {
+ qhatOK = 1;
+ }
+ }
+ if (!qhatOK && QhatTooBig(qhat, rhat, v[n - 2], uu[j + n - 2]))
+ { /* Qhat.Vn-2 > b.Rhat + Uj+n-2 */
+ qhat--;
+ rhat += v[n - 1];
+ if (!(rhat < v[n - 1]))
+ {
+ if (QhatTooBig(qhat, rhat, v[n - 2], uu[j + n - 2]))
+ {
+ qhat--;
+ }
+ }
+ }
+ /* Step D4. Multiply and subtract */
+ ww = &uu[j];
+ overflow = mpMultSub(t[1], ww, v, qhat, (unsigned int)n);
+ /* Step D5. Test remainder. Set Qj = Qhat */
+ q[j] = qhat;
+ if (overflow)
+ { /* Step D6. Add back if D4 was negative */
+ q[j]--;
+ overflow = mpAdd(ww, ww, v, (unsigned int)n);
+ }
+ t[0] = uu[j + n - 1]; /* Uj+n on next round */
+ } /* Step D7. Loop on j */
+ /* Clear high digits in uu */
+ for (j = n; j < m+n; j++)
+ {
+ uu[j] = 0;
+ }
+ /* Step D8. Unnormalise. */
+ mpShiftRight(r, r, shift, n);
+ mpShiftRight(v, v, shift, n);
+ return 0;
+}
+
+/*****************************************************************************/
+static int APP_CC
+mpModulo(DIGIT_T* r, DIGIT_T* u, unsigned int udigits,
+ DIGIT_T* v, unsigned int vdigits)
+{
+ /* Calculates r = u mod v
+ where r, v are multiprecision integers of length vdigits
+ and u is a multiprecision integer of length udigits.
+ r may overlap v.
+
+ Note that r here is only vdigits long,
+ whereas in mpDivide it is udigits long.
+
+ Use remainder from mpDivide function. */
+ /* Double-length temp variable for divide fn */
+ DIGIT_T qq[MAX_DIG_LEN * 2];
+ /* Use a double-length temp for r to allow overlap of r and v */
+ DIGIT_T rr[MAX_DIG_LEN * 2];
+
+ /* rr[2n] = u[2n] mod v[n] */
+ mpDivide(qq, rr, u, udigits, v, vdigits);
+ mpSetEqual(r, rr, vdigits);
+ mpSetZero(rr, udigits);
+ mpSetZero(qq, udigits);
+ return 0;
+}
+
+/*****************************************************************************/
+static int APP_CC
+mpMultiply(DIGIT_T* w, DIGIT_T* u, DIGIT_T* v, unsigned int ndigits)
+{
+ /* Computes product w = u * v
+ where u, v are multiprecision integers of ndigits each
+ and w is a multiprecision integer of 2*ndigits
+ Ref: Knuth Vol 2 Ch 4.3.1 p 268 Algorithm M. */
+ DIGIT_T k;
+ DIGIT_T t[2];
+ unsigned int i;
+ unsigned int j;
+ unsigned int m;
+ unsigned int n;
+
+ n = ndigits;
+ m = n;
+ /* Step M1. Initialise */
+ for (i = 0; i < 2 * m; i++)
+ {
+ w[i] = 0;
+ }
+ for (j = 0; j < n; j++)
+ {
+ /* Step M2. Zero multiplier? */
+ if (v[j] == 0)
+ {
+ w[j + m] = 0;
+ }
+ else
+ {
+ /* Step M3. Initialise i */
+ k = 0;
+ for (i = 0; i < m; i++)
+ {
+ /* Step M4. Multiply and add */
+ /* t = u_i * v_j + w_(i+j) + k */
+ spMultiply(t, u[i], v[j]);
+ t[0] += k;
+ if (t[0] < k)
+ {
+ t[1]++;
+ }
+ t[0] += w[i + j];
+ if (t[0] < w[i+j])
+ {
+ t[1]++;
+ }
+ w[i + j] = t[0];
+ k = t[1];
+ }
+ /* Step M5. Loop on i, set w_(j+m) = k */
+ w[j + m] = k;
+ }
+ } /* Step M6. Loop on j */
+ return 0;
+}
+
+/*****************************************************************************/
+static int APP_CC
+mpModMult(DIGIT_T* a, DIGIT_T* x, DIGIT_T* y,
+ DIGIT_T* m, unsigned int ndigits)
+{ /* Computes a = (x * y) mod m */
+ /* Double-length temp variable */
+ DIGIT_T p[MAX_DIG_LEN * 2];
+
+ /* Calc p[2n] = x * y */
+ mpMultiply(p, x, y, ndigits);
+ /* Then modulo */
+ mpModulo(a, p, ndigits * 2, m, ndigits);
+ mpSetZero(p, ndigits * 2);
+ return 0;
+}
+
+/*****************************************************************************/
+int APP_CC
+ssl_mod_exp(char* out, int out_len, char* in, int in_len,
+ char* mod, int mod_len, char* exp, int exp_len)
+{
+ /* Computes y = x ^ e mod m */
+ /* Binary left-to-right method */
+ DIGIT_T mask;
+ DIGIT_T* e;
+ DIGIT_T* x;
+ DIGIT_T* y;
+ DIGIT_T* m;
+ unsigned int n;
+ int max_size;
+ char* l_out;
+ char* l_in;
+ char* l_mod;
+ char* l_exp;
+
+ if (in_len > out_len || in_len == 0 ||
+ out_len == 0 || mod_len == 0 || exp_len == 0)
+ {
+ return 0;
+ }
+ max_size = out_len;
+ if (in_len > max_size)
+ {
+ max_size = in_len;
+ }
+ if (mod_len > max_size)
+ {
+ max_size = mod_len;
+ }
+ if (exp_len > max_size)
+ {
+ max_size = exp_len;
+ }
+ l_out = (char*)g_malloc(max_size, 1);
+ l_in = (char*)g_malloc(max_size, 1);
+ l_mod = (char*)g_malloc(max_size, 1);
+ l_exp = (char*)g_malloc(max_size, 1);
+ memcpy(l_in, in, in_len);
+ memcpy(l_mod, mod, mod_len);
+ memcpy(l_exp, exp, exp_len);
+ e = (DIGIT_T*)l_exp;
+ x = (DIGIT_T*)l_in;
+ y = (DIGIT_T*)l_out;
+ m = (DIGIT_T*)l_mod;
+ /* Find second-most significant bit in e */
+ n = mpSizeof(e, max_size / 4);
+ for (mask = HIBITMASK; mask > 0; mask >>= 1)
+ {
+ if (e[n - 1] & mask)
+ {
+ break;
+ }
+ }
+ mpNEXTBITMASK(mask, n);
+ /* Set y = x */
+ mpSetEqual(y, x, max_size / 4);
+ /* For bit j = k - 2 downto 0 step -1 */
+ while (n)
+ {
+ mpModMult(y, y, y, m, max_size / 4); /* Square */
+ if (e[n - 1] & mask)
+ {
+ mpModMult(y, y, x, m, max_size / 4); /* Multiply */
+ }
+ /* Move to next bit */
+ mpNEXTBITMASK(mask, n);
+ }
+ memcpy(out, l_out, out_len);
+ g_free(l_out);
+ g_free(l_in);
+ g_free(l_mod);
+ g_free(l_exp);
+ return out_len;
+}
+